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Abstract. For every finite measure µ on Rn we define a decomposability bundle
V (µ, ·) related to the decompositions of µ in terms of rectifiable one-dimensional
measures. We then show that every Lipschitz function on Rn is differentiable at
µ-a.e. x with respect to the subspace V (µ, x), and prove that this differentiability
result is optimal, in the sense that, following [4], we can construct Lipschitz functions
which are not differentiable at µ-a.e. x in any direction which is not in V (µ, x). As a
consequence we obtain a differentiability result for Lipschitz functions with respect
to (measures associated to) k-dimensional normal currents, which we use to extend
certain basic formulas involving normal currents and maps of class C1 to Lipschitz
maps.
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1. Introduction

The study of the differentiability properties of Lipschitz functions has a long
story, and many facets. In recent years much attention has been devoted to the
differentiability of Lipschitz functions on infinite dimensional Banach spaces (see
the monograph by J. Lindenstrauss, D. Preiss and J. Tǐser [18]) and on metric
measure spaces (we just mention here the works by J. Cheeger [7], S. Keith [15]
and D. Bate [6]), but at about the same time it became clear that even Lipschitz
functions on Rn are not completely understood, and that Rademacher theorem,
which states that every Lipschitz function on Rn is differentiable almost everywhere
is not the end of story.1

To this regard, the first fundamental contribution is arguably the paper [24],
where Preiss proved, among other things, that there exist null sets E in R2 such
that every Lipschitz function on R2 is differentiable at some point of E. There-
fore Rademacher theorem is not sharp, in the sense that while the set of non-
differentiability points of a Lipschitz function is always contained in a null set, the
opposite inclusion does not always hold. (The construction of such sets has been
variously improved in recent years, see [10], [11] for detailed references.)

Note that this differentiability result is strictly confined to functions, intended
as real-valued maps, and indeed it was later proved by G. Alberti, M. Csörnyei

1 As usual, the expressions “almost everywhere”, “null set”, “absolutely continuous / singular
measure”, when used without further specification, refer to the Lebesgue measure.
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and D. Preiss that every null set in R2 is contained in the non-differentiability set
of some Lipschitz map f : R2 → R2. This result was announced in [2], [3] and
appears in [4]; more precisely, [4] contains a complete description of the sets of
non-differentiability of Lipschitz maps from Rn to Rn, and a proof of the fact that
for n = 2 this class agrees with the class of null sets. Recently M. Csörnyei and
P.W. Jones announced that the latter result holds in arbitrary dimension n (cf. [13]),
thus proving that every null set in Rn is contained in the non-differentiability set
of a Lipschitz map f : Rn → Rn. Finally D. Preiss and G. Speight [25] completed
the picture by showing that there exist null sets E in Rn such that every Lipschitz
map f : Rn → Rm with m < n is differentiable at some point of E.

In this paper we approach the differentiability of Lipschitz functions from a
slightly different point of view. Consider again the statement of Rademacher the-
orem: the “almost everywhere” there refers to the Lebesgue measure, and clearly
the statement remains true if we replace the Lebesgue measure with a measure µ
which is absolutely continuous, but of course it fails if µ is an arbitrary singular
measure.

However in many cases it is clear how to modify the statement to make it true.
For example, if S is a k-dimensional surface of class C1 contained in Rn and µ
is the k-dimensional volume measure on S, then every Lipschitz function on Rn
is differentiable at µ-a.e. x ∈ S in all directions in the tangent space Tan(S, x).
Furthermore this statement is optimal in the sense that there are Lipschitz functions
f on Rn which, for every x ∈ S, are not differentiable at x in any direction which is
not in Tan(S, x) (the obvious example is the distance function f(x) := dist(x, S)).

We aim to prove a statement of similar nature for an arbitrary finite measure µ on
Rn (note that all results can be immediately extended to σ-finite measures). More
precisely, we want to identify for µ-a.e. x the largest set of directions V (µ, x) such
that every Lipschitz function on Rn is differentiable at µ-a.e. x in every direction
in V (µ, x).

We begin with a simple observation: let µ be a measure on Rn that can be
decomposed as

µ =

∫
I
µt dt , (1.1)

where I is the interval [0, 1] endowed with the Lebesgue measure dt, and each
µt is the length measure on some rectifiable curve Et (formula (1.1) means that
µ(E) =

∫
I µt(E) dt for every Borel set E; a precise definition of integral of a

measure-valued map is given §2.3). Assume moreover that there exists a vectorfield
τ on Rn such that for a.e. t and µt-a.e. x ∈ Et the vector τ(x) is tangent to Et
at x. Then every Lipschitz function f on Rn is differentiable at x in the direction
τ(x) for µ-a.e. x.

Indeed, by applying Rademacher theorem to the Lipschitz function f ◦ γt where
γt is a parametrization of Et by arc-length, we obtain that f is differentiable at the
point γ(s) in the direction γ̇(s) for a.e. s, which means that f is differentiable at
x in the direction τ(x) for µt-a.e. x and a.e. t, and by formula (1.1) “for µt-a.e. x
and a.e. t” is equivalent to “for µ-a.e. x”.
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This observation suggests that the set of directions V (µ, x) we are looking for
should be related to the set of all decompositions of µ, or of parts of µ, of the type
considered in formula (1.1).

We then propose the following makeshift definition: consider all possible families
of measures {µt} such that the measure

∫
I µt dt is absolutely continuous w.r.t. µ,

and each µt is the restriction of the length measure to a subset Et of a rectifiable
curve, and for every x ∈ Et let Tan(Et, x) be the tangent line to this curve at x
(if it exists); let then V (µ, x) be the smallest linear subspace of Rn such that for
every family {µt} as above there holds Tan(Et, x) ⊂ V (µ, x) for a.e. t. We call the
map x 7→ V (µ, x) the decomposability bundle of µ.

As formulated, this definition would not stand a close scrutiny but hopefully it
should allow the reader to understand the following theorem, which is the main
result of this paper; the “correct” definition of decomposability bundle requires
more preparation, and will be given in §2.6.

1.1. Theorem. Let µ be a finite measure on Rn, and let V (µ, ·) be the decom-
posability bundle of µ (see §2.6). Then the following statements hold:

(i) Every Lipschitz function f on Rn is differentiable at µ-a.e. x with respect
to the linear subspace V (µ, x), that is, there exists a linear function from
V (µ, x) to R, denoted by dVf(x), such that

f(x+ h) = f(x) + dVf(x)h+ o(|h|) for h ∈ V (µ, x).

(ii) The previous statement is optimal in the sense that there exists a Lipschitz
function f on Rn such that for µ-a.e. x and every v /∈ V (µ, x) the derivative
of f at x in the direction v does not exist.

1.2. Remarks. (i) Obviously the differentiability part of this theorem, namely
statement (i), applies also to Lipschitz maps f : Rn → Rm, because it applies to
each component of f .

(ii) Theorem 4.1 below contains a stronger version of statement (ii), where the
non-differentiability of f in a given direction is made more precise by showing that
the corresponding upper and lower directional derivatives do not agree. The possi-
bility of a uniform quantification of the non-differentiability of f (that is, of the gap
between upper an lower directional derivatives) is discussed in Remarks 4.6(ii) and
(iii), and Example 4.7. One may further ask to which extent the non-differentiable
behaviour of f could be prescribed “at many points”, e.g., by requiring that the
blowups of f at these points includes certain nonlinear functions. This problem
will be considered in [20].

(iii) Statement (ii), can be derived (with limited effort) from the characterization
of the non-differentiability sets of Lipschitz maps given in [4]. More precisely, in [4]
the authors define for every k = 0, . . . , n − 1 a class Nk of sets E in Rn which
are k-dimensional in a sense that we do not specify here, and are equipped with
a suitable notion of k-dimensional tangent bundle Tan(E, ·); then for every such
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E they construct a Lipschitz map on Rn which, at “most” points x ∈ E,2 is not
differentiable in every direction v ⊥ Tan(E, x).

Now, using Lemma 7.3 one can show that for every measure µ on Rn there exist
sets E0, . . . , En−1 which cover µ-a.e. point x where V (µ, x) 6= Rn, and such that, for
every k, Ek belongs to Nk, and V (µ, x) has dimension k and agrees with Tan(Ek, x)
for µ-a.e. x ∈ Ek. Then one can use the non-differentiable maps associated to each
Ek as above to construct a function f which satisfies statement (ii) in Theorem 1.1.

(iv) It turns out that the construction given in [4] can be greatly simplified when
adapted to our setting, and therefore we decided to include it here with all details.
The point is that in [4] the authors construct Lipschitz functions (actually maps)
which are non-differentiable at every point of a given set, while here we only need
Lipschitz functions which are non-differentiable µ-a.e.; this means that we are al-
lowed to discard µ-null sets, which makes room for many simplifications. Moreover
in our framework we can apply Baire category methods, which significantly reduces
the complexity of the construction.3

(v) Note that the non-differentiable function f in statement (ii) is a function and
not a map. Thus Theorem 1.1 is not sensitive to the dimension of the codomain,
unlike the results on pointwise differentiability and non-differentiability mentioned
at the beginning of this introduction.

This is actually not surprising, given the following (rather elementary) statement:
if f : Rn → Rm is a Lipschitz map which is non-differentiable at µ-a.e. point, then
for (Lebesgue-) a.e. v ∈ Rm the scalar product v · f is a Lipschitz function which is
non-differentiable at µ-a.e. point. Note that this statement is no longer true if we
replace both occurrences of “at µ-a.e. point” with “at every point of a set E”.

(vi) The idea that the differentiability properties of Lipschitz functions w.r.t. a
general measure µ are encoded in the decompositions of µ in terms of rectifiable
measures has been in the air for quite some time now; for example, it is clearly
assumed as a starting point in [6], where it is extended to the context of metric
measure spaces to give a characterization of Lipschitz differentiability spaces.

(vii) The notion of decomposability bundle is related to a notion of tangent space
to measures introduced in [1] (see Remark 6.2(iv) for more details).

1.3. Applications to the theory of currents. In Section 5 we study the
decomposability bundle of measures related to normal currents. More precisely,
given a measure µ and a normal k-current T , we denote by τ the Radon-Nikodým
derivative of T w.r.t. µ (see §5.3), and show that the linear subspace of Rn spanned
by the k-vector τ(x) is contained in V (µ, x) for µ-a.e. x (Theorem 5.10). We then
use this result to give explicit formulas for the boundary of the interior product
of a normal k-current and a Lipschitz h-form (Proposition 5.13) and for the push-
forward of a normal k-current according to a Lipschitz map (Proposition 5.17).

In section 6 we give a characterization of the decomposability bundle of a mea-
sure µ in terms of 1-dimensional normal currents (Theorem 6.4); building on this

2 Here “most” is intended in a sense that, again, we do not specify.
3 The use of Baire category methods to construct Lipschitz functions that are not differentiable

on a given null set in R is discussed exhaustively in [26].
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result we obtain that a vectorfield τ on Rn can be written as the Radon-Nikodým
derivative of a 1-dimensional normal current T w.r.t. µ if and only if τ(x) belongs
to V (µ, x) for µ-a.e. x (Corollary 6.5). Using this fact and a well-known result on
the decomposition of 1-dimensional normal currents in terms of rectifiable currents
(Theorem 5.5), we finally show that a measure µ with non-trivial decomposability
bundle admits a decomposition of type (1.1) where each set Et is now 1-rectifiable
and its tangent bundle is aligned with any prescribed vectorfield τ which satisfies
τ(x) ∈ V (µ, x) for µ-a.e. x (Corollary 6.6). This result is quite close in spirit to the
decomposition of measures in metric spaces given in [29], Theorem 6.31.

1.4. Computation of the decomposability bundle. In certain cases the
decomposability bundle V (µ, x) can be computed using Proposition 2.9. We just
recall here that if µ is absolutely continuous w.r.t. the Lebesgue measure then
V (µ, x) = Rn for µ-a.e. x, and if µ is absolutely continuous w.r.t. the restriction
of the Hausdorff measure H k to a k-dimensional surface S of class C1 (or a k-
rectifiable set S) then V (µ, x) = Tan(S, x) for µ-a.e. x (Proposition 2.9(iii)). On
the other hand, if µ is the canonical measure associated to well-known examples
of self-similar fractals such as the snowflake curve and the Sierpiński carpet, then
V (µ, x) = {0} for µ-a.e. x (see Remark 2.10).

1.5. Rademacher theorem and the dimension of V (µ, x). It is natural to
ask for which measures µ on Rn Rademacher theorem holds in the usual form, that
is, every Lipschitz function (or map) on Rn is differentiable µ-a.e. Clearly the class
of such measures contains all absolutely continuous measures, but does it contains
any singular measure?

The answer turns out to be negative in every dimension n, because a singular
measure µ is supported on a null set E, and, as mentioned above, for every null set
E in Rn there exists a Lipschitz map f : Rn → Rn which is non-differentiable at
every point of E (the case n = 2 is proved in [4], while the general case has been
announced by Csörnyei and Jones).

On the other hand, Theorem 1.1 shows that Rademacher theorem holds for a
measure µ if and only if V (µ, x) = Rn for µ-a.e. x, and therefore we conclude that if
µ is a singular measure on Rn then V (µ, x) 6= Rn for µ-a.e. x. Using statements (i)
and (iii) in Proposition 2.9 we can actually say slightly more: given a measure µ on
Rn and denoting by µa and µs the absolutely continuous part and the singular part
of µ, respectively, then V (µ, x) = Rn for µa-a.e. x and V (µ, x) 6= Rn for µs-a.e. x.

Note that for n = 1 it is actually easy to prove directly—that is, without using
non-differentiability results—that V (µ, x) = {0} for µ-a.e. x when µ is singular:
indeed µ is supported on a null set E, every null set in R is purely unrectifiable
(see §2.2), and the decomposability bundle of a measure supported on a purely
unrectifiable set is trivial (in any dimension, see Proposition 2.9(iv)).

For n = 2, the fact that V (µ, x) 6= Rn for µ-a.e. x when µ is singular follows also
from a result proved in [1] (see Remark 6.2(iv) for more details). A proof in any
dimension n can also be obtained as corollary of a very recent and deep result by
G. De Philippis and F. Rindler [9] (it suffices to put together Corollary 1.11 and
Lemma 3.1 in that paper).
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1.6. Higher dimensional decompositions. For k = 1, . . . , n let Fk(Rn) be
the class of all measures µ on Rn which are absolutely continuous w.r.t. a measure
of the form

∫
I µt dt where each µt is the restriction of the k-dimensional Hausdorff

measure H k to a k-rectifiable set Et. By Proposition 2.9(vi), for every such µ
the decomposability bundle V (µ, x) has dimension at least k at µ-a.e. x; it is then
natural to ask if the converse is true, namely that µ belongs to Fk(Rn) when
dim(V (µ, x)) ≥ k for µ-a.e. x.

The answer is positive for k = 1 and k = n: the case k = 1 is trivial, while the
case k = n is equivalent to the statement mentioned in the previous subsection,
that µ is absolutely continuous if dim(V (µ, x)) = n for µ-a.e. x. Recently, A. Máthé
proved in [21] that the answer is negative in all other cases.

1.7. Differentiability of Sobolev functions. Since the continuous represen-
tatives of functions in the Sobolev space W 1,p(Rn) with p > n are differentiable
almost everywhere, it is natural to ask what happens to differentiability when the
Lebesgue measure is replaced by a singular measure. In [4] it is shown that for
every singular measure µ and every p < +∞ there exists a continuous function
in W 1,p(Rn) which is not differentiable in any direction at µ-a.e. point; it seems
therefore that Theorem 1.1 admits no significant extension to (first order) Sobolev
spaces.

The rest of this paper is organized as follows: in Section 2 we give the precise
definition of decomposability bundle and a few basic properties, while Sections 3
and 4 contain the proof of Theorem 1.1.

In Section 5 we study the decomposability bundle of measures associated to
normal currents, and describe some applications to the theory of normal currents,
while in Section 6 we give a characterization of the decomposability bundle of a
measure in terms of 1-dimensional normal currents. Note that sections 5 and 6 are
essentially independent of the rest of the paper (and of each other).

In order to make the structure of the main proofs more transparent, we have
moved a few technical results to the appendices at the end of the paper. More
precisely, Section 7 contains some statements derived from Rainwater’s Lemma,
while Section 8 contains two approximation results for Lipschitz functions.

2. Decomposability bundle

We begin this section by recalling some general definitions and notation, we then
give the definition of decomposability bundle V (µ, ·) of a measure µ (see §2.6) and
prove a few basic properties (Propositions 2.8 and 2.9).

2.1. General notation. Unless we specify otherwise, sets and functions on
Rn are assumed to be Borel measurable, and measures on Rn are positive, finite
measures on the Borel σ-algebra (the obvious exceptions being the Lebesgue and
Hausdorff measures).

It is important to keep in mind that we never identify maps (and functions)
which agree almost everywhere w.r.t. some measure. In other words, maps are
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always defined at every point, and never to be considered as equivalence classes,
not even when it would appear natural to do so.

We say that a measure on Rn is supported on the (Borel) set E if its restriction
to Rn \ E vanishes (note that E does not need to be closed, and hence it may not
contain the support of µ).

We say that a map f : Rn → Rm is differentiable at the point x ∈ Rn w.r.t. a
linear subspace V of Rn if there exists a linear map L : V → Rm such that the
following first-order Taylor expansion holds

f(x+ h) = f(x) + Lh+ o(|h|) for all h ∈ V ;

when it exists, L is called the derivative of f at x w.r.t. V and denoted by dVf(x);
if V = Rn then dVf(x) is the usual derivative, and is simply denoted by df(x).

We add below a list of frequently used notations (for the notations related to
multilinear algebra and currents see §5.1):

B(x, r) closed ball with center x and radius r;

dist(x,E) distance between the point x and the set E;

v · w scalar product of v, w ∈ Rn;

C(e, α) convex closed cone in Rn with axis e and angle α (see §4.11);

1E characteristic function of the set E, taking values 0 and 1;

Gr(Rn) set of all linear subspaces of Rn, that is, the union of the Grassman-
nians Gr(Rn, k) with k = 0, . . . , n.

dgr(V, V
′) distance between V, V ′ ∈ Gr(Rn), defined as the maximum of δ(V, V ′)

and δ(V ′, V ), where δ(V, V ′) is the smallest number δ such that for
every v ∈ V there exists v′ ∈ V ′ with |v − v′| ≤ δ|v|;

α(V, V ′) := arcsin(dgr(V, V
′)) is the angle between V, V ′ ∈ Gr(Rn);

〈L ; v〉 (also written Lv) is the action of the linear map L on the vector v;

|L| operator norm of the linear map L (between normed spaces);

Dvf(x) derivative of the map f : Rn → Rm in the direction v at the point x;

df(x) derivative of the map f : Rn → Rm at the point x, viewed as a linear
map from from Rn to Rm;

dVf(x) derivative of the map f : Rn → Rm at x w.r.t. the subspace V ;

Tan(S, x) tangent space to S at the point x, where S is a surface (submanifold)
of class C1 in Rn or a rectifiable set (see §2.2);

Lip(f) Lipschitz constant of the map f ;

L n Lebesgue measure on Rn;

H d d-dimensional Hausdorff measure;

Lp stands for Lp(Rn,L n); for the Lp space on a different measure space
(X,S , µ) we use the notation Lp(µ);

‖ · ‖p Lp-norm w.r.t. the Lebesgue measure; we use ‖ · ‖∞ also to denote the
supremum norm of continuous functions;
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ρµ measure associated to a measure µ and a function ρ, namely [ρµ](E) :=∫
E ρ dµ;

1Eµ restriction of a measure µ to a set E;

f# µ push-forward of a measure µ on X according to a map f : X → X ′,
that is, the measure on X ′ given by [f# µ](E) := µ(f−1(E));

λ� µ means that the measure λ is absolutely continuous w.r.t. µ, hence
λ = ρµ where ρ is the Radon-Nikodým derivative of λ w.r.t. µ;

|µ| total variation measure associated to a real- or vector-valued measure
µ; thus µ = ρ|µ| where the Radon-Nikodým derivative ρ satisfies |ρ| =
1 µ-a.e.

M(µ) := |µ|(X), mass of a measure µ on a space X;∫
I µt dt integral of the measure-valued map t 7→ µt (see §2.3).

2.2. Rectifiable and unrectifiable sets. Given k = 1, 2, . . . we say that a set
E contained in Rn is k-rectifiable if H k(E) < +∞ and E can be covered, except
for an H k-null subset, by countably many images of Lipschitz maps from Rk to Rn,
or equivalently by countably many k-dimensional surfaces (submanifolds) of class
C1 (cf. [22], §3.10 and Proposition 3.11, or [17], Definition 5.4.1 and Lemma 5.4.2).

Fix a point x ∈ Rn, and for every r > 0 let σx,r be the restriction of H k to the
blow-up set Ex,r := 1

r (E − x). We say that a k-dimensional subspace V of Rn is the
approximate tangent space to E at x if the measures σx,r converge to the restriction

of H k to V in the sense of measures (that is, in the weak* topology induced by
the duality with the space of continuous functions with compact support in Rn).

