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Abstract

Autonomous mobile robots are undergoing an impressive growth. They are suc-
cessfully used in many different contexts ranging from service robots to autonomous
vehicles. These robots are expected to move inside the environment and, in gen-
eral, to perform some operation autonomously. Their reliability strongly depends
on their capability to accommodate the uncertainty generated by their interaction
with the physical world.

The core functionality for every autonomous mobile robots is the ability to navi-
gate autonomously inside a known environment. The navigation task can be decom-
posed in identify where to go, plan and follow the route to reach the goal. In order
to follow the planned path the robot needs to accommodate the actuation noise. To
accommodate these noise the knowledge of the pose and speed of the robot inside
the environment is needed. The more accurate the localization of the robot, the
better the actuation error can be compensated for.

Localisation is the process of establishing the correspondence between a given
map coordinate system and the robot local coordinate system relying on its per-
ceptions of the environment and its motion. Sensors are affected by noise, and in
time, ego-motion estimation alone diverges from the robot’s true pose. Robot ex-
teroceptive sensors can give fundamental information to reset the pose uncertainty
and relocalise the robot inside the environment, hence mitigating the dead-reckoning
process.

Most of the localization systems presented in the state-of-the-art focus on the
maximization of the localization accuracy by leveraging the natural features of the
environment. In these systems, the maximum achievable accuracy is tightly coupled
with the perceivable information embedded in the different regions of the environ-
ment. Therefore, the localization uncertainty cannot be adapted to the level of
accuracy desired by the users and only few approaches can provide guarantees on
the localization performance.

In contrast, by infrastructuring the environment, it is possible to obtain a desired
level of uncertainty. Current approaches tend to over-design the infrastructure in
dimension and supported measurement frequency. They provide far more accuracy
than required in most areas of the environment in order to guarantee the tightest
constraints that often are required only in limited regions.

The ability to adapt to the location-dependent uncertainty is more than just
a desirable property for a localisation system, since it helps in the reduction of
the system consumption, in the minimization of external infrastructures and in the
relaxation of the assumptions to be made on the environment. In line with the con-
siderations above, localisation throughout this thesis is not seen as the process that
always has to maximise the accuracy of the estimated robot pose. On the contrary,
localisation is considered as the process that minimises an objective function related



to the infrastructure’s cost, to the power consumption and to the computation time,
being subject to some requirements on the localization accuracy.
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Chapter 1

Introduction

”Robotics is the science of perceiving and manipulating the physical world through
computer-controlled devices”[121]. Robotic systems are placed in the physical world;
they perceive information about their environment through sensors and manipulate
it through actuators. They are successfully used in many different contexts ranging
from service robots [127] to autonomous vehicles [105]. In any conceivable appli-
cation, in order to accomplish autonomous operations, robots have to be able to
master the unavoidable uncertainty that exists in the physical world.

As depicted in Figure 1.1, researchers usually split the task of moving au-
tonomous robots in three main sub-problems: planning, control, and localization.
The planner is responsible for selecting a sequence of actions (e.g., schedule the
places to visit) and for finding a physically executable trajectory by which the robot
can reach the target location. The control system commands the actuators of the
robot in order to ensure that its motion satisfies the planner’s requirements. Lo-
calization is the process of establishing the correspondence between a given map
coordinate system and the robot local coordinate system (i.e., to estimate the pose
of the robot with respect to the map) relying on its perceptions of the environment
and its motion. Localization is an active and increasing research area in robotics,
constantly providing new ideas to improve robustness, precision and tools for theo-
retical analysis.

In the literature, the ability of an autonomous mobile system to precisely localize
itself within a given map is often recognized as a fundamental prerequisite for its safe
autonomous navigation and transportation. In [35], localization has been referred
as “the most fundamental problem to providing a mobile robot with autonomous ca-
pabilities”. One of the main problems for an effective localization algorithm is the
uncertainty involved along the platform motion. In fact, the robot actuators (e.g.,
motors) follow the desired commands with a certain level of tolerance; the inter-
nal models of the robot are approximated to provide timely responses; the onboard
sensors measuring the vehicle ego-motion (e.g., inertial measurement units, wheeled
robots encoders) are affected by noise. The impact of these uncertainties is accu-
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Environment

RoutePosition

Where am I?

Where am I going?

How do I get there?

PLANNING

CONTROLLOCALIZATION

Position Route

Environment

Figure 1.1: Interaction between planning, control, and localization. The localiza-
tion senses the environment and computes the robot position, the planning computes
the route to follow from the position and the control moves the robot in order to
follow the route.

mulated in the recursive position estimation (i.e., dead-reckoning). This problem
leads the localization error to grow unbounded over time. Therefore, in order to en-
sure the success of the autonomous operations, it is necessary to periodically reset
the depicted error growth using exteroceptive measurements . Mobile autonomous
robots follow different strategies to bound their position uncertainty within a map.
Usually, they cannot sense their pose directly and infer it through exteroceptive
sensors, whose effectiveness is limited by the nature of the measured quantity, their
range and their resolution.

The main aspects that characterize the localization problem are the following: i)
the knowledge that is available initially and at run-time, ii) the environment features,
iii) the motion controller. Depending on the kind of knowledge available in the
initial state, it is possible to distinguish 3 different problems: position tracking, global
localization, and kidnapped robot problem. Position tracking assumes that the initial
pose of the robot is known: the robot’s localization can be achieved coping with the
noise arising from the dead-reckoning process. It is a local problem since, from the
beginning to the end of the operations, the uncertainty is local and therefore confined
to a region close to the robot’s true pose. In global localization, the robot ego-motion
is correctly estimated by dead-reckoning, but there is no information about the initial
pose of the robot; thus, no bound can be assumed on the initial pose error. The
kidnapped-localization-problem refers to a situation where an autonomous robot
is carried to an arbitrary location without him noticing it has been moved (i.e.,
kidnapped), producing an erroneous ego-motion estimate. The kidnapping of a
robot is commonly used to test its ability to recover from localization failures. The
type of environment can be static or dynamic, depending on whether the robot is
the only active entity in the environment or not. Concerning the type of control, the
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error

Figure 1.2: 1D example of how optimizing the re-localization can require less mea-
surements while keeping the functionality of the system. The markers on the top
represent the re-localization

localization can be classified as passive or active. In the case of passive localization
the robot’s operations can only be observed. Furthermore,the planning and the
control of the robot are not designed to facilitate localization. In contrast in active
localization the control algorithm acts in order to minimize the error of the estimated
position.

The performance of a localization system usually is evaluated in terms of the av-
erage, of the root-mean-square or the 95th percentile of the localization error [101].
Relying on the proposed metrics, engineers usually consider the strictest require-
ments on localization accuracy while designing and selecting the system and they
do not consider that different areas inside the environment may ask for different
target uncertainties. This often leads to the choice of overly expensive hardware
solutions and to the need for deploying a supporting infrastructure in the environ-
ment. Therefore, the ability to adapt to the location-dependent uncertainty is a very
important property of a localization system. In fact, it is crucial for the reduction
of the system consumption, for the minimization of external infrastructures and for
the relaxation of the assumption to be made on the environment.

In the spirit of the considerations above, throughout this thesis, localization is
not seen as the process that has to always maximize the accuracy of the estimated
robot pose, but as the process that minimizes an objective function related to the
infrastructure cost, to the power consumption and to the computation time, subject
to some requirements on the localization accuracy. I will illustrate my considerations
basing on the following example. This simple mono-dimensional case reported in
Figure 1.2 represents a pit-stop sequence for an autonomous robot and the red line
represents a possible localization solution. The solution guarantees an accurate pose
estimation during all the operations, enabling the vehicle to slow down precisely at
the entrance of the box and to stop in the area where the wheels can be changed
correctly. This approach requires frequent re-localization in order to keep the drift
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of the dead-reckoning process bounded (the red dots in the Figure 1.2 represent re-
localization events). Using a high re-localization frequency significantly impacts the
costs of hardware and infrastructure besides affecting the risks of the computation
delays. In many cases the analysis of the specific task to be performed allows for
the design of a more cost-effective localization system. In the proposed case there
are two locations where the robot needs a very accurate pose estimation (i.e., before
the speed limit and b efore the change tire zone) while in other areas a coarser
localization precision could be enough to fulfill the autonomous operation. The
green line and the green square in Figure 1.2 represent a possible optimization of
the localization that preserves the functionality while requiring lower re-localization
frequency. Note that in the example of Figure 1.2 the optimization allows to improve
localization accuracy in the two critical locations by using a smaller number of re-
localizations.

1.1 Scientific contributions of the thesis

Following the line of reasoning presented above we have conducted several researches
that have been already presented in 11 scientific articles most of which are included
in this cumulative thesis. Table 1.1 reports the complete list of publications done
and, for the ones that are included in this work, we list the chapter where they are
presented. The main contributions described in these publications are presented in
4 chapters ( 4 to Chapter 7). Each chapter presents the results obtained using a
particular/specific localization technology:

• Chapter 4 describes an algorithm to optimize the deployment of artificial land-
marks to support the re-localization process giving some guarantees on the
uncertainty level. A brief introduction to the approach is given below in the
Subsection 1.1.1.

• Chapter 5 presents an uncertainty aware authority sharing control algorithm
that maintains its functionality even with a reduced infrastructure. This work
was developed in long discussions with Marco Andreetto and the experiments
with reals robot were performed in collaboration with Stefano Divan. A brief
introduction to the approach is given in the Subsection 1.1.2.

• In Chapter 6 is described an Ultra-wideband (UWB) based localization sys-
tem that can reduce the use of infrastructure by exploiting position dependent
requirements on the localization uncertainty level. This system was developed
in collaboration with Pablo Corbálan who is pursuing a PhD on UWB local-
ization systems and is introduced in Subsection 1.1.3.

• Chapter 7 presents the first step in developing a localization system based
on phase measurement of the backscattered signal from low cost UHF RF

12



1.1. Scientific contributions of the thesis

Reference Appearing in Thesis main chapter

[81] IPIN Chapter 4

[11] CNS Chapter 4

[82] TIM Chapter 4

[77] I2MTC Chapter 4

[83] ICRA Chapter 5

[78] IROS Chapter 6

[80] I2MTC Chapter 7

[79] TIM Chapter 7

[13] I2MTC

[90] IPIN

[21] EuCAP

Table 1.1: Scientific contributions of the PhD.

tags. The pursuit of this methodology was defined in collaboration with An-
drea Motroni who has RFID-based localization systems as the central focus of
his PhD. A more detailed introduction to this work can be found in Subsec-
tion 1.1.4.

These chapters are preceded by a chapter of background materials (Chapter 2) and a
chapter reporting the related analysis of the state of the art (Chapter 3). Ending the
manuscript, Chapter 8 presents a final discussion and comments on the presented
works.

1.1.1 Landmark relocalization

The system that is presented in Chapter 4 focus on the improvement of the robust-
ness of any localization system based on any kind of contextual information (e.g.,
natural landmarks, environment shape) by using artificial landmarks of known pose
to relocalize the robot. This approach, while attractive since it does not require
any modification to the environment, it is prone to failure in inherently ambiguous
or dynamic environments. In these kind of environments the reliability of localiza-
tion can be improved by placing artificial landmarks, which provide better detection
performance [126].

Most of the state of the art techniques focus on solving the so-called art gallery
problem. In this problem the objective is to place the artificial landmarks such that
at least one of them is visible from every possible pose of the robot. These approaches
do not consider the level of information already present in the environment (like
natural landmarks), the level of uncertainty that the user needs, and the ego-motion
estimated by the robot. Therefore, the theoretical analysis tend to generate an
over-sized landmarks deployment. In practice, these approaches are often based on
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sensible heuristics and driven by a manual selection of the landmark positions [41].
The absence of a proper formalization prevents the provision of precise guarantees
on the system performance and accuracy [26].

We show that the required localization performance can be achieved, via: a
less invasive landmarks deployment, the characterization of the robot localization
system, and the knowledge of the environment and the stasks the robot needs to
accomplish in such environment. In these circumstances, it is possible to develop
an optimization process that minimizes the required infrastructure while preserv-
ing the performance of the system. We propose a systematic approach to optimize
the deployment of artificial landmarks in the environment that takes into account
environmental information (e.g., shape, natural landmarks) and ensures that local-
ization uncertainty is kept within the desired boundaries expressed as a function of
the robot position and task.

We consider probabilistic models, hence the proposed approach provides stochas-
tic guarantees: the robot localization accuracy lies within some boundaries in a
user-defined metric-space with a certain probability that can also be user-defined.
For example, in Chapter 4, we define the metric as the euclidean distance projected
along the bigger eigenvector of the uncertainty matrix. Using this metric the user
can express the requirement in terms of the maximum distance of the robot true
pose from the estimated one. Independently from the metric used, the optimiza-
tion problem can be reduces to a coverage problem, that, as showed by Krause and
Guestrin [66], it is NP-hard.

To be solved within a reasonable computation time, some simplification and
approximation are required. A first simplifying assumption is to consider a set of
discrete location where the landmarks can be placed, this allows for encoding of
the problem as the satisfiability of a propositional logic formula (SAT problem).
Evey model of such formula corresponds to a deployment of landmarks that satis-
fies the accuracy requirements. The SAT formalization can be efficiently, although
approximately solved using a greedy heuristic.

This concept can be applied to a broad class of drift-less, input-affine wheeled
robots used in indoor environments, but in this Thesis, the approach is tailored to
the FriWalk. The FriWalk is the assistive robotics platform (shown in Figure 1.3)
developed within the European ACANTO project (for a brief description of the
project, see section 2.4) to support the ambulation of elderly people. Due to the
FriWalk non-linear system dynamics, the evaluation of the proposed approach is
done at first through Monte Carlo simulation and then with experiments performed
in a real scenario.

1.1.2 Probabilistic authority sharing

Authority sharing is a new control paradigm in which the control action is decided
by seeking a trade-off between the control goals (e.g., staying on a course) and the
decisions of a human interacting with the system (e.g., the driver of a car). This

14
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Figure 1.3: FriWalk and user during experimental campaign validation within
ACANTO [12].

paradigm can be exploited to reduce the requirements on the localization accuracy
while preserving the system functionality. The key idea is to adapt the control per-
formance to localization uncertainty. The balance between user and controller can
change according to the circumstances. The approach is increasingly popular [89],
and its potential application areas are many. Again in this work, we show the ap-
plicability of the proposed approach on the FriWalk.

As commonly done in the design of control algorithms for autonomous robots,
the FriWalk ’s authority sharing control [5, 8, 6] assumes that the localization algo-
rithm provides an accuracy sufficient to make the error in the estimation of the pose
negligible for the controller [71]. The intermittent nature of the re-localization infor-
mation can lead to poor performance (possibly even to instability) of the controller
if the average rate is not sufficient to compensate for the system dynamics [115, 93].
Authority sharing offers an elegant and unexpected escape from this problem by
limiting the area in which we have to ensure a precise localization.

The key observation is that even a user with mild cognitive impairments is able to
maintain a direction of motion when the environment does not require choices (e.g.,
a corridor). Only in the presence of decision points (e.g., bifurcations, cross-roads,
doors), is a constant intervention of the system required. A possible way to see
this is that the intelligence of the user can be used to compensate for the reduced
information precision on the environment. This behavior mimics a human being
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driving his/her car and overriding the suggestions coming from the navigator if the
GPS localization is evidently wrong or if an unforeseen obstacle, i.e., road works,
blocks the suggested way. Similarly, the autonomous driving system of modern cars
gives back control to the human in case, for example in case of heavy weather [74].

We can translate this simple idea into the following design principle: support
a frequent re-localization with a high level of infrastructure when close support is
required for the user and a light infrastructure when we can shift the authority to
the user. This natural strategy has to be complemented by a control algorithm that
decides the balance of the authority according to the accuracy of the information
on the system state, which is the most important contribution of Chapter 5. Specif-
ically, we propose a hybrid control scheme with two states: robot in control and
human in control. The control scheme is Lyapunov-based and gives the authority
to one of the two states according to the available localization precision or when the
deviation from the path becomes relevant.

The performance on the path following maximum error is experimentally charac-
terized as a function of the uncertainty growth due to dead-reckoning. To the best of
our knowledge, this is the first work that directly considers data uncertainties to rule
the controller behavior, being most of the literature devoted to the compensation of
parametric model uncertainties (e.g., [4]) or the disturbance rejection (e.g., [31]).

1.1.3 UWB

Ultra-wideband (UWB) radios are rapidly gaining traction, thanks to a new genera-
tion of smaller and cheaper transceivers (e.g., the DecaWave DW1000 [37]), offering
decimeter-level accuracy. In comparison with other techniques (e.g., LiDAR [51],
vision [42]) UWB enables both distance estimation (ranging) and communication
among devices within the same radio chip. This is a major asset in system de-
sign, especially in robotics applications (e.g., drones and space exploration) where
concerns about weight, form factor, and complexity dominate. Other radio-based
technologies (e.g., WiFi [28]) offer the same asset but with an order of magnitude
decrease in localization accuracy and significantly higher energy consumption.

The control of a robot requires the acquisition of accurate pose information at
relatively high frequency, typically in the range 10–30 Hz. In this respect, the ap-
plication of UWB to robotics faces two key challenges. First, positioning entails
several message exchanges with nearby anchors. The commonly-used two-way rang-
ing (TWR), described in the IEEE 802.15.4 standard [61], requires 2 packets per
estimate in its simplest form (single-sided TWR, SS-TWR); and, in practice, 4 pack-
ets are often used (double-sided TWR, DS-TWR) to improve accuracy. A position
estimation from N anchors, therefore, requires 2N or 4N messages, respectively. As
these communication occur on the shared wireless medium, the scalability to scenar-
ios with multiple robots is intrinsically at odds with the achievable update rate, i.e.,
tracking accuracy [27]. Further, although UWB has relatively low energy consump-
tion, w.r.t. WiFi, it still consumes hundreds of mW, that are often prohibitive for
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small and lightweight robots where the energy budget matters [70]. Based on these
considerations, reducing the UWB sampling rate without compromising accuracy is
imperative for the practical application of this localization technology.

The proposed approach tackles both challenges by combining the speed informa-
tion acquired by low-cost, low-accuracy proprioceptive sensors (e.g., IMU or odome-
ters) with the distance information obtained by high-cost, high-accuracy UWB de-
vices. Ego-motion estimators are widely used in robotics and can usually be executed
at high frequency, but unfortunately suffer from drift phenomena induced by dead-
reckoning.

The key idea of this approach is to use UWB measurements intermittently and
adaptively by triggering them only if and when needed to keep the positioning uncer-
tainty under control. We model uncertainty directly by estimating the a-posteriori
probability density function (pdf) based on an Unscented Kalman Filter (UKF).
This enables us to provide stochastic guarantees and to empower the robot user
with the ability to intuitively specify application requirements in terms of an accu-
racy threshold combined with a confidence level (e.g., positioning error ≤20 cm in
≥90% of the samples).

1.1.4 RFID

Among the various RF technologies proposed for indoor localization, the use of RF
IDentification (RFID) systems based on passive tags is particularly interesting due
to their low cost and the easiness of deployment in a given environment [76, 128].

Once one or more tags are detected, the position of an agent equipped with an
RFID reader can be estimated given the position of such tags inside the map. Un-
fortunately, the commonly used methods for estimating the position based either on
scene analysis methods (e.g., fingerprinting) or Received Signal Strength Indicator
(RSSI) data are strongly affected by multipath propagation issues [117]. Moreover,
a coarse-grained resolution is expected.

In indoor scenarios, better performance can be achieved by exploiting the phase of
the tag backscattered signal [38, 24, 50, 22]. In particular, we propose to reverse the
problem discussed in [90], where multiple items equipped with passive UHF-RFID
tags are localized from the phase measurements collected from a reader installed on
a wheeled robot which as a precise measure of its position. Our objective, instead, is
to localize and track the robot motion that has been equipped with an RFID reader
and with two odometers that can track the robot position even when no tags are
detected (dead-reckoning).

A crucial issue of the proposed approach is the inevitable phase ambiguity of
the UHF signals received by the RFID reader antenna. To address this problem,
we propose an effective dynamic estimator based on an Unscented Kalman Filter
(UKF), which is corroborated by a preliminary rigorous observability analysis of the
localization problem and the identification of the unobservable region.
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1.2 Notation

1.3 Notation

Through this thesis the following notation is used:

Notation Meaning

x, y,. . . Scalar values
x, y,. . . Column vectors
x1:t Sequence of vectors x1, x2,. . . ,xt
X, Y ,. . . Vector-valued random variables
A, B,. . . Sets
A, B,. . . Matrices
p(X = x) Probability density function evaluate at x
p(X = x|Y = y) Conditional probability density function at x conditioned on y
E[X] Expected value of X
Cov[X] Covariance matrix of X
N (µ,Σ) Multivariate Gaussian with mean µ and covariance Σ
xT , AT ),. . . Transposes of the vector x and the matrix A
|A| Determinant of the matrix A
〈W 〉, 〈M〉, . . . Reference frames

Note that, as used in the standard literature (see, e.g., Section 2.2 in [121]), in
this thesis the shorthand notation p(x) := p(X = x) is often used to denote the
value of the probability density function of the random variable X evaluated at the
specific value x.

Through this thesis the following abbreviations are used:

Abbreviation Meaning

EKF Extended Kalman filter
NP Nondeterministic polynomial time
PDF Probability density function
RFID Radio-frequency identification
SDA Sensor detection area
UKF Unscented Kalman filter
UWB Ulta wideband
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Chapter 2

General background

This chapter provides the background notions required to understand the approaches
proposed in the following parts of the thesis. First, in Section 2.1 the Bayes rule
is introduced and some basic concepts of probability theory are illustrated. In
Section 2.2 Bayes filters are introduced starting with a brief mathematical derivation
and reporting a description of the 2 most used filters of this family, namely the
Kalman filters and the Particle filters. Section 2.3 reports a brief introduction to
localization technologies based on radio frequency technologies with particular focus
on Ultra-Wide Band (UWB) and Radio-Frequency IDentification (RFID) systems,
which are the base technology used in Chapter 6 and Chapter 7, respectively. The
last section of this chapter (Section 2.4) provides a general overview of the ACANTO
project, which has been the main motivating force and sponsor of the research work
reported in Chapter 4 and Chapter 5.

2.1 Probability theory

Robots operations are always corrupted by noise and often measures carry only
a partial information of the world. In order to recover robustly the system state
working with probability is fundamental. Probabilistic inference allows the mapping
of the distribution and uncertainty on action and measure on the system state
estimation. Usually the probability that a random value X is equal to a particular
value x is defined as p(X = x) and it has always a positive value

p(X = x) ≥ 0.

To simplify the notation often p(X = x) is shortened to p(x). Drawing the value
of p(x) as a function of x we obtain the probability density function (PDF) of the
random variables. By integrating the PDF over a region we find the probability
that the random variable x falls in this region. Obviously by integrating x on all
the domain we obtain a probability of 1 (the variable should have a value that is in
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its domain by definition). ∫
p(x)dx = 1

Metrics employed often to describe probability distributions are the expectation of
a random variable:

E[x] =

∫
xp(x)dx

and its covariance:

Cov[x] = E[x− E[x]]2 = E[x2]− E[x]2

The joint probability.
p(x,y) = p(X = x andY = y)

expresses the probability that X = x and jointly Y = y. If the random variable X
and Y are independent:

p(x, y) = p(x)p(y) (2.1)

The conditional probability instead expresses the distribution of X knowing the
value of the random variable Y .

p(x|y) = p(X = x givenY = y) (2.2)

It can be extracted from the joint probability as:

p(x|y) =
p(x,y)

p(y)

Notice that if the variables are independent (eq. 2.1) the joint probability does not
add any information to the distribution of X.

p(x|y) = p(x)

Knowing p(x|y) and p(y) it is possible to use the theorem of total probability to
obtain the not conditioned distribution of the random variable X:

p(x) =

∫
p(x|y)p(y)dy

Instead if we want to ”reverse” p(x|y) to p(y|x) we can use the Bayes rule:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∫
p(y|x′)p(x′)dx′ (2.3)

Considering that the denominator is not a function of x it can be considered as a
normalizer and the the Bayes rule it is often shortened as:

p(x|y) = ηp(y|x)p(x)
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2.2. Bayes Filters

xt−1

ut−1

zt−1

xt

ut
zt

xt+1

ut+1

zt+1

Figure 2.1: Evolution of control, state and measure represented as Baesyan Network.

