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Abstract

The last advancements in technology leads to an easy acquisition and spreading

of multi-dimensional multimedia content, e.g. videos, which in many cases de-

pict human faces. From such videos, valuable information describing the intrin-

sic characteristic of the recorded user can be retrieved: the features extracted

from the facial patch are relevant descriptors that allow for the measurement

of subject’s emotional status or the identification of synthetic characters.

One of the emerging challenges is the development of contactless approaches

based on face analysis aiming at measuring the emotional status of the subject

without placing sensors that limit or bias his experience. This raises even

more interest in the context of Quality of Experience (QoE) measurement, or

the measurement of user emotional status when subjected to a multimedia

content, since it allows for retrieving the overall acceptability of the content as

perceived by the end user. Measuring the impact of a given content to the user

can have many implications from both the content producer and the end-user

perspectives. For this reason, we pursue the QoE assessment of a user watching

multimedia stimuli, i.e. 3D-movies, through the analysis of his facial features

acquired by means of contactless approaches. More specifically, the user’s

Heart Rate (HR) was retrieved by using computer vision techniques applied

to the facial recording of the subject and then analysed in order to compute

the level of engagement. We show that the proposed framework is effective

for long video sequences, being robust to facial movements and illumination

changes. We validate it on a dataset of 64 sequences where users observe 3D

movies selected to induce variations in users’ emotional status.

From one hand understanding the interaction between the user’s perception

of the content and his cognitive-emotional aspects leads to many opportunities

to content producers, which may influence people’s emotional statuses accord-

ing to needs that can be driven by political, social, or business interests. On

the other hand, the end-user must be aware of the authenticity of the content

being watched: advancements in computer renderings allowed for the spread-

ing of fake subjects in videos. Because of this, as a second challenge we target

the identification of Computer Generated (CG) characters in videos by apply-

ing two different approaches. We firstly exploit the idea that fake characters

do not present any pulse rate signal, while humans’ pulse rate is expressed by

a sinusoidal signal. The application of computer vision techniques on a facial

video allows for the contactless estimation of the subject’s HR, thus leading

to the identification of signals that lack of a strong sinusoidality, which rep-

resent virtual humans. The proposed pipeline allows for a fully automated
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discrimination, validated on a dataset consisting of 104 videos. Secondly, we

make use of facial spatio-temporal texture dynamics that reveal the artefacts

introduced by computer renderings techniques when creating a manipulation,

e.g. face swapping, on videos depicting human faces. To do so, we consider

multiple temporal video segments on which we estimated multi-dimensional

(spatial and temporal) texture features. A binary decision of he joint analy-

sis of such features is applied to strengthen the classification accuracy. This

is achieved through the use of Local Derivative Patterns on Three Orthogo-

nal Planes (LDP-TOP). Experimental analyses on state-of-the-art datasets

of manipulated videos show the discriminative power of such descriptors in

separating real and manipulated sequences, and also identifying the creation

method used.

The main finding of this thesis is the relevance of facial features in de-

scribing intrinsic characteristics of humans. These can be used to retrieve

significant information like the physiological response to multimedia stimuli or

the authenticity of the human being itself. The application of the proposed ap-

proaches also on benchmark dataset returned good results, thus demonstrating

real advancements in this research field. In addition to that, these method can

be extended to different practical applications, from the autonomous driving

safety checks to the identification of spoofing attacks, from the medical check

ups when doing sports to the users’ engagement measurement when watching

advertising. Because of this, we encourage further investigations in such direc-

tion, in order to improve the robustness of the methods, thus allowing for the

application to increasingly challenging scenarios.

Keywords

Heart rate, heart rate variability, 3D video, quality of experience, digital hu-

mans, computer generated faces, physiological signals, contactless approaches,

video forensics.
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Chapter 1

Introduction

The last decade was characterized by a huge spreading of personal mobile and

handheld devices in the world: recent data state that in 2019 there were 3.2

billions smartphone users, which are foreseen to grow up to 3.5 billions in

2020 [8]. This means that almost one person over two in the world will own a

smartphone in the near future. But what caused such an important growth?

Cisco report on Global Mobile Data Traffic Forecast [9] shows that mobile data

traffic grew from 12 Exabytes per month in 2017 up to 29 Exabytes per month

in 2019, growing at a Compound Annual Growth Rate (CAGR) of 46 percent.

According to this, the possibility to connect each others through the Internet

allowed for an exponential spreading of smart devices capable of interacting

each others [10]. Among all the potential usage of the smart devices, one

became very popular and affects people’s life everyday: the interaction with

social media, such as Facebook, Instagram, Pinterest, and many others. The

Global State of Digital in 2019 Report shows that in October 2019 there were

3.74 billion active social media users in the world, among which more than

98 percent using mobile social media platforms [11]. This turns into a huge

amount of content being uploaded on the Internet. To provide an idea, in

2014 it has been estimated that an average of 1.8 billion digital images were

uploaded on the Internet every single day [12]; a recent estimate states that

currently more than 350 million pictures per day are uploaded on Facebook

[13]. These numbers show how the advancements in technologies gave to the

users easy access to complex multimedia contents simply using smartphone or

handheld devices. The technological limitations of the acquisition devices, the

communication channels, the cloud of just ten years ago are largely overcome:

nowadays it is common to record daily-life scenes with the smartphones, upload

videos on social networks, store videos in the cloud and watch videos or even

movies on the smartphones’ screen.
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Most of the videos uploaded on the Internet depict users’ faces, which can

be analysed for different purposes. The human face contains valuable informa-

tion proper of the user, which can be retrieved by applying specific computer

vision techniques. Among all the applications, the analysis of the facial patch

allows for estimating the subject’s HR; the HR signal in turns can be exploited

to retrieve the user’s emotional status and thus to analyse his engagement when

subjected to a given stimuli, e.g. images or videos. On the other hand, facial

features can be used to determine whether the subject depicted in the video is

a real human being or a synthetic character generated via computer graphics.

This capability allows the user to keep the awareness of what content is real

and what is not. Both the above-mentioned applications can be addressed

by analyzing the facial patch of a given subject in a video. More specifically,

the exploitation of the facial area in a video allows for physiological signal

estimation, i.e. the subject’s HR, or it allows for the estimation of intrinsic

characteristic of the media, i.e. spatio-temporal descriptors, which can be used

as descriptors for forensics applications. According to that, Fig. 1.1 shows the

goal of this Thesis, which is the exploitation of the human facial patch in videos

for contactless QoE assessment, and multimedia forensics applications.

Figure 1.1: Thesis goal flowchart.

Assessing user’s engagement

The easy access to multimedia content led to challenges related to the mea-

surement of their quality in terms of both Quality of Service (QoS) and QoE.

The first measure is defined as the “totality of characteristics of a telecommu-

nications service that bear on its ability to satisfy stated and implied needs of
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the user of the service” [14], whereas the QoE may be defined as “the over-

all acceptability of an application or service, as perceived subjectively by the

end-user” [15]. An alternative definition of QoE that highlights the role of

the end-user in the process is provided by Qualinet: QoE is “the degree of

delight or annoyance of the user of an application or service. It results from

the fulfillment of his or her expectations with respect to the utility and/or en-

joyment of the application or service in the light of the user’s personality and

current state” [16]. While QoS can be measured by means of well established

indicators, the QoE assessment is a challenging task since, as well known, user

experience is subjective, therefore difficult to quantify and measure. Anyways,

with the increasing consumption of digital data and the corresponding ad-

vancement of consumer technologies, the need for a better understanding of

the perceived QoE is increasing.

Our goal is to challenge the measurement of the user experience while

watching a 3D-content, without altering his experience. To do so, we aim

at using contactless approaches based on facial analysis, which allow for the

estimation of human physiological signal, specifically the HR, which can be

used to retrieve valuable information regarding the user’s emotional sphere.

As a preliminary step, we wanted to check whether the pulse rate signal es-

timated though the contactless face analysis approach was accurate enough

to enable for further analyses. For this reason we compared the pulse rate

signals estimated from videos to the ones acquired by a medical sensor. Once

that has been proved, we designed an experiment that aimed at altering the

user’s HR: we showed 3D movies to a pool of users, whose faces and HR

signals were recorded during the experiment using a webcam and a medical

sensor, respectively. At first, we demonstrated that the high engaging scenes

in 3D videos infer common HR variations among the subjects by comparing

the data acquired by the medical sensor to the video annotations highlighting

high arousing moments. Secondly, we proved that the HR signals estimated

through the proposed contactless approach were capable to identify such vari-

ations as well. This leads to the development of a fully-automated method

capable to assess the QoE of a user when subjected to complex multimedia

content.

Keeping the awareness of what is real

Remotely estimating the QoE of a users’ watching a multimedia content leads

to many opportunities, among which understanding what advertising has a

positive impact on the user and what has not, dynamically changing the con-

tent in case of emerging stressing conditions, and measuring the satisfaction
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on watching the content. On the other hand, negative implications may occur

in the usage of tools that aim at inferring emotional statuses and measuring

the QoE. Let us think about the fake news that we can find everywhere, in

papers, in TV shows, in the social networks: multimedia contents may be

used to influence people’s opinion by dynamically subjecting images or videos

according to user’s response. In 2019 the journalist of the Guardian Carole

Jane Cadwalladr raised the issue of the usage of users’ data and specific online

contents to influence political decisions: she had a TED talk on the role of

Facebook and Brexit, stating that the social media was used to bias users’

opinion on Brexit [17]. This can be true or not, but the point is that we are

surrounded by fake contents that may affect our perception of the reality: from

the CG image depicting Osama bin Laden corpse [18], which is a composite of

two different images made by computer rendering techniques, to the incredibly

realistic fake video of President Barack Obama [19], made by the movie di-

rector Jordan Peele using faces-warping Artificial Intelligence (AI) techniques.

Being able to ensure and verify the integrity of digital multimedia content is

recognized as an essential challenge in our society. In the last decade, the

field of multimedia forensics worked towards the development of increasingly

effective technological safeguards to address these issues, with the goal of in-

ferring information on the acquisition settings and digital history of the images

and videos under investigation. In parallel, computer graphics and machine

vision have achieved impressive advances in the very last years in the creation

of highly realistic synthetic audio-video content (see Figure 1.2). Convincing

digital representations of human characters appearing almost indistinguishable

from real people can now be obtained automatically through increasingly ac-

cessible tools. These technologies are progressing at a tremendous pace, and

can be coupled with advances in the field text-to-speech synthesis. While of-

fering exciting opportunities for entertainment and content creation purposes,

it is clear that such technologies can have significant security implications in

different application scenarios. As a matter of fact, digital versions of human

faces are constantly streamed through video chats, video conferencing services,

media channels, and even used for authentication purposes in replacement of

traditional schemes based on fingerprints or passwords.

Thus, the need for forensic techniques able to deal with this new powerful

manipulations has become of primary importance, leading to huge efforts in

developing robust forensic detection methodologies and benchmarking them

on realistic datasets. While the identification of computer-generated faces has

been widely addressed in the last decade, the data produced by advanced and

AI-based creation tools have brought to a number of new approaches for the
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Figure 1.2: Example of CGI (computer-generated imagery) realism: half of
this image is a CG rendering, half is a real photo.

problem. Currently, most of them apply detection techniques designed for im-

ages to single frames of video sequences, often relying on deep representations

of the pixel domain. However, such an approach does not exploit the temporal

information provided by video sequences which might contain useful statisti-

cal characterization and contribute to the detection ability of an automatic

detector.

For the above-mentioned reasons, we challenge also the detection of real

and fake subjects in videos, by exploiting the features coming from the facial

area. We firstly considered the presence of the physiological signals, i.e. the

HR, as significant feature for identifying fake characters: the idea is that the

pulse rate signal estimated for a fake character depicted in a video follows a flat

behaviour, while for a real characters follows a sinusoidal behaviour. Secondly

we used a texture-based approach to detect CG subjects on a benchmark

dataset composed by original and fake videos. Those videos are obtained

by applying the latest computer rendering methods, thus depicting subjects

almost indistinguishable from real ones from a visual perspective. We showed

that the analysis of local patterns of the facial patch combined with SVM

allows for a fully automated and accurate way to distinguish CG from NAT.

Proposed QoE and fake video detection techniques through face re-
gion analysis

What introduced so far describes two different problems, having opposite per-

spective: on one hand the multimedia content producer aims at inferring some

emotional statuses and at measuring the user’s response; on the other hand,
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the end-user watching the multimedia content must keep the awareness of the

integrity and reality of the content being watched, especially when dealing

with multi-modal signals (i.e. video) depicting people talking about political,

ethical, social issues, which may affect user’s thoughts. In this work, features

extracted from the face region have been exploited with the final goal of imple-

menting a contactless approach for heart rate estimation for QoE assessment;

in addition to that, we propose different methods aiming at discriminating

fake characters from real beings in videos, one based on physiological signal

analysis, the other based on multidimensional pattern descriptors.

In order to retrieve QoE through non-invasive methods, we present a con-

tactless approach that automatically detects HR variability from a video se-

quence depicting a human face. The system can be used also in the specific

conditions where 3D-QoE tests are conducted (e.g., with participant’s face oc-

cluded by 3D glasses). We pursue this aim by: i) proposing a framework based

on several components which allow to analyze long video sequences and to over-

come facial movements and light changes introduced by varying illumination

conditions; ii) comparing different configurations of the proposed algorithm on

a large dataset in order to select the best configuration for HR estimation;

iii) providing a validation of the proposed technique on a new dataset of 64

videos depicting users’ face when observing a scene of a 3D movie (selected to

induce HR variations) and its corresponding ground truth HR captured with

commonly used biomedical sensors. Demonstrating then its capability to ef-

fectively detect HR variability which is evident also in the HR extracted from

the recorded video sequences; iv) finally, introducing a psycho-physiological

analysis with t-test showing a significant change in HR obtained both from

the ground truth and from the signals captured by the contactless automatic

analysis performed directly on the video.

As a second step, we target fully-automated real versus virtual human faces

discrimination in video sequences by using physiological signals characterizing

real humans, the HR. In particular, we aim at exploiting an improved contact-

less technique for HR estimation from video sequences which make use of the

background information to improve the robustness of the physiological signal

extraction and filtering, thus achieving a higher quality of the final estimate.

Moreover, by calculating a set of statistics from the estimated HR, we provide

an automatic classification of the input face as CG or NAT.

As a final goal, we tackle an intermediate approach that relies on hybrid

texture descriptors operating in the spatial and temporal domains. This yields

relatively small feature representations that can be learned through simpler
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classifiers, such as linear SVMs. While such descriptors have been success-

fully used for video-based face spoofing detection, their effectiveness has never

been explored in the context of manipulated faces detection, although the two

problems are related by significant analogies. Our approach employs so-called

LDP-TOP, a variant of local binary patterns that operated on three dimen-

sions and proved to be particularly effective in face anti-spoofing. Moreover,

we propose to perform the analysis of entire video sequences by combining the

predictions computed on multiple temporal segments, which proves to bring a

significant accuracy gain.

