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Abstract

Immunotherapy, by enhancing the endogenous anti-tumor immune responses, is showing promis-

ing results for the treatment of numerous cancers refractory to conventional therapies. However,

its effectiveness for advanced castration-resistant prostate cancer remains unsatisfactory and new

therapeutic strategies need to be developed. To this end, mathematical modeling provides a

quantitative framework for testing in silico the efficacy of new treatments and combination ther-

apies, as well as understanding unknown biological mechanisms. In this dissertation we present

two mathematical models of prostate cancer immunotherapy defined as systems of ordinary dif-

ferential equations.

The first work, introduced in Chapter 2, provides a mathematical model of prostate cancer

immunotherapy which has been calibrated using data from pre-clinical experiments in mice. This

model describes the evolution of prostate cancer, key components of the immune system, and

seven treatments. Numerous combination therapies were evaluated considering both the degree

of tumor inhibition and the predicted synergistic effects, integrated into a decision tree. Our

simulations predicted cancer vaccine combined with immune checkpoint blockade as the most

effective dual-drug combination immunotherapy for subjects treated with androgen-deprivation

therapy that developed resistance. Overall, this model serves as a computational framework

to support drug development, by generating hypotheses that can be tested experimentally in

pre-clinical models.

The Chapter 3 is devoted to the description of a human prostate cancer mathematical model.

The potential effect of immunotherapies on castration-resistant form has been analyzed. In
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particular, the model includes the dendritic vaccine sipuleucel-T, the only currently available

immunotherapy option for advanced prostate cancer, and the ipilimumab, a drug targeting the

cytotoxic T-lymphocyte antigen 4 , exposed on the CTLs membrane, currently under Phase II

clinical trial. From a mathematical analysis of a simplified model, it seems likely that, under

continuous administration of ipilimumab, the system lies in a bistable situation where both the

no-tumor equilibrium and the high-tumor equilibrium are attractive. The schedule of periodic

treatments could then determine the outcome, and mathematical models could help in deciding

an optimal schedule.
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Introduction

Mathematical modeling has been successfully applied in the context of computational systems

biology to develop comprehensive mathematical descriptions of several pathologies [1–9]. Mathe-

matical models are calibrated through experimental data to simulate in silico biological systems

and test hypotheses, for example regarding the regulative mechanisms of complex diseases [10–16].

Cancer immunotherapy is an emerging treatment approach that stimulates the immune system

against tumors, by enhancing or suppressing the immune response [17]. The idea of modulating

the immune response as cancer therapy is a direct consequence of the strong, well recognized

interplay between tumors and the immune system. Indeed, the genetic alterations in cancer cells

promote the activation of the immune system that starts a series of events, known as cancer-

immunity cycle, to control cancer growth [18].

In the past few years, many progresses have been performed in the treatment of cancer by

immunotherapies, especially in hematological cancer, such as leukemia, and some solid tumors,

as metastatic melanoma and renal carcinoma [19]. In this context, deciding the right doses or

protocols may be critical, and mathematical models can be crucial for supporting these medical

decisions as well as understanding unknown cell-interaction mechanisms. In the literature, there

are many mathematical models of cancer immunotherapy [3], which can be generically formulated

on the basis of common tumor-immune features [20] or targeted to a particular tumor type, such

as renal cell carcinoma [21], brain tumors [22] and prostate cancer [23; 24]. Mathematical models

describe the immune system and tumor interactions, including the effect of immunotherapies

as single treatments [25], or combined with classical therapies, such as chemotherapy [26; 27].
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0. Introduction

Moreover, models have been used to investigate not well known mechanisms, such as recurrence

and immunostimulation [28] or the tumor capacity to escape the immune control [29]. Another

interesting modeling application is the in silico evaluation of drug efficacy and of the optimal

administration protocol for single or combination therapies, as in [30–33].

The supporting for the pharmaceutical industry by mathematical models is a promising ap-

proach, because these models represent a cost-effective way to predict and investigate the efficacy

of a therapy. Indeed, the development of a new pharmaceutical drug is a very complex and long

process. It includes a first phase of pre-clinical studies, involving in vitro and in vivo experiments

on animals, which are necessary for understanding molecular features. At the end of this phase,

the relative information are submitted to the US Food and Drug Administration (FDA) and, if

they are approved, the development moves to the clinical studies. The clinical phase is composed

by 4 steps of experiments on humans in order to introduce the drug on market. The whole

process could be long, with an average time of 7 - 10 years, and expensive. Literature studies

have estimated that the cost needed to bring new therapies to market varies from 161 million to

2 billion of US dollars [34]. Moreover, there are evidences that highlight a significant variability

in drug responses for different patients, motivating the pharmaceutical industries to invest in

personalized medicine [35; 36]. In this context, the Quantitative System Pharmacology (QSP)

modeling technique is particularly relevant. Indeed, this innovative approach allows the inclusion

of several data from different sources, integrated in compartmental and hierarchical mathematical

models, which comprehends the pharmacokinetics and pharmacodynamics [37; 38]. Therefore,

the QSP mathematical models can help in validating or identifying drug targets, designing new

therapies and evaluating side effects for low costs [39–43].

This thesis is focused on Prostate Cancer (PCa), one of the leading causes of cancer-associated

death in the male population [44–46]. Patients diagnosed with localized PCa are usually moni-

tored for their blood levels of prostate-specific antigen and, when appropriate, are treated with

radiation therapy or prostatectomy [47]. However, 20-40% of patients develops PCa recurrence

and requires further treatments [48–50]. Since PCa cell proliferation is dependent on androgen

signaling, androgen deprivation therapy, either by chemical or surgical castration, is the first-line
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treatment for advanced PCa [51]. Although this therapy is initially highly effective in most of

the patients, in some cases the tumor evolves into an androgen independent form, transition that

may occur through several mechanisms that are not yet completely understood [52]. The andro-

gen independent form of PCa currently lacks efficacious therapeutic options [53] and therefore,

in this context, immunotherapy represents a highly promising new treatment approach. Over

the last few years, numerous pre-clinical and clinical studies have been performed to develop and

test different PCa immunotherapies [54; 55]. A main achievement has been the FDA approval

of sipuleucel-T, so far the only approved immunotherapy for PCa treatment [51]. Compared

with other types of cancer, PCa is relatively insensitive to the most popular immunotherapies

and additional studies are needed to understand the mechanisms underlying this lack of immune

responsiveness [56; 57].

It has been shown that the PCa is able to evade the immune surveillance by several mech-

anisms [58; 59]. One of these is the expression of particular ligands called immune checkpoints

that, recognized from T cells, can inactivate the latter, such as the Programmed Death-Ligand

1 (PD-L1) and the Cytotoxic T-Lymphocyte Antigen 4 (CTLA4). In detail, the PD-L1 on the

tumor cell membranes binds its Programmed cell Death protein 1 receptor (PD-1) exposed on

the CTL, inhibiting their expression. On the other hands, the tumor also stimulates the prolifer-

ation of the Antigen Presenting Cells (APCs) expressing B7 ligands, which bind with the CTLA4

on the CTLs. These complex mechanisms imply the suppression of the CTL immune reaction.

Current studies are investigating on the therapeutic effect of Immune Checkpoint Blockade (ICB)

drugs, that have been recently approved by FDA for the treatment of some solid tumors [60].

A combination of ICB involving anti-CTLA4 and anti-PD-L1 drugs is currently under phase II

clinical trial for PCa (NCT03061539, NCT02985957). The PCa also stimulates the production of

immune cells responsible for immune system regulation, mainly Regulatory T cells (Tregs) [58; 61]

and Myeloid-Derived Suppressor Cells (MDSCs) [62–64]. Figure 0.1 summarizes the described

immune-suppression mechanisms in the tumor microenvironment.

This dissertation presents two mathematical models of PCa developed during my PhD studies.