This rule is the basis for the most used filters in robotics.
When estimating the state of a robot at time t (xt) usually a set of measure-

ments (z1:t) and a set of control actions (u1:t) are available. Using the definition of
conditional probability (eq.(2.2)), the state estimation can be expressed as estimat-
ing the probability distribution of the current state conditioned to the measures,
controls and past states distribution:

p(xt|x0:t−1, z1:t−1,u1:t).

Using the same approach we can estimate the distribution of the predicted measure
at time t as p(zt|x0:t, z1:t−1,u1:t). If x is a complete state representation of the
system (i.e. the state is the best predictor of the future), the process can be modeled
as a Markov chain (see Fig. 2.1) and the dependency from the past measurements
and control action can be removed:

p(xt|x0:t−1, z1:t−1,u1:t) = p(xt|xt−1,ut)

p(zt|x0:t, z1:t−1,u1:t) = p(zt|xt)
The most up to date belief estimation of the state collecting all information up

to time t (i.e., p(xt|z1:t,u1:t)) is called posterior and usually indicated as bel(xt).
Instead the distribution given from all the control up to time t and the past measures
up to time t−1 (i.e., p(xt|z1:t−1,u1:t)) it is called prediction and indicated as bel(xt).
Computing bel(xt) from bel(xt) it is usually called correction or measurement update
since it leverage the measure distribution given from the sensors ( p(zt)).

One of the most used and studied PDF is the Gaussian and its general form is:

p(x) = det (2πΣ)0.5 exp{−0.5(x− µ)TΣ(x− µ)}
where Σ = Cov[x] is a semidefinite positive matrix and µ = E[x]. The Gaussians
are important in statistic and they are recurrent in nature, partially due to the
central limit theorem [104].

2.2 Bayes Filters

The most general algorithm for calculating beliefs is the Bayes Filter. The Bayes
Filter calculates the belief in a recursive way from the distribution of the measure
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Algorithm 1: BayesFilter(bel(xt−1), ut, zt)

Result: bel(xt)
1 bel(xt) =

∫
p(xt|ut,xt−1) bel(xt−1) dxt−1;

2 bel(xt) = η p(zt|xt) bel(xt);

and control following the steps reported in Algorithm 1. In the first line the dis-
tribution of the control action p(ut) is used to predict the current state from the
previous estimation and this is done by integrating the product of the state transi-
tion model probability p(xt|ut,xt−1) by the probability distribution of the previous
state bel(xt−1) over all the state space. The second step (line 2) is called measure-
ment update since it improves the state estimation using the measures from sensors.
It is given by the product of the measurement likelihood (p(zt|xt)) and the predicted
state (bel(xt−1)). This recursive filter can be applied successfully only if the initial
belief bel(x0) is known. If we know the exact initial state bel(x0) we will impose a
picky probability distribution centered on the known state, if we do not have any
information on the initial belief the PDF will be homogeneously spread on all the
possible states. As reported here the Bayes Filter formulation is not implementable
to work on-line in general estimation cases. To obtain a solution suitable for real-
time applications some assumptions and approximations are needed. A commonly
used approximation consist in constraining the PDF shape obtaining fast closed
form solution of the filter and/or reducing the state space to a finite domain re-
ducing the integration domain of the filter . For the sake of completeness we now
report a summary of the main mathematical steps necessary to obtain the recursive
form of the Bayes Filter followed by a quick overview of the principal instance of
Bayesian filter used in the robotics community namely the Kalman Filter and the
Particle Filter.

2.2.1 Mathematical derivation

In this subsection we want to demonstrate how it is possible to obtain the recursive
formulation of the Bayes filter reported in Algorithm 1. The base assumption be-
hind the Bayes filter is to work with a Markov process and therefore we can make
predictions for the future state of the system based solely on its present state.

Applying the Bayes rule reported in eq. (2.3):

bel(xt) = p(xt|z1:t,u1:t) (2.4)

=
p(zt|xt, z1:t−1,u1:t)p(xt|z1:t−1,u1:t)

p(zt|xt, z1:t−1,u1:t)
(2.5)

= ηp(zt|xt, z1:t−1,u1:t)p(xt|z1:t−1,u1:t) (2.6)

Since xt is a complete state (Markov assumption) we can remove the dependence

22



2.2. Bayes Filters

on the past measure and control action:

p(zt|xt, z1:t−1,u1:t) = p(zt|xt). (2.7)

By substituting eq. (2.7) in eq. (2.4) we get:

bel(xt) = η p(zt|xt) p(xt|z1:t−1,u1:t) (2.8)

Note that the last term of the equation is the predicted belief (bel(xt)).

bel(xt) = η p(zt|xt) bel(xt). (2.9)

With this equation we have demonstrate the second step reported in Algorithm 1
(i.e., the update step), but we still need to demonstrate the prediction step (i.e.,
the first step). This can be done by expanding the definition of posterior belief and
using the Markov assumption:

bel(xt) = p(xt|z1:t−1,u1:t) (2.10)

=

∫
p(xt|xt−1z1:t−1,u1:t)p(xt−1|z1:t−1,u1:t)dxt−1 (2.11)

=

∫
p(xt|xt−1ut)p(xt−1|z1:t−1,u1:t)dxt−1 (2.12)

=

∫
p(xt|xt−1ut)p(xt−1|z1:t−1,u1:t−1)dxt−1 (2.13)

Note that dependency on ut was removed under the consideration that a future
action can not influence the value of current state of the system. Using the definition
of posterior belief eq. 2.13 can be written as:

bel(xt) =

∫
p(xt|xt−1ut)bel(xt−1)dxt−1,

This is exactly the demonstrate prediction step reported in the Algorithm 1 com-
pleting the mathematical derivation.

2.2.2 Kalman filter

Invented by Swerling (1958) and Kalman (1960) as a filtering tool for linear Gaussian
system, the Kalman filters are probably the most popular baesyan recursive filters.
The assumptions of the Kalman filters are:

• the system is a Markov process (inherited from baesyan filters);

• the system dynamics is linear and the input noise (εt) is a normally distributed
random variable with mean 0 and covariance Rt (N(0, Rt)).

xt+1 = Atxt−1 +Btut + εt
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Given a linear dynamic system the transition probability is gaussian dis-
tributed and can be expressed in closed for as:

p(xt|ut,xt−1) = det(2πRt)
−0.5 exp {−0.5(∆xt)

TR−1
t (∆xt)}

where ∆xt = xt −Axt−1 −But.

• the system measure is linear and is characterized by a noise δt that is zero
mean normally distributed N(0, Qt).

zt = Ctxt−1 + δt

Under this assumption the measure probability is distributed as

p(zt|xt) = det(2πQt)
−0.5 exp {−0.5(∆zt)

TQ−1
t (∆zt)}

where ∆zt = zt − Cxt.

• the initial belief is gausian distributed and can be characterized by its 2 mo-
ments µ0 and Σ0

bel(x0) = det(2πΣ0)−0.5 exp {−0.5(x0 − µ0)TΣ−1
0 (x0 − µ0)}

Given these assumptions bel(xt) is gaussian distributed ∀t ≥ 0 and the Kalman
filter (KF) is the best possible estimator of the state (i.e., the one that give us the
state belief with greater accuracy). Even if the KF is grounded on linear system,
introducing some approximation, have been proposed to apply the filter to nonlinear
state estimation. The most known approaches inside the Kalman Filter family
that can deal with nonlinear systems are the Extended Kalman Filter (EKF) and
the Unscended Kalman filter (UKF). Even if they are not guaranteed to converge
they are the best possible linear estimators since they achieve the highest possible
accuracy among them. An additional limitation of Kalman filters derives from the
assumption of Gaussian distribution. The unimodal bell shape is well suited to the
tracking problem, but does not generalize well to the multiple hypothesis tracking
that often characterizes global location problems.

The steps of the classic KF are reported in Algorithm 2. The inputs, as for the
standard Bayes filter (see Algorithm 1), are the initial state belief and the input and
measure distribution; they are expressed by their first and second order momentum
underlying their gaussian distribution. The first two lines of the Algorithm translate
the prediction step of the classic recursive Bayes filter and the others compute the
posterior belief through the measurement update process. In this second part some
auxiliary variables are defined; particularly important is Kt called kalman gain. It
expresses the relative weight between measurement and prediction: low values of
Kt imply that the measure is unreliable compared to the predicted state thus more
trust will be given to the predicted state, otherwise if Kt assumes high values more
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2.2. Bayes Filters

Algorithm 2: KalmanFilter(µt−1, Σt−1, ut, Rt, zt, Qt)

Result: µt, Σt

1 µ̄t = Atµt−1 +Btut ;
2 Σ̄t = AtΣt−1A

T
t +BtRtB

T
t ;

3 Kt = Σ̄tC
T
t

(
CtΣ̄tC

T
t +Qt

)−1
;

4 µt = µ̄t +Kt(zt − Ctµ̄t) ;
5 Σt = (I −KtCt)Σ̄t;

trust will be given to the measure. Line 4 of the Algorithm 2 uses the kalman gain
to weight the innovation (i.e., the difference between the actual and the predicted
measurement zt − Ctµ̄t)

The derivation of Algorithm 2 from Algorithm 1 leverages the simplification
of gaussian PDFs multiplication as sum of exponents. This semplification is nor
reported in this work, a clear mathematical derivation can be found in [121]. The
complexity of the algorithm usually is dominated by the inversion of the matrix in
the update phase (line 3 of the algorithm) that is O(d2.4) where d is the dimension
of the output vector zt. If the measure space dimension d is much lower that the
state dimension n the algorithm complexity is dominated by the O(n2) operations.

We report now a brief description of the 2 most used members of the KF family:
the Extended Kalman filter and the Unscented Kalman filter. Those filters extend
the classic KF adding a certain degree of adaptability to non-linear systems generally
modeled as: {

xt = g(ut,xt−1) + εt

zt = h(xt) + δt
(2.14)

Extended Kalman filter

The Extended Kalman Filter is based on the first order Taylor linearizion of the non-
linear system reported in eq. (2.14). It follows the same steps of the KF Algorithm 2
but the predicted state and measure are retrieved directly using the nonlinear func-
tion and the uncertainty propagation are done using the following linearizion:

At =
∂g(ut,xt−1)

∂xt−1

Bt =
∂g(ut,xt−1)

∂ut

Ct =
∂h(xt)

∂xt

The EKF approximations do not work well when the PDF of the belief is spread
over a large part of the nonlinear function causing the linear approximation to fail.
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Algorithm 3: UnscentedKalmanFilter(µt−1, Σt−1, ut, Rt, zt, Qt)

Result: µt, Σt

1 χt−1 =
(
µt−1 µt−1 + γ

√
Σt−1 µt−1 + γ

√
Σt−1

)
;

2 χ̄∗t = g(ut, χt−1) ;

3 µ̄t =
∑2n

i=0w
[i]
mχ̄
∗[i]
t ;

4 Σ̄t =
∑2n

i=0w
[i]
c

(
χ̄
∗[i]
t − µ̄t

)(
χ̄
∗[i]
t − µ̄t

)T
+Rt;

5 χ̄t =
(
µ̄t µ̄t−1 + γ

√
Σ̄t µ̄t−1 + γ

√
Σ̄t

)
;

6 Z̄t = h (χ̄t);

7 ẑt =
∑2n

i=0w
[i]
mZ̄ [i]

t ;

8 St =
∑2n

i=0w
[i]
c

(
Z̄∗[i]t − ẑt

)(
Z̄∗[i]t − ẑt

)T
+Qt;

9 Σ̄x,z
t =

∑2n
i=0w

[i]
c

(
χ̄
∗[i]
t − µ̄t

)(
Z̄∗[i]t − ẑt

)T
;

10 Kt = Σ̄x,z
t S−1

t ;
11 µt = µ̄t +Kt (zt − ẑt);
12 Σt = Σ̄t −KtStK

T
t ;

Unscented Kalman filter

Algorithm 3 reports the pseudocode for the Unscented Kalman filter which com-
putes the posterior belief relying on the Unscented transform. This filter shows
better performance compared to EKF on nonlinear systems and it does not require
the computation of the first order derivatives. At first a symmetric set of sigma
points are generated from the distribution of the state belief (µt−1,Σt−1). The pa-
rameter γ, involved in this operation, is a user defined constant that determines the
spread of the sigma points around µt−1: the larger γ the wider the points distribution

and w
[
mi] is the weight of the i-th sigma point given from the unscented transform

that is function of γ and other 2 user defined constants that are used to incorporate
prior knowledge on the state distribution. The application of the nonlinear motion
function to the sigma points (line 2) allows for the estimation of the mean (line 3)
and covariance (line 4) of the prediction. From line 5 to 10 an analogous procedure
is applied to estimate the mean and covariance of the predicted measure and the
correlation matrix of the predicted state and the measure distributions. Knowing
these matrices it is possible to compute the Kalman gain K and update the estimate
of mean and covariance of the state using the standard linear Kalman filter proce-
dure. Usually, to speed up the filter and slightly increase the accuracy, the predicted
sigma points are directly used in the measurement function without recomputing
the sigma points from the restored predicted mean and covariance.
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2.3. Radio frequency localization

Algorithm 4: ParticleFilter(χt, ut, zt)

Result: χt
1 χ̄t = χt = ∅ ;
2 for m = 1 to M do

3 sample x
[m]
t ∼ p(xt|ut, xmt−1) ;

4 w
[m]
t = p(zt|x[m]

t ) ;

5 add 〈x[m]
t w

[m]
t 〉 to χ̄t.;

6 end
7 for m = 1 to M do

8 draw i with probability ∝ w[i]
t ;

9 add x
[m]
t to χt.;

10 end

2.2.3 Particle filter

The Particle filter is a baesyan filter that approximates the posterior bel(xt) by
using a set of random state samples drawn from this posterior. This representation is
nonparametric and does not require any assumption on the shape of the distribution
of the stochastic variable influencing the system. The greater the number of particles
the better the PDF will be approximate. The density of the particles is proportional
to the probability expressed by the PDF. The particle filter algorithm is reported in

Algorithm 4. On line 4 a set of hypothetical states x
[m]
t is generated sampling from

the motion distribution. The resulting sample is then associated with an importance

factor (w
[m]
t ) based on the measure probability associated to that particle. The

particles are then re-sampled by their importance factor generating the new particle
distribution χt that represents the posterior belief bel(xt).

2.3 Radio frequency localization

Radio technology like IEEE 802.11 (WiFi), Bluetooth, Zigbee, RFID, and Ultra-
Wideband (UWB), are commonly used in indoor localization systems. Different
techniques can be used to determine the position of an agent exploiting radio wave
transmissions: Proximity location, Received Signal Strength Indicator, Fingerprint-
ing, Time of Flight, and Angle of Arrival.

Proximity location is the simplest positioning method. When the receiver detect
a signal from a transmitter or from a transponder of known location the system know
that is nearby it. The estimated position accuracy depends on the communication
range that is proportional to the radiated power: lower waves power imply smaller
transmission range and therefore a more accurate localization. The estimation can
be further improved by intersecting the detection range of multiple transmitters as
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A B C

Figure 2.2: Proximity location. The green receiver detects the signal from the
transmitters labeled as A and B while C is out or range. The yellow area is the
intersection of the detection areas of transmitter A and B, and is the set of possible
receiver location.

A B

C

Figure 2.3: Location estimation using trilateration based on range measurement
from 3 transmitters of know position.

represented in Figure 2.2. In the figure the transmission range is represented with a
circular area, but in general propagation irregularities of electromagnetic waves can
generate very complex shape.

Received Signal Strength Indicator (RSSI) is a measure of the signal power at
the receiver and can give a better location than proximity. It is possible to link
the RSSI value with the distance between the transmitter and the receiver, using
a simple propagation model [69]: RSSI = −10n log10(d) + A, where n is the path
loss exponent, and A is the RSSI value at a reference distance from the receiver.
Multilateration can be used to determine the 2-D location of the receiver, measuring
the RSSI from at least 3 nodes (see Figure 2.3). Usually, this approach is simple
and cost-efficient, but it suffers from poor localization accuracy: the noise and
the frequent wave reflections (multipath fading) characterizing indoor environment
generate severe RSS fluctuation, and the attenuation of the signal passing through
walls and significant obstacles is challenging to model and predict.

Fingerprinting can improve significantly the precision of multilateration ap-
proaches based on RSSI [58]. These methods estimate the position of the robot
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A

BC

Figure 2.4: Fingerprinting. The dots correspond to the database location at which
the levels of RSSI of the 3 transmitters (A, B, C) are registered. The 8 yellow
locations are extracted, comparing the measured levels of RSSI with the database.
The receiver position can be estimated averaging these 8 neighbors.

by matching the measured values of RSSI coming from different transmitters with
the ones previously stored in a database. The closest values are then averaged to find
the estimate location (see Figure 2.4). The need of a constantly updated database
add a significant overhead and rigidity in the system deployment and management.

Time of Flight (ToF) methods use wave propagation time to measure the dis-
tance and indirectly estimate the location. They can be subdivided in 3 categories
Time of Arrival, Time Difference of Arrival, and Phase of Arrival. Time of Ar-
rival (ToA) exploits the signal propagation time to calculate the distance between
transmitter and receiver. The receiver can compute the propagation time sub-
tracting the transmission time (usually stored in the message) from the ToA. By
multiplying the propagation time by the speed of light, it is possible to obtain the
transmitter-receiver distance. Two-Way Ranging ToA (TWR) time synchronization
is not required and only arrival and departure time difference on each terminal is
measured. TWR measures the round-trip signal propagation time to estimate the
distance between the 2 terminals (see Figure 2.5). By subtracting the time that
the terminal 1 took to retransmit the message from the total time elapsed between
transmission and reception of the signal on the terminal 2, it is possible to estimate
2 times the time of flight from one terminal to the other. This technique is called
Single Side-Two Way Ranging (SS-TWR) since the distance is virtually estimate
only on one side. By adding a third transmission from terminal 2 to terminal 1
it is possible to add a further estimation of the time of flight with a symmetric
procedure as the one reported above obtaining leading to a more precise distance
estimation. This methods it is called Double Side-Two Way Ranging (DS-TWR)
and is represented in Figure 2.5. Usually in ToA methods the 2D position of a tar-
get is determined from distance measurements knowing the position of the reference
station. At least 3 reference are needed to estimate without ambiguity the 2D target
location from the intersection of circles that usually is done considering the distance
measures uncertainties and searching the position with maximum likelihood. The
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∆t1

∆t2 ∆t3

∆t4

τ = ∆t1−∆t2
2

τ = ∆t3−∆t4
2

SS TWR

DS TWRDS TWR

SS TWR
DS TWR

tterminal2

tterminal1

Figure 2.5: Scheme of the message exchanged in Single Side and Double Side Two-
Way Ranging for distance estimation. τ is the time of flight of the wave from the
terminal 1 to the terminal 2.

critical factors that affect ToA estimation accuracy are the signal bandwidth and the
sampling rate. High sampling rate, complemented from frequency domain super-
resolution techniques, and large spectrum of the signal generate a precise distance
estimation. Even if these techniques can be very precise they are prone to error when
the transmitter and the receiver are not in direct line of sight. Time Difference of
Arrival (TDoA) method does not require a signal retransmission. TDoA exploits
the delay in signal propagation times from different transmitters measured at the
receiver. The TDoA between the signal coming from node i and node j (∆ti,j) can
be converted into a physical distance knowing the speed of light: ∆di,j = c∆ti,j .
∆di,j defines a hyperboloid of possible receiver positions (see Figure 2.6), and the
intersection of 3 hyperboloids can determine a unique position of the receiver. As
for ToF, the accuracy of TDoA depends on the signal bandwidth, sampling rate,
and the existence of a direct line of sight between transmitters and receiver. TDoA
does not require any receiver-transmitters synchronization.

Phase of Arrival (PoA) uses the relative phase, instead of time, combined with
the speed of propagation of the electromagnetic wave to estimate the distance. The
propagation distance can be expressed as d = λ(θ/(2π)+n) where θ is the measured
phase, n is the number of whole wavelengths between sender and receiver and λ is
the wavelength that can be computed dividing the light speed by the wave frequency
(c/f). In order to estimate the distance it is necessary to remove the ambiguity n
from the equation. This is commonly done leveraging the phase measured using
multi-frequency waves.

Angle of Arrival (AoA) estimates the 2D position of the agent by measuring
the angle of the radio waves coming from at least 2 different reference nodes, as
shown in Figure 2.7. These angles are estimated through directional antennas, which
usually is an expensive solution. AoA provides an accurate estimation when the
transmitter-receiver distance is small. Instead, its accuracy deteriorates, increasing
their distance: in situations where the transmitter is far from the receiver, a small
error in the angle of arrival calculation maps to a considerable position estimation
error.
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A B

dA dB

∆dA,B = dA − dB

Figure 2.6: Time Difference of Arrival. The black dashed line represents the hyper-
boloid defining all the 2D location characterized with a constant distance difference
∆dA,B from the 2 blue antennas.

2.3.1 UWB

Ultra-wide band (UWB) localization is based on radio frequencies transmissions.
Introduced in the early 1990s [111, 125], UWB communications have received wide
interest after the U.S. Federal Communications Commission (FCC) allowed the use
of unlicensed UWB communications [45]. In August 2007 ultra-wideband (UWB)
physical layer was included in the standard IEEE 802.15.4a among the Low Rate
Wireless Personal Area Network. In contrast with conventional radio transmission
that transmits information by varying the power level, frequency, and/or phase of
a sinusoidal wave, UWB transmissions encode the information as a series of energy
pulses in a large band of radio frequencies. In general the series is composed by
a time-hopping sequence of very short pulses [87], typically ≤ 2 ns, spreading the
signal energy across a bandwidth ≥ 500 MHz. Their short duration assures the
resistance against multipath effects and gives a supreme time resolution. To prevent
interference on radio signals the UWB has a very strict power emission limits thus
UWB can be used only on short-range applications (e.g., indoor).

The first commercial systems, developed in the context of the IEEE 802.15.3a
standardization process, were intended for high data rate, short range personal area
networks (PANs) [88, 106]. More recent emerging applications of UWB are for
sensor networks. Such networks combine low to medium rate communications with
positioning capabilities. The very large bandwidth of UWB provides excellent time
resolution and allows UWB radios to accurately measure the time of arrival (TOA)
of a signal. Moreover, measuring and analyzing the channel impulse response allow
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Figure 2.7: Angle of Arrival. The black dot-dashed line represents the estimated
wave direction, and the position of the green marker is estimated from the intersec-
tion of these lines.
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Figure 2.8: Backscattered phase from UHF-RFID tag. φ1 is the phase delay
generated in one way travel (φ1 = 2π dλ (mod 2π)); δ is the phase shift characteristic
of the tag and the frequency of the wave; φm is the measured phase at the reader
(φm = π dλ + δ (mod 2π)).

to distinguish the direct path from multipath components. As a result, time-based
positioning techniques like TWR, ToA and TDoA are commonly used in UWB radios
localization system, allowing centimeter-level accuracy in ranging, and a low-power
and low-cost implementation of communication systems.