Thesis Outline

The outline of the Thesis is as follows. In Chapter 2 we introduce the literature

related to contactless HR estimation techniques and real versus fake multi-

modal content detection. In Chapter 3 we introduce the proposed contactless

approach for heart rate estimation for QoE assessment. Chapter 4 challenges

the digital human faces detection in video sequences via a physiological signal

analysis. In Chapter 5 manipulated faces in video sequences are detected

through a dynamic texture analysis. Finally, in Chapter 6 we summarize our

findings, reporting the final conclusions and possible future works.
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Chapter 2

State of the Art

2.1 QoE estimation

Multi-modal digital signals, like videos, pose a big challenge to QoE assessment.

In fact, since these media are meant to provide a high degree of immersivity,

the QoE is not only determined by video quality, but also by the capacity of

the attributes of the content (i.e., semantic content) and the user context to

facilitate in the viewer cognitive and emotional processes, eliciting emotional

reactions, curiosity, or even arousal. More specifically, the Influencing Factors

(IFs) defined as “any characteristic of a user, system, service, application, or

context whose actual state or setting may have influence on the Quality of

Experience for the user” [16] have been clustered in four main classes [20]:

• human-related IFs, proper of the human end-user, among which social

and ethical status, physical condition, mental constitution, etc.;

• system-related IFs, the intrinsic technical characteristics of the system

that exposes the media, e.g. video coding, noise introduced by transmis-

sion or reception systems, etc.;

• context-related IFs, any influence related to the surrounding environ-

ment, such as the presence of people, background noise, etc;

• content-related IFs, the intrinsic characteristics of the media to be pro-

duced, such as quality of the frame, video frame rate or the quality of

the audio.

This raises the need for tools allowing to monitor such psychological pro-

cesses [21]: as reported in [22], subjective and objective measurements can

be used to estimate the QoE. The subjective measures aim at retrieving the

QoE by means of opinion scores. Usually, a pool of human users is asked to

evaluate specific video sequences by answering to a questionnaire based on
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scales ranging from minimum to maximum value, e.g. 5-point scale or 9-point

scale. Figure 2.1 shows an example of the SAM technique [23] based on a 9-

point scale quiz: in this case the users’ emotional status is measured in terms

of valence 2.1.(a), ranging from negative to positive, and the arousal 2.1.(b),

representing the strength of the perceived emotion.

(a) (b)

Figure 2.1: SAM questionnaire used to collect subjects’ affective reaction to
a precise stimulus. (a) The scale regarding the valence is used to represent
people’s reaction from negative to positive perception; (b) the arousal instead
is used to represent from low to high the impact of stimulus.

The obtained values can be then averaged per each test sequence, provid-

ing the so-called Mean Opinion Score (MOS) [24], which is one of the existing

measurement of users’ viewpoint and perception. Even if it represents pow-

erful tools, questionnaire-based QoE estimations have some limitations, such

as the possibility to capture relevant data in real-time. To cope with this

issue, web-based platforms have been implemented in order to perform QoE

assessment through the creation of a realistic test environment, named crowd-

sourcing [25, 26] that can be accessed by different people spread in the world,

thus providing an variegated plethora of users. These tools lead to a faster

and more flexible experiments. If on one hand the subjective measurements

are based on the user’s perception of the content, on the other hand objective

measures approximate users’ perception via some models. These techniques

aim at assessing the QoE by evaluating the QoS metrics, or the intrinsic pa-

rameters of the network. Some of the most known objective quality assessment

approaches are Peak Signal to Noise Ratio (PSNR), Structural Similarity Met-

ric (SSIM) [27], Video Quality Model (VQM) [28] and Natural Image Quality

Evaluator (NIQE) [29]. Even if these method provide objective measurement,

they analyse the features related to the technical parameters of the media,

not directly measuring the QoE through the parameters of the user himself.

For this reason, the use of alternative methods such as psychophysiological

measurements is gaining momentum [30,31], since they allow for solving some

limitations, e.g. avoiding possible biases coming from questioning the user

in case of self-reports or measuring the QoE starting from QoS and not on

the user himself in case of techniques based on QoS. These methods rely

on observing changes in physiological signals that are informative of psycho-

logical processes [32]. One of the most commonly used psychophysiological

10



methods is the analysis of cardiac activity, and, particularly, HR, which can

provide valuable information on subtle cognitive and emotional processes of

the users [33, 34], with a high temporal resolution, and regardless of users’

awareness of the process or ability to describe it accurately [35, 36]. The idea

of exploiting HR information to explore the effects of visual quality on viewers’

emotional responses was presented in [37], in which the authors exploited the

information from sensors measuring the human pulse. Recently HR studies

have been proposed to assess the users’ QoE [38, 39], thus confirming its rele-

vance in this research field. However, one of the main disadvantages of HR and

of other psychophysiological methods is that the traditional way for collect-

ing the HR signal involves placing electrodes on the subject’s body or arms,

therefore affecting the naturalness of the experience. Hence, the development

of contactless approaches to estimate the user’s HR [1,2,5–7,40–45] may be of

great utility for researchers on QoE, thus allowing for examples to understand

which are the most engaging scenes when a user is watching a movie or in

general automatically monitor HR variability. Indeed, while some research has

included the measurement of HR as a proxy for user’s emotional reactions in

the context of 3D-QoE research, no previous research has provided a method

able to do so in a contact-less, i.e. electrodes-free, way in this context.

2.2 Real versus fake multimedia contents de-

tection

Computer graphics and machine vision have achieved impressive advances in

the very last years in the creation of highly realistic synthetic audio-video

content. Convincing digital representations of human characters appearing

almost indistinguishable from real people can now be obtained automatically

through increasingly accessible tools. While offering exciting opportunities for

entertainment and content creation purposes, it is clear that such technologies

can have significant security implications in different application scenarios.

As a matter of fact, digital versions of human faces are constantly streamed

through video chats, video conferencing services, media channels, and even

used for authentication purposes in replacement of traditional schemes based

on fingerprints or passwords.

Thus, the need for forensic techniques able to deal with this new powerful

manipulations has become of primary importance, leading to huge efforts in

developing robust forensic detection methodologies and benchmarking them

on realistic dataset. Recent literature focused on fake multimedia content
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detection by means of different approaches, which depend on the content di-

mensionality, i.e. mono-dimensional (e.g. images, vocal messages, etc.) or

multi-dimensional (e.g. videos, 3D-videos), and on the nature of the features

taken into account in the discrimination pipeline (i.e. physiological, texture,

source).

2.2.1 Physiologically-based fake detectors

The method proposed in [46] exploits the idea that fake characters humans

present some differences in the conformation of the face: the left and the right

side of the face does not lie on a perfect symmetry. Digital face renderings

instead usually follow identical patterns in the creation of left and right face

sides. For this reason, the measurement of the level of symmetry between the

left and right face sides allows for the unreal character identification. The au-

thors in [46] firstly performed a face normalization via inner eye-corners and

philtrum usage presented in [47]; secondly, they removed the noise caused by

the environment and the shadows applying an illumination rectification. The

asymmetry information was evaluated according to two metrics, the density

difference (D-Face) and the edge orientation similarity (S-Face). In [48] it

has been exploited the variability of facial expressions to detect fake charac-

ters in videos. The idea behind this approach is that human facial expression

(e.g. smiling) usually follow similar but not identical patterns when repeated,

especially in terms of intensity. In CG characters instead the facial expres-

sions have a lower degree of variability since they are represented according

to mathematical models. In this method the face detected trough the Viola-

Jones algorithm [49] is subjected to an eigen-based application to recognize

the expressions in each single frame of the video, according to the six universal

expressions of Ekman [50] (happiness, sadness, disgust, surprise, anger, and

fear). At this stage, the extracted features are clustered according to the cri-

terion “same person - same emotion”. In order to extract the shape of the

face, 87 landmarks are extracted by applying the active shape model extrac-

tion in [51]; the face point normalization in [47] is then used to allow for a

comparison between every set of point. The variation analysis represents the

last step, in which some reference landmarks were chosen to identify the ref-

erence model of each expression: high variability of the difference between the

reference landmarks and the ones of the set of frames under investigation iden-

tifies a real character (high variability of the same expression); low variability,

instead, suggests a CG face (low variability of the same expression). Both the

above-mentioned presented method suffers rigid-motions of the face: the 2D

12



applied model does not return a signal such accurate to estimate the land-

marks for asymmetry and/or expressions estimation. For this reason, in [52]

the same authors proposed a method to deal with videos in which the face is

naturally moving (e.g. turning, rotating, etc.). The goal of this work is to

estimate the diversity in animation patterns obtained by applying a 3D model

to estimate the face movements in videos. As above, high regularity suggest a

CG character, low regularity a NAT one.

In addition to the face symmetry and facial expressions, other physiological

features has been proposed to detect fake characters: the presence or absence

of pulse rate signal is one of these. The spreading of techniques to remotely

estimate HR [1, 2, 43, 53] pushed Conotter et al. in [4] to present a CG dis-

criminator in videos based on the analysis of the pulse rate signal estimated

by means of contactless techniques: the flatter the signal, the higher the prob-

ability the depicted character in the video is a fake. This method makes use

of the Viola-Jones [49] and the Tomasi-Kanade [54] algorithms to track the

face for the entire video length. Then, a 3D model is applied frame-by-frame

to overcome the artifacts introduced by face rigid and non-rigid movements.

Finally, the authors applied the Eulerian video magnification presented in [1]

in order to estimate the pulse rate signal. One of the main weaknesses of this

approach is that no automated discrimination step has been proposed.

2.2.2 Fake detectors based on intrinsic characteristics
of the media

Many approaches for fake multimedia content detection exploit the intrinsic

features of the media itself: the color, the pattern, the occurrence of a specific

texture, etc. Such descriptors can be clustered according to the domain to

which they apply: spatial, temporal, or the combination of these two.

Spatial-domain detectors

In [55] Ng et al. used geometric features to address the problem: the idea

behind is that during the process of capturing a picture, some intrinsic charac-

teristics are impressed in the image itself, among which the object model differ-

ence, the light transport difference and the acquisition difference. In this work

the feature vector is composed by the fractal dimension and the local patches

on a fine-image scale, and by the surface gradient and 2nd fundamental form

Beltrami flow vectors on an intermediate-image scale. The implemented SVM

revealed some limitations in the classification accuracy, especially when dealing

with images depicting scenarios that differ one to another. Other approaches
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aiming at characterizing artifacts introduced by the capturing process have

been presented in [56] and in [57]. Dirik et al. [56] showed that when applying

two times a color interpolation filter to a real captured image, this returns

a image copy almost comparable to the original one. Moreover, they used

the noise information introduced by the acquisition lenses, by measuring the

chromatic aberration. This resulted in good results, even if the application

scenario was limited to small images. Gallagher et al. [57] proposed to iden-

tify real-captured images by analysing the periodicity of the variances in the

diagonals introduced by the color filter arrays: an image subjected to filter-

ing interpolation is supposed to return the same periodicity among different

diagonals. Even if the results are promising, this method suffers small image

dimensions: long diagonals are needed to get good results, so image resizing

or cropping heavily affects the algorithm accuracy. In [58] Rocha et al. no-

ticed that any change in the Least Significant Bit (LSB) produces different

outcomes in real and in fake images. Even if interesting, this method suffers

image recapturing and requires too many training samples for the training the

classifier. In [59] Pan et al. showed that the main difference between CG

and NAT images is revealed by analysing image texture, i.e. the roughness

of the image texture and the fractal dimensions. Following the same line, it

has been proposed a method based on LBP [60]; four groups of 59 LBP from

the original RGB and the transformed HSV images have been computed. The

difference patterns proved that image texture is highly representative for CG

discrimination. Even if the results were promising, this method suffers image

resizing. A multi-modal approach based on texture has been presented in [61],

in which the feature vector was composed by: the 3-order moments (mean,

variance, skewness) of each HSV component and on the gray-scaled image; the

Tamura texture descriptors [62]; the co-occurrence matrix [63]; the Hu moment

descriptors [64] and the center-symmetric-LBP histograms [65].

Frequency-domain CG detectors

CG versus NAT discrimination has been exploited by means of transform do-

main analysis of texture features, such as by applying the wavelet decompo-

sition [66]. In [67] the coefficients extracted by wavelet decomposition have

proven to be significant for many forensics applications, among which the CG

identification. Farid and Lyu in [68] noticed that the wavelet coefficients ob-

tained applying separate quadrature mirror filtering to NAT images follow for

Laplacian distributions having a prominent peak at zero and large and symmet-

rical tails. The four order statistics (mean, variance, skewness and kurtosis) of
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sub-band histograms of each color channel were then computed considering dif-

ferent directions and scales of the image. Moreover, error predictions for each

coefficient have been extracted. This method was accurate in reveling NAT

images (98.8%), while it returned a high false positive rate (33.2%). In [69] D.

Chen et al. showed that the coefficient distribution obtained by applying high

order wavelet coefficients follows a stable distribution in case of NAT images:

fractal low order moments have been used as descriptor on each RGB channel

and an overall accuracy of 81.85% were obtained.

Hybrid Features-based CG detectors

Recent works used a mixture of the spatial-domain and the frequency-domain

approaches to provide a robust method used for image discrimination. In

2003 the work presented by Tokuda et al. [70] aimed at providing a compar-

ison between the state-of-the-art methods and their combinations in order to

prove how mixed approaches can help in increasing the classification accuracy.

In [71] spatial-domain (four order statistics and median of histograms) and

frequency-domain (wavelet coefficients) features have been considered. As a

novel descriptor, the fractal dimensions of the gray-scaled images and the have

been considered: the final outcome was an accuracy of 97.3% in case of CGs

and an accuracy of 91.3% in case of NAT. The same authors in [72] focused on

feature vector dimensions: their purpose was to reduce the feature dimension

keeping high accuracy. The images have been firstly subjected to a Gaussian

filter and then to a regression analysis. 9 dimensions of histogram features and

9 dimensions on multi-fractal spectrum features were computed as represen-

tation of difference of residual images. Other 6 features related to regression

model fitness have been extracted, for a feature length of just 24 elements. This

approach allowed to get 98.7% classification accuracy on a dataset composed

by 3000 CG and 3000 NAT images coming from the Columbia University Im-

age Database [73], the Dresden Image Database [74] and some images collected

from the Internet.

2.2.3 Neural Networks-based CG detectors

Advancements in machine learning research field made easier the creation of

multimedia contents (e.g. [75], [76]). Recent studies [77] aim at identifying the

artifacts introduced by Neural Network (NN) when generating fake content,

such as non-regular illumination conditions, color variations, and many others.