If it exists, the approximate tangent space V is clearly unique and is denoted by
Tan(E, x). Moreover Tan(E, x) exists for H k-a.e. x ∈ E (cf. [22], Proposition 3.12,
or [17], Theorem 5.4.6) and is characterized up to H k-negligible subsets of E by
the property that for every k-dimensional surface S of class C1 there holds

Tan(E, x) = Tan(S, x) for H k-a.e. x ∈ E ∩ S. (2.1)

Finally we say that a set E in Rn is purely unrectifiable if H 1(E ∩ S) = 0 for
every 1-rectifiable set S, or equivalently for every curve S of class C1.

2.3. Integration of measures. Let I be a finite measure space and for every
t ∈ I let µt be a measure on Rn, possibly real- or vector-valued, such that:

(a) the function t 7→ µt(E) is measurable for every Borel set E in Rn;

(b)
∫
I M(µt) dt < +∞, where dt denotes the measure on I.

Then we denote by
∫
I µt dt the measure on Rn defined by[ ∫

I µt dt
]
(E) :=

∫
I
µt(E) dt for every Borel set E in Rn.

Note that assumption (a) is equivalent to say that t 7→ µt is a measurable map
from I to the space of finite (real- or vector-valued) measures on Rn endowed with
the weak* topology. Note that assumption (a) and the definition of mass imply
that the function t 7→ M(µt) is measurable, thus the integral in assumption (b) is
well-defined.
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For the next definitions we need the following lemma (or rather, observation).

2.4. Lemma. Let µ be a measure on Rn and let G be a family of Borel maps
from Rn to Gr(Rn) which is closed under countable intersection, in the sense that
for every countable family {Vi} ⊂ G the map V defined by V (x) := ∩iVi(x) for
every x ∈ Rn belongs to G .

Then G admits an element V which is µ-minimal, in the sense that every other
V ′ ∈ G satisfies V (x) ⊂ V ′(x) for µ-a.e. x. Moreover this µ-minimal element is
unique modulo equivalence µ-a.e.

Proof. Uniqueness follows immediately from minimality. To prove existence,
set

Φ(V ) :=

∫
Rn

dim(V (x)) dµ(x) for every V ∈ G ,

then take a sequence {Vj} in G such that Φ(Vj) tends to the infimum of Φ over G ,
and let V be the intersection of all Vj . Thus V belongs to G and is a minimum of Φ
over G , and we claim that it is also a µ-minimal element of G : if not, there would
exist V ′ ∈ G such that V ′′(x) := V (x) ∩ V ′(x) is strictly contained in V (x) for all
x in some set of positive measure, thus V ′′ belongs to G and Φ(V ′′) < Φ(V ). �

2.5. Essential span of a family of vectorfields. Let µ be a measure on Rn,
let F be a family of Borel vectorfields on Rn, and let G be the class of all Borel
maps V : Rn → Gr(Rn) such that for every τ ∈ F there holds

τ(x) ⊂ V (x) for µ-a.e. x.

Since G is closed under countable intersection, by Lemma 2.4 it admits a µ-minimal
element which is unique modulo equivalence µ-a.e. With a slight abuse of language
we call any of these minimal elements µ-essential span of F . (The abuse lies in
the fact that we do not identify maps that agree µ-a.e., and therefore the essential
span is not unique.)

2.6. Decomposability bundle. Given a measure µ on Rn we denote by Fµ

the class of all families {µt : t ∈ I} where I is a measured space endowed with a
probability measure dt and

(a) each µt is the restriction of H 1 to a 1-rectifiable set Et;

(b) the map t 7→ µt satisfies the assumptions (a) and (b) in §2.3;

(c) the measure
∫
I µt dt is absolutely continuous w.r.t. µ.

Then we denote by Gµ the class of all Borel maps V : Rn → Gr(Rn) such that for
every {µt : t ∈ I} ∈ Fµ there holds

Tan(Et, x) ⊂ V (x) for µt-a.e. x and a.e. t ∈ I. (2.2)

Since Gµ is closed under countable intersection, by Lemma 2.4 it admits a µ-minimal
element which is unique modulo equivalence µ-a.e. With a slight abuse of language
and notation we call any of these minimal elements decomposability bundle of µ,
and denote it by x 7→ V (µ, x).
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2.7. Remarks. (i) This definition of the decomposability bundle differs from the
one given in the Introduction in three aspects: the minimality property that char-
acterizes V (µ, ·) is now precisely stated, the sets Et are 1-rectifiable sets (instead
of subsets of rectifiable curves), and the “label space” I in the families {µt : t ∈ I}
is any probability space (instead of the interval [0, 1] equipped with the Lebesgue
measure). Note that the last two modifications has been introduced for technical
convenience, and do not affect the definition (see the last remark in this list).

(ii) Let M be the space of finite measure on Rn endowed with the weak* topology
and the corresponding Borel σ-algebra, and let R be the subset of all measures
λ ∈M of the form λ = 1E ·H 1 where E is a 1-rectifiable set in Rn. Given a family
{µt : t ∈ I} in Fµ, let Ψ be the measure on M given by the push-forward of the
measure dt on I via the map t 7→ µt; then Ψ is a probability measure supported on
R with finite first moment, and

∫
I µt dt =

∫
M λ dΨ(λ).

Thus Gµ could be equivalently defined as the class of all maps x 7→ V (x) such
that for every finite positive measure Ψ supported on R with finite first moment
which satisfies

∫
M λ dΨ(λ)� µ and for Ψ-a.e. measure λ = 1E ·H 1 there holds

Tan(E, x) ⊂ V (x) for H 1-a.e. x ∈ E.
(iii) The class Gµ remains the same if in the definition of Fµ we add the as-

sumption that I is the interval [0, 1] equipped with the Lebesgue measure. This
follows immediately from the previous remark and the fact that every probability
measure Ψ on M can be obtained as the push-forward of the Lebesgue measure on
the interval [0, 1] according to a suitable Borel map ψ : [0, 1]→M .

(iv) The class Gµ remains the same if in the definition of Fµ we require that I
is endowed with a finite measure (instead of a a probability measure), or even a
σ-finite measure.

We conclude this section by giving a few properties of the decomposability bundle
(Propositions 2.8 and 2.9) besides those already mentioned in §1.5.

Before stating Proposition 2.8 we must introduce an additional notion: given a
measure µ on Rn and a family F = {µt : t ∈ I} ∈ Fµ we consider the class of
all Borel maps V : Rn → Gr(Rn) such that (2.2) holds; since this class is closed
under countable intersection, by Lemma 2.4 it admits a µ-minimal element which
is unique modulo equivalence µ-a.e.; we denote any of these minimal elements by
V (µ, F, ·).

2.8. Proposition. Let µ be a measure on Rn. Then

(i) for every F ∈ Fµ there holds V (µ, F, x) ⊂ V (µ, x) for µ-a.e. x;

(ii) there exists G ∈ Fµ such that V (µ,G, x) = V (µ, x) for µ-a.e. x.

Proof. Statement (i) is obvious, and to prove statement (ii) it suffices to find a
family G ∈ Fµ such that

V (µ, x) ⊂ V (µ,G, x) for µ-a.e. x. (2.3)

For every F ∈ Fµ we set

Φ(F ) :=

∫
Rn

dim
[
V (µ, F, x)

]
dµ(x) .
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We claim that there exists a family G ∈ Fµ which maximizes Φ over Fµ, and that
this family satisfies (2.3).

To prove the existence, we take a sequence of families Fj = {µt : t ∈ Ij} ∈ Fµ

with j = 1, 2, . . . , which is a maximizing sequence for Φ, we then take as G the
union of all Fj , and more precisely G := {µt : t ∈ I} where I is the (disjoint) union
of the sets Ij , and is equipped with the probability measure defined by the property
that its restriction to each Ij agrees with the probability measure on Ij multiplied
by 2−j .

One easily checks that G belongs to Fµ, and that for every j there holds

V (µ, Fj , x) ⊂ V (µ,G, x) for µ-a.e. x,

which implies that Φ(Fj , x) ≤ Φ(G, x), and therefore G maximizes Φ.
In turn, this implies that for every other family F ∈ Fµ there holds

V (µ, F, x) ⊂ V (µ,G, x) for µ-a.e. x

(otherwise Φ(F ∪ G) > Φ(G), contradicting the maximality of G). This inclusion
clearly proves that the map x 7→ V (µ,G, x) belongs to Gµ, which yields (2.3). �

2.9. Proposition. Let µ, µ′ be measures on Rn. Then the following statements
hold:

(i) [strong locality principle] if µ′ � µ then V (µ′, x) = V (µ, x) for µ′-a.e. x;
more generally, if 1E µ

′ � µ for some set E, then V (µ′, x) = V (µ, x) for
µ′-a.e. x ∈ E;

(ii) if µ is supported on a k-dimensional surface S of class C1 then V (µ, x) ⊂
Tan(S, x) for µ-a.e. x;

(iii) if µ � 1E H k where E is a k-rectifiable set, then V (µ, x) = Tan(E, x) for
µ-a.e. x; in particular if µ� L n then V (µ, x) = Rn for µ-a.e. x;

(iv) V (µ, x) = {0} for µ-a.e. x if and only if µ is supported on a purely unrec-
tifiable set E.

Moreover, given a family of measures {νs : s ∈ J} as in §2.3,

(v) if
∫
J νs ds� µ then V (νs, x) ⊂ V (µ, x) for νs-a.e. x and a.e. s ∈ J ;

(vi) if µ �
∫
J νs ds and each νs is of the form νs = 1Et H k where Es is a

k-rectifiable set, then V (µ, x) has dimension at least k for µ-a.e. x.

2.10. Remarks. (i) Many popular examples of self-similar fractals, including
the Von Koch snowflake curve, the Cantor set, and the so-called Cantor dust (a
cartesian product of Cantor sets) are purely unrectifiable, and therefore every mea-
sure µ supported on any of such sets satisfies V (µ, x) = {0} for µ-a.e. x (Proposi-
tion 2.9(iv)).

(ii) The Sierpiński carpet is a self-similar fractal that contains many segments,
and therefore is not purely unrectifiable. However, the canonical (self-similar) prob-
ability measure µ associated to this fractal is supported on a purely unrectifiable
set, and therefore V (µ, x) = {0} for µ-a.e. x. The same occurs to other fractals of
similar nature, such as the Sierpiński triangle and the Menger-Sierpiński sponge.
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Proof of Proposition 2.9. Using Proposition 2.8(ii) we choose

• G = {µ̃t : t ∈ I} ∈ Fµ such that V (µ,G, x) = V (µ, x) for µ-a.e. x;

• G′ = {µ̃′t : t ∈ I ′} ∈ Fµ′ such that V (µ′, G′, x) = V (µ′, x) for µ′-a.e. x.

Statement (i). If µ′ � µ then one easily checks that G′ belongs to Fµ, and
taking into account Proposition 2.8(i) we get

V (µ′, x) = V (µ′, G′, x) ⊂ V (µ, x) for µ′-a.e. x.

To prove the opposite inclusion, take a Borel set F such that the restriction of µ
to F satisfies 1Fµ� µ′. Then the family G′′ := {1F µ̃t : t ∈ I} belongs to Fµ′ and

V (µ, x) = V (µ,G, x) = V (µ′, G′′, x) ⊂ V (µ′, x) for µ-a.e. x ∈ F ,

that is, for µ′-a.e. x. The proof of the first part of statement (i) is thus complete.
By applying the first part of statement (i) to the measures 1Eµ

′ and µ, and
then to the measures 1Eµ

′ and µ′ we obtain V (1Eµ
′, x) = V (µ, x) = V (µ′, x) for

µ′-a.e. x ∈ E, which is the second part of statement (i).

Statement (ii). For every t ∈ I let Ft be a 1-rectifiable set such that µ̃t is the
restriction of H 1 to Ft. Since

∫
I µ̃t dt� µ and µ is supported on S we have that

0 = µ(Rn \ S) =

∫
I
µ̃t(Rn \ S) dt =

∫
I
H 1(Ft \ S) dt ,

which implies that, for a.e. t ∈ I, the set Ft is contained in S up to an H 1-null
subset. Thus Tan(Ft, x) ⊂ Tan(S, x) for µ̃t-a.e. x, which implies

V (µ, x) = V (µ,G, x) ⊂ Tan(S, x) for µ-a.e. x.

Statement (iii). Using statement (i) and the definition of k-rectifiable set (see
§2.2) we can reduce to the case µ = 1EH k where E is a subset of a k-dimensional
surface S of class C1, and we can further assume that S is parametrized by a
diffeomorphism g : A→ S of class C1, where A is a bounded open set in Rk.

Then Tan(E, x) = Tan(S, x) contains V (µ, x) for µ-a.e. x by statement (ii).
To prove the opposite inclusion we set E′ := g−1(E) and µ′ := 1E′L

k, we fix
a nontrivial vector e ∈ Rk, and for every t in the hyperplane e⊥ we let E′t be the
intersection of the set E′ with the line {x′ = t+he : h ∈ R}, and set µ′t := 1E′tH

1.
By Fubini’s theorem we have that µ′ =

∫
µ′t dt where dt is the restriction of H k−1

to the hyperplane e⊥.
Next we set Et := g(E′t) and µt := 1EtH

1. Thus each Et is a 1-rectifiable
set whose tangent space at x = g(x′) is spanned by the vector τ(x) := dg(x′) e.
Moreover, taking into account that g is a diffeomorphism, we get that

∫
µt dt and µ

are absolutely continuous w.r.t. each other. Therefore τ(x) ∈ V (µ, x) for µt-a.e. x
and a.e. t, that is, for µ-a.e. x.

Finally we let e range in a basis Rk, thus the corresponding vectors τ(x) span
Tan(S, x) for every x, and we conclude that Tan(E, x) = Tan(S, x) is contained in
V (µ, x) for µ-a.e. x.

Statement (iv). We prove the “if” part first. If µ is supported on a set E,
then, arguing as in the proof of statement (ii), we obtain that for a.e. t ∈ I the
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rectifiable set Ft associated to µ̃t is contained in E up to an H 1-null set. If in
addition E is purely unrectifiable we obtain that H 1(Ft) = 0, that is, µ̃t = 0.
Hence V (µ, x) = V (µ,G, x) = {0} for µ-a.e. x.

The “only if” part follows from Lemma 7.4; indeed alternative (ii) in this lemma
is ruled out by the fact that V (µ, x) = {0} for µ-a.e. x, and therefore alternative (i)
holds.

Statement (v). We can clearly restrict to the case where measure on J is a
probability measure. For every s ∈ J we choose a family Gs ∈ Fνs according to
Proposition 2.8(ii), and thanks to Remark 2.7(iii) we can assume that each Gs is
of the form {ν̃s,t : t ∈ I} where I is the interval [0, 1] equipped with the Lebesgue
measure.

It is easy to check that the family F := {ν̃s,t : (s, t) ∈ J × I} belongs to Fµ,
having endowed J × I with the natural product measure. Then Proposition 2.8(i)
implies that the inclusion

V (µ, F, x) ⊂ V (µ, x)

holds for µ-a.e. x, and therefore also for νs-a.e. x and a.e. s (recall that
∫
J νs ds� µ

by assumption). On the other hand it is also easy to check that

V (νs, x) = V (νs, Gs, x) ⊂ V (µ, F, x
)

for νs-a.e. x and a.e. s, and statement (v) is proved.
To be precise, the proof is not correct as written, because the map (s, t) 7→ ν̃s,t

is not necessarily Borel measurable in both variables (as required in §2.3). For a
correct proof, the families Gs should be chosen for every s ∈ J in a measurable
fashion, and this can be achieved by means of a suitable measurable selection
theorem (we omit the details).

Statement (vi). By statement (i) it suffices to prove the claim when µ agrees
with

∫
J νs ds. In this case statement (v) implies that V (µ, x) contains V (νs, x) for

νs-a.e. x and a.e. s, and V (νs, x) has dimension k by statement (iii). Thus V (µ, x)
has dimension at least k for νs-a.e. x and a.e. s, that is, for µ-a.e. x. �

3. Proof of Theorem 1.1(i)

We begin this section with a definition which is strictly related to the notions
of tangent space assignment and derivative assignment introduced in [19], and
indeed the key step in the proof of Theorem 1.1(i), namely Proposition 3.7, can
be obtained from a rather general chain-rule for Lipschitz maps proved in [19],
Corollary 2.24. Since the statement we need here is actually quite simple, we
include a self-contained proof.

3.1. Differentiability bundle. Given a Lipschitz f : Rn → R and a point
x ∈ Rn, we denote by D(f, x) the set of all subspaces V ∈ Gr(Rn) such that f is
differentiable at x w.r.t. V (cf. §2.1), and call the map x 7→ D(f, x) differentiability
bundle of f . We then denote by D∗(f, x) the set of all V ∈ D(f, x) with maximal
dimension. Note that D∗(f, x) may contain more than one element.
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Before going to Proposition 3.7, which is the core of the proof of Theorem 1.1(i),
we need some measurability results related to the previous definition (Lemmas 3.5
and 3.6). To state and prove these results we need some additional notation.

3.2. Borel multifunctions. A multifunction from a set X to a set Y is a map
that to every x ∈ X associates a nonempty subset of Y . For the definition and basic
results concerning (Borel) measurable multifunctions we refer to [32], Section 5.1.
We just recall here that when X is a topological space and Y is a compact metric
space, a closed-valued multifunction from X to Y is Borel measurable if it is Borel
measurable as a map from X to the space of non-empty closed subsets of Y , en-
dowed with the Hausdorff distance (this case includes essentially all multifunctions
considered in this paper).

3.3. Deviation from linearity. Given a Lipschitz function f : Rn → R, a point
x ∈ Rn, a linear subspace V of Rn, a linear function α : V → R, and δ > 0, we set

m(f, x, V, α, δ) := sup
h∈V, 0<|h|≤δ

|f(x+ h)− f(x)− αh|
|h|

(the definition is completed by setting m(f, x, V, α, δ) := 0 when V = {0}).
Thus m(f, x, V, α, δ) measures the deviation of f from the linear function α

around x at the scale δ. In particular f is differentiable at x w.r.t. V with derivative
α if and only if for every ε > 0 there exists δ > 0 such that m(f, x, V, α, δ) ≤ ε,
that is, m(f, x, V, α, δ) tends to 0 as δ → 0 (note that m is increasing in δ).

3.4. Lemma. Let be given f , x and V as above, W and W ′ linear subspaces
of V , α and α′ linear functions on V . Then, setting m := m(f, x,W,α, δ) and
m′ := m(f, x,W ′, α′, δ), we have

m ≤ m′ + |α′ − α|+ (L+ |α′|)d ,

where L := Lip(f), d := dgr(W,W
′) is the distance between W and W ′ (see §2.1),

and the norm for linear functionals is, as usual, the operator norm.

Proof. We must prove that for every h ∈W with |h| ≤ δ there holds

|f(x+ h)− f(x)− αh| ≤
[
m′ + |α′ − α|+ (L+ |α′|)d

]
|h| . (3.1)

Let h′ be the orthogonal projection of h on W ′; then, taking into account the
definition of dgr, we have

|h′| ≤ |h| ≤ δ and |h− h′| ≤ d|h| . (3.2)

Now we write f(x+ h)− f(x)− αh as sum of the following four terms

I := f(x+ h)− f(x+ h′) ,

II := f(x+ h′)− f(x)− α′h′ ,
III := α′h′ − α′h ,
IV := α′h− αh ,
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and we obtain (3.1) by putting together the estimates

|I| ≤ L|h− h′| ≤ Ld|h| ,
|II| ≤ m′|h′| ≤ m′|h| ,
|III| ≤ |α′| |h′ − h| ≤ d|α′| |h| ,
|IV | ≤ |α′ − α| |h| ,

where the first and third estimates follow from the second inequality in (3.2) and
the fact that f is Lipschitz, while the second one follows from the definition of m′

and the first inequality in (3.2). �

3.5. Lemma. Let f be a Lipschitz function on Rn. Then D(f, x) and D∗(f, x)
are closed, nonempty subsets of Gr(Rn) for every x. Moreover x 7→ D(f, x)
and x 7→ D∗(f, x) are Borel-measurable, closed-valued multifunctions from Rn to
Gr(Rn).

Sketch of proof. We denote by B the set of all linear functions α on Rn with
|α| ≤ L := Lip(f), and by G the graph of the multifunction x 7→ D(f, x), namely
the set of all (x, V ) ∈ Rn × Gr(Rn) such that V ∈ D(f, x). Let then g be the
function on Rn ×Gr(Rn) defined by

g(x, V ) := inf
δ>0, α∈B

m(f, x, V, α, δ) .

For every δ > 0 the function m is Borel measurable in the variables x, V, α,
and by Lemma 3.4 it is Lipschitz in the variables α, V with a Lipschitz constant
independent of δ. Using this fact one can easily prove that g is Lipschitz in the
variable V and that the infimum that defines g can be replaced by the infimum over
a countable dense family of couples (δ, α), which means that g is the infimum of a
countable family of Borel measurable functions, and therefore it is Borel measurable
itself.

Moreover V belongs to D(f, x) if and only if g(x, V ) = 0 (cf. §3.3), which means
that G = g−1(0). Since g is continuous in V then D(f, x) is closed for all x, and
since g is Borel measurable then G is a Borel set. Thus x 7→ D(f, x) is a closed-
valued multifunction with Borel graph, which implies by a standard argument that
x 7→ D(f, x) is Borel measurable.