Both models are calibrated by using experimental data from the literature and they are employed

3



0. Introduction
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Figure 0.1: Immuno-suppressive tumor microenvironment. Schematic represen-
tation of the immune-suppression induced by the prostate cancer. This tumor promotes the
proliferation of immunosuppressive cells in the tumor microenvironment and inactivates
the CTLs by the expression of immune checkpoints.

to evaluate the effects of the therapies implemented. The two models describe the PCa progression

in case of mice and humans, and they are developed and analyzed by different techniques.

The thesis is organized as follows:

Chapter 1 includes the mathematical background necessary for the development and the

analysis of the mathematical models presented in the following chapters. This section starts

describing system biology and the main mathematical modeling approaches. Then, a summary

of the theory of ordinary differential equations is presented. In particular, the main theorems in

this field and the qualitative behavior analysis are introduced. Moreover, this chapter comprises

a brief overview of the model calibration techniques and an hint of a priori and a posteriori

analyses used for validating mathematical models.

Chapter 2 presents the QSP model of murine PCa. The model is accurately described by

its diagram and equations, with a detailed explanation of the single terms. We present the model

simulations for the experimental scenarios used to calibrate the model and we discuss the results

showing the corresponding data fits. After having verified the reproducibility of the experimental

4



data, we use the model to identify the most effective combination therapy by considering both

the model-predicted tumor reduction and the synergy between treatments. In particular, we

emphasize the androgen deprivation therapy as leading treatment and we provide a decision tree

as tool for choosing the best protocol to treat castrated subject. The content of this chapter is

going to be published on Scientific Reports journal.

Chapter 3 is dedicated to the human PCa model, which represents a step forward in the

direction of the mathematical description of human prostate cancer. The description of tumor-

immune interactions is less detailed than the models presented in the Chapter 2, but it is due

to the paucity of human data in the literature. The model diagram and equations are presented

and discussed in detail. The goal of this work is to analyze the steady states and their stability

in relation to the tumor proliferation rate, which is patient specific. To this aim, we reduce

the model to obtain a three-dimensional Limiting System (LS), and we study the stability of

LS equilibrium points with and without immunotherapies. Most of the results presented in this

chapter has been included in a paper submitted for publication in a scientific journal.

Chapter 4 is devoted to a final discussion. In this chapter we summarize the main results

and limitations of this dissertation, biologically discussing the presented mathematical outcomes.
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Chapter 1

Mathematical modeling and system

biology: backgrounds

System biology is a discipline that provides mathematical descriptions of complex biological sys-

tems [65]. During the last decades, the interest in this interdisciplinary approach considerably

increased, determining several progresses in biology [66]. Indeed, comprehensive mathematical

models can help in understanding biological processes, since they describe complex systems by

a collection of few variables. The mathematical description of biological systems has several ad-

vantages. First of all, mathematical models provide schematic representations, which, compared

to the described biological phenomena, are much easier to study [67]. Moreover, unexpected

model results can give an indication that some essential factors were ignored, contributing to the

comprehension of unknown underlying mechanisms, as well as discovering biological misinterpre-

tations [68]. In addition, mathematical models predict the evolution of the biological system,

and, then, can determine how much perturbations in the model affect the dynamics. This model

capability can be used to evaluate the predicted system behavior in case of mutations or drug

administrations [69], supporting the pharmaceutical industry in discovering new strategies for

drug development or in designing possible experiments [70; 71].

It is essential to notice that a mathematical model is an abstract representation of a bio-
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1. Mathematical modeling and system biology: backgrounds

logical process, therefore many different mathematical models can be developed for the same

phenomenon. Each model can be suitable, depending on the information that we want to extrap-

olate from it. For this reason, to obtain a reasonable description of the biology, before developing

a mathematical model, we need to define the properties of the system that we want to investigate.

Dynamic mathematical models form a collection of interacting variables, and they represent

the most widely used mathematical approaches in system biology [72]. Dynamic systems can be

described by deterministic or stochastic methods. The behavior of deterministic models depends

on the initial condition, i.e. the initial state of the model variables, and can be described by

systems of ordinary or partial differential equations. Those models present several benefits.

Indeed, they are exactly and easily reproducible under the same conditions and, even if the

model cannot be explicitly solved, the solutions can be efficiently approximated by numerical

methods. On the contrary, a stochastic representation changes according to specified conditions

and random laws, since the variable state is determined by a probability distribution. Given

the intrinsic random nature of the biological phenomena, stochastic mathematical models often

represent an accurate description of the biology., but their numerical cost can be very high.

Therefore, for high-dimensional systems, a stochastic representation is not feasible. Hence, the

choice on the type of model depends on the nature of the biological problem and the questions

one wants to address. For further details on the differences between these two mathematical

modeling techniques see [73].

In this thesis, we present two deterministic mathematical models in form of ordinary differen-

tial equation. Hence, as a matter of clarity, in the following section, we propose a brief overview

of the main concepts and results from this mathematical field.

1.1 Basis of Ordinary Differential Equations

In this section we introduce the basis of the Ordinary Differential Equation (ODE) theory, the

mathematical tool that we used to develop the models presented in this dissertation. Since we

include only the main results in this field, for more details we refer to [74–76]. In the context of

8



1.1. Basis of Ordinary Differential Equations

system biology, a system of ODEs describes the evolution in time of the variables included in the

model; therefore a typical system of n first-order ODEs can be written as:

dx

dt
(t) = F (x(t), t), (1.1)

where x = (x1, x2, ..., xn) ∈ Rn and F = (F1, F2, ..., Fn) is a vector field such that

F : Dom(F ) ⊆ Rn × R+ −→ Rn

(x, t) −→ F (x, t)

Observation 1. We note that a k-order ODE dky
dt(k)

= f(y, dydt ,
d2y
dt2
..., d

(k−1)y
dt(k−1) , t) can be expressed

as a first-order ODE system by the substitution: y = x1, dy
dt = x2, ..., d(k−1)y

dt(k−1) = xn, obtaining the

system (1.1).

A solution of (1.1) is a differentiable function x(t) : R+ → Rn, which satisfies the condition

(1.1), and such that (x, t) is in the domain of F, for every t ∈ R+. Given a solution of the system

(1.1), this is invariant for translation. Indeed, if x is a solution, also x + k, with k ∈ R, is a

solution of the same ODE system.

The solution can be uniquely determined for a Cauchy problem, which is composed by a

system of ODEs coupled with an initial condition:


dx
dt (t) = F (x(t), t)

x(t0) = x0

(CP)

In this case the invariance for translation does no longer hold, since the solution x(t) must satisfy

the initial condition x(t0) = x0.

The main result of the ODE theory is the theorem of existence and uniqueness of the ODE

system solution. Before introducing this theorem, we define the Lipschitz condition.

Definition 1. (Local Lipschitz condition) A function f : Dom(f) ⊆ Rn×R+ → Rn is locally

9



1. Mathematical modeling and system biology: backgrounds

Lipschitz with respect to the variable x if ∀K ⊆ Dom(F ), compact set, ∃L ∈ R, L > 0 such that

||f(x, t)− f(y, t)|| ≤ L||x− y||,

∀(x, t), (y, t) ∈ K. In this case, we write f ∈ Lipxloc(Dom(f)).

This definition can be extended to a global condition:

Definition 2. (Global Lipschitz condition) A function f : Dom(f) ⊆ Rn × R+ → Rn is

globally Lipschitz with respect to the variable x if ∃L ∈ R, L > 0 such that

||f(x, t)− f(y, t)|| ≤ L||x− y||,

∀(x, t), (y, t) ∈ Dom(f). In this case, we write f ∈ Lipx(Dom(f)).

In other words, a function is globally Lipschitz if the constant L does not depend on the

compact subset of the function domain. This condition means that the function f is limited in

how fast it can change, since its increments are limited by the Lipschitz constant L. The Lipschitz

condition of the vectorial field F ensures the uniqueness of the solution of an ODE system, as

stated in the following result..