If on one hand machine learning techniques allow for faster and accurate CG

creation, on the other hand they can represent powerful tools for detecting fake
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content. In [78] Rezende et al. proposed a deep learning approach following this

pipeline: each image has been pre-processed subtracting the mean RGB value

computed on the selected dataset [79]; then it has been resized to get a final

224x224 raw image to pass to a deep Convolutional Neural Networks (CNN)

model based on ResNet-50 Residual Network [80]). This method returned an

accuracy of 91.1% and takes the advantage that no feature extraction pro-

cess in needed prior to CNN application. With the purpose of providing a

robust method for image classification in case of small image size, Rahmouni

et al. proposes a CNN-based approach. Each image was sub-divided in a

set of 100x100 smaller portions, which were subjected to a 3-step procedure

for patch classification. Each patch is firstly filtered (multiple-convoluted) by

using a CNN, which returned a set of N filtered images. A set of statisti-

cal features, such as the mean, variance, maximum and minimum value, the

normalized histogram of the pixel distribution, is extracted and passed to a

classifier. The obtained classification accuracy was 94.4%, even if the method

has not been proved to be effective in case of image resizing, rotating, and

other similar attacks. In [81] the features extracted from videos by means of

a CNN have been passed to a Long Short-Term Memory (LSTM) architecture

with the final goal of identifying fake videos. This process based on Recurrent

Neural Networks (RNN) acts as a temporal-aware pipeline, capable to recog-

nize the artifacts introduced by deepfake manipulations. Several deep-learning

techniques have been recently proposed towards forensics applications, among

which the detection of evidences in videos highlighting potential suspects for

surveillance systems through deep-based object monitoring [82]; the detection

of tampered faces in videos [83]; the usage of blockchain and smart contracts

to detect fake characters in videos [84]. As a recap of the existing methodolo-

gies based on NN that aim at discriminating fake images and videos, Nguyen

et al. presented in [85] an interesting comparison between the most relevant

approaches existing in literature. The authors provided a review of the method

proposed in each work, detailing also the multimedia content, i.e. image or

video, on which each method applies for.

2.3 Pulse rate estimation techniques via facial

analysis

As a common signal used for both, the QoE estimation and the CG identifica-

tion in videos, we also present the current literature on contactless computer

vision-based techniques for HR estimation.
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In [40, 41] the authors exploited the concept that hemoglobin absorptivity

differs across the visible and near-infrared spectral range [86] in the design

of a method for Blood Volume Pulse (BVP) estimation from web-cam. The

R, G, B signals extracted from the facial patch have been subjected to the

Independent Component Analysis (ICA) in order to undercover independent

signals from observations composed of linear mixtures of underlying sources.

After a filtering phase, the final HR value has been computed by applying

the Power Spectral Density (PSD) to the temporal signal. The experiment

involved 12 participants, sit in front of an iSight camera working at 15 frames-

per-second: it has been shown that in case of limited movements, the HR

value estimated from the camera is close to the one obtained through the

finger medical sensor.

Different approaches, based on color and motion analysis, have also been

proposed. In [1], the Eulerian video magnification is applied in order to reveal

subtle changes, among which the pulse rate of human people (see Figure 2.2).

In more details, the video of people faces is processed with a spatial filter, for

decomposing the video into different spatial frequency bands, followed by a

temporal filtering that aim at removing the frequencies out of range [0.83, 1]

Hz.

Figure 2.2: Eulerian video magnification applied to sample a face video [1]:
the raw video (top) is passed to a spatio-temporal filtering that amplifies color
components related to the pulse rate (bottom).

In [2], a method is presented to reveal subtle head motions caused by the

Newtonian reaction to the influx of blood at each heart beat. The face is

detected by using Viola-Jones [49] algorithm and longitudinal trajectories are

estimated over time in order to model head motions (see Fig. 2.3). The

temporal-filtered signals of the trajectories are processed by using the Principal

Component Analysis (PCA), which leads to the selection of the most significant
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component. The peaks identified on the selected sinusoidal signal are used in

order to estimate a single HR value.

Figure 2.3: Head motions vectors when applying the algorithm in [2].

To cope with the motion of subjects and with varying illumination condi-

tions an approach, based on normalized least mean square adaptive filtering,

is proposed in [43]. From the detected 66 facial landmarks, a ROI including

cheeks, nose, and mouth is selected and the heart beat signal is defined by

averaging the values of the green channel of the pixel inside this ROI. The

background is segmented and its average green value is used as a reference to

model the illumination variations in the ROI. A similar approach is proposed

in [2]: the method is particularly sensitive to motion, even if the adopted

tracking system compensates rigid movements.

In [5] a real-time Imaging Photoplethysmography (iPPG)-based estimator

is presented, which exploits R, G, and B signals to get a final signal that is

filtered through de-trending and a normalization filters. This method presents

a combinations of Fast Fourier Transform (FFT), ICA and PCA introducing

real-time monitoring of the subject. In [6], an iPPG estimation is achieved

by considering the combination of HSV components to extract the pulse rate

signal from the forehead. For each video frame, the patch is extracted and a

threshold is set in order to filter out pixels considered source of noise. The

average of the selected pixels is used to determine the time-domain signal

and the most prominent frequency transform in the range [0.8, 2.2] Hz is

selected as heart rate. In [7] a framework for iPPG pulse rate estimation

is proposed, based on five main blocks: ROI selection, pre-processing, iPPG

extraction, post-processing, and pulse rate estimation. Recently, the remote

HR estimation problem has been approached by applying CNN to face videos

[45]. The large number of contactless methods for HR estimation presented

in literature confirms the relevance of this research field, even if the main

limitations are related to the rigid and non-rigid motions of the subject and

illumination conditions of the surrounding environment (see Figure 2.4).
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(a) (b) (c)

Figure 2.4: Example of factors affecting a contactelss pulse rate estimate: face
rotation and translation (rigid motions), facial expressions (non-rigid motions),
changing background and illumination conditions.

2.4 Current Limitations

QoE estimation through contactless HR estimation

Most of the above-mentioned techniques for remotely estimating pulse rate

consider only short video sequences and do not take into account possible

small movements and illumination changes: the face movements or the varying

illumination conditions negatively affect the performances. Therefore, existing

methods can not be used for evaluating the QoE. In this application scenario,

the QoE should be evaluated during longer periods and in normal viewing

conditions. For this reason, we target the detection of variations in HR on

longer video sequences: during this period the subject may perform small

movements and some illumination changes may occur.

Real versus fake multimedia contents detection

Current literature regarding discrimination of CG and NAT focuses mainly

on images and approaches the problem in a wide sense: most of them apply

detection techniques designed for images to single frames of video sequences,

often relying on deep representations of the pixel domain. Current signal-

level approaches cannot fully exploit features that are specific to the objects

in the scene. In this respect, their effectiveness in the specific problem of

discrimination between fake and natural faces is uncertain. It is likely that

generic signal-level methods that work for still images will not generalize to

the complexity of animated characters, which will require the use of specialized

models. In addition to that, most of the methods in literature deal with

images, thus not exploiting the multi-dimensional descriptors that can take

advantages from the analysis of the temporal domain. For this reason our

contribution would consist of providing an automated CG detector in videos

that exploits the spatio-temporal information of the face patch in order to cope
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with the noise introduced by subject’s movements and changes in illumination

conditions.

20



Chapter 3

Contactless approach for heart
rate estimation for QoE
assessment

In this Chapter we propose an algorithm for contactless HR estimation, which

can be used to study the correlation between heart rate and the emotional

status of the subjects in the context of QoE evaluation. More specifically,

the proposed approach copes with the most important sources of noise: rigid

motions, non-rigid motions, and environment illumination conditions [53]. We

i) propose an improved version of the non-rigid motion denoising step; ii)

compare five different configurations of the algorithm (e.g., exploiting different

selection of multiple areas for the analysis), iii) describe the construction of

a new dataset (collected registering users subject to 3D video stimuli) for

HR variability monitoring and performing a validation on it, iv) presenting a

psycho-physical analysis of the users’ responses to such stimuli by analyzing

the automatically estimated HR signal.

3.1 Method

The heart pulse in humans causes irrigation of peripheral areas (e.g., the face)

that results in non perceivable variations in the illumination of that area [43].

A specific post-processing of this ROI, recorded with a video camera, may

highlight these variations. In this work, we exploit these alterations in order

to estimate the pulse rate signal of subjects. The block diagram of the proposed

method is shown in Figure 3.1 and the details are described in the following.
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3.1.1 Advanced Heart Rate Estimation

Figure 3.1: Overview of the proposed method: (a)-(b) spatial filtering, (c)-(e)
temporal filtering and (f)-(g) frequency analysis.

Rigid Motions Elimination

As a first step, we applied the Viola-Jones [49] face detection algorithm on

the first video frame in order to estimate the facial bounding box (see yellow

rectangle in Figure 3.2). The resulting area may include pixels representing

background, hair, or other regions that are not useful for the task of HR

estimation and may be considered as noise. For this reason, after applying

the Viola-Jones face detector to the first frame, the DRMF (discriminative

response map fitting) [87] is used to estimate the position of 66 facial landmarks

inside the rectangle containing the face as shown in Figure 3.2.

Five ROIs are then selected by using the computed facial landmarks: re-

gions containing cheeks and mouth (P1) and forehead (P2) allow to extract

pulse signals from participants’ skin. The background regions (P3 and P4) and

the one corresponding to the hair (P5) are considered to account for changes in

the illumination, since they contain information about variations of the envi-

ronmental light and the flickering of the screen during the 3D movies play. In

order to compensate for rigid head movements, we estimate the good features

to track [88] inside the facial bounding box detected on the first frame. Then,

we make use of the Kanade-Lucas-Tomasi (KLT) algorithm to estimate their

position on each video frame. The mean vector of the movements is computed

by averaging the displacement of the position of the features from one frame

to the other. Once estimated, the mean vector is then applied on the ROIs in

order to shift them according to the head rigid movements during the entire

video length.
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Figure 3.2: Face detection (yellow rectangle) using Viola-Jones algorithm and
landmarks (red points) estimation using DRMF.

In order to amplify the color change introduced by blood flowing through

the facial vessels, we apply the approach in [1], which consists of a down-

sampling and spatial low-pass filtering processes (see Figure 3.3) aiming at

reducing quantization and noise and at enhancing the subtle pulse signal we

would like to isolate.

Figure 3.3: Result of the application of the blurring and down-sampling filter-
ing to a sample mouth patch on Y layer.

In particular, each ROI is subjected to the following binomial kernel:

K =


0.0625
0.2500
0.3750
0.2500
0.0625


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and down sampled by a factor of 2. Both these operations are recursively

performed 3 times, as depicted in Figure 3.3 on a sample mouth patch.

The down sampled and blurred ROIs in RGB color domain are then con-

verted into YCbCr components, as in [89]:

ROI t = αt,1ROI
R + αt,2ROI

G + αt,3ROI
B + βt (3.1)

α =

 0.2568 0.5041 0.0979
−0.1482 −0.2910 0.4492
0.4392 −0.3678 −0.0714


β =

0.0627
0.5020
0.5020



where the index t = 1, 2, 3 represents the image channel according to the Y,

Cb and Cr components.

For each Y component, row, and column-wise average is computed to get

one single luminance value per frame: as outcome of this process we obtain

per each ROI one mono-dimensional signal (P1, P2, P3, P4 and P5), whose

length is equal to the number of frames composing the video.

Figure 3.4: Outcome of the downsampling and blurring processes applied to
the ROIs according to the approach used in [3].
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Illumination Conditions denoising

The illumination rectification is done by computing for every ROI the mathe-

matical average of its luminance component Y as:

Y =

∑
i,j ROIYi,j
Npixels

, (3.2)

where ROIYi,j refers to the pixel value in position (i, j) of the Y component and

Npixels is the number of pixels in the considered ROI. We used the Y channel

since the hemoglobin better absorbs the green light with respect to red one,

while the blue light penetrates less into the skin [90, 91] and the green light

contributes for 70% to the luminance component Y . In order to validate the

choice of the Y channel, we compare in Section 3.1.2 the results in terms of

estimation accuracy when introducing the color channel as variable in the HR

calculation (R, G, B, Y , Cb, Cr): due to the above-mentioned reasons and

to the noise introduced by the surrounding environment, the Y channel has

confirmed to express the pulse rate signal better than the others.

According to the location of the ROIs, the mean luminance values Y are

classified as skin signals Sk (for P1 and P2), containing the pulse signal we

are interested in, and noise signals, Nl (for P3, P4, and P5), which are used

for denoising. More specifically, we add the signals containing the pulse and

subtract the ones classified as source of noise, normalizing the result for the

total number of signals as follows:

tPulse =

∑Ns

k=1 Sk
Ns

−
∑Mn

l=1Nl

Mn

, (3.3)

where tPulse is the denoised luminance value of the signal in the time do-

main, Ns is the number of signals containing skin portions (and consequently

the pulse), and Mn is the number of signals classified as noise (that is, not

containing the pulse) as it can be seen in Figure 3.5. This step allows to over-

come the noise introduced by the illumination conditions since, as in [43], we

assumed the subjects to be immersed in an ordinary Hyper-Converged Infras-

tructure (HCI) environment, in which all the objects (including the ROI) are

lighted up by the same light sources coming from indoor and screen illumina-

tion.
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Figure 3.5: Example of luminance denoising: the noise signal (b) extracted
from the background regions is removed from the signal extracted from the
skin (a); this results signal characterized by fluctuations (c) representing the
subject’s pulse rate.

Non-Rigid Motions Removal

The facial expressions cause skin deformations, which translates into spuri-

ous components covering the pulse rate signal. For example, when smiling

the cheeks rise upwards, varying the color in the areas chosen for the pulse

rate estimation. Selecting and removing those signal segments that identify

high signal modifications introduced by non-rigid movements allows to obtain

a more sinusoidal time domain signal. According to this, the time-domain

signal is rectified from non-rigid motions by applying the approach in [43]:

the temporal signal tPulse is divided into m samples having length s = 2 [s];

then the SD corresponding to each segment is computed in order to identify

the segments with highest variability, corresponding to non-rigid motions and

thus introducing noise. The 30% of the segments with highest SD are cut-out

and the remaining re-concatenated in order to get the ultimate temporal signal

tF inal. In Figure 3.6 we show an example of the de-noising process: given a

30-second long signal (Figure 3.6.(a)), the SD of each of the m = 15 segments

composing the signal is computed (Figure 3.6.(b)); then, the 30% of the seg-

ments (4 in total) having highest SD (see the red segments in Figure 3.6.(a)

and in Figure 3.6.(b)) are cut-out. The signal tF inal (Figure 3.6.(c)) repre-

sents the ultimate temporal signal, in which the noisy components introduced

by rigid motions, non-rigid motions and illumination conditions are cleared out.
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Figure 3.6: Example of 30-second signal filtered in order to remove non-rigid
motions. The signal is divided into m = 15 segments of length s = 2 [s] (dashed
lines). The p = 30% of the segments - 4 segments in total - having larger SD
(red segments) are removed.

Frequency Domain Denoising

The final de-noised time-domain signal represents the pulse rate of the subject

in a given time window. This signal is subjected to a band-pass filter with range

[40, 100] bpm, corresponding to [0.67, 1.67] Hz, which is used to eliminate the

frequency components out of the human pulse rate band. In order to retrieve

the average heart rate of the subject in that time window, it is necessary to

identify the most significant frequency component of the pulse rate signal.