Finally, the measurability of x 7→ D∗(f, x) can be easily obtained from the
measurability of x 7→ D(f, x) (we omit the details). �

3.6. Lemma. Let f be a Lipschitz function on Rn, E a Borel set in Rn, and
x 7→ V (x) a Borel map from E to Gr(Rn) such that V (x) belongs to D(f, x) for
every x. For every x ∈ E we denote by dVf(x) the derivative of f at x w.r.t. V (x),
and we extend it to a linear function on Rn by setting dVf(x)h := 0 for every
h ∈ V (x)⊥.

Then x 7→ dVf(x) is a Borel map from E to the dual of Rn.

Sketch of proof. Possibly subdividing E into finitely many Borel sets, we can
assume that V (x) has constant dimension d for all x ∈ E.
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Since the map x 7→ V (x), viewed as a closed-valued multifunction from E to
Rn, is Borel measurable (cf. §3.2), we can use Kuratowski and Ryll-Nardzewski’s
measurable selection theorem (see [32], Theorem 5.2.1) to find Borel vectorfields
e1, . . . , en defined on E so that e1(x), . . . , en(x) form an orthonormal basis of Rn
for every x ∈ E and e1(x), . . . , ed(x) span V (x).

Then for every h > 0 and x ∈ E we consider the linear function Th(x) : Rn → R
defined by

〈Th(x) ; ei(x)〉 :=


f(x+ hei(x))− f(x)

h
for i = 1, . . . , d,

0 for i = d+ 1, . . . , n.

Using that each ei is Borel and that f is continuous, one easily verifies that x 7→
Th(x) is a Borel map from E to the dual of Rn for every h > 0. Moreover, since
f is differentiable w.r.t. V (x) at each x ∈ E, Th(x) converges to dVf(x) as h→ 0.
Thus x 7→ dVf(x) is the pointwise limit of a sequence of Borel maps, and therefore
it is Borel. �

3.7. Proposition. Let E be a 1-rectifiable set in Rn. Then, for H 1-a.e. x ∈ E
there holds

Tan(E, x) ⊂ V for every V ∈ D∗(f, x).

3.8. Remark. When E is a Lipschitz curve, this statement is a particular case
of (the second part of) Corollary 2.24 in [19], and the general case follows quite
easily. For the sake of completeness, we give below a self-contained proof.

Proof of Proposition 3.7. Let E∗ be the set of all x ∈ E where the tangent
space Tan(E, x) exists, and let E′ be the subset of all x ∈ E∗ such that Tan(E, x)
is not contained in V (x) for some V (x) ∈ D∗(f, x).

It is well-known that E∗ is Borel and that the map x 7→ Tan(E, x) from E∗

to Gr(Rn) is Borel (this is also a corollary of Lemma 6.10). Using this fact and
Lemma 3.5 one easily checks that E′ is Borel, too, and we can use Kuratowski and
Ryll-Nardzewski’s measurable selection theorem to choose the subspace V (x) for
every x ∈ E′ so that the map x 7→ V (x) from E′ to Gr(Rn) is Borel. Then also the
map x 7→ dfV (x), defined in Lemma 3.6 is Borel.

We must prove that E′ is H 1-null.

Assume by contradiction that it is not. Then, using Lusin’s theorem and the
fact that every 1-rectifiable set can be covered by countably many curves of class
C1 up to an H 1-null subset, we can find a Borel set E′′ contained in E′ such that

(a) E′′ is contained in a curve C of class C1 and H 1(E′′) > 0;

(b) the maps x 7→ V (x) and x 7→ dVf(x) are continuous on E′′.

Recall now that f is differentiable at every x ∈ E′′ w.r.t. to V (x), which means
that m(f, x, V (x), dVf(x), δ) tends to 0 as δ → 0 (see §3.3). By Egorov’s theorem,
we can further assume that, possibly replacing E′′ with a suitable subset, the
convergence is uniform w.r.t. x ∈ E′′, that is, there exists a modulus of continuity
ω : [0,+∞)→ [0,+∞) such that
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(c) m
(
f, x, V (x), dVf(x), δ

)
≤ ω(δ) for every δ > 0, x ∈ E′′.

Since H 1(E′′) > 0 we can now choose a point x̄ ∈ E′′ such that E′′ has density 1
at x̄ and f is differentiable at x̄ w.r.t. T := Tan(C, x̄) = Tan(E, x̄).

We claim that f is differentiable at x̄ w.r.t. V (x̄)⊕T , which implies that V (x̄) is
a proper subspace of an element of D(f, x̄) (recall that T is not contained in V (x̄)
by the choice of E′) and therefore does not belong to D∗(f, x̄), which is the desired
contradiction.

We re-write the claim as

f(x̄+ τ + h)− f(x̄)− dT f(x̄) τ − dVf(x̄)h = o(|τ |+ |h|) , (3.3)

for every τ ∈ T and h ∈ V (x̄), and we let ω′ be a modulus of continuity for the
maps x 7→ V (x) and x 7→ dVf(x) at the point x̄. Since E′′ has density 1 at x̄, for
every τ ∈ T we can find a point x(τ) ∈ E′′ of the form

x(τ) = x̄+ τ + o(|τ |) . (3.4)

Then for every h and τ as above we decompose the left-hand side of (3.3) as the
sum of the following three terms:

I :=
[
f(x̄+ τ + h)− f(x(τ) + h)

]
+
[
f(x(τ))− f(x̄+ τ)

]
,

II := f(x(τ) + h)− f(x(τ))− dVf(x̄)h ,

III := f(x̄+ τ)− f(x̄)− dT f(x̄) τ ,

and (3.3) is easily obtained by putting together the following estimates

|I| ≤ 2L
∣∣x̄+ τ − x(τ)

∣∣ = o(|τ |) ,
|II| ≤ m

(
f, x(τ), V (x̄), dVf(x̄), |h|

)
|h|

≤
[
m
(
f, x(τ), V (x(τ)), dVf(x(τ)), |h|

)
+ (1 + 2L)ω′(|τ |)

]
|h|

≤
[
ω(|h|) + (1 + 2L)ω′(|τ |)

]
|h| = o(|τ |+ |h|) ,

|III| = o(|τ |) ,
where the first estimate follows from the fact that f is Lipschitz with L := Lip(f)
and (3.4); the first inequality in the second estimate follows from the definition
of m (cf. §3.3), the second inequality follows from Lemma 3.4, and the third one
from (c); finally, the third estimate is the differentiability of f at x̄ w.r.t. T . �

3.9. Corollary. Let f be a Lipschitz function on Rn and let µ be a measure
on Rn with decomposability bundle V (µ, ·). Then V (µ, x) belongs to D(f, x) for
µ-a.e. x, and more precisely

V (µ, x) ⊂ V for every V ∈ D∗(f, x).

Proof. Let E be the set of all x ∈ Rn such that there exists V (x) ∈ D∗(f, x)
which does not contain V (µ, x). Since x 7→ V (µ, x) is a Borel map from Rn to
Gr(Rn) and x 7→ D∗(f, x) is a Borel-measurable, close-valued multifunction from
Rn to Gr(Rn) (Lemma 3.5), the set E is Borel, and we can use Kuratowski and
Ryll-Nardzewski’s measurable selection theorem (see [32], Theorem 5.2.1) to choose
each V (x) so that the map x 7→ V (x) from E to Gr(Rn) is Borel.
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We must prove that µ(E) = 0.

To this end, we extend the map x 7→ V (x) by setting V (x) := Rn for every
x ∈ Rn \E, and we claim that this extended map belongs to the class Gµ defined in
§2.6. Consider indeed an arbitrary family of measures {µt : t ∈ I} which belongs to
the class Fµ defined in §2.6. Then each µt is the restriction of H 1 to a rectifiable
set Et, and by Proposition 3.7 for every t ∈ I there holds

Tan(Et, x) ⊂ V (x) for µt-a.e. x,

which proves the claim.
Since x 7→ V (x) belongs to Gµ, by the definition of decomposability bundle we

have that V (µ, x) is contained in V (x) for µ-a.e. x, and since this inclusion fails by
construction for every x ∈ E, we infer that µ(E) = 0. �

Proof of statement (i) of Theorem 1.1. By Corollary 3.9, V (µ, x) belongs
to D(f, x) for µ-a.e. x, which means that f si differentiable at x w.r.t. V (µ, x). �

4. Proof of Theorem 1.1(ii)

Statement (ii) of Theorem 1.1 is implied by a slightly more precise non-
differentiability statement given in Theorem 4.1 below. In turn, this theorem
is an immediate consequence of somewhat stronger, but also more technical re-
sults (Propositions 4.4 and 4.5) stating the residuality of certain classes of non-
differentiable functions within a suitable space of Lipschitz functions.

We begin this section by stating the results mentioned above, together with
the necessary definitions, while proofs are given in the second part of this section,
starting with §4.8. In Remarks 4.6(ii) and (iii), and Example 4.7 we briefly discuss
the quantitative form of these non-differentiability results.

Through this section µ is a measure on Rn. Given a function f on Rn, a point
x ∈ Rn and a vector v ∈ Rn, we consider the upper and lower (one-sided) directional
derivatives

D+
v f(x) := lim sup

h→0+

f(x+ hv)− f(x)

h
,

D−v f(x) := lim inf
h→0+

f(x+ hv)− f(x)

h
.

4.1. Theorem. There exists a Lipschitz function f on Rn such that, for µ-
a.e. x ∈ Rn, f is not differentiable at x in any direction v /∈ V (µ, x), and more
precisely D+

v f(x)−D−v f(x) > 0.

4.2. The set E and the space X. For the rest of this section E is a Borel set
in Rn with the following property: there exist an integer d with 0 < d ≤ n, and
continuous vectorfields e1, . . . , en on Rn such that

• e1(x), . . . , en(x) form an orthonormal basis of Rn for every x ∈ Rn;

• e1(x), . . . , ed(x) span V (µ, x)⊥ for every x ∈ E.
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In particular V (µ, x) and V (µ, x)⊥ depend continuously on x ∈ E and have dimen-
sion respectively n− d and d for every x ∈ E.

We then denote by X the space of all Lipschitz functions f on Rn such that∣∣Dej(x)f(x)
∣∣ ≤ 1 for L n-a.e. x and every j = 1, . . . , n,

endowed with the supremum distance. It is then easy to show that X is a complete
metric space. Note that X depends on the measure µ but also on the choice of the
set E and of the vectorfields ej .

4.3. Residual sets and maps of Baire class 1. A subset of a topological
space is residual if it contains a countable intersection of open dense sets, and by
Baire Theorem a residual set in a complete metric space is dense, and in particular
is not empty.

The precise definition of maps of Baire class 1 between metric spaces can be
found in [14], Definition 24.1; we just recall here that every map which can be
written as pointwise limit of a sequences of continuous maps is of Baire class 1,4

and that the set of continuity points of a map of Baire class 1 is residual, see [14],
Theorem 24.14.

4.4. Proposition. Given a vector v ∈ Rn, let Nv be the set of all functions
f ∈ X such that for µ-a.e. x ∈ E there holds

D+
v f(x)−D−v f(x) ≥ dv(x)

3
√
d

where dv(x) := dist(v, V (µ, x)) . (4.1)

Then Nv is residual in X, and in particular it is dense.

4.5. Proposition. Let N be the set of all functions f ∈ X such that, for µ-
a.e. x ∈ E, inequality (4.1) holds for every v ∈ Rn. Then N is residual in X, and
in particular it is dense.

4.6. Remarks. (i) Proposition 4.5 and Theorem 4.1 are straightforward con-
sequences Proposition 4.4, which is therefore the key result in the whole section.
Note that in Propositions 4.4 and 4.5 the class of non-differentiable functions under
consideration is proved to be residual (admittedly, in a strange-looking space), and
not just nonempty.

(ii) If V (µ, x) = {0} for µ-a.e. x (which, by Proposition 2.9(iv) is equivalent to say
that µ is supported on a purely unrectifiable set), then in §4.2 we can take E = Rn
and e1, . . . , en equal to the standard basis of Rn for every x. Then Proposition 4.5
gives directly infinitely many Lipschitz functions f which are non-differentiable at
µ-a.e. x and in every direction v ∈ Rn with v 6= 0; moreover the non-differentiability
of f is expressed in a precise quantitative form by inequality (4.1), which becomes

D+
v f(x)−D−v f(x) ≥ |v|/(3

√
n) for every v ∈ Rn.

(iii) In view of the previous remark it is natural to ask if the statement of
Theorem 4.1 can be strengthened by requiring that the non-differentiability of f is

4 Note that for general metric spaces the converse is not true: there are maps of Baire class 1
which cannot be written as a pointwise limit of continuous maps.
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uniform in x, that is, there exists an increasing function ω on [0,+∞) with ω(0) = 0
and ω(s) > 0 for s > 0, such that for µ-a.e. x there holds

D+
v f(x)−D−v f(x) ≥ ω(dv(x)) for every v ∈ Rn.

Example 4.7 below—the idea of which can be traced back to [24]—shows that
this is not the case. There we describe a singular measure µ on R2 with the
following properties: V (µ, x) has dimension 1 at µ-a.e. x, and for every Lipschitz
function f on R2 and every ε > 0 there exists a set E with µ(E) > 0 such that f is
ε-differentiable at µ-a.e. x ∈ E, which means that there exists a linear function L
(depending on x) such that |f(x+h)− f(x)−Lh| ≤ ε|h|+ o(|h|), and in particular

|D±v f(x)− Lv| ≤ ε for every v ∈ R2.

4.7. Example. Let F be the union of a countable family of straight lines D
which are dense in R2, in the sense that for every x1, x2 ∈ R2 and every ε > 0
there exists a line R ∈ D such that dist(xi, R) ≤ ε for i = 1, 2. Let then µ be a
finite measure such that µ and the restriction of H 1 to F are absolutely continuous
w.r.t. each other.

By Proposition 2.9(iii) we have that V (µ, x) = Tan(R, x) for µ-a.e. x ∈ R and
for every R ∈ D , and in particular V (µ, x) has dimension 1 at µ-a.e. x.

We claim that, for every ε > 0, every Lipschitz function f on R2 is ε-differentiable
on a set E with positive measure. To prove the claim, we set δ := ε2/(2L) and use
the density of D (and the definition of Lipschitz constant) to find a line R ∈ D and
x1, x2 ∈ R such that

f(x2)− f(x1) > (L− δ)|x1 − x2| .
Set now e := (x2 − x1)/|x2 − x1|; then the previous inequality implies that the set
E of all x in the segment [x1, x2] where the partial derivative Def(x) exists and
satisfies

Def(x) > L− δ (4.2)

is of positive measure w.r.t. H 1, and therefore also w.r.t. µ. Finally we use that f is√
2Lδ-differentiable at every x where (4.2) holds (see for instance [8], Corollary 1),

and recall that
√

2Lδ = ε by the choice of δ.

The rest of this section is devoted to the proofs of the results stated above,
starting from Proposition 4.4. Note that since Ncv = Nv for every v ∈ Rn and
every c > 0, it suffices to prove this statement for all v ∈ Rn with |v| = 1.

Attention! From now till the end of the proof of Proposition 4.4, v is a fixed
vector in Rn with |v| = 1.

4.8. The maps T±
σ,σ′ and Uσ. For every σ > σ′ ≥ 0 and every f : Rn → R we

consider the functions T±σ,σ′f and Uσf defined as follows for every x ∈ Rn:

T+
σ,σ′f(x) := sup

σ′<h≤σ

f(x+ hv)− f(x)

h
,

T−σ,σ′f(x) := inf
σ′<h≤σ

f(x+ hv)− f(x)

h
,
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Uσf(x) := T+
σ,0f(x)− T−σ,0f(x) .

One readily checks that T+
σ,0f(x) and T−σ,0f(x) are respectively increasing and de-

creasing in σ, and therefore Uσf(x) is increasing in σ. Moreover

D+
v f(x)−D−v f(x) = inf

σ>0

(
Uσf(x)

)
= inf

m=1,2,...

(
U1/mf(x)

)
. (4.3)

Finally we notice that 1
h(f(x+hv)−f(x)) and Dvf(x) (if it exists) are both smaller

than T+
σ,0f(x) and larger than T−σ,0f(x) if h ≤ σ, which yields the following useful

estimate:

Uσf(x) ≥
∣∣∣∣Dvf(x)− f(x+ hv)− f(x)

h

∣∣∣∣ for every 0 < h ≤ σ. (4.4)

4.9. Structure of the proof of Proposition 4.4. We follow a general strategy
devised by B. Kirchheim for the proof of residuality results (see [16]). In this specific
case, this strategy reduces essentially to two key steps: in Lemma 4.10 we show
that every Uσ is of Baire class 1 as a map from X to L1(µ), which implies that Uσ
is continuous at residually many f ; then in Lemma 4.15 we show that any such f
satisfies Uσf(x) ≥ dv(x)/(3

√
d) for µ-a.e. x ∈ E, and this inequality, together with

(4.3), implies (4.1).
The proof of Lemma 4.15 is quite long, and is split in several sub-lemmas. The

key step here is the construction described in Lemma 4.14, which is actually a
simplification of a more refined construction given in [4].

4.10. Lemma. The maps T±σ,σ′ and Uσ take X into L1(µ) for every σ, σ′ as
above. Moreover the maps T±σ,σ′ are continuous for σ′ > 0 while T±σ,0 and Uσ are of
Baire class 1 (as maps from X to L1(µ)).

Proof. The functions T+
σ,σ′f belong to L1(µ) for every σ > σ′ ≥ 0 and every

f ∈ X because they are bounded, and more precisely∣∣T+
σ,σ′f(x)

∣∣ ≤ Lip(f) for every x ∈ Rn. (4.5)

Concerning the continuity of T+
σ,σ′ for σ′ > 0, one readily checks that for every

f, f ′ ∈ X there holds∣∣T+
σ,σ′f

′(x)− T+
σ,σ′f(x)

∣∣ ≤ 2

σ′
‖f ′ − f‖∞ for every x ∈ Rn,

and therefore ∥∥T+
σ,σ′f

′ − T+
σ,σ′f

∥∥
L1(µ)

≤ 2

σ′
M(µ) ‖f ′ − f‖∞ .

To prove that T+
σ,0 is of of Baire class 1 it suffices to notice that it agrees with the

pointwise limit of the continuous maps T+
σ,σ′ as σ′ → 0. Indeed, it follows from the

definition that, as σ′ tends to 0, T+
σ,σ′f(x) converges to T+

σ,0f(x) for every f ∈ X
and every x ∈ Rn, and then T+

σ,σ′f converges to T+
σ,0f in L1(µ) by the dominated

convergence theorem (a domination is given by estimate (4.5)).
The rest of the statement can be proved in a similar way. �



22 Giovanni Alberti and Andrea Marchese

4.11. Cones and cone-null sets. Given a unit vector e in Rn and a real number
α ∈ (0, π/2) we denote by C(e, α) the closed cone of axis e and angle α in Rn, that
is,

C(e, α) :=
{
v ∈ Rn : v · e ≥ cosα · |v|

}
.

Given a cone C = C(e, α) in Rn, we call C-curve any set of the form γ(J) where J
is a compact interval in R and γ : J → Rn is a Lipschitz path such that

γ̇(s) ∈ C for L 1-a.e. s ∈ J .

Following [4], we say that a set E in Rn is C-null if

H 1
(
E ∩G

)
= 0 for every C-curve G.

The following lemma is a particular case of a result contained in [4]; we include
a complete proof for the sake of completeness.

4.12. Lemma. Let be given a cone C = C(e, α) in Rn and a C-null compact set
K in Rn. Then for every ε > 0 there exists a smooth function f : Rn → R such
that, for every x ∈ Rn,

(i) 0 ≤ f(x) ≤ ε;
(ii) 0 ≤ Def(x) ≤ 1, and Def(x) = 1 if x ∈ K;

(iii) |dWf(x)| ≤ 1/ tanα, where W := e⊥, dWf(x) is the derivative of f at x
w.r.t. W (cf. §2.1), and |dWf(x)| is its operator norm.

Proof. We first construct a Lipschitz function g that satisfies statements (i), (ii)
and (iii) with K replaced by a suitable open set A that contains K, and then we
regularize g by convolution to obtain f .

Step 1. There exists an open set A such that A ⊃ K and

H 1
(
A ∩G

)
≤ ε for every C-curve G. (4.6)

More precisely, we claim that there exists δ > 0 such that H 1
(
Kδ ∩G

)
≤ ε for

every C-curve G, where Kδ is the set of all x such that dist(x,K) ≤ δ, and then it
suffices to take A equal to the interior of Kδ.

We argue by contradiction: if the claim does not hold, then for every δ > 0 there
exists a C-curve Gδ such that H 1

(
Kδ ∩Gδ

)
≥ ε.

Let J be a compact interval that contains the set {x · e : x ∈ K}. We can then
assume that each Gδ admits a parametrization γδ : J → Rn of the form

γδ(s) = se+ ηδ(s) with ηδ(s) ∈W for every s ∈ J ,

where ηδ : J →W is Lipschitz and satisfies

|η̇δ(s)| ≤ tanα for a.e. s ∈ J .