Theorem 1. (Local existence and uniqueness) Let us consider the Cauchy problem (CP),

with F continuous function such that F ∈ Lipxloc(Dom(F )). Then, ∀(x0, t0) ∈ Dom(F ) ∃ It0 ⊆

R+, neighborhood of the initial point t0, in which there exists x ∈ C1(I) unique solution of (CP).

When the local existence and uniqueness theorem is satisfied, the local solutions of the (CP)

can be extended.

Definition 3. (Extended solution) Let u : It0 ⊆ R+ → R and w : Jt0 ⊆ R+ → R be solutions

of (CP), where It0 and Jt0 are neighborhoods of the initial point t0. The solution w is an extension

of the solution u if It0 ⊆ Jt0 and w(t) = u(t) for t ∈ It0 .

10



1.1. Basis of Ordinary Differential Equations

Definition 4. (Maximal solution) A solution x(t) of (CP) is called maximal if it has no

extensions.

Now we can introduce the global existence and uniqueness theorem.

Theorem 2. (Global existence and uniqueness) Let us consider the Cauchy problem (CP),

with F continuous function such that F ∈ Lipxloc(Dom(F )). If there exists a constant k > 0 such

that:

||F (x, t)|| ≤ k(||x||+ 1),

∀(x, t) ∈ Dom(F ), therefore every maximal solution of (CP) is global, i.e. the solution x(t) is

defined ∀t ∈ R+.

A vector field that is not explicitly dependent on time, i.e. F (x (t), t) = F (x (t)), is called

autonomous. Since all the models presented in this thesis are autonomous, in the following we

refer to the vector field F as F (x(t)).

1.1.1 Qualitative analysis of ODE systems

In many cases an explicit solution of an ODE system can not be determined. Therefore, the

system can be solved by numerical approximations or, alternatively, the properties of the field F

can be studied for understanding the qualitative behavior of the solution of the ODE system.

Definition 5. (Equilibrium point) A point x ∈ Rn is an equilibrium point for the system

dx
dt = F (x) if F (x) = 0.

Therefore, x(t) = x represents a steady state of the system, since the derivative dx
dt (x) = 0.

Definition 6. Stable equilibrium point. An equilibrium point x is stable if ∀ Ix neighborhood

of x, there is a subset U such that the solutions x(t) satisfying the initial condition x(t0) = x0 in

U remain in Ix, ∀t > 0.

11
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Definition 7. Attractive equilibrium point. An equilibrium point x is stable if ∀Ix neigh-

borhood of x, there is a subset U such that the solutions x(t) starting from x0 ∈ U converge to

x.

Definition 8. Asymptotically stable equilibrium point. An equilibrium point x is

asymptotically stable if it is stable and attractive.

Given a non-linear autonomous ODE system as

dx

dt
= F (x), (1.2)

it can be shown that the behavior of the solutions around the equilibrium point x for long times

can be determined by studying the linearized corresponding system:

dx

dt
= DF (x) · x, (1.3)

where DF (x) is the Jacobian matrix of the field F evaluated in x. We do not provide a proof of

this result. For major information we refer to [74].

Theorem 3. Let F ∈ C1(Dom(F )), being Dom(F ) an open subset of Rn. Let x ∈ Dom(F ) be

an equilibrium point. If the real part of all the eigenvalues of the matrix DF (x) is negative, the

equilibrium point x of the system (1.2) is asymptotically stable. On the other hands, if there is

at least one eigenvalue of the matrix DF (x) with positive real part, the equilibrium point of the

system (1.2) is unstable.

The study of the linearized system provides information on the local behavior of (1.2) when

the real part of the eigenvalues of DF (x) is different from zero, but it does not provide any

information about the basin of attraction of a steady state.

In some cases, the stability or the presence of a steady state may depend on the model param-

eter values. When the system behavior changes for small variation of one or more parameters,
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1.1. Basis of Ordinary Differential Equations

this system presents a bifurcation. There are many types of bifurcations, but, in this thesis, we

include only the saddle-node, the transcritical and the Hopf bifurcations.

Saddle-node bifurcation. When as a consequence of varying a parameter there is a creation

or a disruption of an equilibrium point, there is a saddle-node bifurcation. The equation

dx

dt
= F (x, α) = x2 − α (1.4)

represents the simplest example of the saddle-node bifurcation in one dimension. Indeed, as

shown in Figure 1.1, by changing the parameter α the system presents:

(i) two equilibrium points for α > 0, one stable x1 = −
√
α and one unstable x2 = +

√
α;

(ii) a bifurcation point for α = 0, which is generated by the collapse of the two equilibrium

points in one steady state preserving the stability and instability properties of the two

equilibria together;

(iii) no steady states for α < 0.

Figure 1.1: Graphical representation of the saddle-node bifurcation. Different
system behaviors appear as a function of the parameter α. (a) for α < 0 the system has
two equilibria, one stable (black point) and one unstable (grey point). (b) for α = 0 the
two equilibium points collapse in a unique equilibrium. (c) for α > 0 the system does not
present equilibrium points.
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Transcritical bifurcation. When by changing a parameter the stability of an equilibrium

point varies, there is a transcritical bifurcation. The simplest example of this bifurcation in one

dimension is given by the equation

dx

dt
= F (x, α) = x(α− x). (1.5)

Indeed, as shown in Figure 1.2, by changing the parameter α the system presents:

(i) two equilibrium points for α > 0, one unstable x1 = 0 and one stable x2 = α;

(ii) a bifurcation point for α = 0, which is generated by the collapse of the two equilibrium

points in one steady state preserving the stability and instability properties of the two

equilibria together;

(iii) two equilibrium points for α < 0, one stable x1 = 0 and one unstable x2 = α;

Figure 1.2: Graphical representation of transcritical bifurcation. Different system
behaviors appear as a function of the parameter α. (a) for α > 0 the system has two
equilibria, one unstable (grey point) and one stable (black point). (b) for α = 0 the two
equilibium points collapse in a unique equilibrium. (c) for α < 0 the system has two
equilibrium points, one stable (black point) and one unstable (grey point).

Hopf bifurcation. The Hopf bifurcation is characterized by the variation of the stability of

an equilibrium point and the formation of a limit cycle associated to the variation of a parameter.

This bifurcation is connected to periodic solutions and it can be either subcritical or supercritical.
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1.2. Model calibration and optimization algorithms

In the first case, starting from a stable point, the variation of a parameter generates an unstable

limit cycle, in the second case, from an unstable equilibrium point the variation of a parameter

generates a stable limit cycle.

The qualitative analysis of our model of human prostate cancer provided in Chapter 3 shows

the presence of two of these bifurcations. The steady states of the model have been analyzed by

the Mabtlab toolbox Matcont [77], which labels with Branching Point the transcritical biforcation,

while the saddle-node bifurcation is called Limit Point.

1.2 Model calibration and optimization algorithms

Mathematical models depend on the parameter estimates. Therefore, the general formulation of

a model can be expressed as

dx

dt
(t, p1, ..., pm) = F (x(t, p1, ..., pm)), (1.6)

where x ∈ Rn and p1, ..., pm are the model parameters.

The model parameters require to be estimated. The calibration of the models presented in this

thesis has been performed by considering literature values or by using optimization algorithms

to fit experimental data. For this reason, in this section we present the main strategies for model

calibration, with particular emphasis on those used for our research scopes.

All the optimization methods aim at finding the best solution satisfying specific criteria. In

our work, we used the optimization techniques to estimate model parameters. In all our cases,

the optimization problem was to minimize a function, called objective function, by varying the

input in the parameter space. The objective function used for our model calibrations have been

created by considering the differences between the output of the model and experimental data

taken from the literature. The procedures are reported in the following chapters, in the 2.2 and

3.2 subsections. Once fixed the objective function, the choice of the algorithm for the model

calibration can be crucial, since it influences the outcomes and then the parameter setting. There
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are many optimization algorithms, which can be classified in several ways, depending on what

we are considering. For example it is possible to classify the algorithms as constrained or non-

constrained, as iterative or heuristic, as deterministic or stochastic, and so on. For an overview

of the available options we refer to [13; 78–82].