2.3.2 RFID

Radio-frequency identification (RFID) uses electromagnetic-radio waves to identify
and track tags. Usually an RFID localization system is composed by several tags
acting like transponder and an antenna working as a radio receiver and transmitter.
The fundamental different with UWB system is that tags have to be interrogated to
provide measurements. Normally the transmitted signal activate the transponder
that reflects back the signal shifted by a phase value that a characteristic of the
tag (as shown in Figure 2.8). The received signal is attenuated and has a different
phase if compared to the transmitted signal and these difference are function of the
distance that separate the antenna with the tag.

There are two type of tags: passive tags and active tags. Passive tags are powered
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by the radio waves transmitted from the RFID reader have a limited range but are
very cheap. Active tags are powered by a battery thus can be read at a greater range
from the RFID reader (up to hundreds of meters) but are more expensive. Another
categorization of RFID system is near field (≤ 14 MHz) and far field (≥ 400 MHz).
Near field communication maximum range is around 1 m and typically is based on
inductive coupling. Typical RFID far field frequencies are in the UHF bands and
its range is greater that the near field.

Ultra High Frequency Radio Frequency IDentification (UHF-RFID) based on
passive tags is a promising solution by virtue of its low cost, its detection range
and easiness of installation. UHF-RFID have a larger reading range (i.e. several
meters) if compared with RFID techniques working of lower ranges. Moreover, the
wide-beam reader antennas allows to manage many tags at the same time thanks to
the anti-collision algorithm implemented in the EPC Global Class1 Gen2 protocol.

The common measure exploited on UHF RFID-based positioning system is the
RSSI measuring the amplitude of the signal backscattered by a tag. This measure is
strongly dependent on the environment and tag characteristics (e.g. material, type,
orientation) and it suffers from multi-path propagation. Therefore, the definition of
a reliable path loss model linking the distance and RSSI is complex and the expected
localization error is in the order of a few meters. Tedious fingerprinting technique
can be used to characterize UHF RFID RSSI to improve this performance.

Better accuracy can be achieved exploiting PDoA of the backscattered signal.
A big limitation to PDoA is that the phase accumulated by the electromagnetic
wave propagation in round trip between reader’s and tag’s antennas, has a circular
periodicity as can be seen from Figure 2.8. Every phase measurement have a 2π
periodicity hence the same measurement is retrieved from all position that have
a radial distance of λ/2 (where λ is the wave length). Nevertheless the measured
phase (φm) is characterized by two main components: φm = φ + δ, where φ is the
phase accumulated during the round trip of the signal and δ is a nearly constant
phase shift that is function of the tag and the frequency.

Some approaches calibrate δ for each tag in the system before system opera-
tion. Others use measures taken from different position or leverage multi-frequency
electromagnetic wave to filter out the spurious contribution from the phase measure-
ments. Frequency based methodologies are limited by the regulation which limit the
bandwidth of RFID systems, especially in Europe (ETSI band 865-868 MHz). An-
other possibility to remove the unwanted contribution is a time differentiation of
the signal, but in this way it is the radial relative speed antenna-tag is estimated
but not their relative position.

2.4 ACANTO

The scientific and technological development of modern world has increased the life
expectancy, producing a constant aging of the population. Europe is definitely the
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area with the oldest population. Predictions for 2050 state that almost 35% of Eu-
ropean population, i.e., more than one individual every three, will be 60 years old or
over. Population aging influences the rise of deambulation impediments, increasing
the need of mobility devices. For instance, 24% of adults aged 65 or over used at
least one mobility aid in 2011 in United States [52]. Since the population in this
age range is increasing, especially in advanced countries, the importance of mobility
aids is expected to grow in the next years.

A promising way to face these nefarious effects of reduced mobility is the combina-
tion of deambulation aids and modern robotic technologies. The European project
ACANTO [2] developed a prototype of an assistive robotic walker, called FriWalk,
capable of physically and cognitively supporting the assisted person. The FriWalk
is similar to a standard four-wheeled rollator (see Figure 1.3 ), but it is endowed
with actuators, sensors, and computing abilities to localize itself in the environ-
ment [93, 48], and to compute [32] and follow [9, 7, 10, 46] safe and comfortable
paths guiding the user towards a desired location. A possible use case was that
the user asks the FriWalk (using a tablet-based interface) to be guided toward the
restrooms inside a building and the walker, after computing the fastest and safest
path, is able to guide the user to the target location. During the motion the robot
offers physical support and helps the user to reach the restrooms, ensuring that
he/she moves safely, e.g., by avoiding obstacles [18].

Moreover, ACANTO emphasizes the importance of social interaction among the
users. Since social interaction is foundamental for correct aging, a dedicated social
network was development, e.g., to bring together two people with similar profiles.
Overall, the workflow of ACANTO is depicted in Figure 2.9.

Figure 2.9: Workflow of ACANTO, from the ACANTO proposal.
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Chapter 3

State of the art

This Chapter presents the relevant works in the state of the art that are related to
the techniques proposed in this thesis. A brief overview of the placement problem,
described in Chapter 4, is presented in Section 3.1. Section 3.2 summarizes the state
of the art in assistive robots used to support human deambulation. They provide
the basis for the control algorithm described in Chapter 5. Finally, Section 3.3
and Section 3.4 report the current approaches for the fusion of inertial information
and radio localization technologies. These approaches are used in Chapter 6 and
Chapter 7.

3.1 Landmark Placement

The problem of visual landmark selection has been widely investigated in the sci-
entific literature from several points of view. The classic landmarks selection tech-
niques attempt to decompose the environment into a minimal number of maximally
sized regions, such that a minimum set of landmarks is visible from any position of
a given region, thus ensuring continuous robot re-localization.

One of the first formalizations of this, proposed by Klee in 1970s [97], is the
Art Gallery problem. The Art Gallery problem aims at determining the minimum
number of guardians that, in an art gallery, can together observe the whole gallery.
This problem has been shown to be NP-hard by Lee and Lin in [72], and in [30],
Chvatal derived an upper bound of the optimal number of guards as a function of
the number of walls in the gallery.

In 1998 Salas and Gordillo [109] generalize the Art Gallery problem to the land-
marks placement problem and restrict the perceptual capabilities of the guards to
a circular arc with finite minimum and maximum radius. They cast the problem as
a coverage problem: find the minimum number of sensors that can cover the maxi-
mum possible area. In [108], the problem is extended by requiring that from every
position in the map, at least k landmarks are observable. Nazemzadeh et al. [91]
solve the art gallery placement for non-omnidirectional sensors, and they derive a
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closed-form expression for the optimal distance between landmarks in open space
with a triangular detection area of the sensor. In [107], Rupp and Levi propose to
further reduce the number of artificial landmarks by using contextual information
such as walls and corners. They define a confidence value that numerically describes
the expected reliability and the accuracy of the position estimation at a given point.
The landmarks configuration is optimized by maximizing the mean confidence value.

In [86], Meyer-Delius et al. present one of the first attempts to ground the land-
marks deployment on a solid probabilistic localization method. In particular, they
propose to use artificial landmarks to statically resolve estimation ambiguities of
the Monte Carlo localization system arising from featureless and symmetrical en-
vironments. By resolving the ambiguities, they ensure that a global re-localization
is always achievable from every robot position. All the approaches reported above
guarantee that the robot’s exteroceptive sensors can always gather enough informa-
tion to localize the robot statically but do not consider that ego-motion estimation
given from the proprioceptive sensors can mitigate a temporary lack of external in-
formation.

Vitus and Tomlin [122] are among the first to consider both exteroceptive and
proprioceptive information for landmarks deployment. They rely on an omnidi-
rectional sensor to detect landmarks and they fix the number of landmarks to be
deployed in the environment and the robot trajectory. They propose an incremental
approach for placing the landmarks under these assumption: at each iteration, they
select, among a set of possible positions sampled around the given trajectory, the
one that minimizes the average trace of the uncertainty matrix. Once the procedure
places the desired number of landmarks, they refine the position of the selected
landmarks via a global optimization procedure that ensures the convergence to an
(at least local) optimal solution. A similar solution is presented by Beinhofer et
al. in [15]. They suppose to know in advance the trajectory of the robot and the
maximum number of landmarks that can be deployed in the environment. They
discretize the possible position of landmarks and select using a greedy approach the
subset that maximize the conditional mutual information of the states of the robot
given the landmark observations. In a subsequent work [16] Beinhofer et al. pro-
pose a technique to find the minimum number of landmarks for which a bound on
the maximum deviation of the robot from its desired trajectory can be guaranteed
with high confidence. Their proposed method incrementally places landmarks while
continuously simulating the robot following a single trajectory utilizing a circular
landmark detection area. While the approaches reported above can be classified as
offline methods, since they place the landmarks before the robot operations, some
researchers also focus on online approaches. In contrast to offline, online approaches
decide whether to utilize the observed landmarks during operation. Examples of
this approach are the work of Thrun [120] and the work of Strasdatet al. [118].
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3.2 Autonomous Walkers

Several works in the literature focus on guiding the user inside an environment with-
out sacrificing their perceived freedom using autonomous walkers. In 1990 Goswami
et al. [55] introduce the concept of passive robots. Passive robots do not have actu-
ators that can give power to the system, and for this reason they cannot harm the
user leaving him the responsibility of the locomotion.

Hyrata et al. were among the first to apply the concept of passive robots to intel-
ligent walkers [59]. They use servo-brakes on the back wheels of the robot to guide
the user by changing the apparent dynamics of the system. In [60], the authors use
a system similar to [59], but they aim to support user intention. They recognize the
motion intention of the user from the user-applied force and hip rotation to generate
proper braking torque. Fontanelli et al. in [47], present an optimized braking control
that minimize the applied torques to enhance the user comfort. In [6] the authors
propose to use a simplified bang-bang policy to control the brake when the robot
needs to correct the direction of the user and use an hybrid controller to regulate
human-robot interaction. Andreetto et al. [7] propose a path following algorithm for
passive assistive robotic walkers based on front steering wheels. This system based
on low cost hardware can gently guide the user on the path but does not have the
possibility to stabilize users’ walking speed for example, to prevent a fall.

Some works abandon the concept of passive robotics to increment the motion
capability of the system. A larger set of of maneuvers increases the number of
operation that the robot can perform to support the user and improves the com-
fort. The presence of actuation disrupts the system passivity, with potential safety
problems, which can be dealt with using direct or indirect user interfaces [84]. In
direct methods the user commands/intentions are directly communicated to the de-
vice through joysticks [85], force sensors [56, 75, 124], turn buttons, and voice [68].
Indirect interfaces, instead, recognize the user’s movements and/or intents without
requiring her/his input. For instance, the user’s intention are estimated from the
shin position extracted from a laser scanned sensor [73], a depth camera sensor [119],
or from the forced applied on the walker extrapolated from rotational encoders on
the wheels and current sensors on the actuators [63]. In [5], the authors simulate
passive behavior of the walker by leaving the control of the forward velocity to the
user. The robot linear speed follows the motion of the user that has the impression
of being in control of the motion but with an hybrid scheme the robot can control
the angular speed of the system and guide the human operator on the desired path.

3.3 UWB

In [112], Schroeder et al. report the architecture and implementation of a low-cost
UWB positioning system. Their system is based on TDoA, and they measured a
mean position error of 50 cm with 95 % of errors below 1.5 m. A ToA based system
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evaluation is presented in [129]. The system achieves a 2D root mean square error
(RMSE) of 7.4 cm by moving the receiver inside a 2.5× 2 m rectangular area cov-
ered by 4 UWB antennas. In [114], the authors exploit a real-time UWB based 3D
positioning system based on 802.15.4a compliant wireless node. They do not apply
any filtering technique, and they reported a mean accuracy in the 3D space of 11
cm.

By using a proper filter, the performance can be improved, as reported in [20].
They propose a system composed of 3 antennas capable of tracking a low-speed
moving platform with high precision. The platform did not have any sensor for
ego-motion estimation, but the reconstruction was done leveraging UWB ranging
measurements and using a constant velocity model. They evaluated 3 different fil-
tering approaches: Average Filter, Kalman Filter, and Particle Filter. The best
performance was achieved using the KF, whose reported root mean square error
(RMSE) is 35 mm.

Several works propose to combine UWB measurements with ego-motion informa-
tion to deal with more dynamic motions. In [34], Corrales et al. fuse dead-reckoning
information from an inertial motion capture system with global position measure-
ments given from a external UWB infrastructure. The accuracy in tracking the
human motion that this system can achieve is in the order of a few centimeters.
Therefore this system can be used in situations where accurate human body track-
ing is necessary (e.g., human-machine collaboration).

In [54], Gonzalez et al. combine a UWB and GPS to localize a mobile platform
in a mixed indoor-outdoor environment. They fuse the information with odometry
reconstruction using a Particle Filter, and they report a maximum error in the in-
door section of 20 cm. In [130], Stancic et al. present a UWB based localization for
a semi-autonomous floor scrubber. The authors propose to fuse UWB information
with encoder measurements to overcome the low sampling rate of the UWB system
(usually around 2-10 Hz). The low position measurement frequency leads to inac-
curate estimation of the orientation that does not allow proper control of the robot.
A good performance of the controller can be obtained by fusing the encoder mea-
surements that usually comes with an high frequency. In [95], the authors present
a localization system of a miniature spherical robot based on IMU, encoders, and
UWB measurements. The rate of the UWB system was 5 Hz, while IMU and Odom-
etry information were collected at 200 Hz and 125 Hz, respectively. The authors
reported an RMSE of 100 mm when using only UWB information and of 60 mm
when fusing all information with a KF.

Most of the works in the literature use the UWB system at a fixed sampling rate.
To the best of our knowledge, the only adaptive combination of a dead-reckoning
system and UWB is presented in [49]. They use a DS-TWR scheme, and the UWB
samples are triggered based on the maximum eigenvalue of the covariance matrix
estimated via an Error-state Kalman Filter (ESKF) to track a Drone motion. They
use a Vicon motion capture system as ground truth, and the lower achievable RMSE
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from the proposed system is 7 cm but is adaptable based on global user require-
ments.

3.4 RFID

Early solution in UHF RFID positioning systems are based on ranging estimation
from RSSI. Typically, the accuracy of RSSI based methods are in the order of 1 m
as reported in [43]. The accuracy is improved from proximity based methods which
exploit only the ID information of the read tags. [57, 99] report centimeter level
accuracy, using proximity based methods coupled with an high density deployment
of short range RFID tags. In contrast Boccadoro et al. registered an accuracy of
0.1 m using a low long range UHF tags density, in special condition (i.e., with a
constrained path of the robot) [19].

In [39], DiGiampaolo et al. obtained state of the art performance but requiring
lower tag density, by fusing proximity information with odometry reconstruction
through an EKF. They obtained an average error of 0.1 m with 9 UHF RFID tags
deployed on the ceiling of a 3 × 3 m room. Niktin et al. in [96] improve the state
of the art accuracy in distance estimation from the signal backscattered from UHF
RFID by measuring the phase of the wave.

DiGiampaolo et al. in [40] propose a filter to track an indoor mobile vehicle
based on the fusion of encoder information with the phase measured from the signal
backscattered from passive UHF RFID. They calibrate the system for the phase
delay introduced by the tags and overcame the ambiguity generated from the pe-
riodicity of the phase measurements using multiple instance of EKF. They named
their filter as particle extended Kalman filter (PEKF). In this approach the maxi-
mum tags detection range of 1 m is used to limit the region where the particle are
initialized and to toughen the recursive weighting step of the particles. They achieve
a mean position error of 4 cm, moving the robot on a 2×1 rectangular path in both
a slightly cluttered and a noisy environments. This confirmed the noise robustness
and sensitivity of phase measurements if compared to RSSI based systems. Never-
theless, this performance were achieved by only using 2 tags obtaining a significant
improvement with respect to other methods available in the literature in terms of
accuracy versus tag density. In order to achieve this result, their approach requires
a tedious calibration of the characteristic phase delay of each tag.

In [25], Buffi et al. were able to localize moving object on a mono-dimensional
conveyor belt at fixed speed with centimeter accuracy, leveraging the time series of
phase measurement collected from a static RFID antenna. The phase delay intro-
duced by the tags is removed working with difference of distance, i.e., subtracting
the first phase measurement from the time series. Subsequently in [23], the same
authors propose a theoretical analysis of the observability of a constant velocity
mono-dimensional motion using a UHF RFID system. A train moving at a known
speed on a railway is presented as the case of study in their work. In this scenario
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they consider that the antenna is fixed on the moving train and used that 3 tags
are deployed at known and fixed location in the environment in order to track the
train. The signal emitted from the moving antenna is backscattered from the tags
deployed in the environment. The tag phase delay is removed from the measured
phase subtracting the estimations between them under the assumption that tags
share the same offset. The phases subtraction operation combined with a mono
dimensional constant speed motion model, make it possible to find a number of can-
didates location of the train. The most probable position of the train is determined
by finding the maximum density point of these solutions.
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Chapter 4

Landmark relocalization

Indoor applications based on vehicular robotics require accurate, reliable, and ef-
ficient localization. Reasonable trade-offs can be achieved by fusing multiple pro-
prioceptive and exteroceptive sensor data. Especially on low-cost robots, the infor-
mations captured from the environment and processed by the localization filter are
not always sufficient to ensure an accurate localization. In such cases, a possible
solution is to add more information/features in the environment [126]. The process
of adding more features in the environment is not standardized and often it is based
on common-sense approaches [65].

In this Chapter, we address the problem of minimizing the number of features
that have to be deployed inside the environment while ensuring that localization un-
certainty is kept within the desired boundaries. The developed approach relies upon
the following key elements: a dynamic model describing agents’ motion, a model
predicting the agents’ paths within a given environment and, finally, a formaliza-
tion in propositional logic of the optimization problem, which can be efficiently
(although approximately) solved by a greedy algorithm. The effectiveness of the
proposed landmark placement technique is first demonstrated through simulations
in a variety of conditions, and then it is validated through experiments on the field.

4.1 Models Overview

This section describes the dynamic models used to formalize the landmark place-
ment optimization problem presented in Section 4.2. In particular, two kinds of
kinematic models are considered, i.e., first a very general robot model and then a
more specific model belonging to the same class, but tailored to better describe the
dynamic of the FriWalk (introduced in Section 2.4). The general model in Sub-
section 4.1.1 emphasizes the fact that the optimal landmark placement technique
can be applied to a broad class of drift–less, input–affine wheeled robots used in
indoor environments. Indeed, the only underlying assumptions are the presence of
a landmark detector with a limited Sensor Detection Area (SDA) and a localization
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system based on a dead reckoning position tracking system. The specific model
described in Subsection 4.1.2 is instead just a special case of the general one, and it
is needed to validate the proposed approach in a practical case study, as shown in
Subsection 4.5. To obtain a tractable problem, in the following, we assume that the
location and attitude data measured anytime a landmark is detected are used di-
rectly to adjust agent position, i.e., without relying on the fusion with data collected
from other sensors (e.g., odometers). With this approximation, we are limiting the
minimum uncertainty to the measurement uncertainty, but this is good unless we do
not require an uncertainty lower than the one offered from the measurement. The
corresponding uncertainty analysis is described in Section 4.1.3. Under these condi-
tions, the landmark placement results are indeed expected to be more conservative
than the results obtained when a Bayesian filter (e.g., an Extended Kalman Filter
– EKF) is used. In fact, if a given selection of landmarks is able to keep positioning
uncertainty below given boundaries using only raw sensor data, it is reasonable to
assume that the same constraints can be even more safely met when some data
fusion algorithm is used, as it is shown in Section 4.5.2.

4.1.1 General model

The fixed, right-handed reference frame for platform localization is referred to as
〈W 〉 = {Ow, Xw, Yw, Zw}, and it is shown in Fig. 4.1. The robotic vehicle is
regarded as a rigid body B moving in the plane Xw×Yw. If ts denotes the sampling
period common to all onboard sensors, the generalized coordinates of the robot at
time kts are pk = [xk, yk, θk]

T , where (xk, yk) are the coordinates of the origin of
frame 〈B〉 = {Ob, Xb, Yb, Zb} attached to the rigid body, while θk represents the
angle between Xb and Xw. The kinematic model of a generic drift–less, input–affine
wheeled robot can be represented by the following discrete–time system, i.e.,

{
pk+1 = pk +Gk(pk, qk + εk)

zk = h(pk) + ηk
(4.1)

where qk is the piecewise input vector of the system between (k− 1)ts and kts, εk is
the additive zero-mean uncertainty term affecting input quantities and Gk(·) is the
input vector function. Furthermore, zk (namely the vector of output quantities that
can be observed at time kts) is given by the sum of h(pk) (i.e., a generic nonlinear
output function of the state) and ηk, which represents the vector of zero-mean
uncertainty contributions when output quantities are measured. If the agent position
is estimated through dead reckoning, the accumulation of random contributions εk
unavoidably leads to large position and orientation uncertainty after a while. If
instead, the robot detects, at least sporadically, some artificial landmarks placed
at known positions in 〈W 〉, the positioning uncertainty is kept bounded. Consider
that, in general, the SDA (denoted as s(pk) in Fig. 4.1) of any landmark detector
exhibits a finite range and a limited angular aperture. However, both detection
range and angular aperture may depend on robot position pk.
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Figure 4.1: Generic representation of a robot to be localized in reference frame 〈W 〉.
Landmarks l1, l2, l3 and l4 are also represented. In particular, l3 lies inside the SDA
of the landmark detection sensor when the robot is located in s(pk).

4.1.2 A more specific model: the FriWalk case

The FriWalk is equipped with relative encoders on the rear wheels and with a front
monocular camera used to detect specific landmarks (i.e., Aruco codes) placed at
known positions in 〈W 〉 (e.g., on the floor) and with a given orientation with respect
to Xw [92]. The kinematic model of the FriWalk is a unicycle [98]. In this case,
the robot planar coordinates (xk, yk) (namely, the origin of the body frame Ob with
axis Xb pointing forward) refer to the mid-point of the rear axle (see Fig. 4.2).
Observe that, with reference to Fig. 4.1, the robot generalized coordinates are still
pk = [xk, yk, θk]

T . The camera measures the relative position and orientation of the
robot with respect to every detected Aruco code. Absolute position and orientation
in 〈W 〉 are then estimated as described in [92]. The main parameters of the SDA
(which in this case coincides with the field of view of a front camera) are: the
maximum and minimum detection ranges (denoted as R and r, respectively) and
the camera aperture angle α, as shown in Fig. 4.2. It is worth noting that the
analysis are done considering a symmetric trapezoidal SDA generated from a camera
mounted with a negligible roll angle detecting landmarks placed on the ground, but
is not limited to this: landmark can be placed anywhere and any SDA shape is
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Figure 4.2: Geometrical parameters of the FriWalk model and of the SDA of the
landmark detection sensor.

supported. With reference to the general model described by expression (4.1), in
the case of the FriWalk the input vector function of the system is

Gk(pk, qk + εk) =




(vk + εvk)ts cos θk
(vk + εvk)ts sin θk

(ωk + εωk)ts


 . (4.2)

where input vector qk = [vk, ωk]
T includes the angular and linear velocities of the

robot (denoted as ωk and vk, respectively) at time tk. The additive input noise
εk = [εvk , εωk ]T due to the finite resolution and tick reading errors of both wheels
encoders can be reasonably assumed to be white and normally distributed. As a
consequence, the covariance matrix of the noise associated with vk and ωk is

E =

[
σ2
v σvω

σvω σ2
ω

]
,

where σ2
v and σ2

ω represent the variances of vk and ωk, respectively, while σvω is the
covariance between them. Finally, the output function h(pk) of system (4.1) just
coincides with the state of the system itself, i.e. h(pk) = pk. Therefore, zk = pk+ηk,
where ηk is the vector of uncertainty contributions associated with the measurement
of position and orientation based on landmark detection (see Section 4.5 for further
details). In particular, the covariance matrix of ηk is

N =



σ2
cx σcxy σcxθ

σcxy σ2
cy σcyθ

σcxθ σcyθ σ2
cθ


 (4.3)

where σ2
cx , σ2

cy are the variances associated with the camera-based measurements of

the robot planar position along axis Xw and Yw, σ2
cθ

is the variance of the orientation
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measurements with respect to Xw, and terms σcxy , σcxθ and σcyθ represent the
covariances between pairs of measured quantities.