Then we set K ′δ := γ−1
δ (Kδ) = γ−1

δ (Kδ ∩Gδ).
Possibly passing to a subsequence we can assume that when δ → 0 the maps

ηδ converge uniformly to a Lipschitz map η0 : J → W , and that the compact sets
K ′δ converge to a compact set K ′0 ⊂ J in the Hausdorff distance. Therefore the
parametrizations γδ converge to γ0 given by γ0(s) := se+η0(s), the set G0 := γ0(J)
is a C-curve, and K ∩G0 contains K0 := γ0(K ′0).
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We prove next that K0 has positive length, which contradicts the fact that K is
C-null. Indeed

H 1(K0) ≥ L 1(K ′0) ≥ lim sup
δ→0

L 1(K ′δ)

≥ lim sup
δ→0

(
cosαH 1(Kδ ∩Gδ)

)
≥ ε cosα > 0

(the second inequality follows from the upper semicontinuity of the Lebesgue mea-
sure w.r.t. the Hausdorff convergence of compact sets, and the third inequality
follows from the fact that H 1(γ0(E)) ≤ L 1(E)/ cosα for every set E ⊂ J , which
in turn follows from the fact that |η̇0(s)| ≤ tanα for a.e. s).

Step 2. Construction of g.
For every x ∈ Rn we denote by Gx the class of all C-curves G = γ([a, b]) whose

end-point xG := γ(b) is of the form xG = x+ se for some s ≥ 0, and we set

g(x) := sup
G∈Gx

(
H 1(A ∩G)− |xG − x|

)
.

Starting from the definition one can readily check that for every x ∈ Rn there holds:

(a) 0 ≤ g(x) ≤ ε (recall (4.6));
(b) g(x) ≤ g(x+ se) ≤ g(x) + s for every s > 0, and if the segment [x, x+ se]

is contained in A then g(x+ se) = g(x) + s;
(c) |g(x+ v)− g(x)| ≤ |v|/ tanα for every v ∈W .

Statements (b) and (c) imply that g is Lipschitz and

(b’) 0 ≤ Deg(x) ≤ 1 for L n-a.e. x, and Deg(x) = 1 for L n-a.e. x ∈ A;
(c’) |dWg(x)| ≤ 1/ tanα for L n-a.e. x.

Step 3. Construction of f .
We take r so that 0 < r < dist(K,Rn \A) and set f := g ∗ρ where ρ is a mollifier

with support contained in the ball B(0, r). Then statements (i), (ii) and (iii) follow
from statements (a), (b’) and (c’), respectively. �

4.13. Lemma. Let be given a cone C = C(e, α) in Rn, and a C-null compact
set K contained in a ball B = B(x̄, r). Then for every ε > 0 and every r′ > r there
exists a smooth function g : Rn → R such that

(i) ‖g‖∞ ≤ ε and the support of g is contained in B′ := B(x̄, r′);

and for every x ∈ B′,
(ii) −ε ≤ Deg(x) ≤ 1 + ε, and Deg(x) = 1 if x ∈ K;

(iii) |dWg(x)| ≤ 2/ tanα, where W := e⊥.

Proof. We fix ε′ > 0 and take a smooth function f that satisfies statements (i),
(ii) and (iii) in Lemma 4.12 with ε′ in place of ε, and then we set

g := ϕf

where ϕ : Rn → [0, 1] is a smooth cut-off function such that ϕ = 1 on B, ϕ = 0 on
Rn \B′, and ‖dϕ‖∞ ≤ 2/(r′ − r).
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Then g is supported in B′ and using the properties of f and ϕ and the identities
Deg = ϕDef + f Deϕ and dWg = ϕdWf + f dWϕ we obtain that for every x ∈ B′
there holds

(a) |g(x)| ≤ |f(x)| ≤ ε′;
(b) − 2ε′

r′−r ≤ Deg(x) ≤ 1 + 2ε′

r′−r , and Deg(x) = Def(x) = 1 if x ∈ K;

(c) |dWg(x)| ≤ |dWf(x)|+ |f(x)| |dWϕ(x)| ≤ 1
tanα + 2ε′

r′−r .

Thus statements (i), (ii) and (iii) follow respectively from statements (a), (b)
and (c) provided that we choose ε′ small enough. �

4.14. Lemma. Let ε, σ be positive real numbers, f a function in X, and E′ a
Borel subset of E. Then there exist a smooth function f ′′ ∈ X and a compact set
K contained in E′ such that

(i) ‖f ′′ − f‖∞ ≤ 2ε;

(ii) µ(K) ≥ µ(E′)/(4d);

(iii) Uσf
′′(x) ≥ dv(x)/(3

√
d) for every x ∈ K.

Proof. The idea is to take a smooth function f ′ close to f , and then modify
it into a function f ′′ so to get Uσf

′′(x) large enough for sufficiently many x ∈ E′.
This modification will be obtained by adding to f ′ a finite number of smooth
perturbations with small supremum norms and small, disjoint supports, but with
large derivative in the direction v.

In order to simplify the notation, through this proof we write Dj for the partial
derivative Dej , where ej is any of the vectorfields that appear in the definition of
the space X in §4.2.

Step 1. There exists a smooth function f ′ on Rn such that

(a) ‖f ′ − f‖∞ ≤ ε;
(b) ‖Djf

′‖∞ < 1 for j = 1, . . . , n, and in particular f ′ belongs to X.

We fix a mollifier ρ with compact support in Rn, choose s > 0 so that s‖f‖∞ < ε,
and set

f ′ := (1− s)f ∗ ρt
where ρt(x) := t−nρ(x/t) and t has yet to be chosen.

Since f is uniformly continuous, f ′ converges uniformly to (1 − s)f as t → 0,
then ‖f ′ − f‖∞ converges to s‖f‖∞ < ε, which implies that (a) holds if we choose
t small enough.

Since the vectorfield ej that defines the partial derivative Dj is continuous, it is
not difficult to show that ‖Djf

′‖∞ converges to (1−s)‖Djf‖∞ < 1 as t→ 0 (recall
that ‖Djf‖∞ ≤ 1 because f ∈ X) and therefore also (b) holds if we choose t small
enough.

Step 2. Construction of the set E′k.

For every x ∈ E the vectors e1(x), . . . , ed(x) form orthonormal basis of V (µ, x)⊥
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(see §4.2); thus

dv(x) := dist(v, V (µ, x)) =

[ d∑
k=1

(v · ek(x))2

]1/2

≤
√
d sup

1≤k≤d
|v · ek(x)| ,

and then there exists k = 1, . . . , d such that dv(x) ≤
√
d |v · ek(x)|. Consequently,

the set E′ is covered by the sets

E′k :=
{
x ∈ E′ : dv(x) ≤

√
d |v · ek(x)|

}
; (4.7)

in particular there exists at least one value of k such that

µ(E′k) ≥
µ(E′)

d
, (4.8)

and for the rest of the proof k is assigned this specific value.

For the next four steps we fix a point x̄ ∈ E′k and positive numbers r, r′ such
that

r < σ/3 , r < r′ ≤ 2r . (4.9)

Step 3. Construction of the sets Ex̄,r.
Let α(x̄, r) be the supremum of the angle between V (µ, x) and V (µ, x̄) as x varies

in E∩B(x̄, r) (the angle between subspaces of Rn is defined in §2.1). Since V (µ, x)
is continuous in x ∈ E (cf. §4.2), we have that

α(x̄, r)→ 0 as r → 0. (4.10)

Since ek(x̄) is orthogonal to V (µ, x̄), the angle between ek(x̄) and V (µ, x) is at least
π/2− α(x̄, r), and therefore the cone

Cx̄,r := C
(
ek(x̄), π/2− 2α(x̄, r)

)
satisfies

Cx̄,r ∩ V (µ, x) = {0} for all x ∈ E ∩B(x̄, r).

Moreover, since the set F := E′k ∩B(x̄, r) is contained in E ∩B(x̄, r), we can apply
Lemma 7.5 to find a Cx̄,r-null set F ′ contained in F that µ(F ′) = µ(F ). Then we
can take a compact set Kx̄,r contained in F ′ such that

µ(Kx̄,r) ≥
1

2
µ(F ′) =

1

2
µ(E′k ∩B(x̄, r)) . (4.11)

Note that Kx̄,r is Cx̄,r-null because it is contained in F ′.

Step 4. Construction of the perturbations ḡx̄,r,r′.
We set

ε′ := min
{1

2
, ε, r(r′ − r), 1− ‖Djf

′‖∞ with j = 1, . . . , n.
}

Note that ε′ is strictly positive because of statement (b) in Step 1 and the fact that
r′ > r. Since Kx̄,r is Cx̄,r-null, we can use Lemma 4.13 to find a smooth function
gx̄,r,r′ such that

(c) ‖gx̄,r,r′‖∞ ≤ ε′ and the support of gx̄,r,r′ is contained in B(x̄, r′);
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and setting e := ek(x̄), W := e⊥, for every x ∈ B(x̄, r′) there holds

(d) −ε′ ≤ Degx̄,r,r′(x) ≤ 1 + ε′ and Degx̄,r,r′(x) = 1 if x ∈ Kx̄,r;

(e) |dWgx̄,r,r′(x)| ≤ 2 tan
(
2α(x̄, r)

)
.

Finally we set

ḡx̄,r,r′ := ±1

2
gx̄,r,r′

where we convene that ± is + if Def
′(x̄) ≤ 0 and − otherwise.

Step 5. There exists r0 = r0(x̄) > 0 such that for r < r0 there holds

Uσ(f ′ + ḡx̄,r,r′)(x) ≥ dv(x)

3
√
d

for every x ∈ Kx̄,r. (4.12)

In the following, given a quantity m depending on x̄, r, r′ and x ∈ B(x̄, r), we
write m = o(1) to mean that, for every x̄, m tends to 0 as r → 0, uniformly in all
remaining variables. In other words, for every x̄ and every ε > 0 there exists r̄ > 0
such that |m| ≤ ε if r ≤ r̄.

To simplify the notation, from now on we write g and ḡ for gx̄,r,r′ and ḡx̄,r,r′ .
For every x ∈ Kx̄,r ⊂ B(x̄, r) we take h = h(x) > 0 such that x+ hv belongs to

∂B(x̄, r′). Then, taking into account that |v| = 1 and (4.9), we have

r′ − r ≤ h ≤ r + r′ ≤ 3r ≤ σ .

We can then apply estimate (4.4) to the function f ′′ := f ′+ ḡ; taking into account
that ḡ = ±1

2g and g(x+hv) = 0 (recall that the support of g is contained in B(x̄, r′)
by statement (c) in Step 4) we get

Uσf
′′(x) ≥

∣∣∣Dvf
′′(x)− f ′′(x+ hv)− f ′′(x)

h

∣∣∣
=
∣∣∣Dv ḡ(x) +Dvf

′(x)− f ′(x+ hv)− f ′(x)

h
+
ḡ(x)

h

∣∣∣
≥ 1

2

∣∣Dvg(x)
∣∣− ∣∣∣Dvf

′(x)− f ′(x+ hv)− f ′(x)

h

∣∣∣− |g(x)|
2h

. (4.13)

Since f ′ is of class C1, we clearly have∣∣∣Dvf
′(x)− f ′(x+ hv)− f ′(x)

h

∣∣∣ = o(1) . (4.14)

Using statement (c) in Step 4, the inequality r′−r < h given above, and the choice
of ε′, we get

|g(x)|
h
≤ ε′

r′ − r
≤ r = o(1) . (4.15)

Finally, to estimate |Dvg(x)| we decompose v as v = (v ·e)e+w with w ∈W . Then

Dvg(x) = (v · e)Deg(x) + 〈dWg(x) ; w〉 ,
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and therefore

|Dvg(x)| ≥ |v · e| |Deg(x)| − |dWg(x)|
≥ |v · e| − 2 tan

(
2 ᾱ(x̄, r)

)
≥ |v · ek(x)| − |ek(x)− ek(x̄)| − 2 tan

(
2 ᾱ(x̄, r)

)
≥ |v · ek(x)| − o(1) ≥ dv(x)/

√
d− o(1) , (4.16)

where the second inequality follows from statements (d) and (e) in Step 4 and the
fact that x ∈ Kx̄,r; for the third inequality we used that |v| = 1 and e = ek(x̄); the
fourth one follows from (4.10) and the fact ek(x) is continuous in x, and the last
inequality follows from (4.7) and the fact that x ∈ Kx̄,r ⊂ E′k.

Putting estimates (4.13), (4.14), (4.15), (4.16) together we get

Uσ(f ′ + ḡ)(x) = Uσf
′′(x) ≥ dv(x)

2
√
d
− o(1) ,

which clearly implies the claim in Step 5.

Step 6. There exists r1 = r1(x̄) > 0 such that f ′ + ḡx̄,r,r′ ∈ X if r < r1.
Since ḡ is supported in B(x̄, r′) and f ′ belongs to X (Step 1), to prove that f ′+ ḡ

belongs to X it suffices to show that∣∣Dj(f
′ + ḡx̄,r,r′)(x)

∣∣ ≤ 1 for every x ∈ B(x̄, r′) and j = 1, . . . , n. (4.17)

We begin with the case j = k. Recalling the identities ḡ = ±1
2g, e = ek(x̄), we

obtain

Dkḡ(x) = Deḡ(x) + 〈dḡ(x) ; ek(x)− e〉 = ±1

2
Deg(x) + o(1) ,

Dkf
′(x) = Dkf

′(x̄) + o(1) ,

and therefore ∣∣Dk(f
′ + ḡ)(x)

∣∣ =
∣∣∣Dkf

′(x̄)± 1

2
Deg(x)

∣∣∣+ o(1) . (4.18)

Recall now that −ε′ ≤ Deg(x) ≤ 1 + ε′ (statement (d) above), that the sign ±
means + when Dkf

′(x̄) ≤ 0 and − otherwise, that |Dkf
′(x)| ≤ 1− ε′ and ε′ ≤ 1/2

(by the choice of ε′). Using these facts we can easily prove that∣∣∣Dkf
′(x̄)± 1

2
Deg(x)

∣∣∣ ≤ 1− ε′/2 ,

which, together with (4.18), clearly implies that (4.17) holds for r small enough.
To prove (4.17) for j 6= k is actually simpler: recall indeed that ‖Djf

′‖∞ < 1
(statement (b) above) and note that

|Dj ḡ(x)| ≤
∣∣〈dḡ(x) ; ej(x̄)〉

∣∣+
∣∣〈dḡ(x) ; ej(x)− ej(x̄)〉

∣∣
≤ tan

(
2α(x̄, r)

)
+ |dḡ(x)| |ej(x)− ej(x̄)| = o(1) ,

where the second inequality follows from statement (e) in Step 4 and the fact that,
by definition, ḡ = ±1

2g.
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Step 7. Construction of the function f ′′ and the set K.
We consider the family G of all closed balls B(x̄, r) with x̄ ∈ E′k and r smaller

than r1(x) and r2(x), so that the conclusions of Step 5 and Step 6 hold. By a
standard corollary of Besicovitch covering theorem (see for example [17], Proposi-
tion 4.2.13) we can extract from G finitely many disjoint balls Bi = B(x̄i, ri) such
that ∑

i

µ(E′k ∩Bi) ≥
1

2
µ(E′k) . (4.19)

Since the balls Bi = B(x̄i, ri) are closed and disjoint, for every i we can find r′i > ri
such that the enlarged balls B′i := B(x̄i, r

′
i) are still disjoint. Finally, for every i we

set ḡi := ḡx̄i,ri,r′i , Ki := Kx̄i,ri , and

f ′′ := f ′ +
∑
i

ḡi , K :=
⋃
i

Ki .

We now check that f ′′ and K satisfy all requirements.
The function f ′′ is smooth because so are f ′ and ḡi, and the set K is compact

because so are the sets Ki.
Note that the supports of the functions ḡi are disjoint (because they are contained

in the balls B′i), and therefore at every point x ∈ Rn the derivative of f ′′ agrees
either with the derivative of f ′ or with that of f ′ + ḡi for some i. Therefore, since
f ′ belongs to X (Step 1) and f ′ + ḡi belongs to X for every i (Step 6), we infer
that also f ′′ belongs to X.

Statement (i), namely that ‖f ′′− f‖ ≤ 2ε, follows from statements (a) in Step 1
and (c) in Step 4, and the fact that the functions gi have disjoint supports.

Statement (ii), namely that µ(K) ≥ µ(E′)/(4d), follows from estimates (4.11),
(4.19), and (4.8).

Consider now x ∈ Ki for some i. By Step 5, Uσ(f ′ + ḡi)(x) ≥ dv(x)/(3
√
d).

Moreover the proof of this estimates involves only the restriction of f ′ + ḡi to the
ball B′i, where f ′ + ḡi agrees with f ′′. Thus the same estimates holds for Uσf

′′(x)
as well, which proves statement (iii). �

4.15. Lemma. Take f ∈ X and σ > 0. If Uσ is continuous at f (as a map from
X to L1(µ)) then

Uσf(x) ≥ dv(x)

3
√
d

for µ-a.e. x ∈ E. (4.20)

Proof. We assume that (4.20) fails and prove that Uσ is not continuous at f .
Indeed, if (4.20) does not hold, we can find a set E′ contained in E with µ(E′) > 0
and δ > 0 such that

Uσf(x) ≤ dv(x)

3
√
d
− δ for every x ∈ E′.

Then we use Lemma 4.14 to construct a sequence of smooth functions fh ∈ X and
of compact sets Kh contained in E′ such that fh → f uniformly as h→ +∞, and
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for every h there holds µ(Kh) ≥ µ(E′)/(4d) and

Uσfh(x) ≥ dv(x)

3
√
d

for every x ∈ Kh.

Thus Uσfh does not converge to Uσf in the L1(µ)-norm, and more precisely∥∥Uσfh − Uσf∥∥L1(µ)
≥
∫
Kh

∣∣Uσfh − Uσf ∣∣ dµ ≥ δµ(Kh) ≥ δ

4d
µ(E′) . �

Proof of Proposition 4.4. For every σ > 0, let Nv,σ of all f ∈ X which satisfy
(4.20). Then each Nv,σ is residual in X because it contains the set of continuity
points of Uσ (Lemma 4.15), which in turn is residual because Uσ is a map of
Baire class 1 (Lemma 4.10).

To conclude we note that Nv agrees with the intersection of all Nv,1/m with
m = 1, 2, . . . (by (4.3)) and therefore Nv is residual as well. �

Proof of Proposition 4.5. Let D be a countable dense subset of Rn, and let
N ′ be the intersection of all sets Nv defined in Proposition 4.4 with v ∈ D. By
Proposition 4.4 the sets Nv are residual in X, and then also N ′ is residual.

Let now be given f ∈ N ′. One readily checks that for µ-a.e. x ∈ E inequality
(4.1) holds for every v ∈ D, and we deduce that it actually holds for every v ∈ Rn
using the fact that both sides of (4.1) are continuous in v (and D is dense in Rn);
notice indeed that the directional upper and lower derivatives D±v f(x) are Lipschitz
in v (with the same Lipschitz constant as f).

We have thus proved that f belongs to N , thus N contains N ′, and therefore is
residual. �

Proof of Theorem 4.1. The strategy is simple: we cover Rn with a countable
family of pairwise disjoint sets Ei which satisfy the assumption in §4.2, then we use
Proposition 4.5 to find functions fi which satisfy (4.1) for every v and µ-a.e. x ∈ Ei,
and we regularize these functions out of the set Ei using Proposition 8.4; finally we
take as f a weighted sum of these modified functions.

For every x ∈ Rn let d(x) be the dimension of V (µ, x)⊥, and let F0 be the set of
all x such that d(x) > 0.

Step 1. For every (Borel) set F contained in F0 with µ(F ) > 0 there exists a
compact set E ⊂ F with µ(E) > 0 which satisfies the assumption in §4.2.

The map x 7→ V (µ, x)⊥, viewed as a closed-valued multifunction from E to Rn,
is Borel measurable, and therefore we can use Kuratowski and Ryll-Nardzewski’s
measurable selection theorem (see [32], Theorem 5.2.1) to choose Borel vectorfields
e1, . . . , en on Rn so that

(a) e1(x), . . . , en(x) form an orthonormal basis of Rn for every x ∈ Rn;

(b) e1(x), . . . , ed(x)(x) span V (µ, x)⊥ for every x ∈ F .

Then we use Lusin’s theorem to find a compact set E ⊂ F with µ(E) > 0 such
that the restrictions of the function d and the vectorfields ej to E are continuous;
thus d is locally constant on E; possibly replacing E with a smaller subset we can
further assume that d is constant on E and that the restrictions of each ej to E
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takes values in the closed ball Bj := B(ej(x̄), δ) for some x̄ ∈ E and some (small)
δ > 0.

To conclude the proof we modify the vectorfields ej in the complement of E
so that they become continuous on the whole Rn and still satisfy assumption (a)
above. This last step is achieved by first extending the restriction of each ej to
E to a continuous map from Rn to Bj (using Tietze extension theorem) and then
applying the Gram-Schmidt orthonormalization process to the resulting vectorfields
(note that if δ is small enough these vectorfields are linearly independent at every
point).

Step 2. There exists a countable collection of pairwise disjoint compact sets Ei
such that each Ei satisfies µ(Ei) > 0 and the assumption in §4.2, and the union of
all Ei contains µ-a.e. point.

Let G be the class of all countable collections {Ei} that satisfy all require-
ments except possibly the last one (the union contains µ-a.e. point). The class G
is nonempty and admits an element which is maximal with respect to inclusion.
Using Step 1 it is easy to prove that this maximal element satisfies also the last
requirement.