In our works we used an iterative gradient-based method and a genetic algorithm, then we

focus on these two different algorithms for optimization problems. The main differences between

these two approaches are the exploration of the parameter space and the strategy to select the

minimum of the objective function.

Gradient-based methods. The gradient-based methods explore the parameter space by

following the gradient of the objective function. These iterative algorithms need an initial point.

Starting from a fixed initial parameter set, it always returns the same result, which corresponds

to the minimum of the objective function. The main limitation of this approach is that the

resulting parameter set could be associated to a local minimum of the objective function and

it might not represent the best solution of the optimization problem. A possible way to bypass

this issue is to implement a multi-start strategy, which generates random starting points, allow-

ing a more effective exploration of the parameter space. However, for particularly complicated

objective functions it should not be sufficient to avoid the convergence to local minima. Given

the complexity of the objective function and the high dimension of the parameter space of the

model presented in the Chapter 2, for the model calibration of that model we followed the genetic

approach.

Genetic algorithms. This type of algorithms are inspired by nature genetic processes. By

fixing the population size, these methods explore the parameter space, considering random pa-

rameter sets as member of this population and evaluate the objective function corresponding to

the different inputs. Among these, the algorithm selects the best one and recombine the other

strings of parameters by crossover, recombination and random mutations, generating the next

population. This stochastic approach allows a good exploration of high-dimensional parameter
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spaces, avoiding the possibility to remain in a local minimum of the objective function. However,

the implementation of genetic algorithms requires a lot of time. In this sense, the choice of the

population size is essential, since a small population gives a fast implementation, but the solution

could be not optimal, while a large population better explores the parameter space, but the time

of convergence increases.

1.3 Identifiability and sensitivity analyses

Once a parameter set has been identified to fit the experimental data by a mathematical model,

it is important to understand the reliability of these estimates and how the parameter values

influence the system dynamics. For this reason the analyses of parameter identifiability and

sensitivity have to be performed, especially when there are a lot of parameters that need to be

estimated by using data coming from different sources, as in the model presented in Chapter 2.

These analyses increase the confidence in the model predictions, and therefore they are essential

to discuss the results from a biological point of view.

Identifiability analysis. The parameter identifiability analysis establishes if there exists one

or more possible sets of parameter estimates for a given model fitting a user provided amount

of experimental data. Parameter identifiability can be considered as a property of the defined

mathematical system. In this case, the parameter identifiability depends on the model structure,

and it can be performed by considering information such as the experimental data used for the

fitting, the variables and their relations, the whole set of parameters and the ones that have to

be estimated [83].

If the analysis predicts that the parameters are identifiable, the identifiability can be either

global or local. In the first case, it means that there exists a unique possible set of parameters,

while, in the second case there are more than one reasonable parameter sets. On the other hands, if

the analysis predicts a non-identifiability, this problem could be solved by parameter substitution

or analytical manipulation of the model. We performed an a-priori identifiability analysis for
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the model presented in Chapter 2, by using GenSSI [84], a Matlab toolbox that evaluates the

structural identifiability of a model by using Lee derivatives. To further information we refer to

[85].

When the analysis of the identifiability includes the parameter estimates, it is a posteriori

investigation, which can be performed by the sensitivity analysis.

Sensitivity analysis. The analysis of the model sensitivity to the parameter estimates eval-

uates how much the parameter uncertainty influences the model results [86]. This analysis can

be local, if it explores only a neighborhood of the parameter estimate, or global, if the entire

parameter space is investigated. Essentially, during the sensitivity analysis, the parameter values

are modified in order to examine the impact of these perturbations on the model outcomes.

The Local Sensitivity Analysis (LSA) studies the changing on model dynamics caused by local

perturbations of the parameters. Therefore, if X = xi is the i-th variable of the system (1.6), and

p a given parameter, the value of LSA is defined as:

LSA =
∂X(t, p)

∂p
. (1.7)

The impact of the perturbation of a parameter p on the variable X is described by this value:

higher the LSA value is, greater is the impact of parameter perturbations.

In our work, we performed the LSA using a logarithmic LSA [87]:

LSA =
∂log(X(t, p))

∂log(p)
=

1
X(t,p)∂X

1
p∂p

=
∂X(t, p)

∂p

p

X(t, p)
. (1.8)

The Global Sensitivity Analysis (GSA), instead, investigates how much the model predictions

can be influenced by global parameters changing. To this scope, the parameter space needs to

be sampled by generating k random parameter sets. For each parameter set, LSA have to be

performed. Thus, the process returns a matrix A ∈ Rk×m, where m is the number of the model

parameters, and the element aij represents the LSA value corresponding to the i-th set and the j-

th parameter. From the matrix A, one aims at obtaining a unique GSA value for each parameter.
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In order to do this, one can use different statistics, such as the average LSA, the median LSA or

the maximum LSA value for each parameter.

For further information about the sensitivity analyses performed to validate our mathematical

models we refer to Sections 2.5 and 3.7.
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Chapter 2

A QSP model of prostate cancer

immunotherapy in mice

In this chapter we propose a QSP model of prostate cancer that extends a previous one published

by Peng et al.[23] based on data from a murine Pten prostate cancer model [88; 89].

Although Peng and coworkers already described the action of CTLs, dendritic cells, Tregs, andro-

gens and interleukin-2 (IL-2) in the tumor microenvironment, we extended the characterization

of the immune system by including MDSCs and Natural Killer (NK) cells as potential targets

for new prostate cancer therapies. Indeed, since the PCa does not highly respond to several

immunotherapies, evaluating combination therapies is an important step to improve therapeutic

benefits [90]. Therefore, the main goal of this work is to provide a mathematical model able to

test the efficacy of several immunotherapies and their combinations. We incorporate a wide range

of experimental data from literature [23; 64; 91–93] to implement seven treatments. The efficacy

of the therapies is assessed considering the model-predicted tumor inhibitory effect and the syn-

ergy of combination therapies. Synergy between treatments, indeed, plays a crucial role from a

clinical point of view, since it allows the reduction of the drug doses maintaining a satisfactory

overall treatment efficacy, and improving patients’ quality of life [94].

The text in the following chapter is mainly taken from the work “A QSP model of prostate can-
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2. A QSP model of prostate cancer immunotherapy in mice

cer immunotherapy to identify effective combination therapies”, which is currently in the process

of publication on Scientific Reports journal. The corresponding model limitations are discussed

in the final Chapter 4.

2.1 Mathematical model

Starting from the model introduced by Peng et al.[23], we built a mathematical model based on

ODEs describing the prostate cancer and its interaction with the immune system. A graphical

representation of the model variables and their regulative effects is shown in Figure 2.1.