4.1.3 Uncertainty Analysis

If a non-Bayesian estimator is used and one landmark is detected at time kts, the co-
variance matrix Pk ∈ R3×3 of the state estimation error simply coincides with (4.3),
i.e., Pk = N . In such conditions, the positioning uncertainty depends on the metro-
logical features of the vision system used to measure the relative position and ori-
entation of the robot with respect to the landmark lying in the SDA of the camera.
However, when no landmarks are detected, positioning uncertainty tends to grow
due to the accumulation of the noise introduced by dead reckoning (e.g., due to the
wheels encoders used for odometry, as explained in Section 4.1.2). In this case, the
evolution of Pk as a function time can be obtained, to a first approximation, from
the linearization of the state equation of system (4.1) around the estimated state.
Thus, assuming that εk and pk are uncorrelated ∀k, it follows that

Pk+1≈
(
I +

∂Gk(pk, qk)

∂pk

)
Pk

(
I +

∂Gk(pk, qk)

∂pk

)T
+

∂Gk(pk, εk)

∂εk
E
∂Gk(pk, εk)

∂εk

T

.

(4.4)

Expression (4.4) can be regarded as an application of the law of propagation of
uncertainty in the multivariate case [103]. Moreover, assuming that the initial state
of the system is known, it is reasonable to set P0 = N .

Consider that, since Pk is a 3 × 3 matrix, a scalar uncertainty parameter is
preferable to monitor and to keep positioning uncertainty under control. Therefore,
in the rest of this Chapter the following function will be used to evaluate positioning
uncertainty, i.e.,

up(Pk) =
√

max Eig
(
P x,yk

)
, (4.5)

where P x,yk refers to the upper 2× 2 matrix of Pk, i.e.,

P x,yk =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
, (4.6)

and operator Eig(·) returns the eigenvalues of the argument matrix.
The rationale for choosing function (4.5) to set uncertainty constraints is three-

fold. First of all, it is simple to apply. Secondly, even if up(·) might include the
orientation contribution, in practice just the uncertainty associated with planar
position is typically of interest [122, 16]. Finally, the use of function (4.5) is con-
servative because, from the geometrical point of view, it can be regarded as the
radius of a circle centered in the estimated position and circumscribing the ellipse
representing the actual positioning uncertainty in the plane Xw×Yw. In particular,

45



Landmark relocalization

up(Pk) ∈ [u−p , u
+
p ], where u−p = max (σx, σy) if the correlation coefficient ρ in (4.6)

is equal to 0, while u+
p =

√
σ2
x + σ2

y if |ρ| = 1.

Observe that, using a non-Bayesian estimator, the minimum positioning uncer-
tainty is achieved anytime a landmark is detected. Therefore, up(Pk) ≥ up(N) ∀k.

4.2 Problem Formulation

Let P ⊆ R2× [0, 2π) be the set of all configurations reachable by an agent inside the
environment, so that pk ∈ P ∀k. If D denotes the detectable area (namely the set
of points lying in the SDA for at least one of the possible positions of the robot),
i.e.

D =
{

(x, y) ∈ R2 | ∃pk ∈ P, (x, y) ∈ s(pk)
}
,

then Lp ⊆ D can be referred to as the set of points where landmarks can be actually
deployed. Let ξ(pk) be the maximum wanted (or target) positioning uncertainty.
Note that, in general, ξ(pk) can be a function of the current robot position (e.g.,
because locations close to walls require more accurate localization to avoid colli-
sions). Observe also that Lp has an infinite cardinality. Therefore, to make the
landmark placement problem tractable, a finite–element set Lf ⊆ Lp should be de-
fined, to ensure that the minimum possible target uncertainty is always achieved,
i.e., up(Pk) = up(N) ≤ ξ(pk), ∀k. This condition holds true if, in every posi-
tion of the chosen environment, at least one landmark lies within the SDA, i.e.,
Lf ∩ s(pk) 6= ∅,∀pk ∈ P. Of course, the cardinality of set Lf (denoted with symbol
| · | in the rest of this Chapter) should be as little as possible to minimize the search
space of possible landmark positions. The resulting minimization problem can be
formulated as follows:

Problem 1. Given P and s(·), find

Lf = arg min
Lx
|Lx| s.t.

∀pk ∈ P, Lx ∩ s(pk) 6= ∅ ∧ Lx ⊆ Lp.

A geometry-based closed-form optimal solution to Problem 1 is reported in [91].
The set Lf thus obtained is indeed the starting point for the placement optimization
problem addressed in this Chapter.

In this respect, to refine the search for optimal solutions, not only a model
describing the growth of positioning uncertainty (like the one described in Sec-
tion 4.1.3) is needed, but also some knowledge of the possible paths followed by
the agents is essential. If fully autonomous vehicles are considered, usually the set
of possible paths has a finite cardinality and it is well defined. In this case the
predefined path can be augmented, considering the localization accuracy required
and using a Monte Carlo approach, to consider the uncertainty generated by con-
trolling the system [15]. If human beings are involved instead (like in the case of

46



4.3. Optimal Landmark Placement

the FriWalk, the set of possible trajectories is infinite, but the regions of space
that are explored with highest probability (i.e., the most likely paths) can be de-
rived statistically from empirical observations [17, 110]. Even if a path Ti ∈ T
(where T is the set of all available paths) ideally consists of an infinite number of
points, in practice it can be discretized by using the elements of Lf . Indeed, ∀i, k,
∃pk ∈ Ti : Si,k = s(pk) ∩ Lf 6= ∅. Of course, the mapping between pk ∈ Ti and Si,k
is not bijective since multiple landmarks can be potentially detected by the same
robot. Thus, the landmark placement optimization problem addressed in the next
section can be formalized as follows, i.e.,

Problem 2. Given P, Lf , T and ξ(pk) ≥ up(N), ∀pk ∈ P, find:

L = arg min
Lx
|Lx| s.t.

Lx ⊆ Lf ,
∀i Ti ∈ T , ∀k pk ∈ Ti, up(Pk) ≤ ξ(pk).

Observe that L ⊆ Lf . Therefore, the problem is well-posed since at least one
solution (i.e., Lf ) certainly exists.

4.3 Optimal Landmark Placement

In this section we discuss how to solve Problem 2 by casting it into a binary pro-
gramming problem, which can be tackled with different solution strategies.

4.3.1 CNF Problem Representation

To represent the problem, we associate to each possible landmark location li ∈ Lf
a boolean variable ai, such that

ai =

{
1, if a landmark is placed in li,

0, otherwise.

Thus, a landmark deployment corresponds to an assignment to the boolean vari-
ables. The objective is to find a least assignment, i.e., an assignment such that the
minimum number of variables is assigned the value 1, which satisfies the uncertainty
constraints. We model the constraints by identifying all the partial assignments to
the variables that lead to a violation. Consider a position ps ∈ Ti, and assume
up(Ps) = up(N), i.e., the minimum uncertainty in our setting. We simulate the
trajectory and compute the evolution of Ps+1, Ps+2, . . . along Ti. At the same time,
let Si,j represent the landmark positions within the field of view of the landmark
detector at time j along path i. If at time k + 1 > s, up(Pk+1) > ξ(pk+1), then
we have a violation since ξ(pk+1) is the maximum position uncertainty allowed at
point pk+1 (see Fig. 4.3 at time k + 1 = 14).
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In order to avoid it, at least one landmark must be present in one of the positions
∪kj=sSi,j in view. This condition can be expressed as follows

γi,s =
k∨

j=s

Si,j ,

where, with a slight abuse of notation, the boolean variables associated with the
landmark positions are denoted with Si,j . Clearly, a landmark deployment L that
does not satisfy γi,s cannot be a solution of Problem 2, since between pk and pk+1

the uncertainty constraint would be violated. We can repeat this analysis for all
starting positions and all trajectories, and collect the clauses in a set Γ. For the
problem to be satisfied, it is necessary and sufficient that all the generated clauses
evaluate to true. Thus, the function

ϕ(ai, . . . , an) =
∧

Γ =
∧

i,s

γi,s

evaluates to true for all and only those assignments to the boolean variables a1, . . . , an
which correspond to a correct deployment. Given its form, ϕ is expressed in Con-
junctive Normal Form (CNF). For example, with reference to Figure 4.3, from
p4 ∈ T3, the platform sees 5 landmarks before up(P14) > ξ(p14).

The set of landmarks in view is given by
∨13
j=4 S3,j = {l1, l3, l5, l7, l10}, the cor-

responding clause γ3,4 is:

γ3,4 = a1 ∨ a3 ∨ a5 ∨ a7 ∨ a10.

Since the clauses represent a disjoint operation, a cardinality reduction of the set Γ
is convenient. For example, for the following two clauses

γ3,4 = a1 ∨ a3 ∨ a5 ∨ a7 ∨ a10,

γ3,5 = a3 ∨ a5 ∨ a7 ∨ a10,

we have that γ3,5 = 1 ⇒ ω3,4 = 1 but γ3,4 = 1 ; γ3,5 = 1. Thus, only γ3,5 is of
relevance for the placement, while ω3,4 can be safely removed and hence reduce the
complexity.

A compact representation of Γ is given by a coverage matrix whose columns
are the possible landmarks locations li ∈ Lf and rows are the clauses Γi,s. The
entry in position (r, c) of such a matrix has 1 if the r-th clause is satisfied by the
c-th landmark, or 0 otherwise. An example is shown in Table 4.1. To summarise,
Problem 2 has been cast into a binary programming optimisation problem, whose
objective is to find arg minA

∑
ai∈A ai subject to the set of clauses Γ.

48



4.3. Optimal Landmark Placement

k4

up(Pk)

ξ(pk)

up(N)

6 8

T3

10 12

⋃13
j=4
s(pj)

14

γ3,4 = a1 ∨ a3 ∨ a5 ∨ a7 ∨ a10
∨13
j=4

S3,j

(x4, y4)

(x13, y13)

s(p13)

Figure 4.3: Example of uncertainty growth along a sample trajectory. The dashed
line represents the uncertainty threshold ξ(pk), while the solid line is the uncertainty
growth when no landmark is in the SDA starting with minimum uncertainty N at
step k = 4. At step k = 14 we have up(P14) > ξ(p14), therefore there is a violation.
On the upper part of the figure, the shaded band represent the union of the areas
observed by the camera from step 4 to 13. The placeholder icon stand for possible
landmarks position and those belonging to the shaded band will generate the clause
γ3,4.
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Table 4.1: Coverage matrix expressing the clause as disjunction of boolean variables:
γ2,3 = a1∨a2∨a8∨a9 ; γ4,1 = a2∨a3∨a6; γ3,2 = a2∨a4; γ3,4 = a1∨a3∨a5∨a7∨a10;
γ3,5 = a3 ∨ a5 ∨ a7 ∨ a10.

1 2 3 4 5 6 7 8 9 10

γ2,3 1 1 0 0 0 0 0 1 1 0

γ4,1 0 1 1 0 0 1 0 0 0 0

γ3,2 0 1 0 1 0 0 0 0 0 0

γ3,4 1 0 1 0 1 0 1 0 0 1

γ3,5 0 0 1 0 1 0 1 0 0 1

4.3.2 Optimal Placement

As discussed, to optimise the placement we need to find the least satisfying assign-
ment, i.e., an assignment to the variables a1, . . . , an such that ϕ is true and the least
number of variables is assigned value 1. There are several ways to formally solve
this problem. One approach is to cast it as a logic optimisation problem, and look
for a minimum term cover of ϕ. Observe that the conjunction of the true variables
of a satisfying assignment is an implicant of ϕ. For instance, let I = {i1, . . . , it} be
the indices of the true variables of a satisfying assignment. Then, the product term
ai1 ·ai2 · · · ait logically implies ϕ, that is, the product term “covers” some of the ones
of ϕ. A minimal deployment (i.e., one in which no landmark can be removed with-
out violating the constraints) corresponds to a prime implicant of ϕ. The minimum
deployment is therefore the largest prime implicant.

We thus use a logic optimisation program to find a minimum 2-level cover of
ϕ. Each term of the resulting cover corresponds to a minimal deployment, and we
choose the one with the least number of variables. This approach has the advantage
that it provides several alternative solutions, corresponding to the various terms of
the cover. In our experiments we have used the SIS optimisation software [113].
While this strategy gives us the best solution, the downside lies in its computational
complexity, which is exponential in the number of variables and in the number of
prime implicants. Our experiments show that the method is practical only in the
case of deployments of a limited size. For instance, a layout with 37 locations and
10 constraints is solved in less than a second on a 3.2 GHz Intel Xeon PC with 4 GB
of RAM, but already results in almost 8,000 minimal solutions, with the best ones
(around 1,000 solutions) using just 4 landmarks. The extension of the same problem
to 52 locations and 15 constraints increases the computation time to over 7 minutes,
and almost 250,000 minimal solutions; 23 of them use 4 landmarks, while the largest
minimal solutions rely on 11 landmarks. Therefore, this approach is impractical for
larger deployments.

Alternatively, the problem can be rephrased as a constrained boolean optimisa-
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tion, i.e.,

min
∑

i

ai, subject to ∀i,∀s, ωi,s > 0

Even if the computational complexity of the problem is still exponential, one can
solve the continuous relaxation of the same problem, which is polynomial. Of course,
since in this case the variables may take any value between 0 and 1, the solution of
the problem in general will be infeasible. Despite this, the relaxed optimal solution
(that henceforth will be denoted with Lr) provides a lower bound to the number of
landmarks which are required to satisfy the constraints. In the following, we will
use the result of this approach to evaluate the performance of the greedy placement
algorithm.

4.3.3 Greedy Placement

The greedy algorithm for landmark placement leads to a good approximation of the
optimal solution within a negligible computation time. It is based on the greedy
heuristic for sub-modular functions described in [94]. In practice, we start with
the coverage matrix (A0) describing Γ, computed as described previously, where
the columns are ordered with a decreasing number of elements equal to 1. With
reference to Table 4.1, the first column will be l2, then l3 and so on. A landmark
is placed in the position corresponding to the first column, i.e., the one satisfying
the greatest number of clauses. The corresponding satisfied clauses (the matrix
rows) are then removed from the matrix, together with the first column, and the
matrix is reordered. With reference to Table 4.1, l2 is added to Lg and the first
three rows are removed. A new matrix A1 is obtained, and the procedure starts
over. The procedure ends when there are no more clauses to meet, i.e., when the
matrix is empty. For the case of Table 4.1, the procedure may end with Lg = {l2, l5}
or with Lg = {l2, l3}, namely when at most two landmarks are placed. As shown
in Section 4.4, despite its simplicity, the greedy solution Lg turns out to be very
effective when compared to the (infeasible) lower bound Lr. As a final remark, we
notice that the lower the number of boolean variables shared between clauses, the
more the greedy suboptimal solution approaches the best possible one.

4.4 Simulation Results

This section presents the simulation results in different scenarios. Throughout this
section, the paramters used in simulation are reported in Table 4.2. For the sake of
brevity, only the results with a constant target uncertainty are reported, i.e., ξ(pk)
is constant for all pk.
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Table 4.2: Numerical values adopted in the simulations.

Symbol Value Unit Symbol Value Unit

ξ(pk) 0.8 m ts 0.01 s

r 0 m R 4.0 m

α π/2 rad σc2y 30 cm2

σ2
cx 25 cm2 σcxy 0 m2

σ2
cθ

0.001 rad2 σ2
v 0.09 m2/s2

σcxθ 0 m·rad σ2
ω 0.64 rad2/s2

σcyθ 0 m·rad σvω 0 rad·m/s2

4.4.1 Realistic Environment

The realistic environment chosen for simulation purposes is the Department of Infor-
mation Engineering and Computer Science (DISI) of the University of Trento. The
FriWalk trajectories are generated using the path planner described in [102], which
is conceived for robots moving in known structured environments. In this case, the
set of trajectories is quite repetitive and regular, and robots moving in the corridor
are likely to follow the same path, as clearly visible in Figure 4.4-(a). The regularity
of the paths increases the number of shared boolean variables between the clauses,
making this a very challenging situation for the greedy algorithm. If we assume to
use a visual sensor with the values of R and α as reported in Table 4.2, the poten-
tial positions of landmarks determined as described in [91] amounts to |Lf | = 2085.
Such positions are represented with blue dots in Figure 4.4-(b). Considering 800
different paths, randomly generated by the path planner and depicted in Figure 4.4-
(a), 1889 potential landmarks are observed at least once in at least one trajectory.
The positions of these landmarks are highlighted with circled dots in Figure 4.4-(b).
By solving the relaxed optimization problem, assuming ai ∈ [0, 1] ⊂ < (see Sec-
tion 4.3.2), the overall optimal number of landmarks is mb =

∑
i ai = 92.6, which is

also a lower bound for the optimal solution. To obtain a feasible deployment from
this optimal infeasible solution, we first arrange the values of ai in descending order.
Then we place a landmark in the positions with the highest value (saturating ai to
1), and then we continue to add landmarks in Lr until all the clauses are satisfied.
In this way, the total number of landmarks is Mb = |Lr| = 133, which is an upper
bound of the optimal solution. The greedy algorithm instead leads to the selection
of |Lg| = 115 landmarks, i.e. which is included between Mb and mb bounds confirm-
ing the validity of the introduced approximation. Such landmarks are represented
with green circled dots in Figure 4.4-(b).

Notice that even if the number of trajectories and of potential landmark loca-
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Table 4.3: Maximum, average and standard deviation of localisation uncer-
tainty (4.5) for random and the greedy placement, respectively. All simulation
results refer to the realistic scenario shown in Figure 4.4.

Random deployment densities
5% 25% 45% 65% 85% greedy (6%)

max [m] 35 5.3 1.6 0.8 0.4 0.79

mean [m] 2.8 0.3 0.1 0.07 0.06 0.14

std [m] 4.4 0.5 0.1 0.05 0.1 0.10

tions is quite large, the computation time of the greedy algorithm implemented in
Matlab and running on a 3.50 GHz Intel Core i7 with 8 GB of RAM is about 15 min-
utes. Notice that the computation time comprises the simulations per trajectories
of the vehicle motion and of the sensor readings, all coded in Matlab. To lower the
computation time, we tested the greedy algorithm only on a subsets of randomly
chosen 200 trajectories, and the result was that at most 6% of the overall paths did
not satisfy the accuracy limit ξ(pk). In addition, we compared the greedy solution
with the result of a naive approach in which different amounts of landmarks are ran-
domly selected from Lf . In particular, between 5% and 35% of possible landmark
positions have been chosen repeatedly (i.e. 50 times) with the same probability.
For each random placement the percentage of paths satisfying the maximum uncer-
tainty limit ξ(pk) has been estimated. The results are summarized in Figure 4.5.
The boxes define the 25-th and 75-th percentile, while the whiskers corresponds to
the maximum and minimum value. The thick vertical line corresponds to the per-
centage of landmarks placed by the greedy algorithm for which all the paths meet
the given uncertainty constraint, i.e. ξ(pk) = 0.8 m. It is worth noticing how the
greedy solution outperforms the naive random choice. The localization uncertainty
obtained with greedy and random placement over 800 trajectories are summarized
in Table 4.3, where the maximum, the average and the standard deviation of (4.5)
are reported. Observe that the greedy algorithm ensures a very good accuracy, even
if only 5.5% of landmark is used (see the thick line in Figure 4.5).

The results of landmark deployment for more realistic, i.e. human-like, trajec-
tories is reported in Figure 4.6. 800 human-like trajectories in a corridor have been
synthesized using the Headed Social Force Model (HSFM) [44]. This model emulates
the motion of human beings moving in shared spaces and obeys to the kinematic
model that falls in the generic representation of (4.1). For this case, we report in
Figure 4.6 two different landmark deployments, both based on the results of [91],
which gives |Lf | = 48 possible landmark positions if landmark deployment is un-
constrained, reported in Figure 4.6-(a) with blue dots, and instead |Lf | = 36 where
there is an area where landmarks cannot be placed, shown in Figure 4.6-(b), again
in blue dots. Notice that in the latter case the landmark placement in [91] cannot be
strictly satisfied in the landmark-forbidden region. For the unconstrained deploy-
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ment, the upper and lower bounds to the optimal number of deployed landmarks
are Mb = 3 and mb = 3, respectively. The proposed greedy placement algorithm
returns a solution with |Lg| = 3 landmarks, i.e. green dots in Figure 4.6-(a). On the
contrary, for the constrained scenario, the greedy solution places |Lg| = 6 landmarks
with bounds Mb = 6 and mb = 5.

For the empirical validation of both the placements of Figure 4.6, we simulate
200 additional and independent paths considering multiple persons moving simul-
taneously in the corridor. This way, we emulates a typical human motion inside
a populated environment, where its trajectory generation strategy depends on its
personal behaviour and it is influenced by other human beings in the same ambient,
hence no knowledge of the trajectory is available upfront. In both cases, the localiza-
tion accuracy based on the greedy placement meets the given uncertainty constraint
ξ(pk) with 99.5% probability (i.e., only one path violate once the threshold).