For the rest of the proof we assume that the collection {Ei} is infinite and that
i = 1, 2, . . . ; the case of a finite collection can be treated in the same way (and is
actually simpler).

Step 3. For every i = 1, 2, . . . there exists a function gi with Lip(gi) ≤ 2 which
is smooth outside Ei and for µ-every x ∈ Ei satisfies

D+
v gi(x)−D−v gi(x) > 0 for every v /∈ V (µ, x). (4.21)

We use Proposition 4.5 to find a Lipschitz function fi with Lip(fi) ≤ 1 such that
for µ-a.e. x ∈ Ei,

D+
v fi(x)−D−v fi(x) > 0 for every v /∈ V (µ, x); (4.22)

and then we apply Proposition 8.4 to each fi to find a Lipschitz function gi with
Lip(gi) ≤ 2 which agrees with fi on Ei, is smooth on Rn \ Ei, and satisfies

|gi(x)− fi(x)| ≤
(
dist(x,Ei)

)2
for every x ∈ Rn.

This implies in particular that for every x ∈ Ei and every v ∈ Rn there holds

gi(x+ hv) = fi(x+ hv) +O(|h|2) for every h ∈ R,

which yields D±v gi(x) = D±v fi(x), and then (4.22) implies (4.21).

Step 4. Construction of the function f .
We take the functions gi as in Step 3, and note that, possibly adding a suitable

constant to gi, we can further assume gi(0) = 0 for every i. Then we set

f(x) :=

+∞∑
i=1

gi(x)

2i
for every x ∈ Rn.

The function f is well-defined (thanks to the estimate |gi(x)| ≤ 2|x|, which follows
from Lip(gi) ≤ 2) and satisfies Lip(f) ≤ 2.
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We claim that for µ-a.e. x there holds D+
v f(x) − D−v f(x) > 0 for every v /∈

V (µ, x). Taking into account (4.21) and the fact that the union of the sets Ei
contains µ-a.e. x, it suffices to prove that for every i and every x ∈ Ei the function

ĝi :=
∑
j 6=i

gj(x)

2j

is differentiable at x.
To this end, it suffices to show that for every ε > 0 we can decompose ĝi as

ĝi = g′i + g′′i where g′i is differentiable at x and Lip(g′′i ) ≤ ε.
Let indeed g′i be the sum of gj over all j 6= i with j ≤ j0, and g′′i be the sum

over all j 6= i with j > j0; thus g′i is a finite sum of functions which are smooth
in a neighbourhood of x, and therefore is differentiable at x, while the Lipschitz
constant of g′′i satisfies

Lip(g′′i ) ≤
∑
j>j0

Lip(gi)

2j
≤ 21−j0 ,

and in particular it smaller than ε for j0 sufficiently large. �

5. Measures related to normal currents

In the main result of this section (Theorem 5.10) we establish a connection be-
tween the decomposability bundle of a measure µ and the Radon-Nikodým deriv-
ative of a normal current w.r.t. to µ. Then we consider a few well-known formulas
related to normal currents and smooth functions (or forms), and use the previous
result to extend these formulas to the case of Lipschitz functions (or forms). More
precisely, we prove formulas for the action of the boundary of a normal current on
a Lipschitz form (Proposition 5.12), for the boundary of the interior product of a
normal current and a Lipschitz form (Proposition 5.13), and for the push-forward
of a normal current according to a Lipschitz map (Proposition 5.17).

5.1. Notation related to currents. We list here the notation from multilinear
algebra and the theory of currents that is used in this section and in the next one:

∧k(V ) space of k-vectors in the linear space V ;

∧k(V ) space of k-covectors on the linear space V ;

〈α ; v〉 duality pairing of the k-covector α and the k-vector v, also written as
〈v ; α〉;

v ∧ w exterior product of multi-vectors (or multi-covectors);

v α interior product of the k-vector v and the h-covector α (§5.7);

〈T ; ω〉 duality pairing of the k-current T and the k-form ω;

T ω interior product of the k-current T and the h-form ω (§5.7);

dω exterior derivative of the k-form ω;

dTω exterior derivative of the k-form ω w.r.t. the current T (§5.11);

∂T boundary of the current T (§5.2);
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M(T ) mass of the current T (§5.2);

[E, τ,m] current associated to a rectifiable set E, an orientation τ , and a mul-
tiplicity m (§5.4);

span(v) span of the k-vector v (§5.8);

f#ω pull-back of the form ω according to the map f (§5.15).

f#
T ω restriction of f#ω to the tangent bundle of T (§5.15).

f# T push-forward of the current T according to the map f (§5.16).

5.2. Currents and normal currents. We recall here the basic notions and
terminology of the theory of currents; elementary introductions to this theory can
be found for instance in [17], [22], [30]; the most complete reference remains [12].

A k-dimensional current (or k-current) T in Rn is a continuous linear functional
on the space of k-forms on Rn which are smooth and compactly supported. The
boundary of T is the (k − 1)-current ∂T defined by 〈∂T ; ω〉 := 〈T ; dω〉 for every
smooth (k − 1)-form ω with compact support in Rn. The mass of T , denoted by
M(T ), is the supremum of 〈T ; ω〉 over all forms ω such that |ω| ≤ 1 everywhere.5

A current T is called normal if both T and ∂T have finite mass.

5.3. Representation of currents with finite mass. By Riesz theorem a
current T with finite mass can be represented as a finite measure with values in
the space ∧k(Rn) of k-vectors in Rn, and therefore it can be written in the form
T = τµ where µ is a finite positive measure and τ is a k-vectorfield in L1(µ). In
particular the action of T on a form ω is given by

〈T ; ω〉 =

∫
Rn

〈ω(x) ; τ(x)〉 dµ(x) ,

and the mass M(T ) is the mass of T as a measure, that is, M(T ) =
∫
|τ |dµ.

In the following, whenever we write T in the form T = τµ we tacitly assume
that τ(x) 6= 0 for µ-a.e. x, and in this case we say that µ is a measure associated
to the current T . Note that µ and τ are uniquely determined if we further require
that |τ(x)| = 1 for µ-a.e. x.

Moreover, if T is a k-current with finite mass and µ is an arbitrary measure, we
can write T as T = τµ+ ν where τ is k-vectorfield in L1(µ) (the Radon-Nikodým
derivative of T w.r.t. µ), and ν is a measure with values in k-vectors which is
singular w.r.t. µ (the singular part of T w.r.t. µ).

5.4. Rectifiable currents. Let E be a k-rectifiable set. An orientation of E is a
k-vectorfield τ on Rn such that τ(x) is a simple k-vector with norm 1 that spans the
approximate tangent space Tan(E, x) for H k-a.e. x ∈ E. A multiplicity on E is any
integer-valued function m such that

∫
EmdH k < +∞. For every choice of E, τ,m

as above we denote by [E, τ,m] the k-current defined by [E, τ,m] := mτ1E H k,
that is, 〈

[E, τ,m] ; ω
〉

:=

∫
E
〈ω ; τ〉mdH k .

5 We endow ∧k(V ) and ∧k(V ) with the Euclidean norms, but other norms would work as fine.
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Currents of this type are called integer-multiplicity rectifiable currents, and in the
following simply rectifiable currents.

The next statement contains a decomposition for normal 1-currents which is
strictly related to a decomposition given in [31].

5.5. Theorem. Let T = τµ be a normal 1-current with |τ(x)| = 1 for µ-a.e. x.
Then there exists a family of rectifiable 1-currents

{
Tt := [Et, τt, 1] : t ∈ I

}
, where

I is a measure space endowed with a finite measure dt, such that

(i) T can be decomposed as T =
∫
I Tt dt (in the sense of §2.3) and

M(T ) =

∫
I
M(Tt) dt =

∫
I
H 1(Et) dt ; (5.1)

(ii) τt(x) = τ(x) for H 1-a.e. x ∈ Et and for a.e. t ∈ I;

(iii) µ can be decomposed as µ =
∫
I µt dt (in the sense of §2.3) where each µt is

the restriction of H 1 to the 1-rectifiable set Et.

Proof. The existence of a family {Tt : t ∈ I} satisfying the decomposition in
statement (i) and (5.1) can be found for instance in [23], Corollary 3.3.

To prove statement (ii), we integrate the vectorfield τ against T , viewed as a
vector measure, and using the decomposition of T we obtain

M(T ) =

∫
Rn

1 dµ(x) =

∫
Rn

〈τ(x) ; dT (x)〉

=

∫
I

[ ∫
Rn

〈τ(x) ; dTt(x)〉
]
dt

=

∫
I

[ ∫
Et

〈τ(x) ; τt(x)〉 dH 1(x)

]
dt

≤
∫
I
H 1(Et) dt =

∫
I
M(Tt) dt ,

where the inequality follows from the fact that τ(x) and τt(x) are unit vectors.
Now (5.1) implies that this inequality is actually an equality, which means that the
vectors τ(x) and τt(x) agree for H 1-a.e. x ∈ Et and a.e. t.

Finally, the identity of scalar measures µ =
∫
I µt dt in statement (iii) is obtained

by multiplying the identity of vector measures T =
∫
I Tt dt by the vectorfield τ . �

A consequence of Theorem 5.5 is the following.

5.6. Proposition. Let µ be a positive measure and let τ be the Radon-Nikodým
derivative of a 1-dimensional normal current T w.r.t. µ. Then

span(τ(x)) ⊂ V (µ, x) for µ-a.e. x. (5.2)

Proof. We write T in the form T = τ ′µ′ with |τ ′(x)| = 1 for µ′-a.e. x, and
consider the decomposition µ′ =

∫
I µt dt given in Theorem 5.5: for µt-a.e. x and

a.e. t we have that span(τ ′(x)) agrees with Tan(Et, x) which in turn is contained
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in V (µ′, x) (by the definition of decomposability bundle and Remark 2.7(iv)), and
this means that

span(τ ′(x)) ⊂ V (µ′, x) for µ′-a.e. x. (5.3)

Now, let E be the set of all x such that τ(x) 6= 0. Thus 1Eµ� µ′, and therefore
Proposition 2.9(i) yields V (µ′, x) = V (µ, x) for µ-a.e. x ∈ E. Moreover τ ′ = τ/|τ |
µ-a.e. in E. These facts together with (5.3) yield that span(τ(x)) ⊂ V (µ, x) for
µ-a.e. x ∈ E, and since this inclusion is trivially true for x /∈ E, the proof of (5.2)
is complete. �

In order to extend Proposition 5.6 to currents with arbitrary dimension, we need
some additional notions.

5.7. Interior product. Let h, k be integers with 0 ≤ h ≤ k. Given a k-vector v
and an h-covector α on V , the interior product v α is the (k− h)-vector uniquely
defined by the duality pairing

〈v α ; β〉 = 〈v ; α ∧ β〉 for every β ∈ ∧k−h(V ).

Accordingly, given a k-current T in Rn and a smooth h-form ω on Rn, the interior
product T ω is the (k − h)-current defined by

〈T ω ; σ〉 = 〈T ; ω ∧ σ〉 (5.4)

for every smooth (h − k)-form σ with compact support on Rn. Then the natural
counterpart of the Leibniz rule for the exterior derivative of the product of forms
is

∂(T ω) = (−1)h
[
(∂T ) ω − T dω

]
. (5.5)

Note that if T has finite mass and ω is bounded and continuous then formula
(5.4) still makes sense, T ω is a current with finite mass, and given a representation
T = τµ there holds T ω = (τ ω)µ. Along the same line, if T is a normal current
and ω is of class C1, bounded and with bounded derivative, then T ω is a normal
current and formula (5.5) holds.

5.8. Span of a k-vector. Given a linear space V and a k-vector v in V , we
denote by span(v) the smallest linear subspace W of V such that v belongs to
∧k(W ).6

5.9. Proposition. Taken v and span(v) as above, we have that

(i) if v = 0 then span(v) = {0};
(ii) if v 6= 0 then span(v) has dimension at least k;

(iii) if v is simple and non-trivial, that is, v can be written as v = v1∧· · ·∧vk with
v1, . . . , vk linearly independent vectors in V , then span(v) is the subspace
of V spanned by v1, . . . , vk; in particular span(v) has dimension k;

(iv) conversely, if span(v) has dimension k then v is simple and non-trivial;

(v) span(v) consists of all vectors of the form v α with α ∈ ∧k−1(V ).

6 If W is a linear subspace of V then every k-vector in W is canonically identified with a k-vector
in V via the immersion I : W → V . Assuming this identification we have that ∧k(W )∩∧k(W ′) =
∧k(W ∩W ′) for every W,W ′ subspaces of V , and therefore the definition of span(v) is well-posed.
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Proof. Statement (i) is immediate, while statements (ii) and (iv) are conse-
quence of the following general facts, respectively: if dim(W ) < k then every
k-vector in W is null, and if dim(W ) = k then every k-vector in W is simple.

To prove statement (iii), denote by W the linear subspace of V generated by
v1, . . . , vk. Clearly span(v) is contained in W ; moreover span(v) has dimension at
least k by statement (ii) while W has dimension at most k; therefore span(v) and
W agree.

To prove statement (v), denote by W the linear subspace of V consisting of all
vectors v α with α ∈ ∧k−1(V ). The inclusion W ⊂ span(v) is immediate because
v is a k-vector in span(v), and therefore the interior product of v by any h-covector
on span(v) is a (k − h)-vector in span(v).7

To prove the opposite inclusion, namely that span(v) ⊂ W , we introduce some
additional notation. Given a basis {ei : i = 1, . . . , n} of V , we denote by {e∗i } the
corresponding dual basis.8 We then denote by I(n, k) the set of all multi-indexes
i = (i1, . . . , ik) such that 1 ≤ i1 < i2 < · · · < ik ≤ n, and we set, as usual,
ei := ei1 ∧ · · · ∧ eik and e∗i := e∗i1 ∧ · · · ∧ e

∗
ik

. Thus the k-vectors ei form a basis of
∧k(V ) while the k-covectors e∗i form the corresponding dual basis of ∧k(V ).

Let now k′ := dim(W ), and choose the basis {ei} so that {ei : i = 1, . . . , k′} is a
basis of W . Then the inclusion span(v) ⊂W means that v is a linear combination
of ei over all i with ik ≤ k′, or equivalently that 〈v ; e∗j 〉 = 0 for all j such that

jk > k′. Indeed we can write e∗j as e∗j′ ∧e∗j with j′ ∈ I(n, k−1) and j > k′, and then

〈v ; e∗j 〉 = 〈v ; e∗j′ ∧ e∗j 〉 = 〈v e∗j′ ; e
∗
j 〉 = 0 ,

because w := v e∗j′ belongs by definition to W , and 〈w ; e∗j 〉 = 0 for every w ∈ W
and every j ≥ k′ by the choice of the basis {ei}. �

We can now state and prove the main result of this section.

5.10. Theorem. Let µ be a positive measure and let τ be the Radon-Nikodým
derivative of a k-dimensional normal current T w.r.t. µ.

Then span(τ(x)) is contained in V (µ, x) for µ-a.e. x. In particular V (µ, x) has
dimension at least k for µ-a.e. x such that τ(x) 6= 0.

Proof. For every α ∈ ∧k−1(Rn), T α is a normal 1-current whose Radon-
Nikodým derivative w.r.t. µ is τ α (see §5.7), and therefore the vector τ(x) α
belongs to V (µ, x) for µ-a.e. x (Proposition 5.6). In particular, taken a finite set
{αj : j ∈ J} that spans ∧k−1(Rn), for µ-a.e. x there holds

τ(x) αj ∈ V (µ, x) for every j ∈ J . (5.6)

Moreover the vectors τ(x) αj span {τ(x) α : α ∈ ∧k−1(Rn)}, which by Propo-
sition 5.9(v) agrees with span(τ(x)). This fact and (5.6) imply that span(τ(x)) is

7 This is actually a consequence of the fact that the interior product commutes with the
immersion I : W → V , and more generally with every linear map T : W → V , in the sense that
(T#v) α = T#(v (T#α)) for every v ∈ ∧k(W ) and every α ∈ ∧h(V ).

8 That is, the basis of the dual V ∗ defined by the identity 〈e∗i ; ej〉 = δij for every i, j.
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contained in V (µ, x) for µ-a.e. x. The rest of the statement follows from Proposi-
tion 5.9(ii). �

In the rest of this section we give some applications of Theorem 5.10. We begin
with a simple remark.

5.11. Exterior derivative of Lipschitz forms. Let µ be a positive measure on
Rn and ω a Lipschitz h-form on Rn. Then the (pointwise) exterior derivative dω(x)
is defined at L n-a.e. x but in general not at µ-a.e. x. However, since the coefficients
of ω w.r.t. any basis of ∧h(Rn) are Lipschitz functions, they are differentiable w.r.t.
V (µ, x) at µ-a.e. x, and therefore it is possible to define the exterior derivative of
ω relative to V (µ, x) at µ-a.e. x, which we denote by dµω(x).

The precise construction is the following: given a basis {αi} of ∧h(Rn), we denote
by ωi the coefficients of ω w.r.t. this basis, so that ω(x) =

∑
i ωi(x)αi for every

x ∈ Rn. Then, given a point x such that the functions ωi are all differentiable
at x w.r.t. to V = V (µ, x), we chose a basis {ej} of V , and let dµω(x) be the
(h+ 1)-covector on V defined by

dµω(x) :=
∑
i,j

Dejωi(x) e∗j ∧ αi .

Assume now that T = τµ is a normal k-current on Rn. By Theorem 5.10,
span(τ(x)) is contained in V (µ, x) for µ-a.e. x, and therefore we can define the
exterior derivative of ω w.r.t. span(τ(x)) at µ-a.e. x, which we denote by dTω(x);
in other words dTω(x) is the (h+1)-covector on span(τ(x)) given by the restriction
of dµω(x).

Note that the form dTω is essentially independent of the specific decomposition
T = τµ, because so is the bundle x 7→ span(τ(x)). Indeed, for every other de-
composition T = τ ′µ′ the measures µ and µ′ are absolutely continuous w.r.t. each
other, and span(τ(x)) = span(τ ′(x)) for µ-a.e.x.

Now we turn our attention to the identity that defines the boundary of a k-
current T , namely 〈∂T ; ω〉 = 〈T ; dω〉 for every smooth (k−1)-form ω with compact
support. If T is a normal current then both terms in this identity can be represented
as integrals; therefore they make sense even when ω is a form of class C1 with ω
and dω bounded, and a simple approximation argument proves that they agree.

The next result shows that the same is true for Lipschitz forms, having made
the necessary modifications.

5.12. Proposition. Let T = τµ be a normal k-current on Rn, and ω a bounded
Lipschitz (k − 1)-form on Rn. Then

〈∂T ; ω〉 =

∫
Rn

〈dTω(x) ; τ(x)〉dµ(x) , (5.7)

where dTω is taken as in §5.11.

Note that the duality pairing 〈dTω(x) ; τ(x)〉 in (5.7) is well-defined for µ-a.e. x
because dTω(x) is a k-covector on the span of τ(x).
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Proof. We apply Corollary 8.3 with V (x) := span(τ(x)) to the coefficients of ω
w.r.t. some basis of ∧k−1(Rn) and construct a sequence of smooth (k− 1)-forms ωj
which are uniformly bounded, have uniformly bounded derivatives dωj , converge
to ω uniformly, and satisfy

lim
j→+∞

dTωj(x) = dTω(x) for µ-a.e. x. (5.8)

Then

〈∂T ; ω〉 = lim
j→∞
〈∂T ; ωj〉 = lim

j→∞
〈T ; dωj〉

= lim
j→∞

∫
Rn

〈dTωj(x) ; τ(x)〉dµ(x)

=

∫
Rn

〈dTω(x) ; τ(x)〉dµ(x) ,

where the first equality follows from the fact that ωj converge to ω uniformly,
and the fourth one from (5.8) and Lebesgue’s dominated convergence theorem (the
domination is easily obtained using that the forms dωj are uniformly bounded and
τ belongs to L1(µ)). �

Next we consider the interior product T ω of a k-current T and a bounded
Lipschitz h-form ω, and prove a variant of formula (5.5) for the boundary of T ω.

5.13. Proposition. Let T = τµ be a normal k-current on Rn and ω a bounded
Lipschitz h-form on Rn with 0 ≤ h < k. Then T ω = (τ ω)µ is a normal
(k − h)-current with boundary

∂(T ω) = (−1)h
[
(∂T ) ω − (τ dTω)µ

]
, (5.9)

where dTω is taken as in §5.11.

Note that for µ-a.e. x the interior product τ(x) dTω(x) in (5.9) is a well-defined
(k − h − 1)-vector in span(τ(x)) (and hence a (k − h − 1)-vector in Rn) because
dTω(x) is a k-covector on span(τ(x)).

5.14. Remark. In the special case h = 0 Proposition 5.13 can be restated as
follows: if T = τµ is a normal k-current on Rn and f a bounded Lipschitz function
on Rn, then fT = fτµ is a normal k-current with boundary

∂(fT ) = f ∂T + (τ dT f)µ .