Figure 2.1: Mouse PCa model diagram. The model is composed of two compart-
ments: prostate gland and lymphoid tissue. Cells are represented in orange squared boxes,
while molecules in green rounded ones. In the prostate gland compartment the cancer is in
its two forms: Androgen Dependent Prostate Cancer (ADPC) and Androgen Independent
Prostate Cancer (AIPC). Other players involved: mature Dendritic cell (Dm), regulatory
T cell (Treg), Myeloid-Derived Suppressor Cell (MDSC), Cytotoxic T Lymphocyte (CTL),
Natural Killer cell (NK), functional Dendritic cells (Df), regulatory Dendritic cells (Dr),
Androgen (A) and Interleukin-2 (IL-2). Double arrows represent transformations, single
lines represent promotions and inhibitions, while dashed lines depict the seven implemented
treatments. A complete description of the treatments and the corresponding abbreviations
are reported in Table 3.1.
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The model has two compartments: the prostate gland and the lymphoid tissue. The prostate

gland compartment includes Androgen Dependent (ADPC) and Independent (AIPC) Prostate

Cancer cells. While the ADPC grows in the presence of androgens, under androgen deprivation

therapy ADPC cells undergo apopotosis. However, the low androgen level leads to the AIPC

proliferation. ADPC and AIPC cell expansion is counteracted by the activation of the host

immune system. NK cells and CTLs have been included as the major effectors of the innate and

adaptive immune response, respectively. NK and CTL killing activity is counteracted by Tregs

and MDSCs, immune cells promoting immune tolerance. In addition, IL-2 has been included

into the model as a key signaling molecule promoting the proliferation of CTLs, NK and Treg

cells. The lymphoid tissue compartment includes variables representing biological processes of

the prostate draining lymph nodes and the spleen. Within this compartment, functional (Df) and

regulatory (Dr) dendritic cells activate CTLs and Treg cells, respectively. The two compartments

communicate by exchanging dendritic cells, CTLs and Tregs. In addition, the model incorporates

7 different treatments, shown with dashed lines in Figure 2.1 and summarized in Table 3.1.

In total, the model is composed of 19 ODEs, which describe the dynamics of 14 variables

related to the tumor and the immune system, and 5 treatment-related variables. It is worth

noting that the androgen deprivation therapy (CX) and the infusion of NK do not have an

equation describing their behaviour. The androgen deprivation is included in the model as a

term of the Eq. (2.11), while the infusion of NK is implemented by changing the initial condition

of NK cells. Compared with the starting model[23], our extended version includes two additional

variables describing the tumor microenvironment (NK cells and MDSC) and two variables related

to the treatment: the immune checkpoint blockade (ICB) and the MDSC-targeted therapy (AM).

Moreover, the original equations have been extended to take into account the action of the new

players. Each variable is expressed as a ratio between its current value and its initial value.

The model equations are described in the following subsections, while the model parameters are

reported in Table 2.3.
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Therapy Abbreviation Description Reference

castration CX androgen deprivation within the
prostate gland

[23]

vaccine V administration of mature den-
dritic cells into the prostate gland

[23]

anti-IL2 AI administration of monoclonal an-
tibodies neutrali zing IL-2 within
the prostate gland and the lym-
phoid tissue

[23]

anti-Treg AR Treg depletion within the
prostate gland and the lym-
phoid tissue through anti-CD25
antibody injection

[23]

NK cells NK administration of NK cells within
the prostate gland implemented
by increasing the initial condition
of NK

[95]

Immune

checkpoint
blockade

ICB an intermittent therapy with
a cocktail of anti-CTLA4 and
anti-PD1 antibodies administered
three times per week, for 4 weeks,
starting 21 days after androgen
deprivation therapy

[93]

anti-MDSC AM an intermittent therapy with anti-
MDSC drugs (Cabozatinib) daily
administered for 4 weeks, start-
ing 21 days after androgen depri-
vation therapy

[93]

Table 2.1: Table of the treatments for mouse PCa model. Summary of the
treatments implemented in the mathematical model.
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2.1. Mathematical model

Prostate gland compartment

The prostate gland compartment contains prostate cancer cells (ADPC and AIPC), immune

system cells (Dm, CTL, NK, Treg and MDSC), androgens and IL-2.

dX1

dt
= rp1 A X1︸ ︷︷ ︸

proliferation

− µ1 (1 − A) X1︸ ︷︷ ︸
death

− rM (1−A) X1︸ ︷︷ ︸
mutation

− kCX (1 + δICB ICB) C2 X1︸ ︷︷ ︸
tumor killing by CTL

(2.1)

−kNX(e−kRNR2 + e−kMNM ) N X1︸ ︷︷ ︸
tumor killing by NK

. (2.2)

The Eq. (2.1) refers to the ADPC cells. Tumor cell proliferation is positively regulated by the

androgen presence, while tumor death and mutation are negatively affected by it. We assume that

the evolution to AIPC occurs after androgen deprivation therapy, as a selective pressure is applied

(”mutation” term). A key mechanism exploited by the tumor to evade the immuno-surveillance

is the immune checkpoint activation, which reduces the CTL tumor-killing capacity [18]. ICB

treatments are used to restore the T cell effector functions [96]. In our model, this biological

process is described by the linear function 1 + δICB ICB in the ”tumor killing by CTL” term, in

which the ICB represents the amount of ICB drug (Eq. (2.21)). This function increases the value

of the CTL killing capacity (kCX) when the treatment is administered. The ”tumor killing by

NK” term depends on a multiplicative function of Treg (R2) and MDSC cells (M)[97]. Following

the approach of De Pillis et al.[21], this inhibition has been modeled by a sum of two negative

exponential terms, which becomes close to zero when the amount of Treg or MDSC increases.

dX2

dt
= rp2 X2︸ ︷︷ ︸

proliferation

− µ2 X2︸ ︷︷ ︸
death

+ rM (1 − A) X1︸ ︷︷ ︸
mutation

− kCX(1 + δICB ICB) C2 X2︸ ︷︷ ︸
tumor killing by CTL

(2.3)

− kNX(e−kRNR2 + e−kMNM ) N X2︸ ︷︷ ︸
tumor killing by NK

. (2.4)
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The Eq. (2.3) describes the evolution in time of the AIPC cells. The terms of this equation are

similar to the ones described above, except for proliferation and death terms, no longer androgen

(A) dependent.

dDm

dt
= aV D V︸ ︷︷ ︸

vaccine

− mDDm︸ ︷︷ ︸
migration

(2.5)

+ aXD ( µ1(1−A) X1 + µ2 X2 + kCX (1 + δICB ICB) C2 (X1 +X2)

+ kNX(e−kRNR + e−kMNM ) N (X1 +X2))︸ ︷︷ ︸
recruitment by tumor

.

The mature dendritic cells are described in the Eq. (2.5). The amount of dendritic cells increases

when the vaccine (V) is administered, as described by the vaccine term. The variable V is 1

when vaccine is administered, 0 otherwise. The migration term represent the fraction of activated

dendritic cells (Dm) that move to the lymphoid tissue compartment (Df and Dr). The dendritic

cell recruitment and activation occur within the inflammation site over tumor apoptosis [98; 99],

as described by the recruitment term.

dC2

dt
= aDC Dm︸ ︷︷ ︸

activation
by Dm

+ aIC
C2 I2

sI + I2︸ ︷︷ ︸
stimulation

by IL-2

+ pC mC C1︸ ︷︷ ︸
migration

− kRC R2 C2 − kMC M C2︸ ︷︷ ︸
inhibition by Treg and MDSC

− µC C2︸ ︷︷ ︸
death

. (2.6)

The Eq. (2.6) describes the dynamics of the CTLs, which are activated by dendritic cells (Dm)

and IL-2 (I2)[24]. A fraction of CTLs migrates out from lymphoid tissue and reaches the prostate

gland with a probability pC here set to 0.5[23], as described by the ”migration” term. The

equation takes into account the effect of the immune-suppressive tumor microenvironment, here

represented by the ”inhibition by Treg and MDSC” term, and the CTL physiological cell death,

as a negative regulation of CTL dynamics.
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dN

dt
= ρN︸︷︷︸

source

− µN N︸ ︷︷ ︸
death

− kXN N(X1 +X2)︸ ︷︷ ︸
inhibition

+ aIN
N I2

sN + I2︸ ︷︷ ︸
stimulation by IL-2

. (2.7)

The Eq. (2.7) describes the NK cells dynamics. The source ρN has been estimated by imposing a

steady state when the tumor is not present (X1 +X2 = 0), assuming NK cells are not proliferating

in absence of tumor-related inflammation. If we impose NK cells as constant, i.e. dN
dt = 0,

N(0) = 1 and X1 +X2 = 0, we obtain:

ρN = µN −
aINI2

sN + I2
.