To do this, we applied the Welch PSD [92] that returns the distribution of

power per unit frequency of a discrete-time signal. Given the PSD spectrum,

the highest peak corresponds to the most prominent frequency component

fmax [Hz] composing the time-domain signal, as done in various approaches in

literature, such as [43,93,94]. As it can be noticed in Figure 3.7, the frequency

transform (b) is limited to the considered human heart rate band, thus ensuring

a potential time-domain signal reconstruction (a).

Such frequency component is transformed from Hz to beats-per-minutes ,

thus obtaining the corresponding human heart rate:

HR = 60 · fmax. (3.4)

One example of the above-mentioned procedure is showed in Figure 3.7, in

which the maximum PSD value corresponds to a frequency fmax = 1.175 [Hz],

which represents a heart rate value of HR= 70.31 [bpm].
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(a)

(b)

Figure 3.7: Example of the application of the Welch power spectral density
(b) to a sample time-domain signal (a).

Block-by-block pipeline break down

Figure 3.8 shows the advantages introduced by each step on both time and

frequency domain signals. As it can be noticed, even applying rigid motion

rectification we obtain such noisy signal that cannot be compared to a human

pulse rate plot; also the resulting frequency transform is very noisy. The in-

troduction of the illumination rectification filter allows to start recognizing a

sinusoidal behavior. The non-rigid motion elimination step permits to cut-out

the noisy components introduced by the face expressions and returns a highly

sinusoidal signal, which translates into a clearest peak in frequency domain.

Finally, the Welch Power Spectral Density flattens the noisy components, mak-

ing the peak of interest the most prominent.
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(a)

(b)

Figure 3.8: Result of the application of the workflow depicted in Figure 3.1. As
it can be noticed the time-domain signal becomes more sinusoidal at each step.
This in turns flattens the noisy frequency domain components, highlighting the
most significant component corresponding to the heart rate of the subject.

3.1.2 Model and parameter set up

To set up the model and system parameters, a first subjective experiment has

been carried out in order to understand the contribution of different settings

and to select the configuration with the most reliable and effective HR extrac-

tion. To this aim, we recorded 17 subjects sitting still in front of the camera,

during the vision of video content. Overall we collected 27 videos with length

ranging from 30s to 40s. The videos were recorded with a FLIR Cricket IP

camera at 60 fps [95]. During the recording time, the subjects watched video

sequences containing emotionally neutral stimuli in order to avoid significant

changes on their heart rate, and they were asked to stand still. In the mean-

time, their cardiac pulse was measured by means of a Vilistus ECG sensor
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placed on their finger, in order to extract their HR GT values. More specif-

ically, the Vilistus sensor makes use of a BVP sensor that measures relative

blood flow by means of optical electronics working on near infrared light. As

a result of each heartbeat, blood flows through the arteries and blood vessels.

At the peak of the blood flow, the BVP signal peaks as well [96]. The first

step of the performed experiments is the automatic extraction of the HR val-

ues from the recorded ECG data. To this aim, given the ECG plot of the i-th

participant, the number ni of peaks denoting the pulse rate and the position

of the first fi and the last li peaks are determined. The distance between these

two peaks divided by the sampling rate of the Vilistus sensor (256) represents

the corresponding time interval ∆ti. The final HR value for the i-th subject

is given by the ratio between ni, which is the number of peaks in the ECG

signal, and ∆ti:

HRi = 60 · ni − 1

∆ti
. (3.5)

Figure 3.9 reports an example of HR computation from the ECG signal: there

are n = 48 peaks within the first and the last peak corresponding to ∆t = 38.92

s. The HR value corresponding to the ECG depicted in Figure 3.9 is given

by HR= 60 · 48−1
38.92

' 74.01 [bpm]. Note that we extracted row data from the

Vilistus sensor, which have not been filtered; each ECG plot have been checked

separately to ensure that all the n peaks were correctly detected and thus the

correct HR value computed.

Figure 3.9: Example of HR computation from an ECG ground truth plot:
the yellow circles highlight the peaks related to the pulse rate; each peak is
numbered for a total amount of n = 36 peaks. The green vertical lines denote
the position of the first and last peaks, used to compute the time gap necessary
for HR computation.
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During the test, different settings have been evaluated in order to identify

the most effective configuration for a reliable HR estimation. More specifically,

the algorithm is tested by evaluating different configurations, Ci, obtained as

combinations of the following parameters:

• background regions (B):

– B1: not used;

– B2: used and tracked frame by frame by means of shifting vectors;

– B3: fixed, by choosing the background areas in the first frame and

by maintaining these positions for the entire video length.

• hair region (H):

– H1: used;

– H2: not used;

Table 3.1 summarizes the configurations of the algorithm used in the performed

experiments.

Configuration ID B H
C1 B1 H2

C2 B2 H2

C3 B2 H1

C4 B3 H2

C5 B3 H1

Table 3.1: Different configurations of the algorithm used during the validation
phase.

Given A = [a1, a2, ..., aN ] the vector of the Ground Truth HR values and

X = [x1, x2, ..., xN ] the vector of the corresponding HR estimations computed

using the proposed method, the algorithm performances are evaluated as fol-

lows:

• MAE, computed as:

MAE =
N∑
i=1

| ai − xi |
N

(3.6)

• Standard Deviation of the Differences (SD), given D = [d1, d2, ..., dN ],

with di = ai − xi, and d̄ =
∑N

i=1 di
N

,

SD =

√√√√ N∑
i=1

| di − d̄ |2
N

(3.7)
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• RMSE, computed as

RMSE =
N∑
i=1

| ai − xi |2

N
(3.8)

• Linear Correlation Coefficient (r), given x̄ =
∑N

i=1 xi
N

and ā =
∑N

i=1 ai
N

,

r =

∑N
i=1(ai − ā)(xi − x̄)√∑N

i=1(ai − ā)2
√∑N

i=1(xi − x̄)2
. (3.9)

The results for all configurations are reported in Table 3.2. It can be

noticed that C3 results to be the best performing configurations in terms of

MAE, RMSE, and r, followed by C2. Moreover, the use of background regions

for denoising allows to improve performances. Its positive impact is even more

noticeable if both background patches and face regions are tracked, as in C2

and C3.

Configuration ID MAE SD RMSE r
C1 3.26 9.00 5.20 0.83
C2 1.85 9.01 2.14 0.97
C3 1.77 9.04 2.07 0.97
C4 1.95 8.95 2.30 0.97
C5 1.98 8.96 2.32 0.97

Table 3.2: MAE, error SD, RMSE, and Linear Correlation Coefficient (r)
computed between the ground truth HR values and the estimated ones when
using luminance Y channel.

In addition to that, we investigated the choice of the Y channel as the

reference one towards the HR computation: in Table 3.3 we report the accuracy

results when using different color channels. As it can be noticed, the luminance

Y component is the one providing the best correlation between measured and

estimated HR values.

Given the best performance of C3 in configuration s = 2 [s] and p = 30%,

we chose such version of the algorithm for the following subjective experiment

and psycho-physiological analysis.
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Configuration ID Channel MAE SD RMSE r
C1 R 11.94 85.65 75.80 0.44
C2 R 11.93 91.38 62.01 0.52
C3 R 12.36 88.79 68.17 0.35
C4 R 10.45 91.89 54.41 0.55
C5 R 12.36 88.79 68.17 0.35

C1 G 9.37 8.64 4.98 0.59
C2 G 7.39 8.75 3.54 0.73
C3 G 5.45 8.80 3.18 0.80
C4 G 7.43 8.76 3.61 0.74
C5 G 4.79 8.85 2.99 0.85

C1 B 12.49 8.65 7.56 0.43
C2 B 5.80 8.82 3.77 0.78
C3 B 7.29 8.72 4.35 0.70
C4 B 7.31 8.73 4.26 0.72
C5 B 7.39 8.73 4.55 0.71

C1 Y 3.26 9.00 5.20 0.83
C2 Y 1.85 9.01 2.14 0.97
C3 Y 1.77 9.04 2.07 0.97
C4 Y 1.95 8.95 2.30 0.97
C5 Y 1.98 8.96 2.32 0.97

C1 Cb 15.01 9.27 10.54 0.06
C2 Cb 14.20 9.24 9.94 0.10
C3 Cb 13.45 9.22 9.29 0.13
C4 Cb 14.88 9.21 10.60 -0.05
C5 Cb 13.45 9.22 9.29 0.13

C1 Cr 11.91 9.18 7.30 0.12
C2 Cr 11.13 9.22 6.51 0.10
C3 Cr 12.12 9.16 7.43 0.15
C4 Cr 11.17 9.21 6.64 0.10
C5 Cr 12.12 9.16 7.43 0.15

Table 3.3: Performance of the different versions of the proposed method: usage
of R, G, and B channels with respect to Y, Cb, and Cr ones.
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3.2 Experimental results

In this section we evaluate the performances of the proposed algorithm and

validate its application for QoE assessment in 3D content consumption. First,

we analyze the performances of the selected system configuration, by compar-

ing it with the state-of-the-art (Section 3.2.1). Next, we design a subjective

experiment starting from stimuli selection, experimental protocol definition,

GT and physiological signals acquisition, and their analysis in terms of user

engagement (Section 3.2.2).

3.2.1 Proposed algorithm performances

Starting from the discussion in Section 3.1.2 we first compare the presented

algorithm with the state-of-the-art. Table 3.4 reports the results of the selected

configuration and methods described in Section 2.3. These performances are

obtained by analyzing the data collected in the first subjective experiment

described in Section 3.1.2, where subjects were still and the recorded video

sequences were short. It is worth noticing that the proposed HR estimation

method outperforms the state-of-the-art in terms of RMSE and r.

Reference paper MAE SD RMSE r
Proposed approach C3 1.77 9.04 2.07 0.97

Poh et al. [41] 4.32 12.10 12.69 0.40
Wu et al. [1] 3.64 11.19 10.77 0.39

Balakrishnan et al. [2] 9.71 10.4 14.10 -0.08
Li et al. [43] 0.10 3.76 3.69 0.92

Rahman et al. [5] 8.48 11.5 14.12 0.19
Sanyal et al. [6] 6.73 17.86 18.77 0.24

Unakafov et al. [7] 7.12 21.65 22.41 -0.21

Table 3.4: Performance comparison.

Figure 3.10 shows the scatter plots for the proposed algorithm, where it is

possible to perceive its accuracy, and also for other SoA methods, which show

much lower correlation. It is likely that better results are achieved thanks to

the spatio-temporal filtering implemented, which takes into account multiple

facial and background patches, but also time-domain de-noising. The non-rigid

motions removal proposed in [43] and used also in our pipeline is confirmed to

be useful for getting good HR estimates: as it can be noticed in 3.4, the ap-

proach in [43] is the second best algorithm, providing just 5% less accuracy. In

addition to that, the proposed pipeline overcomes many different noisy compo-

nents introduced by the illumination conditions and subject’s movement: this

facilitates to remove almost all the noisy components affecting the HCI set-up.
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Figure 3.10: Performances of the proposed algorithm (C3) and SoA methods
applied to the recorded validation dataset described in Section 2.1. The plots
show on the x−axis the ground truth HR values and on the y−axis the HR
estimations.
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3.2.2 Subjective experiment for QoE assessment with
3D content

After having verified that the proposed algorithm is able to estimate the HR,

we validate its use in a more complex scenario where users are watching 3D

movies. Our assumption is that the users will have a significant HR variation

when they will be engaged with the content, and, consequently, the heart

rate behavior could be exploited for QoE assessment. More specifically, we

examine if changes in HR associated to highly arousing moments in the movies

can be observed in the estimation of the HR provided by our method. The

effectiveness of this procedure will depend also on the precision of the HR

estimation that is carried out in more general framework in which the users

watch long sequences and are allowed to perform small movements.

In order to validate the proposed method a subjective experiment has been

designed and performed. In the following, details about the selection of the

stimuli and the experimental protocol are reported.

3.2.2.1 3D Stimuli

Research on emotions have mostly relied on two competing types of models of

emotions: continuous and discrete models [97–99]. The first ones describe any

emotion as a function of two dimensions: arousal (i.e., the level of excitement)

and hedonic valence (i.e., whether the emotion is positive or negative). By con-

trast, discrete models of emotion define various discrete categories of emotions

(i.e., joy, sadness, and fear), which largely vary among different studies. In our

research, we rely on a continuous model of emotion, and focus on eliciting in

the participants states of high arousal.

Since we aim at demonstrating the relation of arousing moments with HR

variation which can be estimated also from observed users’ video sequences

elaboration, we selected three horror movies:

• M1: Vampires hunters, 1280x720 pixels, 25 fps, MPEG-4 MVC, 105

minutes;

• M2: Kids and witch, 1280x720 pixels, 25 fps, MPEG-4 AVC, 88 minutes;

• M3: Paranormal events, 1280x720 pixels, MPEG-4 MVC, 25 fps, 92

minutes.

From each movie, three 7-minute long sequences (set of consecutive shots)

have been extracted thus obtaining a set of 9 sequences. These movies have

been selected to contain high arousal and low arousal shots (set of frames),
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which were manually annotated by a pool of experts. We took notes of the

exact time in which occur each selected High Arousing Moments (HAM), such

as a vampire appearing or a person dying, and each selected Low Arousing

Moments (LAM), such as a landscape view or a calm dialogue between people.

This way, we obtained a total amount of 27 annotated shots, among which

13 representing HAMs and 14 representing LAMs. Each participant watched

a session of 4 sequences out of the 9, in order to prevent an excessive length

of the session that may cause participant’s fatigue. The total length of each

session was 28 minutes (4 clips each one of length 7 minutes). Even if they

have been annotated, the LAMs have not been considered during the next

analyses, since our goal was to study HR variation induced by the HAMs, thus

the LAMs were just used to bring the subjects back to a resting pulse rate

frequency.

3.2.2.2 Subjects and system set up

The goal of the experiment was to record the users while they were watching

the selected 3D stimuli, thus collecting video sequences for HR estimation using

the proposed algorithm, and to record the corresponding ground truth (GT)

through physiological sensors. In particular, a FLIR Cricket IP camera at 60

fps [95] was used to record the face of the subjects while they watch the video

and the Vilistus biofeedback system [96] was used to record the ECG data.