Proof of Proposition 5.13. We take a sequence of smooth forms ωj exactly
as in the proof of Proposition 5.12. Since the forms ωj are smooth and bounded,
the currents T ωj are normal (cf. §5.7) and it is easy to see that as j → +∞ they
converge to T ω in the mass norm. Moreover formula (5.5) yields

∂(T ωj) = (−1)h
[
(∂T ) ωj − T dωj

]
, (5.10)

which, together with the fact that the forms ωj and the derivatives dωj are uni-
formly bounded, implies that the masses of ∂(T ωj) are also uniformly bounded.
Thus ∂(T ω) has finite mass, and T ω is a normal current.
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To prove formula (5.9) we pass to the limit in (5.10), and the only delicate point
is to show the convergence of T dωj to T dTω. To this end, we use that

T dωj = (τ dωj)µ = (τ dTωj)µ , T dTω = (τ dTω)µ ,

and that the forms dTωj are uniformly bounded and converge µ-a.e. to dTω by
assumption (5.8). �

We conclude this section by proving a formula for the push-forward of a normal
current according to a Lipschitz map (Proposition 5.17).

5.15. Pull-back of forms. Given a map f : Rn → Rm of class C1 and a
continuous k-form ω on Rm, the pull-back of ω according to f is the continuous
k-form f#ω on Rm defined by〈

(f#ω)(x) ; v1 ∧ · · · ∧ vk
〉

:=
〈
ω(f(x)) ; (df(x) v1) ∧ · · · ∧ (df(x) vk)

〉
(5.11)

for every v1, . . . , vk ∈ Rn.
Note that when f is a Lipschitz map, (f#ω)(x) is a well-defined k-covector on Rn

only at the points x where f is differentiable, that is, at L n-a.e. x, but in general
it is not defined at µ-a.e. x when µ is an arbitrary measure on Rn. However, since
f is differentiable w.r.t. V (µ, x) at µ-a.e. x, we can use formula (5.11) to define
the restriction of (f#ω)(x) to V (µ, x); we denote this k-covector on V (µ, x) by
(f#
µ ω)(x).
Given a normal current T = τµ on Rn, we use that span(τ(x)) is contained

in V (µ, x) for µ-a.e. x (Theorem 5.10) to define (f#
T ω)(x) as the k-covector on

span(τ(x)) given by the restriction of (f#
µ ω)(x) to span(τ(x)) for µ-a.e. x.

5.16. Push-forward of currents. Given a smooth map f : Rn → Rm and a
k-current T in Rn with compact support, the push-forward of T according to f is
the k-current f#T in Rm defined by

〈f#T ; ω〉 := 〈T ; f#ω〉 (5.12)

for every smooth k-form ω on Rm (since T has compact support, 〈T ; σ〉 is well-
defined for every smooth k-form σ on Rn, even without compact support, and in
particular it is defined for σ := f#ω).

If in addition T has finite mass then identity (5.12) can be extended to all
continuous k-forms ω and can be used to define f#T when f of class C1.

When f is Lipschitz the right-hand side of formula (5.12) does not make sense
because the form f#ω is not defined, but the push-forward f#T is still defined if
T is a normal current, although in a completely different way (see [12], §4.1.14,
or [17], Lemma 7.4.3). Indeed one can prove that for every sequence of smooth
maps fj : Rn → Rm that are uniformly Lipschitz and converge to f uniformly, the
push-forwards (fj)#T converge in the sense of currents to the same limit, which is
then taken as definition of f#T .

In the next statement we prove a modification of formula (5.12) which holds
when f is Lipschitz.
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5.17. Proposition. Let T = τµ be a normal k-current on Rn with compact
support, let f : Rn → Rm be a Lipschitz map, and let f#T be the push-forward of
T according to f . Then, for every continuous k-form ω on Rm, there holds

〈f#T ; ω〉 = 〈T ; f#
T ω〉 =

∫
Rn

〈
(f#
T ω)(x) ; τ(x)

〉
dµ(x) . (5.13)

Note that the duality pairing
〈
(f#
T ω)(x) ; τ(x)

〉
in (5.13) is well-defined for µ-

a.e. x because (f#
T ω)(x) is a k-covector on the span of τ(x).

Proof. We use Corollary 8.3 to choose the approximating maps fj used to define
f#T so that for µ-a.e. x the linear maps dT fj(x) converge to dT f(x).

Therefore, using formula (5.11) we obtain that for every smooth k-form ω there
holds

f#
j ω(x) −→

j→+∞
f#
T ω(x) in ∧k[span(τ(x))] for µ-a.e. x. (5.14)

Hence

〈f#T ; ω〉 = lim
j→+∞

〈(fj)#T ; ω〉

= lim
j→+∞

∫
Rn

〈
(f#
j ω)(x) ; τ(x)

〉
dµ(x)

=

∫
Rn

〈
(f#
T ω)(x) ; τ(x)

〉
dµ(x) ,

where the first equality follows from the fact that (fj)#T converge to f#T in the
sense of currents, the second one follows from (5.12), the third one follows from
(5.14) and Lebesgue’s dominated convergence theorem using the domination∣∣〈f#

j ω ; τ
〉∣∣ ≤ |dfj |k|ω| |τ | ≤ Lk|ω| |τ | ,

where |ω| |τ | belongs to L1(µ) and L is the supremum of Lip(fj) over all j.
We have thus proved identity (5.13) for every smooth ω, and we extend it to

every continuous ω by a standard approximation argument. �

6. A characterization of the decomposability bundle.

In this section we give a characterization of the decomposability bundle of a
measure µ on Rn, n ≥ 2, in terms of normal 1-currents (Theorem 6.4), and more
precisely we show that V (µ, x) agrees for µ-a.e. x with the space N(µ, x) defined
in the next subsection. Building on this result we obtain a precise description of
the vectorfields τ on Rn that can be obtained as the Radon-Nikodým derivative of
a 1-dimensional normal current w.r.t. µ (Corollary 6.5), and a decomposition for
measures with non-trivial decomposability bundle (Corollary 6.6).

Through this section µ is a fixed measure on Rn with n ≥ 2.

6.1. The auxiliary bundle N(µ, x). For every point x in the support of µ,
we denote by N(µ, x) the set of all vectors v ∈ Rn for which there exists a normal
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1-current T in Rn with ∂T = 0 such that

lim
r→0

|T − vµ|(B(x, r))

µ(B(x, r))
= 0 (6.1)

(in this section we view 1-currents with finite mass on Rn as Rn-valued measures;
thus |T − vµ| denotes the total variation of the Rn-valued measure T − vµ).

It is sometimes convenient that N(µ, x) is defined for all x ∈ Rn, and therefore
we set N(µ, x) := {0} when x does not belong to the support of µ.

In the following we refer to condition (6.1) by saying that T is asymptotically
equivalent to vµ at the point x.

6.2. Remarks. (i) The set N(µ, x) is clearly a linear subspace of Rn and is
uniquely defined at every point x (by contrast, the decomposability bundle V (µ, x)
is only unique up to µ-negligible subsets of x).

(ii) If τ is the Radon-Nikodým derivative of a normal 1-current T w.r.t. µ, then
τ(x) belongs to N(µ, x) for µ-a.e. x. More precisely, if we write T = τµ + ν
with ν singular w.r.t. µ, then τ(x) ∈ N(µ, x) at every point x where τ is L1(µ)-
approximately continuous and the density of |ν| w.r.t. µ is 0.

(iii) In dimension n = 1, the only normal 1-current T with ∂T = 0 is the trivial
one, and therefore N(µ, x) = {0} for every x and every µ.

(iv) In dimension n = 2 the bundle N(µ, ·) is closely related to the bundle
E(µ, ·) introduced in [1], Definition 2.1. More precisely E(µ, x) is the set of all
vectors v ∈ R2 such that vµ is asymptotically equivalent at x to a vector-valued
measure λ = τ |λ| on R2 which is a (distributional) gradient,9 which is equivalent
to say that τ⊥|λ| is a normal 1-current without boundary (here v⊥ denotes the
rotation of the vector v by 90◦ counterclockwise), and therefore

N(µ, x) =
{
v⊥ : v ∈ E(µ, x)

}
.

If µ is a singular measure on R2, it was proved in [1], Theorem 3.1, that E(µ, x)
has dimension at most 1 for µ-a.e. x. Thus N(µ, x) has dimension at most 1 for
µ-a.e. x as well, and thanks to Theorem 6.4 below we obtain that also V (µ, x) has
dimension at most 1 for µ-a.e. x (cf. §1.5).

(v) We prove in Lemma 6.9 that the map x 7→ N(µ, x) agrees outside a suitable
µ-negligible Borel set with a Borel map from Rn to Gr(Rn). We actually believe
that the map x 7→ N(µ, x) itself is Borel measurable, but the only proof we could
devise is rather involved, and since this result is not really needed in the following,
we decided to omit it.

(vi) There are many possible variants of the definition of N(µ, x). Among these,
the one given above imposes the strongest requirements on the elements of N(µ, x).
Going to the opposite extreme, we may consider the set N ′(µ, x) of all v ∈ Rn for
which there exists a sequence of positive numbers rj that converge to 0 and a

9The original definition actually requires that λ is the gradient of a BV function, but the
difference is irrelevant.
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sequence of normal 1-currents Tj such that

lim
j→+∞

|Tj − vµ|(B(x, rj))

µ(B(x, rj))
= 0 .

Clearly N ′(µ, x) contains N(µ, x) for every x, and it is easy to show that this
inclusion may be strict. However, it should be true that N ′(µ, x) = V (µ, x) for
µ-a.e. x, which in view of Theorem 6.4 below yields N ′(µ, x) = N(µ, x) for µ-a.e. x
(we do not pursue this issue here).

We now give the main results of this section. The first one is a converse of the
statement in Remark 6.2(ii).

6.3. Theorem. Let τ be a Borel vectorfield on Rn which belongs to L1(µ) and
satisfies τ(x) ∈ N(µ, x) for µ-a.e. x. Then there exists a normal 1-current T on
Rn such that

(i) the Radon-Nikodým derivative of T w.r.t. µ agrees (µ-a.e.) with τ , that is,
T = τµ+ σ where σ is singular w.r.t. µ;

(ii) ∂T = 0 and M(T ) ≤ C‖τ‖L1(µ) where the C depends only on n.

6.4. Theorem. There holds V (µ, x) = N(µ, x) for µ-a.e. x.

Putting together Theorems 6.3 and 6.4 and Proposition 5.6 we immediately
obtain the following corollary.

6.5. Corollary. Let τ be a vectorfield on Rn which belongs to L1(µ). Then the
following statements are equivalent:

(i) τ(x) ∈ V (µ, x) for µ-a.e. x;

(ii) there exists a normal 1-current T whose Radon-Nikodým derivative w.r.t. µ
agrees with τ , that is, T = τµ+ σ where σ is singular w.r.t. µ.

From the previous result we obtain the following decomposition for measures
with non-trivial decomposability bundle (cf. [29], Theorem 6.31).

6.6. Corollary. Let τ be a vectorfield on Rn which belongs to L1(µ) and satisfies
τ(x) ∈ V (µ, x) and τ(x) 6= 0 for µ-a.e. x (thus V (µ, x) 6= {0} for µ-a.e. x). Then
µ admits a decomposition µ =

∫
I µt dt in the sense of §2.3, where each µt is the

restriction of H 1 to a 1-rectifiable set Et such that

Tan(Et, x) = span(τ(x)) for H 1-a.e. x ∈ Et.

6.7. Remarks. (i) In dimension n = 1 the statements of Theorems 6.3 and 6.4
and of Corollaries 6.5 and 6.6 are either false or irrelevant (cf. Remark 6.2(iii)).

(ii) We know from Theorem 5.10 that if τ is the Radon-Nikodým derivative of a
normal k-current w.r.t. µ, then span(τ(x)) ⊂ V (µ, x) for µ-a.e. x. In the wake of
Corollary 6.5 we ask now if the converse is true, that is, if every k-vectorfield τ in
L1(µ) that satisfies this inclusion can be obtained as the Radon-Nikodým derivative
of normal k-current w.r.t. µ.

It follows from a result by A. Máthé [21] that the answer is negative for k = 2
and n = 3 (and therefore also for every k, n with 1 < k < n). More precisely,
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Máthé constructs an example of a measure µ in R3 such that (a) dim(V (µ, x)) = 2
for µ-a.e. x, and (b) µ cannot be decomposed in terms of measures associated to
2-dimensional rectifiable sets, that is, µ does not belong to the class F2(R3) defined
in §1.6. Now, property (a) implies that there exists a 2-vectorfield τ in L1(µ) such
that τ(x) 6= 0 and span(τ(x)) ⊂ V (µ, x) for µ-a.e. x. On the other hand every
normal 2-current T in R3 can be decomposed in terms of rectifiable 2-currents
(see for instance [5]), and together with property (b) this fact implies that T is
singular w.r.t. to µ, and in particular τ cannot be the Radon-Nikodým derivative
of T w.r.t. µ.

The rest of this section is devoted to the proofs of Theorems 6.3 and 6.4, and
Corollaries 6.5 and 6.6.

Through these proofs we use the letter C to denote every constant that depends
only on the dimension n (the value may change at every occurrence).

6.8. Lemma. Let T be a normal k-current in Rn, n > k > 0, and B an open
ball in Rn which does not intersect the support of ∂T . Then there exists a normal
k-current U in Rn such that

(i) the currents U and T agree on B, that is, 1B U = 1B T ;

(ii) the support of U is contained in the closure B of B;

(iii) ∂U = 0;

(iv) M(U) ≤ C |T |(B).

Proof. First of all, we notice that it suffices to prove the statement when B is
the open ball with center 0 and radius 1.

We begin with an outline of the construction of U . We choose a point x0 ∈ B,
and construct a retraction p of Rn \ {x0} onto Rn \B as follows: for x /∈ B we let
p(x) := x, and for x ∈ B we let p(x) be the intersection of the sphere ∂B and the
half-line which starts in x0 and pass through x. Thus

p(x) := x0 + tw where w :=
x− x0

|x− x0|
,

and t > 0 is chosen so that |p(x)| = 1, that is,

t :=
√

1 + (x0 · w)2 − |x0|2 − x0 · w .

We then denote by T ′ the push-forward of T according to the map p, that is,
T ′ := p#T . Since p maps B into ∂B and agrees with the identity on Rn \ B we
have that

(a) T ′ = 0 on B;

(b) T ′ = T on Rn \B;

Moreover ∂T ′ = p#(∂T ), and since ∂T is supported in the complement of B, where
p agrees with the identity, we have that

(c) ∂T ′ = ∂T .
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Finally we set U := T−T ′, and then statements (i), (ii) and (iii) follows immediately
from (a), (b) and (c).

There are two issues with this construction: the main one is that the map p is
singular at x0, and therefore the push-forward p#T cannot be defined using the
standard definition; the second issue is estimate (iv). Note that the same problems
arise in the proof of the Polyhedral Deformation Theorem presented in [12], §4.2.9,
and can be solved in the same way.

Step 1. We can choose x0 ∈ B so that∫
Rn

d|T |(x)

|x− x0|k
≤ C |T |(B) . (6.2)

We actually prove that the integral of the left-hand side of (6.2) over all x0 ∈ B
(w.r.t. the Lebesgue measure) is bounded by C |T |(B), which implies that (6.2)
holds for a set of positive measure of x0. Indeed∫

B

[ ∫
B

d|T |(x)

|x− x0|k

]
dx0 =

∫
B

[ ∫
B(−x0,1)

dy

|y|k

]
d|T |(x)

≤
∫
B

[ ∫
B(0,2)

dy

|y|k

]
d|T |(x) = C |T |(B) ,

where dx0 stands (as usual) for dL n(x0), the first equality is obtained by applying
Fubini’s Theorem together with the change of variable y = x − x0, the inequality
follows from the fact that the ball B(−x0, 1) is contained in B(0, 2), and the last
equality follows from the fact that

∫
B(0,2) dy/|y|

k is finite.

Step 2. Construction of T ′ := p#T .
The map p is clearly locally Lipschitz on Rn \ {−x0}, and a straightforward

computation shows that

|dp(x)| ≤ u(x) where u(x) :=
C

|x− x0|
+ 1 . (6.3)

Then, using estimate (6.2) and the fact that the support of ∂T does not intersect B,
we obtain that the integrals

∫
Rn u

−kd|T | and
∫
Rn u

1−kd|∂T | are both finite, which
allow us to define the push-forward T ′ := p#T as in [12], §4.2.2. More precisely T ′

is a normal current which satisfies the properties (a), (b) and (c) mentioned above.
Moreover estimates (6.2) and (6.3) yield

|T ′|(B) ≤
∫
B
|dp|k d|T | ≤

∫
B
u−k d|T | ≤ C |T |(B) . (6.4)

Step 3. Construction of U .
As anticipated, we take U := T−T ′. Then statements (i), (ii) and (iii) follow from

statements (a), (b) and (c) above, while statement (iv) follows from estimate (6.4).
�

6.9. Lemma. The map x 7→ N(µ, x) is universally measurable as a map from
Rn to Gr(Rn) (that is, measurable w.r.t. the completion of the Borel σ-algebra
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according to any finite measure on Rn). In particular it agrees outside a suitable
µ-negligible Borel set E0 with a Borel map.

Sketch of proof. Let K be the support of µ, and let G be the graph of the
restriction of x 7→ N(µ, x) to K, that is, the set of all (x, v) such that x ∈ K and
v ∈ N(µ, x). It suffices to prove that the set G is analytic (cf. [32], Chapter 4).

Let N be the space of all normal 1-currents T on Rn with M(T ) ≤ 1 and
∂T = 0, endowed with the weak* topology of currents (as dual of smooth forms
with compact support); thus N is compact and metrizable, and in particular is a
Polish space.

Now, for every x ∈ K, v ∈ Rn, T ∈ N we set

ψ(x, v, T ) := lim sup
r→0

|T − vµ|(B(x, r))

µ(B(x, r))
. (6.5)

and we remark that v belongs to N(µ, x) if and only if there exists T ∈ N such
that ψ(x, v, T ) = 0 (we have only to show that N(µ, x) does not change if we add
the requirement that the current T in (6.1) satisfies M(T ) ≤ 1, and indeed, if need
be, we simply replace T by the current U given by Lemma 6.8, having chosen as B
a ball centered at x with sufficiently small radius).

It follows that G = p(ψ−1(0)) where p is the projection of K×Rn×N on K×Rn.
Since p is continuous, the analyticity of G follows by the fact that ψ−1(0) is a Borel
set, which in turn follows by the fact that ψ is a Borel map.

Indeed the ratio at the right-hand side of (6.5) is left-continuous in the variable
r, and therefore the value of ψ does not change if we restrict r to a fixed countable
dense subset of (0,+∞). Thanks to this observation and to the fact that the ratio
is Borel in the variables x, v, T , we obtain that ψ is Borel as well. �

6.10. Lemma. Let {σt : t ∈ I} be a family of measures on Rn which is Borel
regular in t (cf. §2.3). Assume that each σt is the restriction of H 1 to a 1-rectifiable
set Et, and denote by D the set of all (t, x) ∈ I × Rn such that the approximate
tangent line Tan(Et, x) exists.

Then D is a Borel set and (t, x) 7→ Tan(Et, x) is a Borel measurable map from
D to Gr(Rn).

Sketch of proof. We denote by M + the space of all positive, locally finite mea-
sures on Rn, and denote by L the subclass of all measures given by the restriction
of H 1 to a 1-dimensional subspace of Rn.

Given σ ∈ M +, a point x ∈ Rn, and r > 0, consider the rescaled measure σx,r
given by σx,r(F ) := 1

rσ(x+ rF ) for every Borel set F in Rn, and let σx be the limit
(in M +) of the measures σx,r as r → 0, if it exists. If σ is the restriction of H 1 to
a 1-rectifiable set E, then the approximate tangent space Tan(E, x) exists if and
only if σx exists and belongs to L (cf. §2.2).

Now, since (σ, x, r) 7→ σx,r is a continuous map from M + × Rn × (0, 1] in M +,
it is easy to see that the set of all (σ, x) ∈M + × Rn such that σx exists is Borel,
and that (σ, x) 7→ σx is a Borel map from this set to M +. Since moreover L is a
closed subset of M +, then also the set of all (σ, x) such that σx exists and belongs
to L is Borel.
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Using these facts and recalling that t 7→ σt is Borel we conclude the proof. �

The next statement is the key step in the proof of Theorem 6.3.

6.11. Lemma. Let τ be a Borel vectorfield on Rn which belongs to L1(µ) and
satisfies τ(x) ∈ N(µ, x) for µ-a.e. x. Then there exists a normal 1-current T on
Rn such that, denoting by τ̃ the Radon-Nikodým derivative of T w.r.t. µ,

(i) ‖τ̃ − τ‖L1(µ) ≤ 1
2‖τ‖L1(µ);

(ii) ∂T = 0 and M(T ) ≤ C‖τ‖L1(µ).

Proof. We can clearly assume that τ is nontrivial, and we set

m :=
‖τ‖L1(µ)

4M(µ)
. (6.6)

We begin with two well-known facts: for all x ∈ Rn and all r > 0 except at most
countably many there holds

µ(∂B(x, r)) = 0 , (6.7)

and for µ-a.e. x and for r > 0 small enough there holds∫
B(x,r)

|τ − τ(x)| dµ ≤ mµ(B(x, r)) . (6.8)

By the definition of N(µ, x), for µ-a.e. x (and precisely for every x in the support
of µ such that τ(x) ∈ N(µ, x)), there exists a normal 1-current Tx with ∂Tx = 0
such that, for r > 0 small enough,

|Tx − τ(x)µ|(B(x, r)) ≤ mµ((B(x, r)) . (6.9)

Consider now the family of all closed balls B(x, r) that satisfy (6.7), (6.8) and
(6.9): by a standard corollary of Besicovitch covering theorem (see for example
[17], Proposition 4.2.13) we can extract from this family countably many balls
Bi = B(xi, ri) which are pairwise disjoint and cover µ-almost every point.