Given the values of aIN and sN (Table S1), the µN parameter results as µN >> aIN I2
sN+I2

, which

leads to ρN ≈ µN .

For evaluating the death rate µN , part of the death term, we followed the method used in

de Pillis et al.[21], where the authors considered the turnover rate of NK cells being inversely

proportional to the term 4
√
m, where m is the body mass of the organism:

µN =
K
4
√
m
.

By considering the value of K provided in the de Pillis et al.[21] and by computing the mouse

average mass[100; 101], we defined:

µN =
0.0371
4
√
mmice

= 0.09 day−1.

The other terms of the equation describe regulatory mechanisms exerted by tumor and NK

cells. Specifically, the ”inhibition” term indicates NK inactivation after interaction with ADPC

and AIPC, since PCa has the ability to impair NK cell function, establishing a strong immuno-

suppressive environment[102; 103]. Moreover, PCa development has been associated with NK

cell reduction[104]. The ”stimulation by IL-2” term, instead, is the promotion exerted by IL-2

on NK cell proliferation [102; 105] within the prostate gland compartment.
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dR2

dt
= aDR Dm︸ ︷︷ ︸

production
by Dm

+ aIR I2︸ ︷︷ ︸
stimulation

by IL-2

+ pR mR R1︸ ︷︷ ︸
migration

+ aXR (X1 +X2)︸ ︷︷ ︸
activation by tumor

− µR R2︸ ︷︷ ︸
death

− kantiRR antiR R2︸ ︷︷ ︸
anti-Treg drug

.

(2.8)

The Eq. (2.8) represents the Treg cells. Dendritic cell-mediated Treg production and IL-2

stimulation[61] contribute to the amount of Treg in the prostate gland. The migration term

instead accounts for the Treg cells migrating from the lymphoid tissue compartment. Following

the same modeling approach used for CTL, these cells reach the prostate gland with a fixed

probability of pR = 0.5[23]. ”Activation by tumor” term describes the tumor ability to activate

Treg cells as one of the tumor survival mechanisms [98]. Treg cells have a turnover rate of µR, as

shown in the death term of the equation. Treg cells are inactivated by the anti-Treg drug (antiR),

which is set to 1 when administered, 0 otherwise.

dM

dt
= ρM︸︷︷︸

source

− µM M︸ ︷︷ ︸
death

+ aXM
(X1 +X2)

sM + (X1 +X2)︸ ︷︷ ︸
activation by tumor

− kantiMM antiM M︸ ︷︷ ︸
anti-MDSC drug

. (2.9)

The Eq. (2.9) describes the MDSC dynamics in terms of MDSC source, death and tumor-

dependent activation. The form of this equation is taken from Shariatpanahi et al. [106]. We

adapted their parameter estimates to our non-dimensionalized model (Table 2.3). The source of

MDSCs is constant, while their turn-over is MDSC amount-dependent. Prostate cancer preserves

its growth by recruiting and activating MDSC within the prostate microenvironment as described

by the ”activation by tumor” term. MDSC are inactivated by the anti-MDSC drug (antiM ), which

is set to 1 when administered, 0 otherwise.

dI2

dt
= aCI C2︸ ︷︷ ︸

production
by CTL

− µI I2︸ ︷︷ ︸
death

− kantiIl antiI I2︸ ︷︷ ︸
anti-IL-2 drug

. (2.10)

The equation (2.10) describes the IL-2 dynamics. IL-2 is produced by several immune cells, mainly

T cells [107]. As already modeled in other studies [21; 23; 26; 108; 109], our model considers CTLs
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2.1. Mathematical model

(C2) as the main responsible for IL-2 production, described by the ”production by CTL” term.

In the death and anti-IL-2 drug terms, IL-2 physiological degradation rate µI is enhanced by

the anti-IL-2 drug variable (antiI), which is antiI(0) = 1 in case of anti-IL-2 treatment.

dA

dt
= λA (1−A)︸ ︷︷ ︸

proliferation
and death

− λA 1CX︸ ︷︷ ︸
androgen

deprivation effect

. (2.11)

The Eq. (2.11) describes two possible androgen (A) dynamics, depending on the value of the

Boolean function 1CX , which is set to 1 in case of androgen deprivation therapy, 0 otherwise.

When 1CX = 0, the equation becomes:

dA

dt
= λA(1−A),

which is equal to zero by imposing the initial condition A(0) = 1, i.e. constant androgen level

over time.

Conversely, when 1CX = 1, the androgen level exhibits an exponential decay with rate λA,

calculated following the standard approach as:

λA =
ln(2)

t1/2
,

where t1/2 = 7 days is the androgen half-life[23].

Lymphoid tissue compartment

The lymphoid tissue compartment contains the immune system cells (Df , Dr, CTLs and Tregs)

and the IL-2.

dDf

dt
= pD mD Dm︸ ︷︷ ︸

migration

− aDfDr Df︸ ︷︷ ︸
transformation

, (2.12)

dDr

dt
= aDfDr Df︸ ︷︷ ︸

transformation

− µD Dr︸ ︷︷ ︸
death

(2.13)
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2. A QSP model of prostate cancer immunotherapy in mice

Eq.s (2.12) and (2.13) represent the dynamics of the functional (Df ) and regulatory (Dr)

dendritic cells, respectively. A fraction of Dm cells migrates from the prostate gland to the

lymphoid tissue, differentiating into functional dendritic cells with a probability pD here set to

0.5[23] (”migration” term). A fraction of Df differentiates into Dr within the lymphoid tissue

compartment, as described by the ”transformation” term, which reduces Df in Eq. (2.12) and

increases Dr in Eq. (2.13). Dr cells are ultimately reduced by the death term in Eq. (2.13).

dC1

dt
= aDf Df︸ ︷︷ ︸

activation
by Df

+ aIC
C1 I1

sI + I1︸ ︷︷ ︸
stimulation

by IL-2

− mC C1︸ ︷︷ ︸
migration

− kRC R1 C1︸ ︷︷ ︸
inhibition by Treg

− µC C1︸ ︷︷ ︸
death

. (2.14)

CTLs are described by the Eq. (2.14). The action of Df cells activates CTLs, as defined by the

”activaton by Df” term, and IL-2 promotes their proliferation, as described in the ”stimulation by

IL-2” term. CTLs have two possible fates, either reduced by the ”inhibition by Treg” and ”death”

terms, or released from the lymphoid tissue compartment, as described by the ”migration” term.

dR1

dt
= aDrR Dr︸ ︷︷ ︸

production
by Dr

+ aIR I1︸ ︷︷ ︸
stimulation

by IL-2

− mR R1︸ ︷︷ ︸
migration

− µR R1︸ ︷︷ ︸
death

− kantiRR antiR R1︸ ︷︷ ︸
anti-Treg drug

. (2.15)

The Eq. (2.15) represents the Treg dynamics. Dr induces Treg differentiation, as defined

by the ”production by Dr” term, and IL-2 promotes their proliferation, as described in the

”stimulation by IL-2” term. Tregs are either released from the lymphoid tissue, or induced to

apoptosis by the ”death” term and by the ”anti-Treg drug” term, if administered (antiR = 1).

dI1

dt
= aCI C1︸ ︷︷ ︸

production
by CTL

− µI I1︸ ︷︷ ︸
death

− kantiI antiI I1︸ ︷︷ ︸
anti-IL-2 drug

. (2.16)

Eq. (2.16) defines IL-2 dynamics within the lymphoid tissue, similarly to Eq. (2.10) in the

prostate gland compartment. Taking into account that CTLs and IL-2 are tissue-associated, all

terms have been previously described.
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2.1. Mathematical model

Treatments

The model provides a description of seven treatments (Table 3.1), two of which are not described

by a dedicated equation. In detail, the administration of androgen deprivation therapy is im-

plemented by the term −λA1CX in Eq. (2.11), while the injection of NK cells is simulated by

changing the initial value of NK variable (see Section 2.5).