Overall, we recruited 16 participants for the experiment, 15 males and 1

female, drawn from a pool of students of Roma Tre University, all between

22 and 30 years old. Before starting the experiment, we asked the subjects

to sit in front of the 3D TV, Panasonic Viera TX-P42VT30E, 42′′, in a light

controlled HCI environment as described in [90] (see Figure 3.11). When in

the right position, the subject was asked to wear the active shutter 3D Glasses,

verbal instructions were given and the experiment started. In order to get a

reference for the data processing participants were first asked to watch for 30s

a gray screen before playing the scenes (see Figure 3.12). Thus, we recorded

the HR of the users in a quite state, i.e. not subjectd to particular simuli, as

reference bio-data. After the first static and relaxed 30s, the video sequences

(7 minutes long) were shown to the subject. Even if the 3D Glasses partially

cover the subjects’ faces, thus making harder the application of computer vision

algorithms, we voted for such set-up due to the immersive experience provided

by 3D videos: this allowed the users to be more emotionally engaged and thus

susceptible to HR variations with respect to a 2D scenario. Prior to the data

acquisition, we asked the participants to read and sign an information form, in

which we informed the user that the bio-data acquired could be used just for
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(a) (b)

(c) (d)

Figure 3.11: Experiment set-up: image (a) depicts the 3D monitor used to play
videos and the FLIR Cricket IP camera used to record people faces; images
(b), (c) and (d) show some frames depicting subjects wearing 3D glasses.

research purposes and that no information related to the sensitive data of the

single participants would have been shared with third parties. Even if linking

external stimuli with human emotions/reaction means working on the psycho-

physiological sphere, we did not consider it necessary to have the experiment

approved by the Ethical Committee, given that (i) many experiments already

demonstrate the link between external stimuli and variation in heart rate and

(ii) no violent or impacting content that could undermine the subjects’ health

have been shown. As a final result, the above-mentioned actions have been

performed to preserve the privacy of the users, even if the recordings took

place before General Data Protection Regulation (GDPR) regulations.

Figure 3.12: Example of session of the subjective experiment with 3D stimuli.

The performed experiments allowed us to record 64 video sequences (16 par-

ticipants watched 4 sequences) of the subjects watching the annotated content.

Those videos have been used in the following steps to assess the performances

of the proposed approach.
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3.2.2.3 Data Processing

After data collection, we extracted the HR from the recorded video sequences

and from raw ECG data acquired with the medical sensor (used as GT). We

considered a 30-second long sliding window moving second by second as in

Figure 3.13.(a) to extract the reference HR values. Several methods in litera-

ture propose the usage of sliding window approach for remotely estimating the

heart rate, among the others the ones in [93], [94], [100] and [101]. We fixed

the window length Wl = 30 [s] (as in [93]) in order to set a frequency resolution

acceptable for our purposes, that is df = 1
Wl
· 60 = 1

30
· 60 = 2 [bpm]. The

sliding step Ws has set to 1 [s] since we wanted to process a signal composed by

one HR value per second in the physiological analyses, as suggested in [101].

These choices allowed for a good balance between frequency resolution and

reactivity in capturing the HR variations (with the same Ws, the larger the

window Wl, the smoother the signal, that translates into less sensitivity to

variations). Because of this, on each window of the ECGs (see Figure 3.13.(b))

we considered the number of peaks n denoting the pulse rate and the position

of the first and the last peak. In this way we computed the time gap ∆t, which

was substituted into Equation 3.5 to get the corresponding HR GT value.

In order to estimate the HR from the recorded videos, we run configuration

C3 of the algorithm, selected in Section 3.1.2. Also in this case we used a 30-

second long sliding window, followed by a frequency transform, in order to get

an output rate of 1 HR per second. As a result, the most prominent peak was

chosen as HR value. Figure 3.14.(a) shows the window of 30s that slides second

by second, processed in frequency domain as depicted in Figure 3.14.(b).

Figure 3.15 shows an example of HR estimation and corresponding HR

GT stairs plots for one participant. It is possible to notice that even if the

estimation is not perfect, it presents the same trend as the GT. In particular,

HR variations are adequately captured.

In order to quantify the algorithm accuracy, we computed the same metrics

specified in Section 3.1.2, by taking into account all the collected 64 HR plots

estimated from the recorded videos and the relative ground truths computed

from the data recorded by the ECG sensor. Table 3.5 shows the algorithm

performances: even if the correlation is lower with respect to the one obtained

analysing short videos of perfectly still users, we underline that obtained results

are significant since we target the identification of HR variations, thus not

requiring perfect accuracy.
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(a)

(b)

Figure 3.13: (a) Example of HR GT computation using a 30s sliding window,
and (b) ECGs details for each window.

Algorithm ID MAE SD RMSE r
C3 0.57 8.14 8.16 0.70

Table 3.5: C3 performances when applied on the new collected dataset.
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(a)

(b)

Figure 3.14: (a) Example of HR estimations using 30s sliding window, and (b)
frequency transform of each window.
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Figure 3.15: Example of stairs plot: it represents the HR GT and estimations
over time.

3.2.3 Psycho-physiological analysis for contactless QoE
assessment

In this Section, we provide preliminary evidence of the utility of our contact-

less technique for the analysis of users’ emotional responses while watching 3D

contents, which is considered a central aspect of QoE with entertainment con-

tents. To the best of our knowledge this is the first time remote HR estimation

is applied in the context of QoE evaluation. We ground on the literature sug-

gesting that external stimuli characterized by high arousal elicit momentary

cardiac variations [35] and we examine whether (1) the HAMs actually cause

statistically significant variations in the HR measured through the medical sen-

sor across the group of participants, and (2) whether the proposed contactless

algorithm is able to capture similar variations.

The experiment carried out (detailed in Section 3.2.2) contained a total

of 13 annotated HAM shots within the 9 movie sequences. Across the 16

participants there is a total of 90 viewings of highly arousing moments. For

each of these viewings, we calculated the mean and the standard deviation of

HR 10s before the arousing moment (Mb and SDb) and 10s after it (Ma and

SDa) for the GT, as well as the estimations from C3, and we analyzed whether

there is a statistically significant change on HR in the group of viewers.

We conducted a paired-sample t-test (for the data obtained from GT and C3

respectively) in order to analyze if there is a significant change in HR following

the HAMs. More specifically, given the null hypothesis H0, or the default
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position that there is no relationship between two measured phenomena [102],

we computed the p-value pv that is the probability of obtaining test results

at least as extreme as the results actually observed during the test [103]. The

significance level was set at pv < α, with α = 0.05 (5%), since it is the most

commonly used threshold in social sciences disciplines such as psychology. In

other words, when pv < α, the empirical evidence is highly in contrast with H0,

which should be rejected, thus confirming that there is a relationship between

the measured phenomena. The lower the p-value is, the more confident we are

to reject the null hypothesis. As a first step, the t-statistics t is computed as

follows:

t =
x̄− µ

s√
n

(3.10)

where x̄ is the sample mean, s is the sample standard deviation and n is

the number of observations in the sample. Let Tdf be a t-distributed random

variable with df = n−1 degrees of freedom (in our case we have 90 observations,

so df = 90 − 1 = 89). Considering that the t distribution is symmetric, the

p-value is computed as follows:

pv = 2 · P (Tdf ≤ t) (3.11)

We analyzed whether the changes on HR after HAMs is significant at the

group levels because of individual variability is very high in psycho-physiological

signals, and thus studies using such measures focus on differences (∆HR) at

the group level (i.e., difference in the distributions of scores obtained from

several participants) rather than in each individual score taken separately.

Mb SDb Ma SDa ∆HR t df pv
GT 73.31 11.22 73.58 11.09 -0.27 -2.37 89 0.0198
C3 72.37 10.70 72.69 10.75 -0.32 -2.01 89 0.0471

Table 3.6: Results of the t-test applied to the GT and C3 signals.

As can be noticed in Table 3.6, the performed t-tests return significant

results in both GT and C3 signal analyses: the constraint pv < α is confirmed

having pv = 0.0198 in case of GT and pv = 0.0471 in case of C3. This means

that the HAMs actually induced some significant changes in the participants’

HR, measured considering the HR mean of the 10 [s] before (Mb) and after

(Ma) the HAMs. Moreover, the C3 version of the algorithm provides results

similar to the ones obtained with the GT in terms of ∆HR, ∆HR = −0.27

[s] in case of GT and ∆HR = −0.32 [s] in case of C3, thus suggesting that

the proposed method can capture the HR variations induced by HAMs across

the group of participants. Hence, these results suggest that the contactless
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methods presented in this work can be used for estimating variability in user’s

emotion, when consuming 3D entertainment contents. The results are in line

with the ones obtained by traditional method exploiting physical sensors.
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Chapter 4

Digital human faces detection in
video sequences via a
physiological signal analysis

The blood flowing into veins according to heart beat causes the spraying of

peripheral areas of the body, like the head. This produces a color variation,

which even if imperceptible from human eyes, it is captured by digital cameras

and can be retrieved by computer vision techniques. This leads to the intuition

that, even if imperceptible at the human eyes, video recordings of the facial

area of real people bring the pulse rate signal induced by the blood flowing in

the head. On the other hand, this is not true in case of synthetic characters

in videos, which do not bring any pulse rate information due to the lack of

the pulse rate signal itself. For this reason, in this Chapter we focus on an

algorithm for pulse rate estimation from people faces in videos, in order to get

an accurate signal, which will be characterized by strong fluctuations in case of

NATs, and by a flat behaviour in case of CGs. After that, we trained an SVM

by means of mathematical features used to characterize the training pulse rate

signals; this allowed to assign to the correct class the majority of signals passed

to the classifier during the testing phase. Each step of the workflow is fully

automated, thus not requiring any human interaction.

4.1 Method

Figure 4.1 depicts the proposed workflow, which consists of the estimation

of an accurate pulse rate signal from the facial patch and the extraction of

relevant features used to train an SVM classifier.
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Figure 4.1: Algorithm process flow. Three main phases characterize the work-
flow: (1) temporal signal computation from face patches and de-noising; (2)
signal normalization; (3) feature extraction and SVM classification.

4.1.1 Pulse Rate Signal Extraction

The first part of the algorithm consists of a pulse rate extractor, which deals

with the typical sources of noise affecting the estimate [53]: rigid-motions, non

rigid-motions and illumination conditions, already discussed in Section 3.1.1.

Given as input a video depicting a human face, the proposed algorithm

applies a face tracker through the Viola-Jones algorithm [49] frame-by-frame,

until the subject’s face is detected. In order to select some specific ROI, we

applied the DRMF [87]: this fits a 2D model on subjects’ face, returning

the coordinates of the most salient features of human face, as indicated by

the red points in Figure 4.2. As depicted in Figure 4.2, we selected the ROI

used to retrieve the final signal by using the facial landmarks returned by the

DRMF application: the patch selection followed the same logic as the one

presented in Chapter 3.1.1. These ROI were automatically tracked frame-by-

frame by means of the Kanade-Tomasi algorithm [54], considering only the

shifting movement of the face on the x and y axis (vector of shifts) and the

scaling of the face inside the frame (scaling factor). This allows to compensate

the rigid motions caused by the face moving inside the frame area. Each area

at each frame was converted from RGB to YCbCr color domain and then the

mean of the pixels’ values of the Y layer inside each patch was computed

in order to get five signals corresponding to the five ROI. The background

patches (P3 and P4) and the hair one (P5) were used for de-noising process: as

in [44] and in Chapter 3.1 we supposed that the illumination variations caused

by environmental conditions, such as the flickering of the synthetic light, the

natural light variations, etc., could affect also the areas outside the face one.

For this reason, we rectified the signal representing the pulse rate that is the
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Figure 4.2: Patches selection on CG character’s face. Staring from red points
returned by DRMF, we selected the skin areas (P1 and P2), used for heart
rate signal extraction, and the background/hair ones (P3, P4 and P5), used
for de-noising.

summation of skin signals, with the luminance noise information, represented

by the summation of background and hair signals. More specifically, given

Z the number of significant frames of a video, i.e. excluding possible frames

discarded at the beginning of the video till the face is detected, the value of

tPulse computed at the z-th frame is given by:

tPulsez =
( Ȳ P1

z + Ȳ P2
z

2

)
−
( Ȳ P3

z + Ȳ P4
z + hȲ P5

z

2 + h

)
, (4.1)

where Ȳ P
z represents the average luminance value of the pixel inside the region

P at the z-th frame. In order to determine whether the information provided

by the hair zone helped in refining the time-domain signal, we introduced in

Eq. 4.1 the variable h, which takes value “1” when considering the hair region,

and “0” in contrary case. The outcoming signal tPulse is a 1-by-Z vector and

represents the raw time-domain pulse rate signal.

The last noise source we dealt with is the one related to the movements

caused by facial expressions, such as wrinkles caused by frowning or smiling, the

so-called non rigid motions. We overcame this issue by applying the approach

proposed in [43]: the pulse rate signal was divided in m segments of fixed

length, for each of which we computed the standard deviation (SD). The p =

5% of segments with highest SD were cut out as suggested in [43], and the

others were re-concatenated to get a signal much more sinusoidal. Even if
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the approach is the same as the one presented in Section 3.1.1, in this case

we discard less number of samples (5% vs. 30%). This is motivated by two

main reasons: (i) in this pipeline sliding window approach is not applied, so

the signal is processed one-shot without any overlap; (ii) some of the videos

of the videos contained in the dataset are very short (i.e. 4 seconds), so it

was necessary to avoid data loss introduced by cutting-out a high number of

samples. In any case, in Section 4.2 we propose a validation towards the non-

rigid motion elimination that proves the correctness of setting p = 5% (see

Table 4.1).

As a final step, we normalized the amplitude of the estimated signals in the

range [−1;+1], so that they were all standardized among the same values. The

final outcome of the pulse rate extraction, tFinal, can be seen in Figure 4.3, in

which we provide a comparison between the final pulse rate signal extracted

with the proposed method from a video depicting a NAT face and the one

extracted from a video showing a CG face. It can be noticed the CG signal is

mostly flat; the NAT one instead is characterized by the typical peaks denoting

the heart beats.

Figure 4.3: Example of pulse rate signal extracted with the proposed approach
from NAT and CG videos. Both cases have been considered, with (h = 1) and
without (h = 0) hair region.

4.1.2 Features Extraction and SVM Implementation

In order to automatically distinguish between CG and NAT, we implemented

an SVM classifier. The process consisted in two phases, one for training and

one for testing. At first we selected some meaningful signal statistics, used to
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characterize the pulse rate signals. To do this, we considered the time domain

signals coming from the process described in Section 4.1.1 and their frequency

domain transform, computed by applying the FFT to the signals coming from

Eq. 4.1 and by filtering out those frequency components out of the human pulse

rate band, set at [50;120] beats per minute (bpm) as in [53]. The idea was to

delete the components out of the human pulse rate band in order to avoid noisy

frequency components: this correspond to a band pass filtering process with

cut-off band set at [0.833;2] Hz. On both time- and frequency-domain signals

we computed the first four statistical moments (mean, variance, skewness and

kurtosis), which are considered as part of the final feature vector. In addition to

that, other two features have been also computed on each resulting frequency-

domain signal:

• pf , which is the number of peaks having minimum prominence 1/6 of the

signal variance, normalized by the signal frame rate;

• pl, which is the number of peaks having minimum prominence 1/6 of the

signal variance, normalized by the signal length.