4.4.2 Real trajectories

As a further validation of the proposed solution in a context similar to the applicative
scenario of the ACANTO project [2], 360 paths captured at the entrance of the
ETH Zurich building (see Figure 4.7-(a)) have been used to test the performance
of landmark greedy placement [100]. Again, the applicability of model (4.1) is
substantiated by [44]. Hence, we can safely assume that each user drives a FriWalk.
Figure 4.7-(b) shows 288 paths extracted from the video footage. With the SDA
parameters defined in Table 4.2, we have |Lf | = 72 possible landmark locations
(blue dots in Figure 4.7-(c)). In this case, Mb = 10 and mb = 3.7, respectively.
The greedy algorithm selects |Lg| = 5 landmarks. Using the remaining 72 paths
of the available data set, we found the uncertainty constraint ξ(pk) is met with
98.5% probability. Consider that the larger the SDA, the lower |Lf | and the more
|Lg| → |Lf |. For instance, Figure 4.7-(d) reports the placement results when the
SDA range is two times larger than in the previous cases (i.e. R = 8 m). In this
case, |Lf | = 18, Mb = mb = 3, and the solution of the greedy algorithm converges
to |Lg| = 3, as well. Moreover, all the remaining 72 paths meet the uncertainty
constraint ξ(pk). Similar results can be achieved if the growth rate of dead reckoning
uncertainty increases. This behavior suggests that the solutions of greedy and naive
random placements become closer and closer (as shown in Figure 4.5), depending
on the ratio between the SDA dimension and the growth rate of dead reckoning
uncertainty.
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(a)

(b)

Figure 4.4: DISI scenario for vehicle trajectories generated with the chosen planner
for robots. (a) 800 paths considered for the landmark placement. (b) potential
landmarks locations (dots), landmarks detected from at least one trajectory (circled
dots) and landmark deployment with the greedy algorithm (green circled dots).
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Figure 4.5: Percentage of path satisfying the maximum uncertainty limit ξ(pk)
(vertical axis) against the percentage of landmarks randomly placed with respect
to |Lf | (horizontal axis) for the DISI scenario reported in Figure 4.4. The vertical
thick line corresponds to the greedy solution, while the square on top recall that no
path violates ξ(pk).
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(a) (b)

Figure 4.6: Corridor scenario for trajectories generated with the HSFM [44]. Land-
marks locations (dots), landmarks locations detected from at least one trajectory
(circled dots) and landmark deployment with the greedy algorithm (green circled
dots) are reported. (a) Deployment without placement constraints and (b) deploy-
ment considering an area where the landmarks cannot be placed.
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(a) (b)

(c) (d)

Figure 4.7: Simulation on actual data. (a) ETH Zurich building entrance. (b)
measured paths [100]. (c) deployment of 5 landmarks for the greedy algorithm. (d)
deployment of 3 landmarks for the greedy algorithm when the SDA range doubles.
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4.5 Experimental validation

4.5.1 Experimental Setup

As mentioned in Chapter 1 the platform used to validate experimentally the pro-
posed approach is the FriWalk. The robot can estimate its own speed, enabling
odometric trajectory estimation, through two encoders AMT-102V mounted on rear
wheels with a resolution of 0.08 mrad per tick. In addition, the relative pose of
the camera with respect to the Aruco code detected in the camera field of view
(namely the SDA in the case at hand) can be measured by using a front RGB
camera (PLAYSTATION Eye) and software application based on OpenCv 3.1.0.

Encoder information is collected by a BeagleBone Black board via a Controller
Area Network (CAN) bus. The BeagleBone Black board processes encoder data and
sends odometry results to an Intel NUC mini PC (equipped with a microprocessor
i7-5557 and 8 GB of DDR3 RAM) through Local Area Network (LAN) router. The
PLAYSTATION Eye is connected directly to the Intel NUC mini PC through a
USB link. The NUC mini PC is in turn also connected to the LAN router. The
router provides Wi-Fi connectivity between the FriWalk and an external PC used
for telemetry, e.g. to log the encoder measurement data and the relative position
and orientation measures with respect to every detected Aruco code while the robot
is moving. Accuracy and precision of the linear and angular velocity estimates vk
and ωk based on odometry were evaluated by comparing the values returned by
the BeagleBone Black board with those obtained by differentiating the position and
orientation measured by an OptiTrack reference localization system. In all experi-
ments, FriWalk and OptiTrack data were properly aligned in time. Moreover, the
robot was driven repeatedly (i.e. about 50 times) and at a different speed (ranging
from 0.3 m/s to 1.2 m/s) over an eight-shaped path. The OptiTrack localization
system consists of 14 calibrated cameras and it able to measure the position of ad-
hoc reflective markers attached to the FriWalk with standard uncertainty of about
1 mm, i.e. negligible compared with the positioning uncertainty based on odometry.
The linear and angular velocity values computed by the BeagleBone Black platform
using the encoder data were aligned in time and compared with those estimated from
the sequence of positions measured by the OptiTrack. The histograms of the differ-
ences εvk and εωk between the linear and angular velocity data, respectively, resulting
from odometry and the OptiTrack-based localization system are shown in Fig. 4.8.
Observe that the mean values of εvk and εωk are negligible, while the elements of the
covariance matrix E are reported in Tab. 4.4. Such values, although apparently
small, have a significant impact on odometry-based positioning uncertainty since
they tend to accumulate over time due to dead reckoning.

The OptiTrack reference localization system was also used to evaluate accuracy
and precision of distance and orientation measurements based on the PLAYSTA-
TION Eye, whenever an Aruco code is detected. Again, the FriWalk was driven
repeatedly over an eight-shaped path. The histograms of the differences between
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Figure 4.8: Experimental distribution of the linear velocity estimation error εvk and
of the angular velocity estimation error εωk due to encoder data.

the position and orientation values measured by the on-board vision system and
those obtained with the OptiTrack are shown in Figure 4.9(a). Such differences are
realizations of the components of the random vector ηk in (4.1), whose covariance
matrix is (4.3). Observe that the mean values of the elements of ηk are −7.8 mm,
−8.3 mm and 10 mrad, respectively, and can be easily compensated, thus obtaining
a zero mean process, as assumed in Section 4.1.1. The corresponding standard un-
certainty values (i.e., about 58 mm, 54 mm and 34 mrad) are considered adequate
for the intended application. The positions of the landmarks detected in repeated
trials (represented with about 20000 dots in Figure 4.9(b)) was also used to estimate
the SDA of the PLAYSTATION Eye installed on the FriWalk. In particular, the
SDA exhibits approximately a trapezoidal shape and the values of parameters r, R
and α shown in Fig. 4.2 are summarized in Tab. 4.4. The same Table reports also
the values of the elements of covariance matrices E and N , the sampling period ts
and the target uncertainty ξ(pk) for landmark placement. For the sake of simplicity
(but without loss of generality) in the rest of this Chapter ξ(pk) is assumed to be
constant, i.e. equal to 0.8 m regardless of actual FriWalk position. This value is
just an example, but it is reasonable for the purposes of project ACANTO.

4.5.2 Experimental Results

The placement reported in Subsection 4.4.1 is based on the assumption that all
points of every DISI room are fully accessible. However, in practice this is not true,
due to obvious privacy or security issues. Therefore, to plan a fair and appropriate
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Table 4.4: Parameters of the FriWalk

Symbol Value Unit Symbol Value Unit

ξ(pk) 0.8 m ts 0.2 s

r 1.15 m R 2.70 m

α 0.78 rad σc2y 30 cm2

σ2
cx 34 cm2 σcxy −2 mm2

σ2
cθ

0.001 rad2 σ2
v 20 mm2/s2

σcxθ −1 mm·mrad σ2
ω 20 mrad2/s2

σcyθ −8 mm·mrad σvω 2 mrad·mm/s2

experimental validation, the greedy placement algorithm was applied again consid-
ering a subset of all possible paths, i.e., limiting the analysis just to the rooms that
are fully accessible. The results of this new landmark placement (assuming again
that ξ(pk) = 0.8 m) are shown in Fig. 4.10, along with a snapshot of the actual setup
in a corridor (i.e., white circle markers. The total number of landmarks deployed is
29 (|Lg| = 29).

With the Aruco codes deployed as shown in Fig. 4.10, 10 users were asked to walk
freely in the floor and the collected data cover a total distance of about 4 km. Note
that the users were not informed that the Aruco codes deployed in the environment
were necessary to the robot localization. The FriWalk position was estimated by
the non-Bayesian algorithm (shortly referred in the following as NBE) described
in Section 4.1.3. The corresponding estimated paths are shown in Fig. 4.10. We
recall that, in this case, the estimated paths follow the discrete dynamic based on
the input matrix (4.2) when only the encoders are available. Instead, whenever a
landmark is detected, the position is restored to h(pmk ) (defined in Section 4.1.2),
with uncertainty N , where the superscript m stands for measured. Observe that,
due to the sporadic nature of landmark detection, the estimated paths may exhibit
sudden and visible changes if a landmark is detected after a quite long time, i.e.,
when the uncertainty due to dead reckoning becomes particularly large. In principle,
such sudden large errors should be smaller if a Bayesian estimator fusing odometry
and vision system data (e.g. the Extended Kalman Filter - EKF - described in the
background chapter) were used.

To verify whether the uncertainty constraint is met, the positioning uncertainty
has to be reconstructed from the differences ex and ey between the x− and y−axis
coordinates estimated by the FriWalk and those of some reference points, e.g., any-
time one landmark code is detected. Unfortunately, no continuous position tracking
is possible in DISI premises, since the Optitrack reference system cannot be used in
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Figure 4.9: Estimation of the camera parameters. (a) Error histograms of the
camera reading pose. (b) Trapezoidal approximation of the SDA: the dots represent
the relative measured positions of the Aruco codes with respect to the camera, while
the shaded trapezoid is the estimated SDA.

such a large environment. In what follows, we present an experimental validation
of the proposed placement solution based on the non-Bayesian estimator, named
from this point on NBE. We verify contextually that the target uncertainty limit
ξ(pk) in Table 4.4 is respected and that the NBE is conservative. Fig. 4.11 reports
365 position estimation errors ex and ey associated with the NBE (empty circles)
and the EKF (filled circles) immediately before landmark detection. The ellipses
corresponding to the covariance matrices of either cloud of points are also plotted.
In both cases the ellipses (as well as the possible circles circumscribing them) are
safely included within the wanted uncertainty region, namely the dash-dotted circle
of radius ξ(pk) shown in Fig. 4.11 and, as expected, the positioning uncertainty
associated with the EKF is smaller than the NBE one, due to the Bayesian nature
of the former approach. Indeed, just about 10% of position error values lie outside
that circle, i.e., less than 33% that we would expect in a perfectly Gaussian case.
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Figure 4.10: Paths followed by the FriWalk for experimental validation. The white
circle markers represent the locations where the Aruco codes are actually placed,
i.e., the elements of set Lg. The picture on the right shows a snapshot of the actual
landmark layout in a corridor.
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Figure 4.11: Scatter diagrams of the position estimation errors ex and ey associated
with the NBE (empty circles) and the EKF (filled circles). In the same graph,
the ellipses corresponding to covariance matrices P x,yk given by (4.6) for the NBE
(dashed line) and for the EKF (solid line) are also shown for the sake of comparison
with the circle of radius ξ(pk) delimiting the target uncertainty region (dash-dotted
line).
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4.6 Extensions

In this section we show how the technique presented can be easily extended to more
complex Baesyan localization systems that handle information from heterogeneous
sensors. A frontal RGB-D camera (namely a Astra Orbbec1) is added at the lo-
calization system to detect environmental features, such as walls. The front Astra
Orbbec detects and measures the distance from possible fixed obstacles, e.g. walls,
when they are within its own SDA, which here is modeled to have the same shape
of the camera SDA. The map of the indoor environment, including the walls, is
assumed to be given.

In addition the analysis is extended to accommodate a non negligible land-
mark occlusion probability. Supposing the detection of a landmark to be a boolean
stochastic variable uncorrelated from the others, it is possible to augment the de-
ployment of artificial references to handle this situation.

In the following subsections first we present how the informations coming from
the RGB-D sensor are integrated (Subsection 4.6.1); than in Subsection 4.6.2 a
process to make the deployment robust to occlusion is presented and finally in
Subsection 4.6.3 the concepts are applied in simulation and some preliminary result
are drawn.

4.6.1 RGB-D camera model

When the Orbbec detects a wall, a segment parallel to the plane of motion delimited
by points A and B can be measured, as shown in Figure 4.2. If (xa, ya) and (xb, yb)
are the coordinates of A and B in the reference frame of the Orbbec, the angle and
the distance between the Orbbec and point A are given by θa = arctan (ya/xa),
and ρa =

√
x2
a + y2

a, respectively. As a consequence, the function modeling the
measurements performed by the Orbbec is zrk = [ρk, θabk ] + ηrk, where

ρk =

√
[xp − xk − xr cos(θk)− yr sin(θk)]

2 +

[yp − yk − xr sin(θk)− yr cos(θk)]
2,

θabk =θk + θr,

(4.7)

(xr, yr) is the position of the Orbbec camera with respect to (xk, yk), θr is orienta-
tion of the Orbbec, (xp, yp) is one generic point belonging to the detected wall and
available in the map M of the environment, and ηrk denotes the measurement un-
certainty vector. Again, this is a bivariate and normally-distributed random vector,
with zero mean and covariance matrix N r = diag(σ2

ρr , σ
2
θr

).
To clarify the role of the Orbbec camera, consider the qualitative straight path

shown in Figure 4.13. Let us assume that the initial standard uncertainty of the
FriWalk along axes Xw and Yw is σx = σy = 0.8 m. If the position of the FriWalk

1https://orbbec3d.com/product-astra/
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Figure 4.12: The FriWalk schematic representation and SDA.

were estimated only through dead-reckoning (i.e. using just encoder data), the initial
positioning uncertainty would grow unboundedly. If instead the RGB-D camera
detects the walls of the corridor, the distance and orientation measurements given
by (4.7) can be used to reduce σy, e.g. by using an Extended Kalman Filter (EKF)
based on model (4.1) [92]. Moreover, as the FriWalk keeps on moving along the
corridor, the localization uncertainty can be further reduced along both Xw and Yw,
due to the larger amount of measurement data used to update the estimated state
of (4.1).

Of course, the general approach above can be extended by including the mea-
surements extracted when a landmark is detected that in this section will be defined
as zck to differentiate them from the Orbbec measurements zrk. In this case, with ref-
erence to (4.1), a full vector of measurement data zk = [zck, z

r
k]
T is collected at time

kts and the corresponding overall measurement uncertainty vector ηk = [ηck,η
r
k]
T

has covariance matrix N = diag(N c, N r), since the measurements performed by
different sensors can be reasonably assumed to be uncorrelated. Of course, the pres-
ence of zck and zrk in zk as well as of ηck and ηrk in ηk is inherently intermittent, as
it depends on whether a landmark and/or a wall is detected at time kts.

4.6.2 Probability of Missed Aruco Code Detection

Let ςf be the non-zero probability of not detecting a landmark. In such conditions,
up(Pk) ≤ ξ(pk) can then be guaranteed only in a stochastic sense, that is with a
probability greater than a defined threshold ςd. Being n the number of landmarks
that cover each clause, the constraint is then violated if the sensor misses a number
of visual landmarks greater than or equal to n. Let mi be the number of landmarks
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Figure 4.13: Example of uncertainty reduction due to the fusion of encoder and
RGB-D measurement data. As the amount of information increases, the positioning
uncertainty tends to decrease.

along the i–th trajectory Ti, the probability of missing n consecutive landmarks is
given by the following recursive formula:

ζ(mi, n)=

{
0 ifn> mi

ςnf +
∑ni

j=1(1−ςf )ςj−1
f ζ(mi−j, n) otherwise.

Of course, such a probability increases with mi and decreases if n grows.
Extending the approach presented in the subsection 4.3.3 to guarantee a min-

imum of n landmark per clause is simple. It is sufficient to link each row with a
counter, say ni,j , initialized to n. Every time a column is removed the counters
corresponding to the rows covered by that column are decremented. If after the
counters are decremented some of them evaluate to 0 the corresponding lines are re-
moved from the matrix since that clause got covered n times. An important remark
is that in order to find the appropriate value of n the problem should be iteratively
solved. In other words, it is required to call the greedy solver iteratively increasing
n until we found the smaller value of n such that

1− ζ(mi, n) > ςd (4.8)

is satisfied for all the trajectories Ti. This is necessary because mi used to compute
ζ(mi, n) intrinsically depends on n: if we require more landmark to cover each clause
(i.e., we increase n) the number of landmark deployed for each path (i.e., mi) will
increase.
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Table 4.5: Parameter values used for simulations of the system with RGBD camera.

Symbol Value Unit Symbol Value Unit

ξ(pk) 0.8 m ts 0.2 s

r 0.8 m R 2.50 m

α π/3 rad σc2y 30 cm2

σ2
cx 34 cm2 σcxy −2 mm2

σ2
cθ

0.001 rad2 σ2
v 20 mm2/s2

σcxθ −1 mm·mrad σ2
ω 20 mrad2/s2

σcyθ −8 mm·mrad σvω 2 mrad·mm/s2

σρr 50 mm σθr 0.17 rad

ςf 0.4 νd 0.95

4.6.3 Simulation Results

This section presents the simulation results of two different scenarios based on the
model of FriWalk with the parameters reported in Table 4.5.

Demo scenarios

The first scenario is conceived to highlight the features of the proposed greedy
placement and consists of a 4× 70 m corridor. Globally, 100 straight paths in both
directions and uniformly spaced have been generated in the corridor. The possible
landmark locations are 430 and result from the solution of [91] using the values of R,
r and α reported in Table 4.5. Figure 4.14 shows the results of landmark placement
with (red dots) and without (green dots) using the front RGB-D camera for n = 1
(a) and 5 (b). Notice how the use of contextual information (namely the detection
of walls) drives the algorithm to place the landmarks in the center of the corridor,
where the RGB-D camera cannot collect data. Another interesting result is shown
in Figure 4.15, which represents the box-and-whiskers diagrams, computed over all
the generated paths, of the probabilities ζ(mi, n) of not detecting a landmark for
different values of n with (a) and without (b) using the front RGB-D camera. The
larger variability when the RGB-D camera is used (see Figure 4.15-a) (especially if
n = 1) depends on the particular path of the agent. When the agent moves in the
middle of the corridor the walls are not detected. Hence the uncertainty constraint
ξ(pk) is more likely to be violated. This is not the case for the paths detecting the
walls. Of course, this phenomenon does not occur if the RGB-D camera is not used,
as shown in Figure 4.15-b. Notice that, in both cases, to meet the desired stochastic
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Figure 4.14: Landmark placement in a corridor with straight paths and with (red
dots) or without (green dots) the RGB-D camera for (a) n = 1 and (b) n = 5.

Table 4.6: Number of landmarks placed in the corridor shown in Figure 4.14 with
and without using the front RGB-D camera.

Cover Counter n
1 2 3 4 5 6 7

no RGB-D 12 24 36 45 57 66 78
RGB-D 4 9 14 18 22 27 32

threshold of νd = 0.95, than at least n = 5 landmarks are needed. However, from
Table 4.6 it is evident that the number of landmarks to be placed is almost three
times larger.

Realistic Environment

The realistic environment chosen for simulation purposes is the Department of In-
formation Engineering and Computer Science (DISI) of the University of Trento.
In this case, 1000 random trajectories have been generated starting and ending in
different rooms. The paths are quite regular, as can be expected in a highly con-
strained indoor environment. The dots in Figure 4.16(a) represent the 7363 possible
landmark positions obtained using the geometric approach described in [91]. As-
suming that the initial positions are known with minimal uncertainty and that the
Aruco codes are always detected (i.e. ςf = 0), the result of the placement based
on the greedy algorithm is shown in Figure 4.16(b) for n = 1. Again, red and
green dots are obtained including or excluding the data from the RGB-D camera,
respectively. If ςf = 0.4 and νd = 0.95, at least n = 5 landmarks per clause are
needed to satisfy (4.8) for all the trajectories, resulting in the deployment shown in
Figure 4.16(c). Notice that the landmarks are placed mainly along the corridors,
since the density of possible paths is higher than in the rooms. Moreover, when the
RGB-D camera is used, the number of landmark clusters as well as their size are
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Figure 4.15: Box-and-whiskers plots of the probabilities ζ(mi, n) of not detecting a
landmark along the corridor shown in Figure 4.14 with (a) and without (b) using
the front RGB-D camera.

Table 4.7: Number of landmarks placed with and without using the RGB-D camera
in the realistic case shown in Fig. 4.16.

Cover Counter n
1 2 3 4 5 6 7

no RGB-D 53 100 155 203 256 310 360
RGB-D 33 67 98 129 158 188 216

smaller. This is confirmed by the results in Table 4.7, which reports the amount of
landmarks actually deployed. The results on the probability of failure ζ(mi, n) are
not reported because they are similar to those shown in Figure 4.15. As a final com-
ment, it is worth emphasizing that, even if the number of trajectories and potential
landmark locations is quite large, the computation time of the greedy placement
algorithm implemented in Matlab and running on a 3.50 GHz Intel Core i7 with 8
GB of RAM is about 45 minutes.
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Figure 4.16: Simulation results in a realistic scenario. In (a) the FriWalk trajectories
generated by a path planner are shown on the DISI map. In (b) and (c) the results
of landmark placement with (red dots) and without (green dots) using the RGB-D
camera are plotted for n = 1 with ςf = 0 and n = 5 with ςf = 0.4, respectively.
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Chapter 5

Probabilistic authority-sharing

The knowledge of estimated pose probability distribution is important, but often in
the literature only the mean value is used. Relying on a localization system with
an accurate and quite homogeneous error distribution, often the control systems
presented in the literature ignore the uncertainty of the pose estimation. Usually
the controllers are designed and optimized considering a particular level of pose
uncertainty and do not give any guarantee for situation where the uncertainty level
is fluctuating. In this chapter we consider the problem of guiding a senior user along
a path using a robotic walking assistant. This is a particular type of path following
problem, for which most of the solutions available in the literature require an exact
localization of the robot in the environment. This is not always the case especially
in featureless area of the environment. Our key observation is that the intervention
of the system (and a good level of accuracy) is only required in proximity of difficult
decision points, while we can rely on the user in an environment where the only
possibility is just to maintain a course (e.g., a corridor). The direct implication is
that we can instrument the environment with a heavy infrastructure only in certain
areas. This design strategy has to be complemented by an adequate control law that
shifts the authority (i.e., the control of the actuators) between the robot and the user
according to the accuracy of the information available to the robot. Such a control
law is exactly the contribution of this Chapter. The proposed authority-sharing
controller is extensively analyzed in simulations and validated experimentally.

5.1 Problem definition and background material

The FriWalk is modelled as a unicycle-like vehicle, as depicted in Figure 5.1. Let
(x, y) be the coordinates of the mid point of the rear axle in a world reference frame
〈W 〉 = {Ow, Xw, Yw, Zw} and θ the vehicle yaw, i.e. the orientation of the vehicle-
attached reference frame 〈M〉 = {Om, Xm, Ym, Zm} with respect to the world frame
(see Figure 5.1). The differential kinematic model with respect to the state variables
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Figure 5.1: Reference frames and corresponding vehicle coordinates.

χ? = [x, y, θ]T is given by 



ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(5.1)

where v and ω are the forward and the angular velocity of the vehicle, respectively.
In passive robotics, the forward velocity is typically selected or imposed by the user
and represents in this context the human-robot physical interaction. The angular
velocity is considered as a control input, and it is applied using actuation systems
such has front steering wheels [7], brakes [9, 46] or rear motors [10] (which can be
also applied once the vehicle dynamic is considered). The path following problem
is described by adopting a Frenet frame 〈F 〉 = {Of , Xf , Yf , Zf} moving along the
path and defining the curvilinear abscissa s (see Figure 5.1). The orientation of the
Frenet frame (i.e. the desired attitude of the vehicle) is denoted by θd, while the
vehicle reference point Om has coordinates (lx, ly) in the Frenet frame 〈F 〉. The
orientation error is thus defined as θ̃ = θ − θd. Using this new set of coordinates
[lx, ly, θ̃], the rollator differential kinematics (5.1) is rewritten as [116]





l̇x = −ṡ(1− c(s)ly) + v cos θ̃,

l̇y = −c(s) ṡ lx + v sin θ̃,
˙̃
θ = ω − c(s)ṡ,

(5.2)

where the path curvature is c(s) = d θd
d s , and the velocity of the Frenet frame origin

ṡ is an auxiliary control input that can be freely chosen. The coordinates χ =
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[lx, ly, θ̃]
T are used to represent the path following problem as an asymptotic stability

problem. The path is indeed approached and followed if

lim
t→+∞

|lx(t)| = lim
t→+∞

|ly(t)| = lim
t→+∞

|θ̃(t)| = 0, (5.3)

where t is the time. Notice that the path is assumed to be available upfront, e.g.
using [32].