The other five treatments have been modeled using the following ODEs to represent the

treatment decays:

dV

dt
= −λV V ; (2.17)

dantiI
dt

= −λAI antiI ; (2.18)

dantiR
dt

= −λAR antiR; (2.19)

dantiM
dt

= −λAM antiM ; (2.20)

dICB
dt

= −λICB ICB. (2.21)

The Eq.s (2.17), (2.18) and (2.19) have been presented in Peng et al.[23] and describe the

dynamics of vaccine, anti-IL-2 and anti-Treg drugs, respectively. In our model, we introduce the

decay of the anti-MDSC drug, described by Eq. (2.20), and the degradation of the ICB drugs

as defined by Eq. (2.21). Each degradation rate has been calculated as explained in Eq. (2.11)

description, considering the following half-lives:

• tV1/2 = 7 days (as in [23]);

• tAI1/2 = 7 days (as in [23]);

• tAR1/2 = 7 days (as in [23]);

• tAM1/2 = 3.5 hours [110];

• tICB1/2 = 5 days [111; 112].
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2. A QSP model of prostate cancer immunotherapy in mice

2.2 Model calibration

The model comprehends 51 parameters, but 23 of these are directly taken from the literature or

computed as specified in the equation description (e.g. Eq. (2.7)) without relying on numerical

optimization methods. The remaining 28 parameters have been numerically estimated. Among

these, 18 have been only refined by the optimization function in an interval close to their literature

values, while the other 10 parameters have been entirely estimated in this work. For a detailed

description of the estimation procedure, we refer to Table 2.3. Before calibrating the model, we

also evaluated its structural identifiability by means of the Matlab toolbox GenSSI [84]. Despite

some limitations of the employed algorithm, which imposed some restrictions on the inclusion

of all the experimental data considered for model calibration, the analysis guarantees a local

identifiability. We refer to Section 2.5 for further details.

2.2.1 Experimental data

Model calibration has been performed taking into account a wide range of published data [23; 91–

93]. The authors from [23; 64; 92; 93] collected in vivo data measuring the amount of some

variables included in our model, while from [91; 92] we extrapolated in vitro data. In the following

we explain in detail the data becoming from each citied work.

For consistency purposes, our model includes data presented by Peng et al. [23], the starting

model that we extended. The authors considered prostate-specific Pten -/- mice, which has been

specifically selected to mimic the natural tumorigenesis of human prostate cancer development

as well as the effects of treatment [113]. Starting at 14 weeks of mouse-life, when the devel-

oped prostate cancer reaches a volume large enough to be treated, tumor size, CTLs and Tregs

populations were measured every 2.5 weeks for 5 weeks in both prostate gland and lymphoid

tissues.

Wang et al. paper [64] collects in vivo data of prostate-specific Pten-/-Smd4-/- mice. They

measured the percentage of several immune cells in prostate gland at 5, 8 and 14 weeks of age.
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2.2. Model calibration

The paper from Garcia et al. [92] includes data of untreated prostate-specific Pten -/- mice.

The authors collected time series of CTLs and MDSCs infiltrating prostate cancer at week 6, 9

and 16 of mouse-life. Moreover, they showed that the presence of MDSCs in the tumor microen-

vironment is able to reduce CTL’s concentration of 42% in vitro.

To introduce the NK cells, we needed to estimate the NK-dependent tumor regression. There-

fore, we considered data from Lin et al. [91] regarding two in vitro human prostate cancer cell

lines. The experiments highlighted that the prostate cancer co-cultured with NK cells halved its

growth after 48 hours.

The optimal NK injection dose has been calculated following Domogala et al.[95] indications.

This paper reported that doses nine-times greater than the usual amount of circulating NK cells

are well-tolerated in men.

The effects of androgen deprivation combined to either ICB or anti-MDSC alone or the two

treatments together have been measured by Lu et al. [93]. They delivered the androgen depri-

vation to 14 weeks-old severely-mutated Pten mice and, 3 weeks later, the immunotherapy. The

anti-MDSC and ICB were administered 3 times per week and everyday, respectively, for 4 weeks

before endpoint analysis. Specifically, the ICB treatment was defined by a cocktail of anti-CTLA4

and anti-PD1 antibodies, while the anti-MDSC treatment has been performed by Cabozatinib

alone.

2.2.2 Optimization objective function

The optimization function that we created to estimate the parameters is composed of the sum

of three main parts that correspond to the experimental scenarios described in the previous

subsection:

Opt = Opt1 + Opt2 + Opt3.

The function Opt1 has been defined integrating the Peng’s experimental data to the other time

series taken from Garcia et al. [92]. To properly adapt Garcia’s quantitative data to Peng’s
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2. A QSP model of prostate cancer immunotherapy in mice

relative data, we needed to calculate the ratio between cell counts at 16 and 14 weeks, which is

the simulation starting point. Since the Garcia’s experimental data missed the cell count of 14

weeks-old mice, we extrapolated the corresponding amount of CTLs and MDSCs by the linear

regression of the available data.

We fitted the model by minimizing the absolute difference between model-predicted variable

dynamics and experimental data :

Opt1 =
1

7

7∑
i=1

 1

Mi

Mi∑
j=1

 1

Nj

Nj∑
k=1

|Xk −Xk|

 ,
where 7 is the number of combination therapies considered in Peng et al.[23]. For each combina-

tion therapy, Mi is the number of variables requiring data extrapolation, while, for each variable,

Nj is the number of time-point dependent data. Xk is the estimated variable value computed by

simulating the model, and Xk is the corresponding experimental data.

The second term Opt2 takes into account the in vitro human prostate cancer cell lines from

Lin et al. [91] and the in vitro Pten null prostate cancer cell lines from Garcia et al. [92]. The

initial values of all model variables not present in the experiments of interest have been set to

zero. The initial values of NK and PCa have been reported in Wang et al.[64], while CTL and

MDSC have been extrapolated from Garcia’s experimental data [92] as previously described. We

used a weighted least squares method to fit the experimental data:

Opt2 = w1

(
TNK
T
− 0.5

)2

+ w2

(
CM
C
− 0.42

)2

.

w1 and w2 are the empirically estimated weights required to consistently scale the value of Op2

with respect to the other two components Opt1 and Opt3. TNK is the model-predicted tumor

amount co-cultured with NK cells for 2 days, while T is the model-predicted tumor amount cul-

tured without NK cells. CM is the model-predicted number of CTLs co-cultured with MDSCs for

5 days, while C is the model-predicted count of CTLs cultured without MDSCs. The percentages
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2.3. Model simulations and sensitivity analyses

0.5 and 0.42 derive from experimental data.

Following a similar strategy, we used data of ICB and anti-MDSC drugs to define the last

part of the optimization function Opt3. In our model, immunotherapies have been administered

reproducing the protocol of Lu et al. work [93]. We compared the castration-resistant tumor

size after 7 weeks of either ICB or anti-MDSC drugs alone or their combination versus the

immunotherapy-free control. The same procedure has been repeated for MDSCs. The two ratios

have been optimized through weighted least squares method:

Opt3 =
3∑

k=1

ŵk ·
(
Tk
Tcx
−Rtk

)2

+
3∑

k=1

w̃k ·
(
Mk

Mcx
−Rmk

)2

,

where the summations from 1 to 3 fit the three treatment conditions. ŵk and w̃k are the empiri-

cally estimated weights required to consistently scale the value of Op3 with respect to the other

two components Opt1 and Opt2. Tk and Mk represent the model-predicted amount of tumor

and MDSCs, respectively, when the therapy k is administered. These values are compared with

Tcx and Mcx providing the model-predicted size of tumor and MDSC population under androgen

deprivation alone. Rtk and Rmk represent the two ratios derived from the experimental data

[93].