As a final result, we got a feature vector of dimension 1×m, with m = 10:

υ =
[
µt, σ

2
t , ξt, κt, µf , σ

2
f , ξf , κf , pf , pl

]
(4.2)

Given t the total amount of time-domain signals and m the number features

estimated from each of them, we obtained the t-by-m matrix composed as

follows:

S =


υ1
υ2
...
υt

 = [sk,l] =


s11 s12 ... s1m
s21 s22 ... s2m
... ... ... ...
st1 st2 ... stm

 , (4.3)

where sk,l represents the l − th feature of the signal extracted from the

k− th video. The S matrix was split in two sub-sets, one for training T , which

includes the 80% of samples and one for testing P , which includes the remaining

20%. The element composing the matrices were randomly chosen. Moreover,

both the matrices were built in such a way that 50% of the samples were CGs

and 50% of NATs. The T matrix was used to train the implemented SVM

classifier, which was built by using a gaussian kernel function. In order to get

the classification accuracy, we checked if the output label (CG, NAT) provided

by the SVM classifier when subjected to the test matrix P matched the real

annotated one. Given fp the number of false positives, fn the number of false

negatives, tp the number of true positives, tn the number of true negatives -
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all computed over the testing set P of size N = n + p, with n the number

of NAT and p the number of CG samples - the accuracy of the classifier was

computed by means of the following performance indicators:

• False Positive Rate, computed as:

FPR = 1− tp

p
(4.4)

• False Negative Rate, computed as:

FNR = 1− tn

n
, (4.5)

• Accuracy, computed as:

acc =
tp+ tn

N
(4.6)

• F-measure, computed as:

Fmeas = 2 · prec · rec
prec+ rec

(4.7)

where prec = tp
(tp+fp)

represents the precision and rec = tp
(tp+fn)

represents

the recall factors.

4.2 Experimental results

We created a dataset composed by 104 videos in total, 52 CG and 52 NAT,

with length ranging from 4 to 12 seconds and frame rate ranging from 25 to

35 frames per second. During the selection process we searched for videos

depicting real and fake characters that move their faces as little as possible

for the whole video length in order to avoid noise introduced by strong sharp

movements. Moreover, we took into account just the videos is which the face

framing ensured high visibility on the ROI; this allowed to avoid information

loss due to face rotation and so inability to capture the cheeks and the fore-

head. We focused on subject and environmental condition variety, so it never

happened to choose more than two videos from the same sequence for enriching

the dataset. In addition to that, the selected videos show different background

conditions, from the still and homogeneous background of a TV lounge, up

to the moving background of an outdoor interview where many persons are

walking behind the considered subject. All the videos were downloaded from

the YouTube web platform1. Most of NAT videos were taken from interviews

and TV shows; the CG videos instead were extracted from computer gaming
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(a) (b)

(c) (d)

Figure 4.4: Sample frames randomly chosen from different NAT (a,b) and
CG (c,d) videos. As it can be noticed, background, resolution, illumination
conditions, and other video features are different one frame from another.

sequences and presentation of advanced digital renderings (see examples in

Figure 4.4).

The pulse rate signals have been estimated by using the approach presented

in Section 4.1.1 in both versions, with (h = 1) and without (h = 0) hair zone.

As described in Section 4.1.2, we performed the training and testing phases by

passing to an SVM classifier the T and P matrices, having dimensions [82,10]

and [22,10], respectively. This classifier has been validated by repeating 50

times the training and testing processes and averaging the FPR, FNR, acc

and Fmeas values over all the runs.

As a first step, we investigated the best non-rigid motion parameters to

maximize the classification accuracy: we propose in Table 4.1 the validation

of the best value of p used to discard the most noisy pulse rate signal samples

(see Section 4.1.1). As it can be noticed, in both h=0 and h=1 configurations

the best performances are achieved with p = 5%; this differs from the results

reported in Section 3.1.2 due to the signals’ length: in this case the signal

length ranges from 4 to 12 seconds, thus higher p causes loss of information in

case of shorter signals.

The presented approach has been then compared to the state of the art

methods reported in [104], in [4], and in [105]. The comparison with [4] has

been possible by adding the discrimination step presented in Section 4.1.2,

1https://www.youtube.com
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h p [%] FPR FNR acc Fmeas

1 5 0.07 0.05 0.96 0.96
1 10 0.20 0.15 0.83 0.82
1 15 0.21 0.13 0.83 0.82
1 20 0.24 0.10 0.83 0.81
1 25 0.19 0.15 0.83 0.82
1 30 0.22 0.14 0.82 0.81
0 5 0.11 0.09 0.90 0.90
0 10 0.26 0.27 0.74 0.73
0 15 0.33 0.23 0.72 0.70
0 20 0.39 0.33 0.64 0.62
0 25 0.29 0.18 0.76 0.74
0 30 0.29 0.21 0.75 0.74

Table 4.1: Performance comparison of the presented approach in two versions,
with (h=1) and without (h=0) the hair zone usage, tuning the p parameter
(percentage of discarded samples) in non-rigid motion process. In bold the
best results for h=1 and h=0.

since the method in [4] does not provide any automated solution to distinguish

CG from NAT. The idea of adding the classification block was also exploited

in order to compare our method with other recent techniques for remote pulse

rate signals estimation from face videos, such as the ones reported in [5–7]. In

Figure 4.5 we show the comparison between the proposed algorithm in version

h = 1 and h = 0 and the algorithms in [4–7] when subjected to a sample

NAT and a sample CG video. It can be noticed that our technique provides

a sinusoidal signal in NAT case (Figure 4.5.(a),(c)) and a flat signal in CG

case (Figure 4.5.(b),(d)). The algorithms in [104] and in [105] have not been

reported in Figure 4.5, since they do not provide a unique final pulse rate

estimation signal.

Table 4.2 shows the algorithms’ classification performances: the most ac-

curate algorithm is the presented one with the usage of the hair zone (h = 1),

which returned a total classification accuracy of 96.27%, with FPR = 6.91%

and FNR = 5.45%. It can be noticed that given the presented algorithm for

pulse rate estimation, the usage of the hair zone for de-noising allows to im-

prove the overall accuracy of 5.91% with respect to the same approach avoiding

hair zone usage (h = 0). Moreover, the presented approach with h = 1 allowed

to get 17.91% higher accuracy with respect to the best performing state of the

art technique, represented by [104].

As it can be noticed in Figure 4.5, not all the considered algorithms are

capable to estimate a clear pulse rate signal. The factors that can mainly affect

the final outcome of the pulse rate estimation are the varying environmental
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Figure 4.5: Example of outcoming pulse rate signals when applying to one
sample NAT video (left column) and one sample CG video (right column) the
following algorithms: (a,b) proposed algorithm with hair zone, (c,d) proposed
algorithm without hair zone, (e,f) algorithm in [4], (g,h) algorithm in [5], (i,j)
algorithm in [6], (k,l) algorithm in [7]. As it can be noticed, the presented
approach returns a sinusoidal signal in case of NAT character and flat signal
in case of CG, while in the state of the art method the difference is not so
visible.

conditions, such as the illumination variations in the background, and the non-

rigid facial movements, such as the ones introduced when the subjects smile

or frown. Moreover, the videos considered in the dataset differ from one to

another in terms of frame rate, video quality and frame size; this increases the
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Algorithm Description FPR FNR acc Fmeas

Nguyen et al. [104] 0.27 0.16 0.78 0.77
Conotter et al. [4] 0.33 0.26 0.70 0.69

Liu et al. [105] 0.25 0.34 0.70 0.71
Rahman et al. [5] 0.28 0.26 0.73 0.72
Sanyal et al. [6] 0.36 0.46 0.59 0.60

Unakavof et al. [7] 0.33 0.31 0.68 0.68
Proposed method with hair zone 0.07 0.05 0.96 0.96

Proposed method without hair zone 0.11 0.09 0.90 0.90

Table 4.2: Performance comparison of the presented approach in two versions,
with (h=1) and without (h=0) the hair zone usage and the state of the art
techniques.

complexity of the estimation. As an additional test, we provide in Figure 4.6

a measurement of the performances of the proposed approach by varying the

proportion between training and testing sets: as it can be noticed, also for

60/40 and 70/30 dataset split results are similar, thus the selected division is

not the only one applicable with good performances.

Finally, we assessed the effectiveness of the used SVM classifier with respect

to other possible classification techniques: Table 4.3 reports the classification

Classification Method FPR FNR acc Fmeas

SVM 0.07 0.05 0.96 0.96
Fuzzy 0.09 0.09 0.90 0.90

Logistic Regression-based 0.09 0.00 0.89 0.89
Gaussian Naive Bayes 0.11 0.09 0.88 0.88

Fine KNN 0.04 0.09 0.92 0.92
PatternNET 0.11 0.18 0.89 0.89

Table 4.3: Classification accuracy with different classifiers.

accuracy obtained when feeding with our proposed features (for h = 1) differ-

ent families of classifiers, including Fuzzy, Logistic Regression-based, Gaussian

Naive Bayes, Fine KNN and pattern neural network (PatternNET)2. As it can

be noticed in Table 4.3, the SVM classifier always provides the best balance

between FPR and FNR, in terms of both accuracy and Fmeas, showing that

it is the right classification technique for discriminating CG videos from NAT

videos when using our proposed features.

2We used the implementations with default parameters provided by MATLAB 2019a
through the Machine Learning and Deep Learning ToolBox.
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(a)

(b)

Figure 4.6: Performance variation according to diverse splitting of the dataset
into training and testing sets (10/90 states for 10% for training and 90% for
testing), in case of h = 1 (a) and h = 0 (b).
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Chapter 5

Dynamic texture analysis for
detecting manipulated faces in
video sequences

In this Chapter we propose a different approach to identify CG characters

in videos based on the analysis of the spatio-temporal features extracted from

face videos: the LDP-TOP (Local Binary Pattern on Three orthogonal Planes)

descriptors. These are extracted from the facial patches, automatically selected

and tracked during the whole video length. Then, a sliding windows approach

is applied in order to obtain sub-sets of facial frames and specific facial regions

are taken into account for computing the LDP-TOP features. After that, a

training pipeline is used to obtain the SVM models, while the testing pipeline

is used to get the final labels, from which the final decision is taken. As the

previous approaches, no manual interaction is required, since all the steps are

fully-automated.

5.1 Method

The proposed method is composed of a pre-processing phase and a feature

extraction phase, both described in the following subsections.

5.1.1 Pre-processing

Video patches are extracted and partitioned in multiple temporal sequences1.

The different steps involved in the pre-processing pipeline are depicted in Fig-

ure 5.1 and explained below:

(a) Face detection and tracking: after extracting the frames, the Python

library dlib (v. 19.8.1) is used on the first video frame to obtain the

1Python 3.6.7 with the OpenCV2 4.1.0 libraries and MATLAB R2019a have been used
for the implementation.
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ROI patch containing the face, and on every subsequent frame to detect

68 facial landmarks. The ones corresponding to the right eye lacrimal

caruncle (r), the left eye lacrimal caruncle (l), and top nose (n) are

selected. A motion vector ∆ is then computed between each pair of

consecutive frames by averaging the horizontal and vertical displacements

of r, l and n, and smoothed temporally through a Savitzky-Golay filter

on both dimensions [106]. The initial patch is then tracked over time by

shifting it of ∆ frame by frame.

(b) Temporal partition: after conversion to grayscale, overlapping temporal

windows of d seconds with a stride of s seconds are isolated. This yields

different temporal sequences of frames, whose numerosity depends on

the duration of the video. A generic temporal sequence S resulting from

this process is a 3D array of pixels of size H ×W × K, where H and

W depend on the output of the face detector on the first frame, and K

depends on the frame rate of the video.

(c) Area selection: at this stage, we allow to select a specific area of the

face to be used for the feature analysis, in order to observe the relevance

of different regions for the chosen feature representation. In our tests,

we have considered three different cases, denoted in the following with

upper-case letters (see Figure 5.1): the top-half (T ), the bottom-half (B),

or the full face information (F ) is used.

Figure 5.1: Workflow of the proposed pre-processing pipeline.
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(a) (b)

Figure 5.2: Representations of the 3×3 neighborhood and the three orthogonal
planes used for the extraction of the LDP-TOP descriptors.

5.1.2 Dynamic texture features

As discussed in Section 1, we aim at studying video sequences in both spatial

and temporal domain. To this purpose, we considered the Local Derivative Pat-

terns (LDP) features, already used for face recognition as a pattern descriptor

(e.g. [107, 108]), in their extended version involving the temporal domain, the

LDP-TOP [109].

The LDP, a generalization of the widely used LBP, is a point-wise operator

applied to 2D arrays of pixels, which encodes diverse local spatial relationships.

As suggested in [108], we consider the second-order directional LDPs with

direction α, indicated as LDP2
α, where α ∈ {0°, 45°, 90°, 135°}. Given a 2D

array of pixels A, the LDP2
α at the location (h,w) is an 8-bit vector defined as:

LDP2
α(h,w) = [f(I ′α(h,w), I

′
α(h
−, w−)), f(I ′α(h,w), I

′
α(h
−, w)),

f(I ′α(h,w), I
′
α(h
−, w+)), f(I ′α(h,w), I

′
α(h,w

+)),

f(I ′α(h,w), I
′
α(h

+, w+)), f(I ′α(h,w), I
′
α(h

+, w)),

f(I ′α(h,w), I
′
α(h

+, w−)), f(I ′α(h,w), I
′
α(h,w

−))]

with h+ := h+ 1, h− := h− 1 and w+ := w+ 1, w− := w− 1. A representation

of the 3× 3 neighborhood is depicted in Figure 5.2(a).

The operator I ′α is the first-order derivative in the direction α, and is defined
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pixel-wise as:

I ′α(h,w) =


A(h,w)− A(h,w+) if α = 0°
A(h,w)− A(h−, w+) if α = 45°
A(h,w)− A(h−, w) if α = 90°
A(h,w)− A(h−, w−) if α = 135°

(5.1)

while

f(a, b) =

{
0 if a · b > 0

1 if a · b ≤ 0
(5.2)

Essentially, LDP2
α(h,w) encodes whether first-order derivatives in the di-

rection α have consistent signs when computed at (h,w) and at proximal pixel

locations. For a 2D array, the LDP2
α are extracted for every pixel and their

28-bin histogram is computed; this is replicated for the four different direc-

tions, and the histograms are concatenated. Similarly as it is done in [110]

for LBPs, in [109] the authors propose to extend the computation of LDP

histograms to 3D arrays by sequentially considering the three central 2D ar-

rays along each dimension that intersect orthogonally (see Figure 5.2(b)) and

again concatenating the obtained histograms, yielding the so-called LDP-TOP

features.

In our case, we apply this procedure to the temporal sequences S extracted

as in Section 5.1.1, and use the obtained histograms as features. Considering 4

derivative directions and three 2D arrays introducing the extension to temporal

dimension (see Figure 5.2(b)), the feature vector length is equal to 28×4×3 =

3072.

In order to explore potential peculiarities in the way the temporal informa-

tion is captured by LDPs, we add the opportunity to run the feature extraction

on S in three different temporal modes, which differ by the orientation of the

temporal information. In particular, we define the:

• Direct mode (→): S is processed forward along the temporal direction

• Inverse mode (←): S is processed backward along the temporal direction

starting from the last frame

• Bidirectional mode (↔): S is processed in both directions and histograms

are concatenated (thus yielding a feature vector with length equal to 6144

samples)
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5.1.3 Classification framework

We now describe the framework adopted in our study for training a classifier

and taking a decision on single tested videos.