5.1.1 Path following

The solution to the path following problem is typically designed by supposing that
the localisation algorithm is “accurate enough” to yield a negligible error on the esti-
mate of the vehicle state χ. Of course, when intermittent observations are adopted,
as in the localisation system running on the FriWalk and reported in [93], the effect
of the feedback control can be highly wrong and, hence, the control should be given
to the user. To implement this authority-sharing, how the localisation accuracy
is derived and a description of the controller implemented is needed, which is the
purpose of this section.

Vehicle localisation

Let us denote â the estimate of the quantity a and σa the corresponding standard
deviation. With localisation algorithm we intend the execution of an estimator that
provides “suitable estimates” of x̂, ŷ and θ̂ of the vehicle states of (5.1). For the
rollator in Figure 5.1, the available sensors are encoders mounted on the rear wheels
(odometry-based localisation) and a camera reading landmarks (QR codes placed
on the floor, the ceiling or on the walls) whose positions in the map are known. The
odometry data are always available but affected by dead-reckoning. The measures of
vehicle position and attitude obtained by the landmarks are absolute but available
only when a landmark is in the field of view of the camera. The two measures
are fused using a Bayesian estimator, such as an Extended Kalman filter [14]. The
estimator returns minimum variance estimates x̂, ŷ and θ̂ of the vehicle state and
the corresponding estimation error covariance matrix

P = E
{

[x− x̂, y − ŷ, θ − θ̂]T [x− x̂, y − ŷ, θ − θ̂]
}
, (5.4)

where E {·} is the expected value operator.

Path following controller

It is a common practice in path following problems, to introduce a steering an-
gle δ describing the manoeuvre that the vehicle should take to properly approach
and follow the path, as sketched in Figure 5.2. For a vehicle moving forward (i.e.
limt→∞ v(t) > 0), if δ(·) is a continuous, strictly monotonic and odd function of
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Figure 5.2: Examples of approaching manoeuvres.

ly in (5.2) and satisfying lyδ(ly) ≤ 0 and |δ(ly)| < π
2 , ∀ly, and the velocity of the

Frenet frame 〈F 〉 is computed as ṡ = v(cos θ̃ + κxlx), where κx > 0, it is sufficient
to design a control input ω(χ) that asymptotically drives to zero the attitude error
eθ = θ̃ − δ(ly) to solve the path following problem (5.3). A control law satisfying
this requirement is

ω(χ) = v
[
γ(χ)− κ

(
θ̃ − δ(ly)

)]
,

γ(χ) = c(s)(cos(θ̃) + κxlx)+

+
[
−c(s) (cos(θ̃) + κxlx) lx + sin(θ̃)

]
δ′(ly),

(5.5)

where κ > 0 is a gain to be selected and δ′(ly) ,
dδ

dly
(ly). Indeed, using the Lyapunov

function

V =
1

2
e2
θ, (5.6)

its time derivative is

V̇ = eθėθ = eθ

(
ω − c(s)ṡ− l̇yδ′(ly)

)
=

= eθ (ω − vγ(χ)) = −vκe2
θ < 0, ∀eθ 6= 0,

(5.7)

i.e. eθ = 0 is a uniformly globally asymptotically stable equilibrium.

5.2 Approach

The controller (5.5) ensures asymptotic tracking of the path in ideal conditions (i.e.
the estimation error of χ is zero). Intuitively, if the estimation error is limited,
controller (5.5) is expected to ensure that the path is followed with an error due
to (5.7). However, if no landmark is detected, hence no absolute measure is available,
the localisation is affected by dead-reckoning of odometry and hence the estimation
error grows potentially unbounded. Hence, the path following error grows as well. In
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this following section we will show the guard adopted to shift the control authority
between the robot and the user and how this authority-sharing idea can be formally
modelled using tools from hybrid systems [53].

5.2.1 Controller probabilistic analysis

To explain the rationale of the probabilistic analysis of the controller, let us specify
what changes in (5.7) when the state χ is not known, the control input ω(·) in (5.5)
is computed using the available estimate χ̂, which is affected by the estimation error
noise ε, i.e.

ε =



εx
εy
εθ


 =



lx − l̂x
ly − l̂y
θ̃ − ˆ̃

θ


 = χ− χ̂. (5.8)

Using the Taylor expansion for the nonlinear functions in (5.5) about the estimated
quantities, and recalling (5.8), one gets

γ(χ) = c(s)Θ(χ̂, ε) +
(
δ′(l̂y) + δ′′(l̂y)εy

)

[
−c(s)Θ(χ̂, ε)(l̂x + εx) + sin(

ˆ̃
θ) + cos(

ˆ̃
θ)εθ

]
+O(ε2),

where δ′(l̂y) =
dδ

dly
(ly)

∣∣∣∣
ly=l̂y

and δ′′(l̂y) =
d2δ

dl2y
(ly)

∣∣∣∣
ly=l̂y

, where, with a light abuse of

notation, we denote with O(ε2) high order error terms, and where

Θ(χ̂, ε) = cos(
ˆ̃
θ)− sin(

ˆ̃
θ)εθ + κx l̂x + κxεx.

Hence
γ(χ) = γ(χ̂) +H(κx, s, χ̂)ε+O(ε2), (5.9)

where H(κx, s, χ̂) is a row vector equals to




c(s)κx − c(s)δ′(l̂y)
(

cos(
ˆ̃
θ) + 2κx l̂x

)
[
−c(s)

(
cos(

ˆ̃
θ) + κx + l̂x

)
l̂x + sin(

ˆ̃
θ)
]
δ′′(l̂y)

c(s) sin(
ˆ̃
θ)
(
l̂xδ
′(l̂y)− 1

)
+ cos(

ˆ̃
θ)δ′(l̂y)




T

.

We can therefore compute the first order approximation of (5.7) as

V̇ =eθėθ=eθ (ω(χ̂)−vγ(χ))=eθ (vγ(χ̂)−κvêθ−vγ(χ)) ,

and then, noticing that êθ =
ˆ̃
θ − δ(l̂y) and that

eθ=
ˆ̃
θ + εθ −

[
δ(l̂y)+δ′(l̂y)εy+O(ε2

y)
]

= êθ +G(l̂y)ε+O(ε2
y),
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where G(l̂y) = [0,−δ′(l̂y), 1], and then plugging (5.9), we finally have

V̇ = eθ (vγ(χ̂)−κvêθ−vγ(χ))

=
(
êθ +G(l̂y)ε+O(ε2

y)
)

(
vγ(χ̂)− κvêθ − vγ(χ̂)− vH(κx, s, χ̂)ε+O(ε2)

)

= −vκê2
θ − vêθ

(
κG(l̂y)−H(κx, s, χ̂)

)
ε+O(ε2)

= −vκê2
θ − vêθΞ(κ, κx, s, χ̂)ε+O(ε2)

= −vκê2
θ + f(ε),

(5.10)

where f(·) is a nonlinear function of the estimation error. It is evident that the
negative definiteness cannot be established. Moreover, if the noise affecting the
measures is Gaussian, ε could be unbounded, which rules out standard techniques,
such as proving the boundedness of the Lyapunov function [67]. More importantly,
even if a bound can be determined, it is not given for granted that the human
using the FriWalk could not do anything better. Instead, notice that the Lyapunov
function derivative V̇ in (5.10) is a random variable since it depends on ε.

Definition 1 (Controller reliability). Given Γ ≤ 0, the reliability pΓ(χ̂) of a control
action ω(χ̂) is given by probability

pΓ(χ̂) = Pr
[
V̇ < vΓ

]
, (5.11)

where Pr
[
V̇ < vΓ

]
denotes the probability that the event V̇ < vΓ takes place.

The constant Γ ≤ 0 is a minimum convergence speed that the controller is
required to guarantee. Roughly speaking, the reliability pΓ(χ̂) is the probability
that the controller ensures at least such convergence speed. Scaling Γ by v is not
strictly necessary but it comes handy since V̇ is linear with respect to v as well.
In fact, if the controller were deterministic as in (5.7), we would get V̇ < vΓ ⇐⇒
−vκe2

θ < vΓ ⇐⇒ −κe2
θ < Γ.

Using (5.10), it is now possible to compute a first order approximation of the

mean value V̇ and of the standard deviation σV̇ , which are required to compute the
controller reliability as per Definition 1. Assuming as customary that E {ε} = 0, we
can readily have

V̇ = E
{
V̇
}

= −vκê2
θ

σ2
V̇

= E

{(
V̇ − E

{
V̇
})2

}

= E
{
v2ê2

θΞ(κ, κx, s, χ̂)εεTΞ(κ, κx, s, χ̂)T
}

= v2ê2
θΞ(κ, κx, s, χ̂)PεΞ(κ, κx, s, χ̂)T .

(5.12)
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V̇

probability

case 1
case 2

case 3

density

Figure 5.3: Examples of distributions of Lyapunov function derivatives.

By denoting with χ = Φ(χ?) the diffeomorphism between the two state spaces and
with JΦ its Jacobian, we immediately have that Pε = JΦPJ

T
Φ , where P has been

defined in (5.4) as the localisation algorithm estimation uncertainty. Under the
assumption of Gaussian distribution, using mean value and covariance from (5.12),
the probability (5.11) can be explicitly computed.

The idea proposed in this Chapter is to allocate the control authority on the
basis of the controller reliability (5.11). To intuitively describe this approach, we
compare case 1 and case 2 in Figure 5.3. Suppose for simplicity that Γ = 0 in the
definition of controller reliability (5.11). The mean value of V̇ in case 1 is smaller
(i.e. larger convergence rate) than case 2, while its covariance is much larger than
the covariance of case 2. This implies that the reliability of the controller is larger
in case 2, since the probability to get V̇ < 0 is larger than case 1. Consider also
case 3, where the covariance tends to infinity, i.e. absence of information. Since
the controller reliability is in this case 0.5, any action the robot performs has 50%
chance of reducing the attitude error eθ.

Remark 1. When eθ → 0, the controller reliability decreases (see (5.11)), hence a
higher probability of having the human in control of the vehicle is of course expected.
By noting that V̇ is a quadratic function of eθ, those points correspond also to the
region in which the first order linear approximation in (5.12) is less reliable. By
combining this observation with the fact that in those points the control effort is
also smaller, a certain degree of robustness of the proposed approach to linearisation
errors can also be inferred.

5.2.2 Hybrid authority-sharing

The control authority is shared with the user on the basis of the controller reliability,
as shown in Figure 5.4. To properly implement a smooth transition, we define
a hysteresis mechanism by formulating the control law as a hybrid system [53].
More in depth, let q ∈ {0, 1} be a logic variable defining who retains the control
authority. If q = 0 the controller reliability is small and then the user is in control
of the vehicle, i.e. the vehicle actuators are not active (user in control state in
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• authority to the user;

• v freely chosen by the user and
measured by the vehicle;

• ω chosen by the user.

• authority to the robot;

• v is imposed on the basis of
the measured;

• ω imposed to follow the path.

User in control → q = 0 Robot in control → q = 1

pΓ1(χ̂) ≤ p?1

pΓ2(χ̂) ≥ p?2

Figure 5.4: Control authority sharing of the hybrid controller (5.14).

Figure 5.4). While if q = 1 the controller reliability is large and hence the robot is
in control (robot in control state in Figure 5.4 and the control action (5.5) is applied
to steer the vehicle towards the path). The hysteresis is defined on the basis of two
constants Γ2 > Γ1 ≥ 0 representing convergence speed thresholds. Let p?1 ∈ (0, 1)
and p?2 ∈ (0, 1), p?1 ≤ p?2, be the minimum tolerated reliabilities that, respectively,
activate and disengage the controller. The overall controller is formalised as the
following hybrid system having state [eθ, q]

T .

{
q̇ = 0, [eθ, q]

T ∈ C,
q+ = 1− q, [eθ, q]

T ∈ D,
(5.13)

where C := C0 ∪ C1 and D := D0 ∪ D1 are the flow and the jump set respectively,
where

C0 = {pΓ2(χ̂) ≤ p?2 ∧ q = 0} ,
C1 = {pΓ1(χ̂) ≥ p?1 ∧ q = 1} ,
D0 = {pΓ2(χ̂) ≥ p?2 ∧ q = 0} ,
D1 = {pΓ1(χ̂) ≤ p?1 ∧ q = 1} .

(5.14)

This way, the angular velocity of the vehicle is ω = qv (γ(χ̂)− κêθ) + (1 − q)ωuser,
where ωuser is the angular velocity that the user imposes when he/she has the control
authority.

5.3 Simulation Results

The proposed controller has been extensively tested in simulations with different
choices of the controller tuning parameters. In the results here reported, those pa-
rameters are set as follows: κx = 1 and κ = 0.5 in (5.10), p? = p?1 = p?2 = 0.9
in (5.14), and Γ1 = −0.03 and Γ2 = −0.24 for the thresholds of Definition 1. Since
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Figure 5.5: Paths followed for different reading periods ∆t. The squares represent
the landmark positions.

Γ1 and Γ2 are compared with −κê2
θ in (5.14), the corresponding mean tolerated at-

titude errors are 15◦ and 40◦, respectively. The implemented localisation algorithm
computing (5.4) is an extended Kalman filter fusing the odometric data with the
absolute position measure from the landmarks [93]. The landmarks are deployed
following [91] to ensure that at least one marker is always in the field of view of the
camera (depicted with squares in Figure 5.5). The landmark reading uncertainty is
10◦ for the vehicle orientation and 10 cm for the position. The uncertainty due to
encoders is of 13 mm per wheel revolute.

Recall that the underlying assumption of the proposed solution is that the path
following performance of the proposed solution depends on the ability of the user to
follow the path when the uncertainty grows. In fact, if the user is cooperative, rely
on her/him is quite rewarding, while if the user is completely uncooperative (i.e.
he/she constantly moves away from the path on purpose), the path following error
grows. Notably, the user behaviour cannot be known in advance (and also, it is a
challenging problem to define a suitable “cooperativeness” measure). Nevertheless
when the path following error grows, the controller reliability as per Definition 1
grows as well, thus limiting the deviation from the planned path. In the simulations,
when the user has the control authority, he/she is modelled with a neutral behaviour,
that is he/she pushes the vehicle forward (i.e. ωuser = 0). Figure 5.5 shows the paths
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Figure 5.6: Box and whiskers plot of |eθ| (top) and maximum path following error
(bottom) for Montecarlo simulations with growing reading periods.

followed by the robot varying the landmark reading time interval ∆t. Notice that
if ∆t is small (0, that is continuous reading, or 1 second) the vehicle is maintained
close to the path, which is a trivial consequence of the small covariance (5.4) due to
frequent landmarks readings: as a consequence, the robot remains in control most
of the time. If ∆t is larger (3 or 4 seconds), the controller reliability is, on average,
smaller. In other words, the control authority is given to the robot only when
the reliability exceeds the threshold p?, which happens for larger mean values of V̇
(i.e. for larger attitude errors |eθ|, see (5.12)). Further simulations are presented
in Figure 5.6, where the influence of landmark reading time ∆t on the norm of the
orientation error is shown in a probabilistic sense. For each ∆t, 100 simulations
are executed. Notice that, the larger ∆t, the larger the attitude error eθ, since the
user is endowed with more control authority in the presence of large uncertainty. A
similar behavior is obtained for the worst case distance to the path (see Figure 5.6,
bottom plot).
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Figure 5.7: A sample trajectory of the experimental trial with localisation covariance
depicted in selected points. The picture reports the desired path (dash-dotted line)
and the estimated trajectory obtained by the localisation algorithm (dashed line).
This trajectory is divided into sub-paths for reading easiness.

5.4 Experimental validation

The experimental results have been collected using the FriWalk (Figure 5.1; see also
the accompanying video). The controller parameters adopted in the experiments are:
κx = 1, κ = 0.5, p?1 = 0.7, p?2 = 0.9, Γ1 = −0.004 and Γ2 = −0.137. With respect
to the simulation results in Section 5.3, the probability p?1 has been reduced to
give more authority to the controller, thus increasing the user’s comfort. Similarly,
both the mean tolerant attitude errors Γ1 and Γ2 have been reduced to 5◦ and 30◦,
respectively.

The experimental scenario is the Dept. of Information Engineering and Com-
puter Science of the university of Trento, comprising corridors and rooms Figure 5.7.
The starting point, of the FriWalk is inside one room, represented with a blue circle
in Figure 5.7. Following the idea reported in Chapter 1, the landmarks are placed
only in proximity of difficult decision points, i.e. landmark #1 is in the starting room
in the vicinity of the exit door, landmark #2 has been collocated at the beginning
of the corridor, while landmark #3 is deployed before two intersecting corridors. In
the corridor, due to the particular desired path considered (dash-dotted black line
of Figure 5.7), has no landmark since the only available choice is to maintain on the
course. The depicted yellow solid triangle pointing forward represents the field of
view of the camera attached to the vehicle and used to detect the landmarks, while
the dotted blue ellipses represent the localisation error covariance Pxy (upper 2× 2
matrix of (5.4)) in selected positions. To better analyse the experiments, the path
is divided in the following parts:

Sub-path A: the user is in control of the robot (q = 0 in (5.13)) and pushes
the FriWalk outside from the room since the localisation error is very high (i.e.
kidnapped robot problem, dashed green line in Figure 5.7).
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Figure 5.8: Distribution of V̇ at the beginning of section B → B? (dash–dotted
black line) and at the end of section B → B† (solid green line).

Sub-path B: when the vehicle detects a landmark in position B?, pΓ2(χ̂) > p?2
and the controller (5.14) enters in the jump set D1 so that q → 1. The robot is
hence in control (q = 1 in Figure 5.4). The Gaussian probability density function
(pdf) of V̇ in point B? is reported with dash-dotted black line in Figure 5.8. During
the robot in control state ω is imposed by the control law and steers the walker
toward the desired path (red solid line in Figure 5.7). At point B†, pΓ1(χ̂) < p?1 and
the authority is given back to the user since q → 0 (the solid green Gaussian pdf
in Figure 5.8).

Sub-path C: in this section the user is in control and the covariance Pxy grows
(no landmark detected), hence the pdf flattens, so that it is more difficult for the
controller to kick in. Nonetheless, at the end of sub-path C, the orientation error
becomes so large (indeed, V̇ is a quadratic function of êθ (5.10)) that pΓ2(χ̂) ≥ p?2
and the controller intervenes to align the user toward the path.

Sub-path D: due to the shape of the Gaussian, which is more flat than in sub-path
B, it takes a smaller time to reach the condition pΓ1(χ̂) < p?1. However, the user
receives the input to realign towards the desired path.

Sub-path E: the user has the possibility to move freely since the covariance of the
localisation error is very high. At the end of this sub-path the user tried to perform
an U-turn, but the controller do not allow this manoeuvre as at the end of Sub-path
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C.
Sub-path F: the same of sub-path D, but even shorter.
Sub-path G: from the beginning of this sub-path, no landmark is in view for 12.5
meters, so that the uncertainty grows unbounded. Notice that the walker wrongly
localises through a wall, which is obviously not true: however, if the robot in control
was active, the vehicle would be guided over the desired path and hence, aligning the
green dashed line over the dash-dotted desired path, the FriWalk would be steered
towards the wall on the other side of the corridor. Instead, after landmark #3 is
detected and the uncertainty drops, it can be seen that the vehicle was correctly
very close to the path, guided by the user.
Sub-path H: finally, the controller takes the control of the robot since pΓ2(χ̂) ≥ p?2.
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Chapter 6

UWB

The combination of egomotion estimators and localization sensors is relatively com-
mon in robotics [121]. Typically it is achieved by fusing the localization sensor
(in our case, UWB) at a low rate, and leveraging the fast egomotion estimates in
between samples to keep stable the controller. However, selecting the appropriate
sampling period is challenging if the robots motion is not uniform. The sampling rate
must be dimensioned for the motion that generates the fastest uncertainty growth,
yielding a frequency that over-provisions the number of measurements for most of
the other motions; in addition, the system may still fail to meet the required guaran-
tees if the worst-case is incorrectly estimated. In contrast, our approach adapts the
sampling rate to the current uncertainty, without requiring a priori estimation and
regardless of its nature. By triggering UWB samples only when needed we achieve
the same accuracy at a fraction of the cost (<50% in many cases, Section 6.4–6.6).
Moreover, as the sampling rate is not fixed (and bound) a priori, we can cope with
unexpected changes due to environmental factors (e.g., the presence of uneven or
slippery terrain) or malfunctioning of the odometer.

In this Chapter the problem of accurate and high-rate self-localization based
on ultra-wideband infrastructure for a mobile robot is considered. We adaptively
combine the speed information acquired by proprioceptive sensors with intermittent
positioning samples acquired via ultra-wideband (UWB) radios. These are triggered
only if and when needed to reduce the positioning uncertainty. Our formulation is
agnostic w.r.t. the source of uncertainty and enables an intuitive specification of user
navigation requirements along with stochastic guarantees on the system operation.
Experimental results in simulation and with a real platform show that our approach
i) meets these guarantees in practice ii) achieves the same accuracy of a fixed peri-
odic sampling but with significantly higher scalability and lower energy consumption
iii) is resilient to errors in UWB estimates, enabling the use of low-accuracy ranging
schemes which further improve these two performance metrics.

85



UWB

Ow Xw

Yw

(xk, yk)

θk

Xb

Yb

B

Figure 6.1: Platform model represented as a rigid body B moving on the Xw × Yw
plane with an attached reference frame 〈B〉.

6.1 Models Overview

The fixed, right-handed reference frame for platform localization is referred to as
〈W 〉 = {Ow, Xw, Yw, Zw}, as shown in Fig. 6.1. The robotic vehicle is regarded as
a rigid body B moving on the plane Xw × Yw. Let ts denote the sampling period,
assumed common for all onboard sensors. The generalized coordinates of the robot
at time kts are denoted by pk = [xk, yk, θk]

T , with (xk, yk) being the coordinates
of the origin of frame 〈B〉 = {Ob, Xb, Yb, Zb} attached to the robot, and with θk
representing the angle between Xb and Xw. The kinematic model of a generic
drift–less, input–affine robot can be written as:

{
pk+1 = pk +Gk(pk,pk + εk)

zk = h(pk) + ηk
(6.1)

where pk is the robot state, uk is the input vector, assumed piecewise constant
between (k − 1)ts and kts, εk is the additive zero-mean uncertainty term affecting
the input quantities and Gk(·) is the input vector function. At any sampling period,
the robot samples its internal sensors (e.g., encoders, IMU), but the estimate of the
state is affected by the dead-reckoning effect modelled in the term εk. In order to
prevent the drift of the estimate, the robot is also allowed to collect a measurement
of a quantity zk from an exteroceptive sensor (in our case the UWB localisation
system) every ts time units. The quantity zk is related to the state through the
non linear function h(·). We assume that: i) the measurement zk is affected by
a noise term ηk, ii) h(pk) ensures nonlinear observability of the robot state pk in
〈W 〉, and iii) each measurement of zk has a cost c(zk). For UWB localisation, the
cost term accounts for the communication bandwidth used for every measurement
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(which reduces the number of robots that can use the system at the same time),
and for the energy consumed in transmitting and receiving packets (which reduces
the robot’s autonomy).