For every i we set Ti := Txi , and use Lemma 6.8 to find a current Ui with ∂Ui = 0
which agrees with Ti in the interior of Bi, is supported on Bi, and satisfies

M(Ui) ≤ C |Ti|(Bi) , (6.10)

and finally we set

T :=
∑
i

Ui .

We first show that T is well-defined and satisfies statement (ii). Since the currents
Ui satisfy ∂Ui = 0, it suffices to show that

∑
iM(Ui) ≤ C‖τ‖L1(µ). And indeed∑

i

M(Ui) ≤ C
∑
i

|Ti|(Bi)

≤ C
∑
i

∣∣Ti − τ(xi)µ
∣∣(Bi) +

∣∣(τ(xi)− τ)µ
∣∣(Bi) + |τµ|(Bi)
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≤ C
∑
i

mµ(Bi) +mµ(Bi) +

∫
Bi

|τ | dµ

≤ C
(
2mM(µ) + ‖τ‖L1(µ)

)
=

3

2
C‖τ‖L1(µ) ,

where the first inequality follows from (6.10), the second one is obtained by writing
the measure Ti as sum of the measures Ti − τ(xi)µ, (τ(xi)− τ)µ and τµ, the third
one follows from (6.8) and (6.9), the fourth one follows from the fact that the balls
Bi are pairwise disjoint, and finally the fifth one follows from (6.6).

Now we prove that T satisfies statement (i). Let τi be the Radon-Nikodým
derivative of Ti w.r.t. µ. Since the balls Bi are pairwise disjoint, in the interior
of each Bi the current T agrees with Ui, which in turn agrees with Ti; therefore τ̃
agrees (µ-a.e.) with τi in the interior of each Bi, or equivalently on Bi (because
the boundary of Bi is µ-negligible, cf. (6.7)). Then

‖τ − τ̃‖L1(µ) =
∑
i

∫
Bi

|τ − τi| dµ

≤
∑
i

∫
Bi

|τ − τ(xi)| dµ+

∫
Bi

|τi − τ(xi)| dµ

≤
∑
i

mµ(Bi) + |Ti − τ(xi)µ|(Bi)

≤
∑
i

2mµ(Bi) ≤ 2mM(µ) =
1

2
‖τ‖L1(µ) ,

where the first equality follows by the fact the balls Bi cover µ-almost every point,
for the second inequality we used (6.8), the third one follows from (6.9), the fourth
one follows from the fact that the balls Bi are disjoint, and finally the last equality
follows from (6.6). �

Proof of Theorem 6.3. We set τ0 := τ and then construct currents Tj and
vectorfields τ̃j , τj for j = 1, 2, . . . according to the following inductive procedure:
we apply Lemma 6.11 to τj−1 to obtain a normal 1-current Tj such that ∂Tj = 0
and

‖τj−1 − τ̃j‖L1(µ) ≤
1

2
‖τj−1‖L1(µ) , M(Tj) ≤ C‖τj−1‖L1(µ) , (6.11)

where τ̃j is the Radon-Nikodým derivative of Tj w.r.t. µ; we then set τj := τj−1− τ̃j .
We finally set

T :=

∞∑
j=1

Tj .

We first prove that T is well-defined and satisfies statement (ii). Since the
currents Tj satisfy ∂Tj = 0, it suffices to show that

∑
j M(Tj) ≤ C‖τ‖L1(µ).

To this regard, note that the first estimates in (6.11) can be rewritten as
‖τj‖L1(µ) ≤ 1

2‖τj−1‖L1(µ) and therefore, recalling that τ0 = τ ,

‖τj‖L1(µ) ≤
1

2j
‖τ‖L1(µ) . (6.12)
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Then, using the second estimates in (6.11),

∞∑
j=1

M(Tj) ≤
∞∑
j=1

C‖τj−1‖L1(µ) ≤
∞∑
j=1

C

2j−1
‖τ‖L1(µ) = 2C‖τ‖L1(µ) .

Next we show that T satisfies statement (i). Since τ̃j is the Radon-Nikodým
derivative of Tj w.r.t. µ, it suffices to show that the series of all τ̃j converge in
L1(µ) to τ . Since τ0 = τ and τ̃j = τj−1 − τj for every j, we have that

τ̃1 + · · ·+ τ̃j = τ − τj ,

and we conclude the proof by noticing that τj converge to 0 in L1(µ) by (6.12). �

The next statement is the key step in the proof of Theorem 6.4.

6.12. Lemma. Let C = C(e, α) be a closed convex cone in Rn (cf. §4.11) and
let Int(C) be the interior of C. Let σ be a non-trivial measure on Rn which can be
decomposed as σ =

∫
I σt dt where each σt is the restriction of H 1 to a 1-rectifiable

set Et such that Tan(Et, x) is contained in Int(C) ∪ {0} for H 1-a.e. x ∈ Et.
Then there exists a normal 1-current T with ∂T = 0 whose Radon-Nikodým

derivative w.r.t. σ belongs to C for σ-a.e. point and is nonzero in a set of positive
σ-measure (that is, the measures |T | and σ are not mutually singular).

Proof. We first construct a current T that satisfies all requirements except ∂T =
0, and at the end of the proof we explain how to modify the construction to obtain
∂T = 0.

The idea for the construction of T is quite simple: for every t ∈ I we choose a
C-curve Gt (cf. §4.11) such that H 1(Et ∩ Gt) > 0; we then denote by Tt the 1-
current associated to Gt, and set T :=

∫
Tt dt. However, some care must be taken

with measurability issues (for example, Gt should be chosen in a Borel measurable
fashion w.r.t. t).

Before starting with the detailed construction, we note that, possibly replacing
I with a suitable Borel subset, we can assume that H 1(Et) > 0 for every t ∈ I.

We denote by X the class of all paths γ : J → Rn with J := [−1, 1] such that
Lip(γ) ≤ 1 and γ̇(s) ∈ C for a.e. s ∈ J (here and in the following J is endowed with
the Lebesgue measure, which we do not write explicitly), and we endow X with
the supremum distance. Note that γ(J) is a C-curve for every γ ∈X (cf. §4.11).

Step 1. For every t ∈ I there exists γ ∈X such that

H 1(Et ∩ γ(J)) = σt(γ(J)) > 0 . (6.13)

Since the set Et is rectifiable and H 1(Et) > 0, we can find a curve G of class C1

such that H 1(Et ∩G) > 0. We take a point x0 ∈ G such that Et ∩G has density 1
at x0. Then Tan(G, x0) agrees with Tan(Et, x0) and is contained in Int(C) ∪ {0},
which implies that Tan(G, x) is contained in C for all x in a suitable subarc G′ of
G that contains x0, and clearly H 1(Et ∩ G′) > 0. We then take as γ a suitable
parametrization of G′.
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Step 2. The set F of all (t, γ) ∈ I ×X such that (6.13) holds is Borel.
It suffices to show that (t, γ) 7→ σt(γ(J)) is a Borel function on I ×X , and this

is an immediate consequence of the following facts:

• t 7→ σt is a Borel map from I to the space M + of finite positive Borel
measures on Rn endowed with the weak* topology (cf. §2.3);

• γ 7→ γ(J) is a Borel map from X to the space K of compact subsets of
Rn endowed with the Hausdorff distance;

• (K,σ) 7→ σ(K) is a Borel function on K ×M +.

Step 3. For every t ∈ I we can choose γt ∈ X so that (6.13) holds and t 7→ γt
agrees with a Borel map in a Borel subset I ′ with full measure in I.

The set F defined in Step 2 is a Borel subset of I × X , and by Step 1 its
projection on I agrees with I itself. Thus we can use the von Neumann measurable
selection theorem (see [32], Theorem 5.5.2), to choose γt ∈X for every t ∈ I so that
(t, γt) belongs to F (that is, γt satisfies (6.13)) and the map t 7→ γt is universally
measurable, and in particular it agrees with a Borel map in a Borel subset I ′ with
full measure in I.

Step 4. Construction of the normal current T .
We let T be the integral (over t ∈ I ′) of the 1-currents canonically associated to

the paths γt, that is,

〈T ; ω〉 :=

∫
I′

[ ∫
J
〈ω(γt(s)) ; γ̇t(s)〉 ds

]
dt (6.14)

for every smooth 1-form ω on Rn with compact support (note that the integral in
this formula is well-defined because t 7→ γt is a Borel map from I ′ to X (Step 3),
and then t 7→ γ̇t is a bounded Borel map from I ′ to L1(J ;Rn)).

A simple computation shows that

〈∂T ; ϕ〉 = 〈T ; dϕ〉 =

∫
I′

[
ϕ(γt(1))− ϕ(γt(−1))

]
dt (6.15)

for every smooth 0-form (or function) ϕ on Rn with compact support. It follows
immediately from (6.14) and (6.15) that both T and ∂T have finite mass, and
therefore T is normal.

Step 5. The Radon-Nikodým derivative of T w.r.t. σ takes values in C.
It suffices to show that T , viewed as a measure, takes values in C. Take indeed

a Borel set E in Rn: formula (6.14) yields

T (E) =

∫
I′

[ ∫
γ−1
t (E)

γ̇t(s) ds

]
dt , (6.16)

and since γ̇t(s) belongs to the cone C, which is closed and convex, so does T (E).

Step 6. The measures σ and |T | are not mutually singular.
For every t ∈ I ′ let σ′t be the restriction of H 1 to Et ∩ γt(J), or equivalently the

restriction of σt to γt(J), and set σ′ :=
∫
I′ σ
′
t dt.
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Note that the measure σ′ is nontrivial because of the choice of γt, and therefore
we can prove the claim by showing that σ′ ≤ σ and cosασ′ ≤ |T |. The first
inequality is immediate. Concerning the second one, for every Borel set E in Rn
we have that

|T |(E) ≥ T (E) · e =

∫
I′

[ ∫
γ−1
t (E)

γ̇t(s) · e ds
]
dt

≥
∫
I′

[ ∫
γ−1
t (E)

cosα |γ̇t(s)| ds
]
dt

≥ cosα

∫
I′

H 1(γt(J) ∩ E) dt ≥ cosασ′(E) ,

where the equality follows from (6.16), the second inequality follows from the fact
that γ̇t(s) belongs to C = C(e, α), the third one from the area formula, and the
last one from the definition of σ′.

Step 7. How to modify the construction of T to obtain ∂T = 0.
We choose an open ball B such that σ(B) > 0. Then, possibly replacing σ with

its restriction to B, we can assume that σ is supported in B, which means the set
Et is contained in B up to an H 1-negligible subset for (almost) every t.

We then proceed with the construction of T shown above, with the only difference
that X is now the class of all paths γ from J = [−1, 1] to the closure of B such
that the endpoints γ(±1) belong to ∂B, Lip(γ) ≤ r/ cosα where r is the radius
of B, and γ̇(s) ∈ C for a.e. s ∈ J , as before. The only modification in the proof
occurs in step 1, where the path γ must be suitably extended so that the endpoints
belongs to ∂B.

We thus obtain a current T that satisfies the same properties as before, and in
addition its boundary is supported on ∂B (see (6.15)). Finally we apply Lemma 6.8
to the current T and the ball B, and obtain a current U without boundary that
agrees with T in B. Using this property and the fact that σ is supported in B we
easily conclude that Radon-Nikodým derivative of U w.r.t. µ agrees (µ-a.e.) with
that of T . Finally we replace T by U . �

Proof of Theorem 6.4. We first prove that N(µ, x) ⊂ V (µ, x) for µ-a.e. x.
We argue by contradiction, and assume that this inclusion does not hold. Then,

using the Kuratowski and Ryll-Nardzewski’s measurable selection theorem (see
[32], Theorem 5.2.1), we can find a bounded Borel vectorfield τ on Rn such that
τ(x) ∈ N(µ, x) \ V (µ, x) for every x in a set of positive µ-measure (here we need
Lemma 6.9).

Then Theorem 6.3 yields a normal 1-current T whose Radon-Nikodým derivative
w.r.t. µ agrees (µ-a.e.) with τ , and Proposition 5.6 implies that τ(x) ∈ V (µ, x) for
µ-a.e. x, in contradiction with the choice of τ .

We now prove that V (µ, x) ⊂ N(µ, x) for µ-a.e. x.
First of all, we use Lemma 6.9 to modify the map x 7→ N(µ, x) in a µ-negligible

set and make it Borel measurable.
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By the definition of V (µ, ·) it suffices to show that the map x 7→ N(µ, x) be-
longs to the class Gµ (see §2.6). In other words, given a measure µ′ of the form
µ′ =

∫
I µt dt such that µ′ � µ and each µt is the restriction of H 1 to a 1-rectifiable

set Et, we must show that

Tan(Et, x) ⊂ N(µ, x) for µt-a.e. x and a.e. t ∈ I. (6.17)

We now argue by contradiction, and assume that (6.17) does not hold.

Step 1. There exist a cone C = C(e, α) and a non-trivial measure σ such that

(a) C and σ satisfy the assumptions in Lemma 6.12;

(b) σ � µ′ � µ;

(c) N(µ, x) ∩ C = {0} for σ-a.e. x.

Let µ′′ be the measure on I × Rn given by µ′′ :=
∫
I(δt × µt) dt where δt is the

Dirac mass at t, and let F be the set of all (t, x) ∈ I × Rn such that Tan(Et, x)
exists and is not contained in N(µ, x) (note that F is Borel by Lemma 6.10). Then
the assumption that (6.17) does not hold can be restated by saying that µ′′(F ) > 0.

Now, let F be a family of cones C = C(e, α) where e ranges in a given countable
dense subset of the unit sphere in Rn, and α ranges in a given countable dense
subset of (0, π/2); for every C ∈ F let FC be the subset of (t, x) ∈ F such that
Tan(Et, x) and N(µ, x) are separated by C, that is, Tan(Et, x) ⊂ Int(C)∪ {0} and
N(µ, x) ∩ C = {0} (the set FC is Borel because the set F is Borel and the maps
(t, x) 7→ Tan(Et, x) and x 7→ N(µ, x) are Borel).

Then the sets FC with C ∈ F form a countable cover of F , and since µ′′(F ) > 0
there exists at least one C ∈ F such that µ′′(FC) > 0.

We then take σ equal to the push-forward according to p of the restriction of µ′′

to the set FC , where p is the projection of I × Rn on Rn. Note that σ =
∫
I σt dt

where σt is the restriction of µt to the set of all x such that (t, x) ∈ FC .

Step 2. Completion of the proof.
By applying Lemma 6.12 to the cone C and the measure σ constructed in Step 1

we obtain a normal 1-current T with ∂T = 0 whose Radon-Nikodým derivative
w.r.t. σ belongs to C σ-a.e., and is nonzero on a set of positive σ-measure.

Since σ � µ (statement (b) above) we deduce that also the Radon-Nikodým
derivative of T w.r.t. µ, which we denote by τ , belongs to C σ-a.e. and is nonzero
on a set of positive σ-measure.

Moreover we have that τ(x) ∈ N(µ, x) for µ-a.e. x (cf. Remark 6.2(ii)) and
therefore also for σ-a.e. x. Therefore N(µ, x) ∩ C 6= {0} for a set of positive σ-
measure of x, in contradiction with statement (c) above. �

Proof of Corollary 6.5. The implication (ii) ⇒ (i) is an immediate conse-
quence of Proposition 5.6, while the implication (i)⇒ (ii) follows from Theorems 6.3
and 6.4. �

Proof of Corollary 6.6. By Corollary 6.5 there exists a normal 1-current of
the form T = τµ + σ where σ is singular w.r.t. µ. We then set µ̃ := µ + |σ| and
write T in the form T = τ̃ µ̃.
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Since µ and |σ| are mutually singular, there exists a Borel set E such that µ is
supported on E and |σ| is supported on Rn\E, which means that µ is the restriction
of µ̃ to E. Accordingly, τ(x) = τ̃(x) for µ̃-a.e. x ∈ E, and modifying τ̃ in a µ̃-null
set we can assume that τ(x) = τ̃(x) for every x ∈ E.

By Theorem 5.5 the measure µ̃ can be decomposed as µ̃ =
∫
I µ̃t dt where each

µ̃t is the restriction of H 1 to a 1-rectifiable set Ẽt such that

Tan(Ẽt, x) = span(τ̃(x)) for H 1-a.e. x ∈ Ẽt.
Therefore µ =

∫
I µt dt where each µt is the restriction of µ̃t to E, that is, the

restriction of H 1 to the 1-rectifiable set Et := Ẽt∩E, and clearly for H 1-a.e. x ∈ Et
the tangent space Tan(Et, x) agrees with Tan(Ẽt, x), which is spanned by τ̃(x) =
τ(x). �

7. Appendix: Rainwater’s lemma and applications

In this appendix we give two technical results used in the previous sections
(Lemmas 7.4 and 7.5), which are derived from Rainwater’s lemma.

7.1. Rainwater’s Lemma. (See [27] or [28], Lemma 9.4.3). Let X be a compact
metric space, F a family of probability measures on X which is convex and weak*
compact, and µ a measure on X which is singular with respect to every λ ∈ F .
Then µ is supported on a Borel set E which is λ-null for every λ ∈ F .

For our purposes we need the following variant of Rainwater’s lemma:

7.2. Corollary. Let X be a compact metric space and F a weak* compact family
of probability measures on X. Then for every measure µ on X one of the following
(mutually incompatible) alternatives holds:

(i) µ is supported on a Borel set E which is λ-null for every λ ∈ F ;

(ii) there exists a probability measure σ supported on F and a Borel set E such
that the measure ∫

λ∈F
(1E λ) dσ(λ)

(intended as in §2.3) is nontrivial and absolutely continuous w.r.t. µ.

Proof. We denote by P(F ) the space of probability measures on the compact
space F , and for every σ ∈ P(F ) we denote by [σ] the corresponding average of
the elements of F , that is, the measure on X given by

[σ] :=

∫
λ∈F

λ dσ(λ) .

We claim that the class F ′ of all [σ] with σ ∈ P(F ) is convex and compact
(w.r.t. the weak* topology of measures on X). Convexity is indeed obvious, and
compactness follows from the compactness of the space P(F ) (endowed with the
weak* topology of measures on F ) and the continuity of the map σ 7→ [σ], which in
turn follows from the identity 〈[σ] ; ϕ〉 = 〈σ ; ϕ̂〉 where ϕ is any continuous function
on X and ϕ̂ is the continuous function on F defined by ϕ̂(λ) := 〈λ ; ϕ〉.
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There are now two possibilities: either µ is singular with respect to all measures
in F ′ or not.

In the first case Rainwater’s Lemma (Lemma 7.1) implies that µ is supported on
a set E which is null w.r.t. all measures in F ′, and therefore also w.r.t. all measures
in F (because F is contained in F ′). Thus (i) holds.

In the second case there exists σ ∈P(F ) such that µ is not singular with respect
to [σ], and therefore by the Lebesgue-Radon-Nikodým theorem there exists a set E
such that the restriction of [σ] to E is nontrivial and absolutely continuous w.r.t.
µ. Thus (ii) holds with such σ and E. �

7.3. Lemma. Let C = C(e, α) be a cone in Rn with axis e and angle α
(see §4.11). Then, for every measure µ on Rn, one of the following (mutually
incompatible) alternatives holds:

(i) µ is supported on a Borel set E which is C-null (see §4.11);

(ii) there exists a nontrivial measure of the form µ′ =
∫
I µt dt where µ′ is ab-

solutely continuous w.r.t. µ, each µt is the restriction of H 1 to some 1-
rectifiable set Et, and

Tan(Et, x) ⊂ [C ∪ (−C)] for µt-a.e. x and a.e. t ∈ I.

Proof. The idea is to apply Corollary 7.2 to the measure µ and a sequence of
suitably chosen families Fk of probability measures.

Step 1. Construction of the families Fk.
For every k = 1, 2, . . . , we define the following objects:

Gk set of all paths γ from [0, 1] to the closed ball Bk := B(0, k) such that
Lip(γ) ≤ 1 and γ̇(s) · e ≥ cosα for L 1-a.e. s ∈ [0, 1];

Gγ := γ([0, 1]), image of the path γ ∈ Gk;

µγ restriction of H 1 to the curve Gγ ;

λγ push-forward according γ of the Lebesgue measure on [0, 1];

Fk set of all λγ with γ ∈ Gk.

One easily checks that each Gγ is a C-curve (see §4.11) contained in Bk, and λγ is
a probability measure supported on Gγ such that

µγ ≤ λγ ≤
1

cosα
µγ . (7.1)

In particular Fk is a subset of the space P(Bk) of probability measures on Bk.

Step 2. Each Fk is a weak* compact subset of P(Bk).
This is a consequence of the following statements:

(a) the space Gk endowed with the supremum distance is compact;

(b) Fk is the image of Gk according to the map γ 7→ λγ , which is continuous
as a map from Gk to P(Bk) endowed with the weak* topology.