As depicted in Figure 5.3, the training process involves a set of real and

manipulated videos that we indicate as T Rr (labeled as 0) and T Rm (labeled

as 1), respectively. Every video in these sets is fed into the pre-processing and

the descriptor computation blocks, as described in Sections 5.1.1 and 5.1.2.

The feature vectors computed from the temporal sequences inherit the label

of the video they belong and all of them are used as inputs for training the

classifier C, a SVM with linear kernel2.

Figure 5.3: Training pipeline: given as input the training set o real and fake
videos, provides as output the corresponding SVM model.

Afterwards, the videos to be tested belong to sets that we will indicate

as T Sr and T Sm. The prediction on single videos is computed as depicted

in Figure 5.4. Pre-processing and descriptor computation are again performed

and each resulting feature vector extracted is passed to the trained SVM model.

Figure 5.4: Testing Pipeline: the pipeline C returns a binary label p̂ and the
corresponding score ŝ.

This returns a pair pr, sr for each of the R temporal sequences extracted,

where pr is the predicted label and sr is the output score of the SVM. In order

2We used the MATLAB Statistics and Machine Learning Toolbox (v. R2019a) and
selected a linear kernel function with predictor data standardization and Sequential Minimal
Optimization (SMO).
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to determine a final label p̂ for the input video, a majority voting criterion is

employed:

p̂ = maj({p1, . . . , pR}) (5.3)

where maj(·) outputs the value recurring most frequently in the input set. In

case of equal number of conflicting predictions, the maj criterion conservatively

favors the 0 class.

Finally, for each video we compute a final score ŝ through a “restricted

mean” criterion:

ŝ = mean({sr where r|pr = p̂}), (5.4)

i.e., the score values corresponding to the sequences whose predictions corre-

spond to the final prediction p̂ are averaged.

5.2 Experimental results

The next sections introduce the extensive tests conducted in order to validate

the proposed method in practical scenarios.

As a benchmark dataset of real and manipulated videos, we considered the

FaceForensics++ dataset proposed in [111], which consists of a large set of

videos depicting people human faces, which are then manipulated with dif-

ferent techniques. In particular, we have considered the 1000 original videos

(OR) and their manipulated counterparts through the Deepfake (DF) [112],

the Face2Face (F2F) [113] and the FaceSwap (FSW) [114] techniques, subject

to a rather light compression as proposed by the original dataset (H.264 with

constant rate quantization parameter equal to 23) and depicted in Figure 5.5.

The videos are recorded under different conditions (e.g., interviews, TV shows,

etc.), they have different length and are captured by different cameras. This

turns into a huge variability in terms of both data content and video structure

(i.e., frame rate, video length, original coding standards, etc).

The dataset comes with a standard split of videos for training, validation,

and testing. In order to enable a fair comparison with other recently proposed

approaches, we also considered the same training and testing set, yielding

to a training set T ROR ∪ T RD with |T ROR| + |T RD| = 360 + 360 = 720

and a test set T SOR ∪ T SD with |T SOR| + |T SD| = 70 + 70 = 140, where

D ∈ {DF,F2F,FSW}. Different subsets will be combined in the following

according to the experimental scenario considered.

We have tested the feature representation and classification framework pro-

posed in Section 5.1 and 5.1.3 in several experimental scenarios and by ana-

lyzing different factors, which are described in details in the next subsections.
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For the sake of readability, we first summarize here the structure of our exper-

imental validations:

• Single-technique scenario (Section 5.2.1). Original and manipulated

videos are considered separately for different creation techniques; the

impact of the temporal partition operation, the face area selection, and

the temporal mode adopted are discussed.

• Multiple-technique scenario (Section 5.2.2). Videos created with ar-

bitrary creation techniques are merged in the testing; the capabilities of

detecting and identifying the manipulation technique used in the testing

phase is evaluated.

• Strong video compression (Section 5.2.3). The proposed detector is

tested when a heavier compression is applied to the videos.

• Comparison with other descriptors (Section 5.2.4). The proposed

detector is compared with the alternative spatio-temporal feature rep-

resentation given by the LBP-TOP and its performance with respect to

previously proposed approaches is discussed.

(a) (b)

(c) (d)

Figure 5.5: Frames extracted from a sample OR (a) video sequence and its DF
(b), F2F (c) and FSW (d) manipulations.
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5.2.1 Single-technique scenario

In this first experiment, we tested the performance of our approach in sepa-

rating original videos from videos that have been manipulated with a specific

technique. The goal is to show the capabilities of each classifier when subjected

to its corresponding test set. Thus:

T Rr = T ROR T Rm = T RD

T Sr = T SOR T Sm = T SD

where D varies {DF,F2F,FSW}.
Videos in these sets are fed into the training pipeline described in Figure

5.3. In this phase, we report the results obtained by employing the three

different facial areas (F , T , and B) specified in Section 5.1.1 and the three

temporal modes (→, ←, and ↔) specified in Section 5.1.2. This yields to

a total amount of nine SVM classifiers, one for each manipulation technique

(denoted as CDF, CF2F and CFSW) and for each facial area.

Results are depicted as bar plots in Figure 5.6 in terms of accuracy, i.e.,

the fraction of videos in T Sr ∪ T Sm that is assigned to the correct label. Full

numerical results are reported in Table 5.1, where the value of the Area Under

the Curve (AUC) obtained by thresholding ŝ (i.e., the restricted-mean score)

is also reported as performance indicator.

Figure 5.6: Classification accuracy per manipulation technique.

Table 5.1 suggests that CDF and CFSW almost always allow for an accu-

racy greater that 90%, while for CF2F the accuracy does not exceeds 85.0%.

Interestingly, this correlates with the observations made in [111], where a user
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Accuracy
Average
Accuracy

AUC
Average

AUC
Algorithm

Version
Deepfakes Face2Face FaceSwap Cross-Dataset Deepfakes Face2Face FaceSwap Cross-Dataset

(F,→) 93.57% 82.86% 93.57% 90.00% 98.23% 88.08% 98.22% 94.85%
(F,←) 93.57% 77.14% 90.71% 87.14% 98.78% 85.14% 98.00% 93.97%
(F,↔) 94.29% 79.29% 90.71% 88.10% 98.65% 86.94% 97.45% 94.35%
(T,→) 91.43% 76.43% 92.86% 86.90% 95.39% 78.13% 98.18% 90.57%
(T,←) 92.14% 75.71% 92.14% 86.67% 94.41% 78.39% 98.00% 90.27%
(T,↔) 90.71% 73.57% 93.57% 85.95% 94.89% 80.78% 98.06% 91.24%
(B,→) 93.57% 82.14% 92.14% 89.29% 97.53% 86.64% 97.47% 93.88%
(B,←) 92.86% 81.43% 89.29% 87.86% 97.57% 85.91% 97.55% 93.68%
(B,↔) 93.57% 85.00% 92.14% 90.24% 97.55% 88.63% 97.47% 94.55%

Table 5.1: Classification accuracy and AUC computed on the single-
manipulation scenario. Different facial areas and temporal modes are con-
sidered.

study reveals that F2F generally produces more challenging manipulations to

be detected for humans.

Moreover, it can be noticed that on average both the F and the B facial

areas versions provide an accuracy slightly better than T of 1.91% and 2.62%,

respectively. This indicates that the artifacts captured by the proposed fea-

ture representation are generally concentrated in the bottom part of the face.

However, this effect is not uniform across manipulation techniques (see FSW),

suggesting that manipulation-specific patterns are likely introduced, as we will

exploit in the next subsection.

Finally, we observe that the inverse temporal mode alone does not introduce

significant advantages, while the bidirectional mode generally does. This is not

so surprising, given that the feature vector size is doubled, however the number

of training samples remains the same.

In summary, the best results in terms of both performance indicators are

achieved in the (F,→) and the (B,↔) cases, respectively yielding 90.00% and

90.24% average accuracy. Therefore, for the sake of readability and space, we

focus on the corresponding classifiers for the experimental analyses in the next

subsections.

As a further analysis, we evaluate the benefits of applying the temporal

partition through sliding windows in the preprocessing phase by comparing

with the baseline case where videos are not subdivided in shorter video se-

quences (i.e., the d parameter in Figure 5.1 is set equal to the video length

in seconds) and only one LDP-TOP feature vector is extracted from each sin-

gle video. This corresponds to the common approach of previously proposed

detection methods (see [111]).

First, we observe in Table 5.2 how the number of input feature vectors

changes for these two cases: in the sliding approach we set d = 3 [s] and s = 2

[s], thus increasing a lot the number of features on both, training and testing
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sets. It can be noticed that the sliding window approach increases the number

of training/testing feature vectors by 6 to 8 times. Then, we provide in Table

5.3 the accuracy loss when skipping the temporal partition step, defined as

the difference in accuracy between of the “sliding” and “no sliding” case (i.e.,

positive values indicate better performance of the “sliding” case).

OR DF F2F FSW
Training Testing Training Testing Training Testing Training Testing

Sliding 3029 588 3026 588 2966 640 2307 482
No Sliding 360 70 360 70 360 70 360 70

Table 5.2: Comparison between the number of samples (batches) obtained in
case of non-sliding and sliding window approaches. Given different video length
among different manipulation techniques, it can be noticed that the number
of training and testing samples varies when applying sliding window.

It can be noticed that the “sliding” approach always outperforms the “no

sliding” in terms of average accuracy among all datasets, with significant im-

provements (up to 10%) for F2F. Just in some single cases, especially for FSW,

this observation is reversed, showing again manipulation-specific peculiarities.

The two selected classifiers (top and bottom one in Table 5.3) however adhere

to the general trend, showing an average accuracy increase of 3.33% and of

2.86%, thus leading to select the “sliding” approach for the next analyses.

Accuracy Loss
Average

Accuracy Loss
Algorithm Version DF F2F FSW Cross-Dataset

(F,→) 1.43% 10.72% -2.14% 3.33%
(F,←) 2.14% 5.71% -2.15% 1.90%
(F,↔) 2.15% 6.43% -4.29% 1.43%
(T,→) 2.14% 10.00% 0.00% 4.04%
(T,←) 2.14% 3.57% 0.00% 1.91%
(T,↔) 1.42% -1.43% 2.14% 0.71%
(B,→) -0.72% 3.57% 0.00% 0.96%
(B,←) 0.00% 5.72% -2.85% 0.96%
(B,↔) 1.43% 7.14% 0.00% 2.86%

Table 5.3: Classification accuracy loss per manipulation technique when ap-
plying the “no sliding” approach.

5.2.2 Multiple-technique scenario

We now consider the case where manipulation techniques are mixed. In par-

ticular, we approach the more realistic case where

T Sr = T SOR T Sm = T SDF ∪ T SF2F ∪ T SFSW,

66



and the binary decision on each testing video needs to be taken blindly, i.e.,

without prior information on the manipulation technique used.

We have registered that training a single binary classifier with T Rr =

T ROR and T Rm = T RDF∪T RF2F∪T RFSW brings to poor results. This might

be interpreted in view of the linearity of the classifier used, which seemingly

does not allow to properly separate the two classes through an hyperplane in

the feature space.

While exploring alternatives to cope with this data distribution to obtain a

single accurate classifier represents a valid direction for future studies, in this

work we rather propose to fuse the outcome of classifiers trained in a single-

technique scenario, which also allows us to estimate the used manipulation

technique in case of positive detection in a cascade fashion as represented in

Figure 5.7. More specifically, we propose to assign to each test video a binary

classification label p̂ ∈ {0, 1} by combining the outputs of the classifiers CDF,

CF2F and CFSW trained as in Section 5.2.1). This yields to three predicted

labels p̂DF, p̂F2F, p̂FSW, and three average scores ŝDF, ŝF2F, ŝFSW. Then, the

three estimated labels are passed to a fusion block that applies the logical

OR operator (indicated as ∨) in order to get p̂. In other words, a video is

classified as manipulated as soon as one of the three detectors returns the

label 1. Furthermore, in case of p̂ = 1, the maximum value of the scores is

selected as indicator of the manipulation technique used to create the video.

Figure 5.7: Decision pipeline for the multiple-technique scenario.

Table 5.4 reports the accuracy results obtained through this approach for

the two variants selected in Section 5.2.1, (f,→) and (b,↔), which consistently

exceed 85%. We also report the false positive rate (fraction of original videos

erroneously classified as manipulated) and the false negative rate (fraction of

manipulated videos erroneously classified as original). The former seems to be

more crucial for this fused approach, likely due to the fact that original videos

are underrepresented in the overall training set.

Finally, we measure the accuracy in estimating the manipulation technique

used when a video is correctly classified as manipulated: this means that in

case the video is correctly classified as computer-generated, we estimate also
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Algorithm Version
False Positive

Rate
False Negative

Rate
Accuracy

(F,→) 20.00% 11.43% 86.43%
(B,↔) 15.71% 11.90% 87.14%

Table 5.4: Classification results in the multiple-technique scenario, “sliding”
approach.

the applied manipulation technique. Table 5.5 and Table 5.6 are the confusion

matrices of the two classifiers for this task. The high diagonal values (around

90.00% in most cases) indicate that the feature representation carries quite

strong information on the specific manipulations techniques.

PREDICTIONS
Deepfakes Face2Face FaceSwap

Deepfakes
58

89.23%
7

10.77%
0

0.00%

Face2Face
3

5.17%
53

91.38%
2

3.45%

T
A

R
G

E
T

FaceSwap
0

0.00%
2

3.17%
61

96.83%

Table 5.5: Confusion matrix for the manipulation estimation task with (F,→)
and cf = 23, computed over the true positive estimates.

PREDICTIONS
Deepfakes Face2Face FaceSwap

Deepfakes
55

83.33%
11

16.17%
0

0.00%

Face2Face
3

5.08%
54

91.53%
2

3.39%

T
A

R
G

E
T

FaceSwap
0

0.00%
3

5.00%
57

95.00%

Table 5.6: Confusion matrix for the manipulation estimation task with (B,↔)
and cf = 23, computed over the true positive estimates.
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5.2.3 Impact of Strong Video Compression

The FaceForensics++ dataset also offers proposes a more heavily compressed

version of the videos, i.e., with cf = 40. As reported in [111], the quality

degradation due to compression compromises the performance of detection

algorithms, as well as humans. We therefore assess how this impacts our

method by performing the training and testing processes for the two best

performing classifiers in both single- and multiple-technique as described in

Section 5.2.1 and Section 5.2.2, respectively. The results obtained in the single-

technique scenario are reported in Table 5.7 and Figure 5.8: while keeping

an average accuracy around 70%, the performance decrease is evident when

compared to Figure 5.6 (around 20%), thus confirming that, as most of the

existing methods, our feature representation also suffers from the application

of a heavier compression. This holds also for the multiple-technique scenario,

where the accuracy of the best classifier drop to 71% as reported in Table 5.8.

Moreover, diagonal values of the confusion matrices reported in Table 5.9 and

Table 5.10 show that the video compression negatively affects the capability

to identify to which class one fake video belongs to.

Figure 5.8: Classification accuracy per manipulation technique in case of strong
video compression.