6.2 Problem Formulation

Our problem can be formalized in the following terms. Given a robot with kinematic
model (4.1), produce an estimation p̂k for the state such that: i) the cost c(zk) is
minimized, and ii) the uncertainty is upper-bounded by a threshold Λk with a
confidence ψk. The accuracy is modelled by a nonnegative performance function
Hk(·) of the localisation error ek = p̂k − pk. The performance function Hk(·) is
generally multi-dimensional: Hk : R2 × S → Rn, where R2 is the dimension of the
state space and n is the number of constraints required. The confidence is defined
as a probability, i.e., ψk ∈ [0, 1]. Hence, the accuracy requirement is analytically
expressed as:

Pr [Hk(ek) < Λk] ≥ ψk, ∀k. (6.2)

The performance function Hk(ek) is time varying because depends on changing
conditions of the application scenario. For instance, if the robot is moving along a
corridor oriented along Xw, it is reasonable to upper-bound the error along Yw (to
avoid collisions with the walls) and on the orientation θk (e.g., to secure that the
robot keeps moving in the chosen direction). A possible performance function could
be:

Hk(ek) =

[|ŷk − yk|
|θ̂k − θk|

]
≤
[
λyk
λθk

]
= Λk, (6.3)

with confidence ψk. In other cases, we may want to limit the position error on the
plane in order to safely enter into a room through the door; we could model this by:

Hk(ek) =
√

(x̂k − xk)2 + (ŷk − yk)2 ≤ λk = Λk. (6.4)

The possible choices of Λk and ψk are evidently limited by the intensity of the noise
ηk (see (6.1)).

6.3 Approach

Let fk(e) denote the probability density function (pdf) of the estimation error ek =
p̂k − pk at timestamp kts. We can rewrite (6.2) as the Riemann integral:

∫

Ek
fk(e)de > ψk, ∀k, (6.5)

over the state subspace:

Ek =
{
e ∈ R2 × S : Hk(e) < Λk

}
. (6.6)
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Figure 6.2: Graphical representation of the integral in (6.5) using a unidimensional
pdf where H(e) = |x̂− x|.

For illustration purposes, consider the unidimensional pdf f(e) in Fig. 6.2 for generic
time instant k. The function H(e) is defined as H(e) = |x̂ − x| and the resulting
integration subspace is E = {e ∈ R : |x̂− x| < λ}. The bound is respected if the pdf
integral over E (grey area in Fig. 6.2) is < ψ .

Importantly, Eq. (6.5) can be used as a trigger event for the measurement of
zk = h(pk). As long as

∫
Ek fk(e)de > ψk, the degradation is not sufficient to violate

the accuracy constraint, so we do not need any external measurement. However,
in the absence of external measurement the dead-reckoning effect “inflates” the
probability distribution of the error, with fk(e) → 0 and, since Ek is a closed set,∫
Ek fk(e)de→ 0. Thereby, after a sufficient number of steps the threshold ψk will be

approached. When this event occurs the zk measurement is triggered to reset the
error to acceptable levels. This policy evidently ensures that the accuracy constraint
will not be violated with a very reduced numbers of expensive queries to the UWB
localization system.

6.4 Evaluation setup

We now give a more specific description of the general approach and model outlined
in Section 6.3 and Section 6.1 respectively tailored on the setup used simulation and
experimental evaluation.

For the robot kinematics, we assume a unicycle model. The robot planar coordi-
nates (xk, yk) correspond to the mid-point of the traction wheels, assumed to be the
origin Ob of the body frame 〈B〉. The Yb axis points through the left wheel, while
the Xb axis is oriented in the forward direction, as shown in Fig. 6.3 for the robot
used for the experiments. Assuming that relative encoders are attached to each
wheel shaft, measuring respectively the left and right wheel angular displacements
δlk and δrk in the time interval [kts, (k + 1)ts], we can compute the linear motions

of the left or right wheel as Lk = φl
2 δ

l
k and Rk = φr

2 δ
r
k, being φl and φr the wheels

radii. With reference to the generic model (6.1) and assuming for simplicity that
in ts the speed of the wheels is constant, we can safely assume that the inputs are
uk = [Lk, Rk]

T . As a consequence, we have that the nonlinear input vector is given
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Figure 6.3: Unicycle-like vehicle adopted in the experiment and representation of
the reference system. UWB anchors are depicted as well.

by

Gk =



rk (sin (θk−1)− sin (θk−1 + γk))
rk (cos (θk−1 + γk)− cos (θk−1))

γk


 ,

where rk = Rk+Lk
2 +

εRk+εLk
2 and γk = Rk−Lk

b +
εRk−εLk

b . As reported in [29],

the additive white Gaussian noise covariance matrix Ek of εk = [εLk , εRk ]T can be
computed as:

Ek =

[
k2
L |Lk| 0

0 k2
R |Rk|

]
, (6.7)

with εLk and εRk being uncorrelated.

6.4.1 Measurement System

As a global localization system we use UWB sensors. Such a system is capable to
carry out ranging measurements from a set of fixed anchors with known positions.
Let us assume to have m anchors, each having known plane position (aix, a

i
y), with

i = 1, . . . ,m (see Fig. 6.3 for the actual deployment of the UWB anchors). There-
fore, the measure zk is composed by the distance measure coming from m different
anchors, i.e., zk = [z1

k, z
2
k, ..., z

m
k ], where

zik =

√
(xk − aix)2 +

(
yk − aiy

)2
.

The zero mean, white Gaussian noise ηk affecting each measurement is described
through the covariance matrix:

Nk = diag
{
ν1
k , ν

2
k , . . . , ν

n
k

}
, (6.8)

where νik ∈ R≥0 is the variance of the i-th ranging measure and the noise term of
the anchors is assumed uncorrelated.
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6.4.2 Stochastic Guarantees

One widely adopted solution for collecting both a localization estimate p̂k and the
associated pdf of the error fk(e) is to resort to Bayesian filters, which are able to
coherently fuse the prior on the odometry with the triggered measurement from the
UWB sensing system. Due to the nonlinear nature of the model and of the measures,
we select the Unscented Kalman Filter (UKF) [123]. This way, we can capture
the posterior mean êk and covariance Σk up to the 3rd order of the Taylor series
expansion for the nonlinearities, modeled as a Gaussian. Without loss of generality,
we adopt as performance function Hk(e) the position error defined in (6.4), hence
deriving for (6.6) the following

Ek =
{
e ∈ R2 × S :

√
(x̂k − xk)2 + (ŷk − yk)2 < λ

}
, (6.9)

where λ is assumed here to be constant. Ek is a cylinder contained in the state space
R2×S, and it can be equivalently represented with Ak×S being Ak the base of the
cylinder in the Xw × Yw plane. Equation (6.5) can be written as:

∫

Ek

1√
2πdpk

e−
(p−p̂k)TΣ−1

k
(p−p̂k)

2 dp, (6.10)

where dpk = det(Σk). Marginalizing along θ and defining as Σxy
k the top 2×2 matrix

of Σk, Equation (6.10) can be simplified as:

1√
2πdxyk

∫

Ak
e−

(pxy−p̂
xy
k

)TΣ
xy
k

−1
(pxy−p

xy
k

)

2 dpxy, (6.11)

where pxy and p̂xyk are the entries related to the cartesian positions of p and p̂k,
respectively, while dxyk = det(Σxy

k ). Expressing the previous integral in cylindric
coordinates where v(ψ) = [cos (ψ), sin (ψ)]T is the unit vector indicating the inte-
gration direction, Equation (6.11) can be rewritten as

1√
2πdxyk

∫ 2π

0

∫ λ

0
ρe−

ρv(ψ)TΣ
xy−1
k

ρv(ψ)

2 dρ dψ. (6.12)

The integral in ρ can be solved analytically leading to:

1√
2πdxyk

∫ 2π

0

eλ
2C(ψ) − 1

2C(ψ)
dψ (6.13)

where C(ψ) = −v(ψ)TΣxy
k
−1
v(ψ)/2. Very efficient numeric solutions can be found

for this integral within the desired level of accuracy.
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Table 6.1: Anchor positions expressed in 〈W 〉.
Anchor i

1 2 3 4 5

ai
x[m] 1.76 -7.2 -7.2 1.9 -1.9

ai
y[m] -5.3 -5.3 1.9 1.9 5.3

6.5 Simulation-based Evaluation

To validate our proposed approach, we developed a simulator assuming that the
model noise of the odometer εk and the UWB measurement noises ηk are generated
by a white, zero-mean Gaussian stochastic processes and imposing parameters mir-
roring the actual experimental platform described in Section 6.6. The covariance
matrix of εk in (6.7) is computed with kL = kR = 0.004 m1/2, while for the covari-
ance matrix of the UWB noise ηk in (6.8) we have νik = 10−2 m2, ∀i = 1, . . . ,m,
with m = 5. The anchors are deployed in the environment as reported in Table 6.1.

We first depict the baseline of our approach imposing a straight line trajectory
originating from position (−4.5,−1.8) m and moving along increasing coordinates of
the Xw axis (Fig. 6.4) with λ = 0.2 m for (6.4) and ψ = 0.75 for (6.5) (both constant
in time). In Fig. 6.4 we may see that along the actual motion (dashed line) the pdf of
the error marginalized w.r.t. S increases due to dead-reckoning, thus the estimated
trajectory (solid line) deviates from the actual path. In the same figure, the base
of the cylinders Ak are depicted as well (blue circles). When the robot reaches the
fourth depicted position, the integral in (6.13) goes below the confidence ψ, thus a
reading from the UWB system is triggered and the pdf narrows down (last depicted
pdf in Fig. 6.4).

Fig. 6.5 shows the cumulative distribution function (CDF) of the localization
error as a function of the user-defined confidence ψ and threshold λ (Fig. 6.5 (a))
as well as the impact of the dead-reckoning εk and UWB ranging uncertainty ηk
(Fig. 6.5 (b)). Note that the CDFs reported are computed collecting the error
values at their maximum right before triggering an UWB measurement, i.e., worst
case scenario. Our technique easily adapts to changing performance metrics (ψ, λ)
or increasing the odometry or ranging uncertainty (εk, ηk), tightly satisfying the
user-defined bound. Increasing the uncertainty, however, has a remarkable effect
in the frequency in which the UWB system is triggered as reported in Table 6.2.
The UWB sampling frequency is dominated by the odometry uncertainty, while the
UWB ranging uncertainty plays a significantly minor role. This allows us to use
more energy- and time-efficient (although less accurate) ranging schemes like SS-
TWR instead of DS-TWR as in [49], saving energy and increasing scalability w.r.t.
the state of the art.
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Figure 6.4: Time evolution of the marginal pdf of fk(e) for a robot moving along
a straight line parallel to Xw. Both, the actual (dashed line) and estimated (solid
line) trajectories are reported. At the fourth depicted position, the integral in (6.13)
exceeds the given confidence ψ due to dead-reckoning, hence the UWB system is
triggered and the pdf narrows down (fifth depicted pdf).

Besides the discussed intrinsic robustness of the proposed approach, we will now
show how the algorithm effectively reduces the communication bandwidth utilization
with respect to a periodic sampling using a trajectory with time-varying velocity.
The rationale is to further highlight the adaptability of the solution at hand: when
the trajectories are regular and the velocity is almost constant (see the odometer
model (6.7) and its effect in Table 6.2), a low-frequency periodic sampling is suffi-
cient; when instead the trajectories become more challenging, a high-frequency is
needed. Therefore, a periodic sampling approach should be fine tuned on the worst
case scenario, which leads to overcommitment of the shared UWB system. The
adaptability of the proposed solution, instead, requests the use of the UWB sys-
tem only when strictly needed. The example we propose stems from an industrial
warehouse application and assumes the robot moving on a planned path imposing
a bound of 0.5 m/s2 in the forward and lateral accelerations, a maximum speed
of 1.5 m/s and starting and ending with 0 velocity. The resulting velocity profile,
visible in Fig. 6.6, is composed by a region in which the robot is moving straight at
full speed in the middle of two turning sections. The obtained UWB measurements
pseudo-frequencies, i.e. inverse of the local sampling periods, distribution is de-
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Figure 6.5: Localization accuracy under different (ψ, λ, k, ν). Our solution adapts
the CDFs (top) to the user-defined threshold λ and confidence ψ. Changing the
encoder or ranging uncertainty (bottom) barely affects the resulting localization
error.

picted in Fig. 6.7. The frequencies distribution are in the interval [0.6, 1.5] Hz with
a mean value of 1.08 Hz. Lower frequencies are relative to the slow-paced region
of the velocity profile, whereas high frequencies are due to the fast-paced region
(grey area in Fig. 6.6). Fig. 6.8 shows the worst-case localization error CDFs for
this scenario obtained with our adaptive mechanism w.r.t. periodic UWB sampling
at fixed rates. The periodic rates are respectively selected based on the minimum,
mean, and maximum frequency reported in Fig. 6.7. When the robot moves at
1 m/s (left), all the CDFs comply with the user-defined bound (ψ = 0.8, λ = 0.2 m).
However, increasing the velocity to 1.5 m/s (right), makes the periodic approaches
with fs < 1.5 Hz unable to cope with the fast-speed of the robot. Our technique,
instead, adapts its sampling rate as needed and satisfies the requirements despite
the actual working conditions.

Finally, we compare our proposed technique against the state of the art technique
in [49], which is based on the eigenstructure of the localization error covariance. In
particular, we take the greater axis of the ellipse which includes the ψ probability
to scale the greater eigenvalue of the (x, y) position uncertainty matrix obtained
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Table 6.2: Frequency of UWB triggering as a function of the uncertainty εk and ηk.

kL = kR[m1/2]

ν[m2] 0.0004 0.004 0.04

0.0004 0.02 Hz 0.07 Hz 0.52 Hz
0.01 0.02 Hz 0.08 Hz 0.6 Hz
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Figure 6.6: Velocity profile.

with Principal Component Analysis. The conservativeness of the methods relying
on the eigenvalues is reported in Fig. 6.9, where the CDFs of the two methods
are compared. It is evident that the proposed method is tighter for both tested
configurations. In the first case with (λ = 0.3, ψ = 0.8), the proposed technique
requires a mean UWB triggering frequency of 0.16 Hz instead of 0.25 Hz; in the
second with (λ = 0.3, ψ = 0.8) the proposed adaptive system frequency was 0.38
Hz, while the eigenvalue technique yielded 0.50 Hz. Thus, the proposed technique
can potentially reduce the required UWB sampling rate by a 24− 36% factor w.r.t.
state of the art techniques based on the eigenvalue.
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Figure 6.7: UWB sampling pseudo-frequencies distribution.

0.0 0.1 0.2 0.3 0.4

Localization Error [m]

0.0

0.5

1.0

C
D

F

0.0 0.2 0.4 0.6

Localization Error [m]

Periodic fs = 0.8 Hz
Periodic fs = 1.08 Hz

Periodic fs = 1.5 Hz

Adaptive ψ = 0.8, λ = 0.2 m

Figure 6.8: Comparison between periodic and adaptive UWB sampling with the
robot moving at 1 m/s (left) and 1.5 m/s (right). Our adaptive mechanism satisfies
the user requirements despite changes in the robot velocity.
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Figure 6.9: Comparison with the state of the art (SoA) for different (ψ, λ). SoA
techniques based on the eigenvalue are conservative, over provisioning UWB mea-
surements, increasing consumption, and decreasing scalability.
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6.6 Experimental Results

To validate our proposed technique, we ran an experimental campaign in an envi-
ronment equipped with 14 OptiTrack cameras [1] which are able to cover a 12×8 m2

area providing mm-level localization at 125 Hz. The unicycle-like wheeled robot used
for the experiments and the testing arena endowed with 5 UWB anchors is reported
in Fig. 6.3. The robot had a UWB tag in its center position and measures its ego-
motion by wheel encoders sampled at a frequency of 50 Hz. The UWB tag performs
SS-TWR in a round robin fashion with all m = 5 anchors at a ranging frequency of
200 Hz, providing a maximum positioning rate of 40 Hz. SS-TWR involves a two-
way message exchange between the tag and an anchor. The firmware is implemented
atop Contiki OS [33] for the DecaWave EVB1000 platform [36], equipped with an
STM32F105 MCU, the DW1000 transceiver, and a PCB antenna. UWB and odom-
etry data are sent via WiFi to a laptop, which also stores the ground truth data
acquired from the OptiTrack system. We recorded positioning information from 6
different generic trajectories, recording about 13000 overall location samples. As
a baseline, we first present the positioning results along the predefined trajectories
when the UWB system is activated periodically and in isolation (i.e., without fusing
UWB ranging information with the wheel encoders data). Fig. 6.10 shows the char-
acterization of the ranging precision of the UWB (left) and the positioning results
(right) when the measurements are collected at the maximum positioning frequency
of 40 Hz. The standard deviation of the UWB ranging error is σ = 11 cm with a
maximum error of 48 cm (Fig. 6.10 left). The ranging measurements are used to
retrieve the position using a non-linear least squares solver, thus resulting in the
positioning error, computed with (6.4), depicted in the right side of Fig. 6.10. The
mean positioning error is µp = 9 cm with a standard deviation of σp = 5 cm and a
90th percentile error of 14 cm.

Fig. 6.11 shows the localization error when fusing odometry and UWB ranging
data with the UKF, considering different periodic UWB sampling frequencies fs.

With fs = 40 Hz the accuracy obtained is the same as the positioning error
using only UWB (Fig. 6.10 right). Decreasing fs = 1 Hz, the UKF yields a mean
localization error µ = 12 cm with a standard deviation of σ = 8 cm and a 90th

percentile error of 18 cm, slightly increasing the error w.r.t. only UWB, but reducing
fs by 97%. This, in turn, reduces the energy consumption, while increasing the
scalability of the solution. Unfortunately, the right sampling frequency that satisfies
a user-defined bound (ψ, λ) and fulfills the worst-case scenario for robot navigation
can only be speculated (recall the analysis of the previous section, summarized in
Fig. 6.8).

Sample trajectories of the experiments are reported in Figure 6.12, while the
resulting PDFs are reported in Figure 6.13, proving the actual applicability of the
approach for in an actual situation. Finally, Figure 6.14 reports the mean frequen-
cies and their standard deviations as a function of the imposed performance indices.
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Figure 6.10: UWB ranging (left) and positioning (right) error.
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Figure 6.11: Localization error with periodic UWB sampling at different frequencies.

Two final remarks are in order. First, the curve at periodic 1 Hz sampling in Fig-
ure 6.11 has a maximum error λ = 20 cm with a probability of ψ = 90%. With
the same pair (λ, ψ), we obtain a frequency that is reduced to almost one half (see
the second orange bar on the left side of Figure 6.14), further proving our claims in
an experimental scenario. Second, we remark that the comparison results with [49]
reported in Figure 6.9 can also be obtained in the experimental set-up, here not
reported for space limits. Therefore, the experiments validates: i) the possibility to
reduce the usage of the UWB system ensuring the same performances of periodic
sampling thus improving the scalability potentialities; ii) the clear connection be-
tween the desired behavior chosen from calibration curves as in Fig. 6.11 and the
actual algorithm.
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(a) (ψ = 0.9, λ = 20 cm) (b) (ψ = 0.9, λ = 50 cm)

(c) (ψ = 0.9, λ = 100 cm)

Figure 6.12: Localization tracking across three trajectories with ψ = 0.9 and dif-
ferent threshold λ. Each black cross represents a UWB anchor. The UKF output
(orange) follows accurately the ground truth measurements (blue). As we increase
λ, the number of UWB measurements (brown) needed decreases.
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Figure 6.13: Localization error with dynamic UWB sampling and ψ = 0.9 for differ-
ent thresholds λ. The only measurements considered are taken just before triggering
UWB ranging (i.e., worst-case scenario).
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Figure 6.14: UWB localization rate with m = 5 ranging exchanges for different
confidence intervals ψ and thresholds λ over all trajectories.
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Chapter 7

RFID

In this Chapter, a theoretical analysis of the localization problem using Ultra High
Frequency (UHF) RFID tags for mobile robots is performed. The feasibility of the
proposed approach is demonstrated by analyzing the local nonlinear observability
of the system at hand, despite the inherent ambiguity of the phase of backscattered
RF signals, which can be measured by a system installed on the moving agent. The
validity of the analysis and the practicality of this localization approach is further
evaluated by using a position tracking estimator based on an Unscented Kalman
Filter (UKF).

7.1 Problem Formulation and Models

The purpose of the method described in this Chapter is to track the position of a
robot moving in an indoor environment where n RFID tags are placed at known
locations. The robot is assumed to be equipped with encoders on the rear wheels
providing dead reckoning. Each sensor is supposed to be affected by uncertainties
generated by white stochastic processes with known features. Even though the pre-
sented approach can be applied to a generic platform moving indoor on an horizontal
plane using both ego-motion data and phase measurement of RF signals backscat-
tered from RFID tags, the reported analysis and the related simulation parameters
refer to the case of a robot with an unicycle-like kinematic.

7.1.1 Platform Model

As already stated previously the analysis is done for a robot that can be modeled
by a unicycle kinematic. The pose of the wheeled vehicle at time t is represented
by triple (x(t), y(t), θ(t)), where (x(t), y(t)) is the pair of planar coordinates of the
mid-point of the rear wheels axle expressed in the fixed right-handed reference frame
〈W 〉 = {Ow, Xw, Yw, Zw}. The robot orientation at time t is instead given by θ(t)
that is the angle between the forward-oriented longitudinal symmetry axis of the
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robot and axis Xw. Thus, for localization purposes, the robot state can be defined
as p = [x, y, θ]T ∈ S, where the explicit reference to time variable t is omitted for
the sake of simplicity and S denotes the state space. The inputs to the system are
v and ω, i.e. the forward and the angular velocities of the robot, respectively. The
kinematic model is then given by:



ẋ
ẏ

θ̇


 =




cos(θ) 0
sin(θ) 0

0 1



[
v
ω

]
, (7.1)

and it can be more compactly rewritten as:

ṗ = g(p)u = gu(p)v + gω(p)ω, (7.2)

where p = [x, y, θ]T and u = [v, ω]T . Observe that (7.2) is a driftless system.

7.1.2 Measurement Model

As briefly explained at the beginning of Section 7.1, the localization relies on two
measurement devices, i.e., a front UHF-RFID reader and two incremental encoders
installed on the rear wheels. The angular velocities ωr and ωl of the right and
left rear wheels can be expressed as a function of the robot forward and angular
velocities v and ω, i.e.

ωr =
v

r
+
lω

2r
and ωl =

v

r
− lω

2r
, (7.3)

where r is the wheels radius and l is the rear inter-axle length. If ∆r = ωrTs and
∆l = ωlTs denote the angular displacements of the right and left wheels, respectively,
measured by the encoders in a sampling period Ts, by inverting (7.3) the incremental
encoder measurement model for system (7.1) can be defined as

[
vTs
ωTs

]
= he(∆r,∆l). (7.4)

The RFID system is able to measure the phase of the signals backscattered by each
RFID tag [90]. After the i-th tag is energised by the antenna, the electromagnetic

wave backscattered by this tag is affected by a nearly constant phase shift δφi . There-
fore, if λ is the wavelength of the RF signal and di is the distance between the reader
antenna and the i-th tag, the phase delay of the signal received by the reader is

φi =
−4πdi
λ

+ δφi . (7.5)

Assuming that locally δ̇φi ≈ 0, it follows from (7.5) that ḋi = λ
4π φ̇i. By rewrit-

ing (7.5) in terms of the euclidean distance to the i–th tag, we have

dmi = di + δdi , (7.6)
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Figure 7.1: Schematic representation of the RFID measurement process assuming
that the RFID antenna is placed in the middle of the rear wheels.

where δdi is a function of δφi , and hence ḋmi = ḋi. From Fig. 7.1, it follows that the
actual distance di between the robot and the i–th tag expressed as a function of the
elements of state vector p is

di =
√

(x− xi)2 + (y − yi)2, (7.7)

where (xi, yi) are the Cartesian coordinates of the i–th tag in 〈W 〉. Therefore, it
results that

ḋi = hi(p) = ḋmi =
cos(θ)(x− xi) + sin(θ)(y − yi)√

(x− xi)2 + (y − yi)2
v. (7.8)

As depicted in Fig. 7.1, ḋmi is the component of the robot forward velocity along the
line connecting the point representing the robot position (namely the mid-point of
the rear wheels axle) and the point where the i–th tag is located. As a consequence,
if αi denotes the angle between v and di (as depicted in Fig. 7.1) (7.8) inherently
returns ambiguous results because ḋi = v cos(αi) = v cos(−αi). This means that
only an ambiguous information on the robot actual velocity v can be retrieved
from (7.8) since angles θ and θ + 2αi return the same ḋmi value.