Statement (a) follows from the well-known compactness of the class of all paths
γ : [0, 1] → Bk with Lip(γ) ≤ 1 and the fact that we can re-write the constraint
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γ̇(s) · e ≥ cosα in the form

(γ(s′)− γ(s)) · e ≥ cosα (s′ − s) for every s, s′ with 0 ≤ s ≤ s′ ≤ 1,

which is clearly closed with respect to uniform convergence. To prove statement (b)
we observe that for every γ ∈ Gk and every continuous test function ϕ : Bk → R
there holds

〈λγ ; ϕ〉 =

∫
Bk

ϕdλγ =

∫
[0,1]

ϕ(γ(s)) dL 1(s) ,

and therefore the function γ 7→ 〈λγ ; ϕ〉 is continuous on Gk.

Step 3. Completion of the proof.
Thanks to Step 2, for every k = 1, 2, . . . we can apply Corollary 7.2 to the family

Fk and to the measure µk given by the restriction of µ to Bk. There are then two
possibilities: either there exists k such that statement (ii) of Corollary 7.2 holds,
or statement (i) of Corollary 7.2 holds for every k.

In the first case there exists a probability measure σ on the space Gk and a Borel
set E such that the measure ∫

Gk

(1E λγ) dσ(γ)

is nontrivial and absolutely continuous w.r.t. µk, and therefore also w.r.t. µ. Then,
using (7.1) we obtain that also the measure

µ′ :=

∫
Gk

(1E µγ) dσ(γ)

is nontrivial and absolutely continuous w.r.t. µ, and since each measure 1E µγ is
the restriction of H 1 to a subset of the C-curve Gγ , we have that µ′ satisfies all
the requirements in statement (ii), which therefore holds true.

In the second case we obtain that for every k the measure µk is supported on a
set Ek contained in Bk which is null w.r.t. all measures in Fk, and using the first
inequality in (7.1) we obtain that

H 1(Ek ∩Gγ) = 0 for every γ ∈ Gk. (7.2)

Now we notice that intersection of every C-curve G with the ball Bk is contained
in a curve Gγ with γ ∈ Gk and therefore (7.2) implies H 1(Ek ∩G) = 0. We have
thus proved that Ek is C-null.

We then let E be the union of all Ek and observe that E is C-null, too, and µ is
supported on E. Thus (i) holds. �

7.4. Lemma. For every measure µ on Rn one of the following (mutually incom-
patible) alternatives holds:

(i) µ is supported on a purely unrectifiable set E (see §2.2);

(ii) there exists a nontrivial measure of the form µ′ =
∫
I µt dt where µ′ is ab-

solutely continuous w.r.t. µ and each µt is the restriction of H 1 to some
1-rectifiable set Et.
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Proof. We choose finitely many cones Ci, the interiors of which cover Rn \ {0},
and then apply Lemma 7.3 to µ and to each Ci. There are now two possibilities:
either there exists i such that statement (ii) of Lemma 7.3 holds, or statement (i)
of Lemma 7.3 holds for every i.

In the first case we immediately obtain that statement (ii) holds. In the second
case, for every i there exists a set Ei which supports µ and is Ci-null. We then
let E be the intersection of all Ei and claim that E satisfies the requirements in
statement (i), which therefore holds true.

It is indeed obvious that E supports µ. Concerning the unrectifiability of E,
note that since the interiors of the cones Ci cover Rn \ {0}, we can cover every
curve G of class C1 in Rn by countably many sub-arcs Gj , each one contained in
a Ci-curve for some i. Therefore H 1(E ∩ Gj) = 0 because E is Ci-null. Hence
H 1(E ∩G) = 0, and we have proved that E is purely unrectifiable. �

7.5. Lemma. Let be given a Borel set F in Rn, a cone C = C(e, α) in Rn, and
a measure µ such that

V (µ, x) ∩ C = {0} for µ-a.e. x ∈ F .

Then there exists a C-null Borel set F ′ contained in F such that µ(F \ F ′) = 0.

Proof. Let µ̃ be the restriction of µ to the set F ; thus V (µ̃, x) = V (µ, x) for
µ̃-a.e. x by Proposition 2.9(i), and in particular

V (µ̃, x) ∩ C = {0} for µ̃-a.e. x. (7.3)

We must prove that µ̃ is supported on a C-null set. To this end we apply
Lemma 7.3 (to the measure µ̃ and the cone C) and show that, of the two alter-
natives given in that statement, only (i) is viable. Indeed the definition of the
decomposability bundle in §2.6 and (7.3) imply that for every family {µt : t ∈ I} in
Fµ̃ there holds Tan(Et, x) ∩ C = {0} for µt-a.e. x and a.e. t, and this contradicts
alternative (ii). �

8. Appendix: approximation of Lipschitz functions

In this appendix we prove two approximation results for Lipschitz functions
used in the previous sections, namely Corollary 8.3 (obtained as a consequence of
Proposition 8.1) and Proposition 8.4.

8.1. Proposition. Let f be a Lipschitz function on Rn, µ a measure on Rn, and
V : Rn → Gr(Rn) a Borel map such that V (x) ∈ D(f, x) for µ-a.e. x (see §3.1).
Then for every ε > 0 there exist a compact set K in Rn and a function g : Rn → R
of class C1 such that:

(i) µ(Rn \K) ≤ ε;
(ii) ‖g − f‖∞ ≤ ε;

(iii) Lip(g) ≤ Lip(f) + ε;

(iv) |dVg(x)− dVf(x)| ≤ ε for every x ∈ K.
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8.2. Remark. In the special case where V (x) does not depend on x we can
simply take g := f ∗ ρ with a suitable asymmetric mollifier ρ. For example, when
n = 2 and V is the line R× {0}, it suffices to take as ρ the characteristic function
of the rectangle [−r, r]× [−r2, r2], renormalized so to have integral equal to 1, and
r sufficiently small. This is the idea behind Step 5 in the proof below.

Proof of Proposition 8.1. We set L := Lip(f) and denote by E be the set of
all x ∈ Rn such that V (x) ∈ D(f, x). Then it follows from Lemma 3.5 that E is a
Borel set.

For every x in E we extend the linear function dVf(x) to a linear function α(x)
on Rn by setting α(x)h := 0 for every h ∈ V (x)⊥; thus |α(x)| = |dVf(x)| ≤ L.
Note that the map x 7→ α(x) is a Borel measurable map from E to the dual of Rn
by Lemma 3.6.

The rest of the proof is divided in several steps.

Step 1. There exist δ > 0 and finitely many pairwise disjoint compact sets Ki

with the following properties:

(a) µ(Rn \K) ≤ ε where K is the union of all Ki (thus statement (i) holds);

and for every i,

(b) dgr(V (x), V (x′)) ≤ ε/L for every x, x′ ∈ Ki;

(c) |α(x)− α(x′)| ≤ ε for every x, x′ ∈ Ki;

(d) m(f, x, V (x), α(x), δ) ≤ ε for every x ∈ Ki (see §3.3).

For every x ∈ E the function f is differentiable w.r.t. V (x) with derivative α(x),
and therefore there exists δ > 0, depending on x, such that the estimate in (d)
holds (cf. §3.3). Since moreover µ(Rn \ E) = 0, we can find a subset E′ of E such
that µ(Rn \E′) ≤ ε/2 and the estimate in (d) holds with the same δ for all x ∈ E′.
This value of δ is the one we choose.

Next we partition E′ into finite a number N of Borel sets Ei such that the
oscillations of the maps x 7→ V (x) and x 7→ α(x) on each Ei are less that ε/L and
ε, respectively. Finally for every i we take a compact set Ki contained in Ei such
that µ(Ei \Ki) ≤ ε/(2N). It is now easy to check that statements (a–d) hold.

Step 2. For every i we choose xi ∈ Ki and set Vi := V (xi) and αi := α(xi).
Then for every x ∈ Ki there holds m(f, x, Vi, αi, δ) ≤ 4ε.

We obtain this estimate by applying Lemma 3.4 together with the estimates in
statements (b), (c) and (d) and the fact that |α(x)| ≤ L.

Step 3. Given h ∈ Rn and an index i, we write h = h′ + h′′ with h′ ∈ Vi and
h′′ ∈ V ⊥i . If |h′| ≤ δ then for every x ∈ Ki there holds

|f(x+ h)− f(x)− αih′| ≤ 4ε|h′|+ L|h′′| . (8.1)

The estimate in Step 2 yields |f(x+ h′)− f(x)− αih′| ≤ 4ε|h′|, and using that
|f(x+ h)− f(x+ h′)| ≤ L|h′′| we obtain (8.1).

Step 4. Let ρ be a positive function on Rn with integral 1 and support contained
in the ball B(0, r). Then f ∗ ρ is a function of class C1 that satisfies

(e) ‖f − f ∗ ρ‖∞ ≤ Lr;
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(f) ‖d(f ∗ ρ)‖∞ ≤ L.

Statement (e) is obtained by a simple computation taking into account that f
has Lipschitz constant L and that the support of ρ is contained in B(0, r).

The distributional derivative d(f ∗ ρ) = df ∗ ρ, being the convolution of an L∞

and an L1 function, is bounded and continuous, which means that f ∗ ρ is of class
C1 and has bounded derivative. Moreover ‖d(f ∗ ρ)‖∞ ≤ ‖df‖∞‖ρ‖1 = L, and
statement (f) is proved.

Step 5. For every i and every r > 0 there exists a positive function ρi with integral
1 and support contained in B(0, r) such that fi := f ∗ ρi satisfies the following
property: for every x ∈ Ki the restriction of the linear function dfi(x) − αi to the
subspace Vi has norm at most Mε, where the constant M depends only on n.

We assume that k := dim(Vi) > 0, otherwise there is nothing to prove. We then
take r′ > 0 and denote by B′ the ball with center 0 and radius r′ contained in Vi,
and by B′′ the ball with center 0 and radius r′′ := εr′/L contained in V ⊥i . We then
identify Rn with the product Vi × V ⊥i and set

ρi := c 1B′×B′′ with c :=
1

L k(B′) L n−k(B′′)
.

We claim that if r′ ≤ δ/2 then fi := f ∗ ρi satisfies∣∣fi(x+ h)− fi(x)− αih
∣∣ ≤Mε|h| (8.2)

for every x ∈ Ki, every h ∈ Vi with |h| ≤ r′, and a suitable M . This inequality
shows that fi has the property required in Step 5.

We fix x and h as above. A simple computation yields

fi(x+ h)− fi(x)− αih =

∫
Rn

e(z) (ρi(h− z)− ρi(−z)) dL n(z) , (8.3)

where e(z) := f(x+z)−f(x)−αiz for every z ∈ Rn. We observe now that estimate
(8.1) yields

|e(z)| ≤ 4ε|z′|+ L|z′′| (8.4)

for every z ∈ Rn such that |z′| ≤ δ, where z′ and z′′ come from the decomposition
z = z′ + z′′ with z′ ∈ Vi and z′′ ∈ V ⊥i (cf. Step 3). Therefore, in order to use (8.4)
to estimate the integral in (8.3), we must check that |z′| ≤ δ for every z such that
ρi(h−z)−ρi(−z) 6= 0. Indeed, taking into account the definition of ρi and the fact
that h belongs to Vi, we obtain

ρi(h− z)− ρi(−z) =

{
±c if z′ ∈ (B′ + h)4B′ and z′′ ∈ B′′,
0 otherwise,

(8.5)

and therefore if ρi(h− z)− ρi(−z) 6= 0 then z′ belongs to the symmetric difference
(B′ + h)4B′; in particular |z′| ≤ r′ + |h| ≤ 2r′ ≤ δ, as required.
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Then, denoting by ck the volume of the unit ball in Rk, we obtain∣∣fi(x+ h)− fi(x)− αih
∣∣

≤
∫
Rn

[
4ε|z′|+ L|z′′|

] ∣∣ρi(h− z)− ρi(−z)∣∣ dL n(z)

≤
[
8εr′ + Lr′′

] ∫
Rn

|ρi(h− z)− ρi(−z)| dL n(z)

≤ 9εr′
L k
(
(B′ + h)4B′

)
L k(B′)

≤ 18 ck−1

ck
ε|h| ,

where the first inequality follows from (8.3) and (8.4), for the second we use that
|z′| ≤ 2r′ and |z′′| ≤ r′′ whenever ρi(h − z) − ρi(−z) 6= 0 (cf. (8.5)), for the third
one we use that r′′ = εr′/L, formula (8.5), and the definition of c, and finally for
the fourth inequality we use that the volume of B′ is ck(r

′)k and the volume of
(B′ + h)4B′ is at most 2ck−1(r′)k−1|h|.

We have thus proved (8.2) with M equal to the maximum of 18 ck−1/ck over all
k = 1, . . . , n.

Step 6. Take M and fi as in Step 5. Then for every x ∈ Ki there holds

|dVfi(x)− dVf(x)| ≤ (M + 3)ε . (8.6)

Taking into account §3.3 and the fact that dVf(x) agrees with α(x) on V (x) we
rewrite claim (8.6) as

m(dfi(x), 0, V (x), α(x), 1) ≤ (M + 3)ε , (8.7)

and the estimate in Step 5 as

m(dfi(x), 0, Vi, αi, 1) ≤Mε . (8.8)

We then derive (8.7) from (8.8) by applying Lemma 3.4 together with the following
estimates: dgr(V (x), Vi) ≤ ε/L (statement (b)), |α(x) − αi| ≤ ε (statement (c)),
and |dfi(x)|, |αi| ≤ L.

Step 7. Construction of the function g.
Since the sets Ki are compact and pairwise disjoint we can find smooth functions

σi : Rn → [0, 1] such that
∑

i σi(x) = 1 for every x ∈ Rn (thus {σi} is a smooth
partition of unity of Rn) and each σi is constant outside some compact set and
takes value 1 on Ki. Thus the derivatives dσi have compact support and therefore
are bounded, and

m := max
{

1;
∑
i

‖dσi‖∞
}
< +∞ .

Now we take fi = f ∗ ρi as in Step 5, where ρi supported in the ball B(0, r) with
r := ε/(mL), and set

g :=
∑
i

σifi .

The function g is clearly of class C1. We prove next that g satisfies statements (ii),
(iii) and (iv).
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Note that statement (e) and the choice of r and m yield

|fi(x)− f(x)| ≤ Lr =
ε

m
≤ ε for every x ∈ Rd, (8.9)

and since the number g(x) is a convex combination of the numbers fi(x), it satisfies
|g(x)− f(x)| ≤ ε as well, which proves statement (ii).

Given x ∈ K, take i such that x ∈ Ki, and note that g = fi on the neighbourhood
of Ki where σi = 1; hence (8.6) becomes |dVg(x) − dVf(x)| ≤ (M + 3)ε, which is
the inequality in statement (iv) with (M + 3)ε instead of ε. . .

It remains to prove statement (iii). By deriving the identity
∑

i σi(x) = 1 we
obtain that

∑
i dσi(x) = 0, and then

dg(x) =
∑
i

σi(x) dfi(x) +
∑
i

(fi(x)− f(x)) dσi(x) .

Using this identity together with the estimates |dfi(x)| ≤ L (see statement (f)) and
|fi(x)−f(x)| ≤ ε/m (see (8.9)), and the fact that

∑
i |dσi(x)| ≤ m by the choice of

m, we finally obtain that |dg(x)| ≤ L+ε for every x, which concludes the proof. �

8.3. Corollary. Let f be a Lipschitz function on Rn, µ a measure on Rn, and
x 7→ V (x) a Borel map from Rn to Gr(Rn) such that V (x) ∈ D(f, x) for µ-a.e. x.

Then there exists a sequence of smooth functions fj : Rn → R such that the
following statements hold (as j → +∞):

(i) the functions fj converge to f uniformly;

(ii) Lip(fj) converge to Lip(f);

(iii) dVfj(x)→ dVf(x) for µ-a.e. x, where convergence is intended in the sense
of the operator norm for linear functions on V .

Proof. We first construct a sequence of approximating functions fn of class C1

that satisfy requirements (i), (ii) and (iii) using Proposition 8.1, and then regularize
these functions by convolution. �

8.4. Proposition. Let f be a Lipschitz function on Rn, K a compact set in Rn,
and φ an increasing, strictly positive function on (0,+∞). Then for every ε > 0
there exists a Lipschitz function g : Rn → R such that

(i) g agrees with f on K and is smooth in Rn \K;

(ii) |g(x)− f(x)| ≤ φ(dist(x,K)) for every x ∈ Rn;

(iii) Lip(g) ≤ Lip(f) + ε.

Proof. We let L := Lip(f) and for every k = 1, 2, . . . we set

Ak :=
{
x ∈ Rn :

1

k + 1
< dist(x,K) <

1

k − 1

}
(here we adopt the convention 1/0 = +∞).

Then {Ak} is an open cover of the open set A := Rn \K, and we take smooth
functions σk : A→ [0, 1] which form a partition of unity of A subject to this cover
(that is, the support of each σk is contained in Ak and

∑
k σk(x) = 1 for every

x ∈ A). Note that each σk has compact support in A.
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Next we choose a decreasing sequence of positive real numbers rk such that for
every k there holds

L ‖dσk‖∞rk ≤ 2−kε and Lrk ≤ φ
( 1

k + 1

)
, (8.10)

and a sequence of positive smooth mollifiers ρk with support contained in the ball
B(0, rk). Finally we set

g := f +

+∞∑
k=1

σk(f ∗ ρk − f) . (8.11)

To prove statement (i) note first that g agrees with f on K because σk(x) = 0
for every x ∈ K and every k (because x does not belong to Ak). To see that g is
well-defined and smooth on the open set A we rewrite it as

g =

+∞∑
k=1

σk(f ∗ ρk) ,

and note that the functions in the sum are smooth, and the sum is locally finite
(more precisely, σk vanish on Ah for all k except k = h− 1, h, h+ 1).

Let us prove statement (ii). Since the support of ρk is contained in the ball
B(0, rk) and f has Lipschitz constant L, a simple computation shows that for
every x ∈ Rn there holds

|f ∗ ρk(x)− f(x)| ≤ Lrk . (8.12)

Therefore, given x ∈ A and denoting by k(x) the smallest k such that x ∈ Ak, we
have

|g(x)− f(x)| ≤
∑

k≥k(x)

σk(x) |f ∗ ρk(x)− f(x)|

≤
∑

k≥k(x)

σk(x)Lrk

≤ Lrk(x) ≤ φ
( 1

k(x) + 1

)
≤ φ(dist(x,K))

(for the first inequality we use that σk(x) = 0 for k < k(x) because x /∈ Ak; the
second inequality follows from (8.12); the third one follows from the fact that the
sum of all σk(x) is 1 and rk(x) ≥ rk for every k ≥ k(x); the fourth one follows from
the second inequality in (8.10), the fifth one from the fact that x belongs to Ak(x)

and from the definition of the sets Ak).
We conclude the proof by showing that g is Lipschitz and satisfies statement (iii).

For every h = 1, 2, . . . set

gh := f +

h∑
k=1

σk(f ∗ ρk − f) .
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Since the functions gh are Lipschitz and converge pointwise to g as h → +∞,
it suffices to show that Lip(gh) ≤ L + ε for every h, or equivalently that the
distributional derivatives dgh satisfies

‖dgh‖∞ ≤ L+ ε . (8.13)

Let h be fixed for the rest of the proof. We can write gh as

gh =

h∑
k=0

σkfk ,

where σ0 := 1− (σ1 + · · ·+ σh), f0 := f , and fk := f ∗ ρk for 0 < k ≤ h.
Since σ0 + · · ·+ σh = 1 we have that dσ0 + · · ·+ dσh = 0, and then

dgh =

h∑
k=0

σk dfk +

h∑
k=1

(fk − f) dσk . (8.14)

Observe now that dfk = df ∗ ρk where df is the distributional derivative of f , and
then ‖dfk‖∞ ≤ ‖df‖∞‖ρk‖1 ≤ L; hence the first sum in line (8.14) is a (pointwise)
convex combinations of functions with L∞-norm at most L, and therefore its L∞-
norm is at most L as well. Thus it remains to show that the L∞-norm of the second
sum in line (8.14) is at most ε, and indeed∥∥∥∥ h∑

k=1

(fk − f) dσk

∥∥∥∥
∞
≤

h∑
k=1

‖fk − f‖∞ ‖dσk‖∞ ≤
h∑
k=1

Lrk‖dσk‖∞ ≤ ε ,

where the second inequality follows from the fact that fk = f ∗ ρk and (8.12), and
the last inequality follows from the first inequality in (8.10). �
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[21] Máthé, András. Paper in preparation.

http://arxiv.org/abs/1601.06543
http://arxiv.org/abs/1305.3154
http://www.math.sunysb.edu/Videos/dennisfest/
http://web.mat.bham.ac.uk/~malevao/papers/MalevaPreiss.pdf


62 Giovanni Alberti and Andrea Marchese

[22] Morgan, Frank. Geometric measure theory. A beginner’s guide. Fourth edition. Else-
vier/Academic Press, Amsterdam, 2009.

[23] Paolini, Emanuele; Stepanov, Eugene. Structure of metric cycles and normal one-
dimensional currents. J. Funct. Anal., 264 (2013), no. 6, 1269–1295.

[24] Preiss, David. Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal., 91
(1990), no. 2, 312–345.

[25] Preiss, David; Speight, Gareth. Differentiability of Lipschitz functions in Lebesgue null
sets. Invent. Math., 199 (2015), no. 2, 517–559.
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