Accuracy
Average
Accuracy

AUC
Average

AUC
Algorithm

Version
Deepfakes Face2Face FaceSwap Cross-Dataset Deepfakes Face2Face FaceSwap Cross-Dataset

(F,→) 74.29% 62.14% 72.86% 69.76% 80.49% 68.97% 80.59% 76.68%
(B,↔) 77.14% 69.29% 68.57% 71.67% 81.35% 74.04% 79.64% 78.34%

Table 5.7: Classification accuracy and AUC computed on the single-
manipulation scenario in case of strong video compression.
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Algorithm Version
False Positive

Rate
False Negative

Rate
Accuracy

(F,→) 50.00% 27.62% 66.79%
(B,↔) 42.86% 23.81% 71.43%

Table 5.8: Classification accuracy in the multiple-technique scenario in case of
strong video compression.

PREDICTIONS
Deepfakes Face2Face FaceSwap

Deepfakes
46

82.14%
8

14.29%
2

3.57%

Face2Face
14

28.00%
32

64.00%
4

8.00%

T
A

R
G

E
T

FaceSwap
7

15.22%
9

19.57%
30

65.22%

Table 5.9: Confusion matrix for the manipulation estimation task with (F,→)
and cf = 40, computed over the true positive estimates.

PREDICTIONS
Deepfakes Face2Face FaceSwap

Deepfakes
43

70.49%
15

24.59%
3

4.92%

Face2Face
16

28.57%
38

67.86%
2

3.57%

T
A

R
G

E
T

FaceSwap
5

11.63%
14

32.56%
24

55.81%

Table 5.10: Confusion matrix for the manipulation estimation task with (B,↔)
and cf = 40, computed over the true positive estimates.

5.2.4 Comparison with other descriptors

In this subsection, we consider the performance of our method with respect to

other detection algorithms.

First, we compare our feature representation with a known competitor

among the spatio-temporal texture descriptors used in face anti-spoofing, the

LBP-TOP [115]. Differently from LDPs, LBPs capture only information on

the first-order directional derivatives computed at a central reference pixel,

which are thresholded, encoded into a binary number, and finally collected

into histogram over different pixels; LBP-TOP is the corresponding temporal

extension and yields a feature vector of length [1, 177], obtained by applying

the uniform pattern version of the LBP features that led to a more compact

feature vector (59 samples per each dimension) and descriptor robust to rota-

tions. We want to determine whether and how much the improved performance

observed for the face spoofing detection task generalizes to the detection of fa-

cial manipulations. To this purpose, the tests performed in Section 5.2.1 are

extended by replacing the LDP-TOP feature vector with the LBP-TOP one,

70



while keeping unchanged all the other steps described in Sections 5.1 and 5.1.3.

Figure 5.9: Classification accuracy loss per manipulation technique when using
LBP-TOP descriptors instead of the proposed ones.

We report in Figure 5.9 and Table 5.11 the classification accuracy loss ob-

served when using LBP-TOP instead of LDP-TOP (i.e., with respect to the

results in Figure 5.6). The loss is always positive, thus LDP-TOP indeed out-

perform LBP-TOP by a significant margin. Also in the multiple-technique

scenario reported in Table 5.12 it is worth noticing that the classification accu-

racy using LBP-TOP features is worse compared to the one obtained through

LDP-TOP (see Table 5.4).

Accuracy Loss
Average

Accuracy Loss
AUC Loss

Average
AUC Loss

Algorithm
Version

Deepfakes Face2Face FaceSwap Cross-Dataset Deepfakes Face2Face FaceSwap Cross-Dataset

(F,→) 7.86% 11.43% 5.71% 8.33% 4.31% 10.01% 2.03% 5.46%
(B,↔) 3.57% 4.29% 7.14% 5.00% 1.16% 1.80% 6.14% 3.04%

Table 5.11: Classification accuracy and AUC losses computed on the single-
manipulation scenario in case of strong video compression.

Algorithm Version
False Positive

Rate
False Negative

Rate
Accuracy

(F,→) 35.71% 17.62% 77.86%
(B,↔) 30.00% 12.38% 83.21%

Table 5.12: Classification accuracy in the multiple-technique scenario in case
of LBP features usage.

To conclude the comparison, we computed the confusion matrices in Table

5.13 and Table 5.14, which show that even if some cases LBP-TOP features

works properly (e.g. (F,→) in F2F manipulation), the LDP-TOP generally
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overperforms in terms of fake classification accuracy (see diagonals of Table

5.5 and Table 5.6).

PREDICTIONS
Deepfakes Face2Face FaceSwap

Deepfakes
45

72.58%
12

19.35%
5

8.06%

Face2Face
2

4.08%
46

93.88%
1

2.04%

T
A

R
G

E
T

FaceSwap
2

3.23%
6

9.68%
54

87.10%

Table 5.13: Confusion matrix for the manipulation estimation task with (F,→)
and LBP features, computed over the true positive estimates.

PREDICTIONS
Deepfakes Face2Face FaceSwap

Deepfakes
44

67.69%
16

24.62%
5

7.69%

Face2Face
3

5.00%
52

86.67%
5

8.33%

T
A

R
G

E
T

FaceSwap
0

0.00%
9

15.25%
50

84.75%

Table 5.14: Confusion matrix for the manipulation estimation task with (B,↔)
and LBP features, computed over the true positive estimates.

As a final step, we relate our results with the ones of other methods pro-

posed in literature for the same dataset. Since the training, validation, and

testing splits of the FaceForensics++ dataset are standard and adopted in the

mentioned approaches, it is fair to compare the results obtained through our

proposed pipelines with the ones reported in [111] in terms of accuracy on the

testing set.

Figure 5.10 reports the results of our (F,→) and (B,↔) classifiers and other

six detection methods (most of them based on convolutional neural networks)

sorted according to their average accuracy over manipulation techniques. Re-

markably, our approach outperforms the SVM-based one [116] by a large mar-

gin, and also two techniques based on CNNs [117] and [118]. While the perfor-

mance of other deep networks like XceptionNet remains significantly better, the

proposed spatio-temporal descriptors, separated linearly in the feature space,

provide fairly accurate results with the advantages of higher explainability of

the encoded patterns and limited training time.
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Figure 5.10: Classification accuracy of the proposed algorithms in single-
technique scenario, sliding window approach and cf = 23, with respect to
other detection methods. Orange background indicates that the method is
based on CNNs.
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Chapter 6

Conclusions

In this Thesis we presented a) one method to estimate the QoE from users

subjected to 3D movies and b) two different methods to detect fake characters

in videos. All these approaches rely on the analysis of video sequences and

base their algorithms on the exploitation of facial features of the characters.

The QoE assessment is based on the estimation of HR by evaluating skin

color variations in the subject face region. With respect to other existing meth-

ods, the proposed framework is capable to analyze long video sequences and

to compensate small movements and changes in illumination through noise

rectification. The validation stage has been conducted on a new dataset of

64 sequences composed by the videos of users observing 3D scenes, properly

selected to induce HR variations. Once proved the capability to detect HR vari-

ability from the recorded video sequences, we introduced a psycho-physiological

measurement based on t-test application that showed a significant change in

both the HR signals measured through the medical sensor and the HR signals

estimated by the proposed contactless methodology based on video processing.

This demonstrated that the presented non-invasive technique is able to reveal

changes in HR introduced by emotional status variation, as done by medi-

cal sensors. The achieved results are promising in QoE analysis since recent

perspectives on QoE stress the need to focus on the interaction of perceptual

aspects of the content and cognitive-emotional aspects. Tools able to provide

accounts of emotional reactions of users are needed, and the contribution of

this Thesis is in the line of developing such tools. In particular, we provided a

method able to capture HR in a contactless way, flexible enough to work also in

special conditions where 3D-QoE tests are conducted (e.g., participant’s face

occluded by 3D glasses).

As a second challenge, we provide two effective tools that aim at keeping the

awareness of dealing with a real person or with an artificial being. Firstly, we

provide an approach to discriminate videos depicting digital human characters
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from real characters based on physiological features analysis. More specifically,

we exploit the idea that human beings present a pulse rate signal character-

ized by sinusoidal behaviour, while synthetic characters do not. Because of

this, we exploit the contactless HR estimation in order to estimate an accu-

rate HR signal from face videos from which significant features describing the

signal sinusolidality are used to train an SVM classifier: the flatter the sig-

nal, the more likely that describes a CG in the video. It has been proved that

the proposed method outperforms previous physiologically-based methods and

provides automatic classification without any manual interaction or human in-

terpretation. Secondly, we propose a tool for CG detection in videos based

on the application of LDP-TOP descriptors on the facial patch selected in the

video sequence. The workflow starts with a pre-processing step, which consists

of the automated facial patch identification and tracking, the temporal parti-

tion of video frames via sliding window approach, and the selection of specific

facial sub-patches inside the tracked facial patch. A training pipeline is used to

train proper SVM models that are considered in the testing pipeline to predict

a set of labels and scores, used for computing the final estimate: CG or NAT.

Experimental results conducted on FaceForensics++ dataset demonstrate that

our approach provide better results compared to the SVM-based approaches

presented in literature: this proves that relatively small feature representation

and relatively simple classifiers are suitable to detect synthetic characters in

videos. In addition to that, we show that our approach is capable to accurately

identify the used manipulation technique.

In the context of QoE assessment, further works can be devoted to include

more complex features of cardiac activity (e.g., quadratic time-frequency dis-

tributions) in the analysis of the extracted signals, thus also extending research

on QoE. In fact, some current limitations related to the accuracy of physio-

logical signals estimated through contactless technique should be addressed in

order to achieve a more precise estimate: this would lead to more complex QoE

analyses. In the context of forensics applications instead, it would be inter-

esting to focus on combining different human physiological signals (e.g. pulse

rate with voice and respiratory signals), or extending deep learning-based tech-

niques to video discrimination, and possibly deal with more complex scenarios

where both CG and NAT characters could be present. The development of

techniques that aim at dealing with character sharp movements and varying

environmental conditions is the main key to follow the advancements on CG

creation. Finally, one common issue to address in future works related to both

the contactless QoE estimation and the real versus fake characters detection
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is the heavy video compression: it significantly alters the media content, im-

pacting in turn the quality of the extracted features and thus returning worse

results.
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[81] D. Güera and E. J. Delp, “Deepfake video detection using recurrent neu-

ral networks,” in 2018 15th IEEE International Conference on Advanced

Video and Signal Based Surveillance, pp. 1–6, 2018.

[82] J. Xiao, S. Li, and Q. Xu, “Video-based evidence analysis and extraction

in digital forensic investigation,” IEEE Access, pp. 55432–55442, 2019.

86



[83] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a com-

pact facial video forgery detection network,” in 2018 IEEE International

Workshop on Information Forensics and Security, pp. 1–7, 2018.

[84] H. R. Hasan and K. Salah, “Combating deepfake videos using blockchain

and smart contracts,” IEEE Access, pp. 41596–41606, 2019.

[85] T. T. Nguyen, C. M. Nguyen, D. T. Nguyen, D. T. Nguyen, and S. Na-

havandi, “Deep learning for deepfakes creation and detection,” ArXiv,

2019.

[86] W. Zijlstra, A. Buursma, H. Falke, and J. Catsburg, “Spectrophotom-

etry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhe-

moglobin, carboxyhemoglobin, and methemoglobin,” Comparative Bio-

chemistry and Physiology Part B: Comparative Biochemistry, pp. 161–

166, 1994.

[87] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Robust discrim-

inative response map fitting with constrained local models,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2013.

[88] J. Shi and C. Tomasi, “Good features to track,” in 1994 Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–

600, 1994.

[89] C. A. Poynton, A Technical Introduction to Digital Video, pp. 176–177.

John Wiley & Sons Inc., 1996.

[90] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Media 2: Re-

mote plethysmographic imaging using ambient light,” Optics Express,

pp. 21434–21445, 2008.

[91] S. Prahl, “Optical absorption of hemoglobin,” 1999.

[92] P. Welch, “The use of fast fourier transform for the estimation of power

spectra: A method based on time averaging over short, modified peri-

odograms,” IEEE Transactions on Audio and Electroacoustics, pp. 70–

73, 1967.

[93] Q. Xie, G. Wang, and Y. Lian, “Heart rate estimation from ballistocar-

diography based on hilbert transform and phase vocoder,” 2018.

87



[94] K. Kooij and M. Naber, “An open-source remote heart rate imaging

method with practical apparatus and algorithms,” Behavior Research

Methods, 2019.

[95] FLIR, “Cricket - IP Security Camera.” www.ptgrey.com/

cricket-ip-security-camera. Accessed: February, 2018.

[96] Vilistus, “Vilistus sensor.” www.vilistus.com/index.shtml. Accessed:

June, 2017.

[97] J. Panksepp, “Cognitive conceptualism - where have all the affects gone?

additional corrections for barrett et al. (2007),” Perspect Psychol Sci.,

pp. 305–308, 2008.

[98] K. Scherer, Series in affective science. The neuropsychology of emotion,

ch. Psychological models of emotion, pp. 137–162. Oxford University

Press, 2000.

[99] J. A. Russell, “Emotion in human consciousness is built on core affect,”

Journal of Consciousness Studies, pp. 26–42, 2005.

[100] P. Rouast, M. Adam, V. Dorner, and E. Lux, “Remote photoplethys-

mography: Evaluation of contactless heart rate measurement in an in-

formation systems setting,” 2016.

[101] A. G. C. Saeid Sanei, Delaram Jarchi, Body Sensor Networking, Design

and Algorithms. 2020.

[102] B. Everitt, The Cambridge dictionary of statistics. Cambridge University

Press Cambridge, 2002.

[103] R. L. Wasserstein and N. A. Lazar, “The asa statement on p-values:

Context, process, and purpose,” The American Statistician, pp. 129–

133, 2016.

[104] D.-T. Dang-Nguyen, V. Conotter, G. Boato, and F. G. B. D. Natale,

“Video forensics based on expression dynamics,” in 2014 IEEE Inter-

national Workshop on Information Forensics and Security, pp. 161–166,

2014.

[105] S.-Q. Liu, X. Lan, and P. C. Yuen, “Remote photoplethysmography cor-

respondence feature for 3d mask face presentation attack detection,” in

Computer Vision – ECCV 2018, pp. 577–594, Springer International

Publishing, 2018.

88



[106] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data

by simplified least squares procedures.,” Analytical Chemistry, pp. 1627–

1639, 1964.

[107] T. Jabid, M. Kabir, and O. Chae, “Local directional pattern (ldp) for

face recognition,” pp. 329–330, 2010.

[108] Baochang Zhang, Yongsheng Gao, Sanqiang Zhao, and Jianzhuang Liu,

“Local derivative pattern versus local binary pattern: Face recognition

with high-order local pattern descriptor,” IEEE Transactions on Image

Processing, vol. 19, no. 2, pp. 533–544, 2010.

[109] Q. Phan, D. Dang-Nguyen, G. Boato, and F. G. B. De Natale, “Face

spoofing detection using ldp-top,” in 2016 IEEE International Confer-

ence on Image Processing, pp. 404–408, 2016.

[110] T. d. Freitas Pereira, J. Komulainen, A. Anjos, J. M. De Martino,
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