7.2 Observability Analysis

The design of a robot position estimator for the problem described in Section 7.1
requires a preliminary observability analysis to prove that the initial position of the
robot p(t0) , p0 can be reconstructed by using both the sequence of input val-
ues (7.4) (namely the forward and angular velocity values returned by encoders)
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and the distance variations between robot and tags given by (7.8). Note that when
it is not possible to localize the system using all the available measures from a single
fixed position (i.e. static observability) this analysis is mandatory. For the problem
at hand, triangulation does not work when the static distance measures (7.6) are
considered, even using an arbitrary number of RFID tags at known locations. This
is due to the unknown distance term δdi in (7.6). Moreover, even if δdi were known,
the vehicle orientation θ could not be observed in any case. Thus, since system
and measurement models are nonlinear, a proper nonlinear observability analysis
is needed. Given vector h(p) = [h1(p), .., hn(p)]T consisting of n nonlinear mea-
surement functions (7.8) associated with distinct tags, according to [3], the system
is observable if p0 can be uniquely determined from h(p0) and its derivative at
t0. The time derivatives of the measurement functions along the system dynam-
ics, i.e. the vector fields gu(p) and gω(p) in (7.2), are formally obtained through
Lie-differentiation. In particular, the j-th Lie derivative Ljg?hi(p) of measurement
function hi(p) along vector field g? is equal to

Ljg?hi(p) = ∇pL
j−1
g? hi(p)g?(p), (7.9)

where∇p stands for the gradient over the robot state p and L0
g?hi(p) = hi(p). Let us

formally describe the observation space asO = span[L0
g?h(p)T , L1

g?h(p)T , .., Lrg?h(p)T ]T ,

where Ljg?h(p) = [Ljg?h1(p)T , Ljg?h2(p)T , .., Ljg?hn(p)T ]T . If there is an injective
function mapping the state p in a neighborhood of p0 into the measurement space,
then the state p is locally observable. This injective function exists if the rank of
the space spanned by the gradients of the elements of O (i.e. ∂O) has the same
dimension as the system state S, i.e. if dim{∂O} = dim{span{∇pO}} = dim{S}.
Strictly speaking, this analysis aims at discovering if, when the robot moves (hence
the gradient changes), there exists a unique evolution of the output functions from
each possible initial state (hence the equivalence of the space dimensions). In gen-
eral, the rank of ∂O is constant in S except for a non-compact set of singular points,
where the rank is smaller [62].

Therefore, nonlinear observability just requires to have a locally injective func-
tion. In the next section, we will present the observability analysis assuming that
the measurement data are not affected by uncertainty, since observability is indeed
a structural system property. Since the problem with one tag only is clearly unob-
servable, the analysis for two tags is reported in the following.

Let us assume to have two RFID tags located (without loss of generality) in
(x1, y1) = (0,−l) and (x2, y2) = (0, l) of 〈W 〉. The vectorial measurement function
in this case becomes

h(p) =

[
h1(p)
h2(p)

]
=




cos(θ)(x)+sin(θ)(y+l)√
x2+(y+l)2

v

cos(θ)(x)+sin(θ)(y−l)√
x2+(y−l)2

v


 . (7.10)

By computing the Lie-derivative up to the first order with (7.9) for j = 1, the
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Table 7.1: Conditions for matrix singularity for each matrix Oi constructed in a
sequential way.

Singularity set x y θ ω

Υ1

∈ R l ∈ [0, 2π) ∈ R
∈ R x tan(θ)− l ∈ [0, 2π) ∈ R
∈ R x tan(θ) + l ∈ [0, 2π) ∈ R

Υ1 ∩Υ2
∈ R x tan(θ)− l ∈ [0, 2π) ∈ R
∈ R x tan(θ) + l ∈ [0, 2π) ∈ R

Υ1 ∩Υ2 ∩Υ3

∈ R x tan(θ) + l ∈ [0, 2π) 0
∈ R x tan(θ)− l ∈ [0, 2π) ∈ R
∈ R l 0 ∈ R

Υ1 ∩Υ2 ∩Υ3 ∩Υ4

∈ R x tan(θ) + l ∈ [0, 2π) 0
∈ R x tan(θ)− l ∈ [0, 2π) 0
∈ R l 0 ∈ R
∈ R −l 0 ∈ R

following 4× 3 matrix results

O =




L0
g?h1(p)

L0
g?h2(p)

L1
g?h1(p)

L1
g?h2(p)


 . (7.11)

The rows of matrix (7.11) are the generators of space ∂O. Notice that each row of
O is a function of p, v and ω due to (7.1) and (7.2). The system is then locally
observable if rank(O) = 3. To test this condition, first the four 3 × 3 matrices
obtained by selecting three rows of O at a time can be built. Then, the conditions
that nullify each determinant can be determined. If there is a common condition for
the three determinants, then the system is not locally observable as rank(O) < 3.
Let matrix O1 be composed by rows 1,2,3 of O, O2 by rows 1,2,4, O3 by 1,3,4 and
O4 by 2,3,4. We assume in this analysis that v 6= 0, i.e. the robot is moving with a
certain forward velocity, since for v = 0 the determinants of all matrices are equal
to zero. Let Υi ⊂ S ×R be the set of points where detOi(s, ω) = 0, for i = 1, 2, 3, 4,
i.e. the conditions for matrix singularity. The result of this analysis is subsumed
in Tab. 7.1 following a sequential construction, i.e. considering only the common
singularity conditions. From the analysis of the singularities for Υ1 ∩Υ2 ∩Υ3 ∩Υ4,
it follows that rank(O) < 3 when y = x tan(θ) + l or y = x tan(θ) − l and ω = 0.
This condition corresponds to the case when the robot is moving along a straight
line. In fact, the last two conditions, i.e. y = ±l and θ = 0, are generally comprised
in the previous two cases when ω = 0, while for ω 6= 0, they are isolated points.

To verify if this kind of paths are indeed not observable, the Lie derivatives of
order higher than one should be computed. Unfortunately, this method makes the

105



RFID

v

ḋ1
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Figure 7.2: Ambiguous loci Γi derived for the i-th configuration in (7.12).

problem computationally intractable. So, a geometric approach has been adopted
to bypass this issue. Indeed, if there exists a nonlinear invertible mapping that,
using (7.10) and its derivative, is able to uniquely identify the vehicle position in
the previous two rank conditions, then the system is observable. In particular, if

angles αi defined in Section 7.1.1 are expressed as αi =
∣∣∣arccos

(
ḋi
v

)∣∣∣, for h1(p) and

h2(p) in (7.8), 4 possible angular configurations result, i.e.

c1 = [α1
1, α

1
2] = [α1, α2],

c2 = [α2
1, α

2
2] = [−α1,−α2],

c3 = [α3
1, α

3
2] = [−α1, α2],

c4 = [α4
1, α

4
2] = [α1,−α2].

(7.12)

If angles are regarded as positive in counterclockwise directions and if β denotes the
angle between the two straight lines passing through the points where robot and
either RFID are located. (as depicted in Fig. 7.2), an index i must exist for which
βi = αi1 − αi2 = βi. By geometric construction, the locus of the robot’s positions
associated with the same βi belongs to the same arc of a circle, labeled as Γi in
Fig. 7.2. In this way, four arcs can be identified. Each one of them corresponds
to one of the 4 angular configurations in (7.12). The radius of such circles is Ri =
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Figure 7.3: Reduction from 4 to 2 ambiguous locations by retrieving the actual
values of d1 and d2.

1
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√
l2(tan(βi/2)2+1)2

tan(βi/2)2 , while their centers have coordinates
(
l(tan(βi/2)2−1)

tan(βi/2) , 0
)

in 〈W 〉.
Hence, the robot position belongs to the locus Γ = Γ1∪Γ2∪Γ3∪Γ4, for i = 1, 2, 3, 4.

It can be shown through geometric and analytic manipulation that the rela-
tionship between ḣi(p) (for the four ambiguous configurations in (7.12)) and the
distances from the two RFID tags is described by the following expression, i.e.,

[
ḣi1(s)

ḣi2(s)

]
=

[
sinαi1v
d1
− sinαi1vω

sinαi2v
d2
− sinαi2vω

]
. (7.13)

Assuming to estimate ḣi(p) as the robot moves (recall that in this analysis v 6= 0),

if such values are denoted with
˙̂
hi(p) and measurement uncertainty is negligible, it

can be shown using (7.13) that the distances between the robot and the RFID tags
are given by

[
d̂i1
d̂i2

]
=




sinαi1v
˙̂
h1(s)+sinαi1vω

sinαi2v
˙̂
h2(s)+sinαi2vω

.


 (7.14)

To analyze local observability, the condition of interest in Tab. 7.1 is when ω = 0.
In this case, distances collapse to the actual solutions d1 and d2. Given two circles
with their respective disjunct centres (corresponding to RFID tag positions) they
will intersect in at most two points. Therefore, we can have at most two solutions
in symmetric positions, belonging to two different Γi loci (i.e., highlighted with a
half-white and half-grey circle markers in Fig. 7.3). Since the two positions are far
apart and symmetric, the robot is locally observable with two tags. However, two
singular cases exist. The first one occurs when the distance between the RFID tags
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is negligible compared to the distance from the robot, namely when
√
x2 + y2 →∞.

In this case, the derivatives in (7.13) tend to zero. The second singular case occurs
when both α1 = 0 and α2 = 0, namely when the robot moves along the straight
line joining the two RFID tags with ω = 0. In both cases, no local observability is
possible. Hence, any estimator will fail.

One additional outcome of this analysis (here not reported for space constraints),
is that the robot is observable with at least 3 RFID tags that are not collinear, as
it will be shown in Section 7.3.

7.3 Simulation Results

In this Section the results obtained with an observer from the Kalman Filter family
are reported. In particular, due to the strong nonlinearity of both system and
measurement models, a UKF is preferable [64]. In all the simulations, Gaussian
zero-mean uncertainty contributions are considered. Assuming a sampling period
Ts = 10 ms, the standard deviations of the forward and angular velocity fluctuations
are 5 cm/s and 0.17 rad/s, respectively. The RFID-based distance measurements
in (7.8) are sampled with the same period Ts. Measurement standard uncertainty
is set to 5 cm/s. In all tests, robot forward velocity is set to v = 1 m/s, while the
state of the system is initialized randomly (using independent Gaussian probability
density functions - PDFs) around a given value p0 with standard deviations equal
to 0.5 m along axes Xw and Yw and 0.17 rad as far as the orientation angle θ is
concerned.

7.3.1 Observability proof

In a first set of simulations, the sensing range of the RFID reader is supposed to
be unlimited and four different setups are considered, as subsumed in Tab. 7.2.
To confirm the validity of the observability analysis reported in Section 7.2, the
joint posterior PDF has been computed for a single pair of measures (i.e., h(p) =
[−0.3162,−0.9487] m/s) related to two RFID tags. By marginalising the joint PDF
along θ, the resulting density for the (x, y) Cartesian coordinates is reported in
Fig. 7.4. The red arcs on top of the PDF correspond to the ambiguity circles
derived analytically in Section 7.2.

The first trajectory considered in simulations corresponds to the unobservable
direction with 2 tags. The robot moves straight (ω = 0 rad/s) along the line joining
the first two tags. In particular, the robot moves along axis Yw from p(t0) =
[0, 20,−π/2]T to p(tf ) = [0,−20,−π/2]T , where t0 = 0 and tf = 40 seconds. The
Root Mean Square Errors (RMSE) rx, ry and rθ associated with state variables x,
y and θ for 100 simulations in this scenario are reported in Fig. 7.5. Observe that
at least three RFID tags are needed for UKF to converge, in accordance with the
analysis reported in Section 7.2.
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Table 7.2: Different set-up scenarios and RFID tag positions.
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Figure 7.4: Joint PDF for the (x, y) Cartesian coordinates obtained from a single
pair of measures with respect to two RFID tags.

In the second case study, the robot again moves along a straight line (i.e., axis
Xw in this case) starting from p(t0) = [−50, 2, 0]T to p(tf ) = [50, 2, 0]T , where t0 = 0
and tf = 100 seconds. Again, the RMSE values computed over 100 simulations show
that if one tag only is considered, the UKF does not converge, as stated in Section 7.2
(see Fig. 7.6). On the contrary, when at least two tags are used, the RMSE tends
asymptotically to small values (i.e., the UKF converges), thus confirming that the
system is observable. It is worth emphasizing that if ω 6= 0 observability is always
achieved even with 2 tags. This is confirmed by the simulation results shown in
Fig. 7.7 for a circular trajectory. Again, the RMSE values tend to diverge when just
1 RFID tag is considered (due to dead reckoning), whereas they tend to converge
when at least 2 tags are deployed.
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Figure 7.5: RMSE values of the state variables estimated by the UKF in the four
cases of Tab. 7.2, when the robot moves straight along axis Yw (which is unobservable
in the scenario with two tags).

7.3.2 Realistic scenario

To complete the analysis, we have simulated a realistic scenario based on a 100× 10
m corridor, where an RFID reader with a maximum range of 5 m is used. The
RFID tags are placed over square-patterned regular grids of different granularity. In
particular, the distance between pairs of adjacent tags ranges from a minimum of 1 m
to a maximum of 10 m. The box-and-whiskers plot of the UKF-based localisation
errors computed over 100 randomly generated trajectories is shown in Fig. 7.8 for
various grid edge lengths. These results subsume the observability analysis and
prove the practicality of this localization approach in realistic scenarios. Of course,
localization uncertainty tends to grow as the grid of RFID tags become coarser.

110



7.3. Simulation Results

Figure 7.6: RMSE values of the state variables estimated by the UKF in the four
cases of Tab. 7.2, when the robot moves straight along axis Xw.
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Figure 7.7: On the left: Circular trajectory centred in (−3, 1) m and with a radius
of 6 m and excerpt of the estimated trajectory at the beginning of the motion. On
the right: RMSE of the state variables estimated by the UKF in the four cases of
Tab. 7.2 when the robot moves along the depicted circular trajectory.
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Figure 7.8: Box-and-whiskers plot of the localization error in the corridor scenario
for different distances between pairs of adjacent RFID tags placed over square-
patterned regular grids.
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Chapter 8

Conclusion

In this thesis, we proposed a set of algorithms and approaches to support different
kinds of localization methodologies. The general framework we identified is solving
an optimization problem aiming at minimizing a generic cost function (e.g., infras-
tructural cost, energy consumption) while preserving the desired performance levels
(e.g., the distance of the estimated robot pose from the real pose). This is a novel
approach since commonly in the state of the art the precision of the localization
system is evaluated a posteriori with limited possibility to adapt its performance
depending on the task of the robot. This flexibility was achievable due to Baesyan
filters. Assuming that these filters are based on a proper characterization of the
system, they ensure a coherent estimation of the uncertaintyy.
Chapter 4 presents an approach that can extend the localization systems based
on Baesyan filters of mobile robots by respecting stochastic guarantees on the ac-
curacy. This is done by deploying a minimal set of landmarks in precise positions
inside the environment, and by endowing the robot with an exteroceptive sensor
able to estimate the global pose of the robot when it detects an artificial landmark.
Indoor positioning techniques for mobile agents often rely on this approach where
systems based on natural landmarks fail or do not provide enough accuracy. Usually,
landmarks are placed randomly or following the designer intuition. However these
approaches cannot ensure any guarantees on the localization performance. Most of
the related papers try to solve this problem by deploying a predefined number of
landmarks in order to maximize the covered area. In addition, most of these ap-
proaches assume an homogeneous detection range and/or focus on static condition,
neglecting the prior on the pose distribution given from the Bayesian filters. In
contrast, the technique presented in Chapter 4, taking into account the accuracy
requirements and the knowledge of the agents trajectories inside the environment,
gives the number and position of landmarks as an output. The landmarks positions
are chosen by considering the prior information given by the Bayesian localization
filter. The key advantage of this solution, with respect to the previous approaches,
is the capability of selecting a very low number of landmarks, while ensuring the
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required quality of service. What is more, although our analysis has been restricted
to trapezioidal and triangular areas, any shape of the sensor detection range can be
easily integrated. In Chapter 4, the problem of optimal landmark placement first
is formalized in the framework of logic synthesis, and then it is solved through a
greedy approach, which keeps into account the possible paths of the agents’ within
the environment considered. Even if the greedy algorithm generally does not con-
verge to the globally optimal solution, multiple simulation results show that the
number of landmarks deployed with the adopted heuristic approach is just slightly
greater than the lower bound to the actual optimal solution. On the contrary, a
much larger amount of randomly deployed landmarks is needed to achieve the same
positioning uncertainty. In addition, since the greedy algorithm is computationally
light, it can be effectively used even for large environments. The proposed approach
was validated on the field using a reasonable body of experimental data in a real–life
scenario.
Chapter 5 describes an application in which control and localization are tightly
coupled. This coupling contributes to the reduction of localization requirements and
improves the system robustness. The system, given the localization accuracy, can
select the more stable control action. At the heart of our approach is the idea of a
control strategy for shifting control authority between a human user and a controller
for robotic navigation assistance. In the framework we have set up in Chapter 5, the
problem of assisting a person can be seen as an instance of path-following problems,
for which most of the available solutions currently require an accurate localization
of the vehicle in the environment, which is not always feasible. Our idea to solve the
problem is to use a precise localization only when needed (i.e., in the proximity of
complex decision points) and leave the guidance responsibility to the user when the
navigation task is relatively easy to do(i.e., when the user is simply required to move
along a direction dictated by the environment). This strategy requires an effective
way to shift the control authority to the user when the localization precision is low,
and returns it to the controller when it increases (i.e., when more landmarks are
in sight) or when the user is acting against the control goals (i.e., turning back-
ward). This idea has been formalized with a hybrid control design. Chapter 5 sets
up the theoretical framework for this controller and shows its efficacy through ex-
tensive simulations and experimental results. In this chapter we highlight several
open problems that we consider interesting and could deserve further investigations.
From the theoretical point of view, the most interesting problem that needs to be
addressed is to offer “certifiable” performance guarantees based on the knowledge
of the vehicle and the environment. Another important goal is to test the presented
authority-sharing approach with a number of actual users and carry out a quanti-
tative and qualitative study on their performance and impressions.
Chapter 6 proposes a localization approach for mobile robots that relies on fus-
ing the relative information coming from the encoders with absolute measurements
coming from an external UWB infrastructure, triggered adaptively only if and when
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the estimated positioning accuracy fails to meet the user-specified requirements.
The proposed mathematical framework directly estimates uncertainty via the a-
posteriori probability density function and enables stochastic guarantees on the sys-
tem performance. Simulation and real-world experiments confirm the soundness of
our technique and its effectiveness in reducing the UWB sampling rate w.r.t. a fixed
periodic solution, with direct benefits in terms of scalability and energy consump-
tion. Moreover, our system allows for low-accuracy ranging schemes, which further
improve these metrics. Several possible research directions lie before us for ulterior
exploration and exploitation. For example the dependency of the technique from
the motion patterns of the robots, the conditions under which it yields the optimal
sampling rate and its scalability in scenarios where multiple robot are deployed have
to be explored. From a system point of view, the scalability of the technique in sce-
narios with multiple robots and its dependency on their motion patterns have to be
analyzed. In these scenarios, a non-negligible interference probability between the
transmission of the robots has to be modeled, and proper scheduling of the trans-
mission has to be defined.
Chapter 7 presents an observability analysis for the localization problem of a non-
holonomic mobile robot relying on RFID infrastructure. In particular, we have laid
the groundwork for the development of a system based on phase measurements as
exteroceptive information since they are more sensitive to the motion of the system
compared to the classically used RSSI signal. In contrast to state of the art sys-
tems based on phase measurements, we do not require a per tag characterization
of the phase offset, and to the best of our knowledge, this is the first time that
this analysis is performed for this specific application. The proposed analysis is
particularly challenging due to the inherent ambiguity associated with the phase
measurement of RF signals backscattered by UHF-RFID tags. As a result of this
analysis, singular configurations and the minimum number of tags that need to be
detected simultaneously for localization purposes are derived. The validity of the
analysis and the practicality of the localization approach have been verified using
an ad-hoc Unscented Kalman Filter (UKF). A possible future work could be the
implementation and experimental validation of the position estimation algorithm in
a real scenario, currently confirmed by some preliminary simulations.
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[114] B. Silva, Z. Pang, J. Åkerberg, J. Neander, and G. Hancke. Experimental
study of uwb-based high precision localization for industrial applications. In
2014 IEEE International Conference on Ultra-WideBand (ICUWB), pages
280–285, Sep. 2014.

[115] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S.
Sastry. Kalman filtering with intermittent observations. IEEE Transactions
on Automatic Control, 49(9):1453–1464, Sept 2004.

[116] D Soetanto, L Lapierre, and A Pascoal. Adaptive, non-singular path-following
control of dynamic wheeled robots. In IEEE Conf. on Decision and Control,
volume 2, pages 1765–1770. IEEE, 2003.

[117] Xiang Song, Xu Li, Wencheng Tang, Weigong Zhang, and Bin Li. A Hybrid
Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle
Sensors. Sensors, 14(12):23095–23118, 2014.

[118] Hauke Strasdat, Cyrill Stachniss, and Wolfram Burgard. Which landmark is
useful? Learning selection policies for navigation in unknown environments.
In IEEE Intl. Conf. on Robotics and Automation. IEEE, 2009.

[119] Sajjad Taghvaei, Yasuhisa Hirata, and Kazuhiro Kosuge. Control of a passive
walker using a depth sensor for user state estimation. 2011 IEEE International
Conference on Robotics and Biomimetics, pages 1639–1645, 2011.

[120] Sebastian Thrun. Finding landmarks for mobile robot navigation. In IEEE
Intl. Conf. on Robotics and Automation, volume 2. IEEE, 1998.

[121] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
Intelligent robotics and autonomous agents. MIT Press, 2005.

[122] Michael P Vitus and Claire J Tomlin. Sensor placement for improved robotic
navigation. Robotics: Science and Systems VI, page 217, 2011.

129



References

[123] E. A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear
estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal
Processing, Communications, and Control Symposium (Cat. No.00EX373),
pages 153–158, Oct. 2000.

[124] Yina Wang and Shuoyu Wang. A new directional-intent recognition method
for walking training using an omnidirectional robot. J. Intell. Robotics Syst.,
87(2):231–246, August 2017.

[125] M.Z. Win and R.A. Scholtz. Ultra-wide bandwidth time-hopping spread-
spectrum impulse radio for wireless multiple-access communications. Com-
munications, IEEE Transactions on, 48:679 – 689, 05 2000.

[126] Peter Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds
of cooperative, autonomous vehicles in warehouses. AI Magazine, 29:9–20, 03
2008.

[127] G. A. Zachiotis, G. Andrikopoulos, R. Gornez, K. Nakamura, and G. Niko-
lakopoulos. A survey on the application trends of home service robotics. In
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO),
pages 1999–2006, Dec 2018.

[128] Junyi Zhou and Jing Shi. RFID localization algorithms and applications—a
review. Journal of Intelligent Manufacturing, 20(6):695, Aug 2008.
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