2.3 Model simulations and sensitivity analyses

In this section, we verify if the model herein developed could capture the effect of a variety of

experimentally tested treatments. To keep the simulation consistent with the experimental data,

the system was simulated for 7 weeks (49 days), starting from an already developed cancer (14

weeks of age of mice). In fact, 7 weeks is the longest period considered in the in vivo experiments

carried out to generate the data included in our model (see section 2.2). The dynamics of

the main system variables are described for all the experimental therapies considered for the

model calibration [23; 92; 95]. The variable dynamics are expressed in terms of fold-change with
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2. A QSP model of prostate cancer immunotherapy in mice

respect to their initial values. The experimental data (red dots) are compared to the simulated

behaviors (solid lines). Within the tumor chart, the dark blue line represents the total tumor

volume while green and the light blue lines represent the predicted ADPC and AIPC dynamics,

respectively. The first scenario discussed is represented by the untreated case (Fig. 3.3), which

Figure 2.2: Mouse PCa model dynamics in untreated case. (a) Variables of the
prostate gland compartment. (b) Variables of the lymphoid tissue compartment. The
simulation time is 7 weeks (49 days). The variable dynamics are expressed in terms of
fold-change with respect to their initial values. The experimental data (red dots) are
compared to the simulated behaviors (solid lines). Within the tumor chart, the dark blue
line represents the total tumor volume while the light blue line represents the predicted
AIPC dynamics.

is the reference for evaluating the treatment effectiveness. In the absence of any treatments, the

model simulation (Fig. 3.3) shows that the tumor expands up to six times its initial volume

before reaching the endpoint (dark blue line in the tumor chart). In parallel, both Tregs and

MDSCs increase almost twice within the 7 weeks. Conversely, the number of CTLs and mature

dendritic cells decreases over time, showing a progressive establishment of an immunosuppressive

tumor microenvironment. It is noteworthy that, in the absence of androgen deprivation therapy,
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the entire tumor (dark blue line) is predicted to be androgen dependent. When the model is

Figure 2.3: Mouse PCa model dynamics under androgen deprivation treatment.
(a) Variables of the prostate gland compartment. (b) Variables of the lymphoid tissue
compartment. The simulation time is 7 weeks (49 days). The variable dynamics are
expressed in terms of fold-change with respect to their initial values. The experimental
data (red dots) are compared to the simulated behaviors (solid lines). Within the tumor
chart, the dark blue line represents the total tumor volume while green and the light blue
lines represent the predicted ADPC and AIPC dynamics, respectively.

simulated with the androgen deprivation therapy, the tumor evolves to its AIPC form, as shown

in Figure 3.4. In this scenario, the total tumor (dark blue line in the tumor chart) is growing at

a slower pace than in the untreated simulation and, by the end of the simulation (7-week time

point), it reaches a three-times smaller volume than in the untreated case. In the prostate gland

compartment, we observed a marked increase in CTLs and Tregs, while mature dendritic cells

showed a less pronounced growth. Unlike the untreated case, the androgen deprivation therapy

induces an increase in the amount of dendritic cells as well as cytotoxic and regulatory T cells in

the lymphoid tissue compartment.

We also considered data derived from experiments including the following immunotherapies:
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2. A QSP model of prostate cancer immunotherapy in mice

anti IL-2, anti-Treg, vaccine, NK administration, ICB and anti-MDSC (2.9-2.16 in Section 2.6).

The simulations of these scenarios show that androgen deprivation therapy is highly potentiated

by ICB and anti-MDSC, in agreement with the experimental data [93]. In particular, our model

predicts that the therapeutic scheme in which androgen deprivation is followed by a combination

of ICB and anti-MDSC diminishes the tumor size by 30% at 7-week time point, a reduction

greater than 70% compared to the untreated case (Fig. 2.16).

(a) (b)

Figure 2.4: Mouse PCa model fitting experimental data of immune checkpoint
blockade and anti-MDSC therapies. (a) Ratios of castration-resistant tumor (T) in
immuno-treated prostate cancer to untreated. (b) Ratios of MDSCs population (M) in
immuno-treated prostate cancer to untreated. Described immunotherapy scenarios: ICB
treatment (ICB), anti-MDSC treatment (AM) and ICB combined to anti-MDSC therapies
(AM+ICB). Experimental data[93] are representted as blue points with the corresponding
standard deviations (blue bar). Model simulation results are shown as red points.

The experimental data related to the NK infusion, ICB and anti-MDSC treatments are not

expressed as fold-changes between the baseline and the time-point of interest and, thus, these

data are not shown in Figures 2.14-2.17. As explained in 2.2 section, the data used for estimating

the ICB and anti-MDSC efficacy, are expressed as ratios. The Figure 2.4 shows the changing in

castration-resistant tumor size (a) and in MDSC population (b) after either ICB or anti-MDSC

single-therapies and after ICB and anti-MDSC dual-drug immunotherapy. The estimated values

are compared with the experimental data derived by [93].
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(a) (b)

Figure 2.5: Mouse PCa model fitting experimental data of in vitro experiments.
Cell proportions reported on the x axis are specified at each graph top side. (a) 100% tumor
cells is the control sample, reduced by 50% after NK cell co-culture [91]. (b) 100% CTLs
is the control sample, reduced by 42% after MDSCs co-culture [92].

The dosage of NK cells for the corresponding treatment has been chosen according to the

literature [95], as described in the previous section. To estimate the NK efficacy we considered

the in vitro data provided in [91], which highlight a 50% tumor size reduction after NK cell

injection. Figure 2.5(a) shows the model validation of the described in vitro scenario. The

2.5(b), instead, refers to the model validation of the other in vitro data taken from [92], which

shows the CTL population reduced by 42% after anti-MDSC treatment.

Overall, the model is in agreement with the considered data. It captures the temporal growth

of the tumor volume and the modulation of immune cell levels, as well as the other described

experimental data used for model calibration.

To evaluate the reliability of model predictions with respect to the uncertainty of parameter

estimates, we performed a local and a global sensitivity analysis of the tumor variable defined

as the sum of the ADPC and AIPC. The results of such analysis are reported in the Appendix

A. The Local Sensitivity Analysis (LSA) highlights the obvious high dependence of tumor on

its death and proliferation rates in all the reproduced experimental scenarios. Moreover, when
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the ICB treatment is administered, also the CTL activity influences the tumor growth as well

as the maximal effect of ICB drug δICB, as expected. These results have been also confirmed

by the Global Sensitivity Analysis (GSA), which predicts a hight dependence of tumor on its

proliferation and death rates, as well as on those parameters which regulates the killing abilities

of the immune system, such as the maximal killing rate of tumor by CTLs and NK cells (kCX

and kNT , respectively). Moreover, also the parameters describing the action of Treg, MDSC and

ICB are predicted to influence the tumor growth, especially when the corresponding therapies

are administered. For example, in case of ICB therapy, the perturbation of the parameter δICB,

describing the effect of ICB drug on the CTL tumor killing rate, induces a strong variation in

tumor size (Fig. A.8). The results of the LSA and the GSA suggest that the tumor dynamics is

not significantly affected by parameter uncertainty, except for the few parameters that we expect

playing a crucial role. For technical details see Section 2.5.

2.4 Identification of effective drug combinations for

prostate cancer treatment

After having verified the capability of our model to reproduce the experimental data, we explored

the possibility of using the model to predict the efficacy of the combination therapies. To compare

all the treatment combinations, we defined a standard in silico protocol of drug administration.

In these simulations, all treatments started simultaneously at week 0 and ended at week 4. The

efficacy of the therapy was evaluated comparing the predicted tumor size at week 4 of therapy

simulation with the tumor size in the untreated scenario at the same time point. A summary of the

most and least successful therapies, divided by the number of included treatments, is reported in

Table 2.2 and a graphical representation of the results for single-, dual- and triple-drug therapies

is visualized in Fig. 2.6.
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Number of com-

bined treatments

Best combination Worst combination

2 CX+ICB V+AI

3 CX+V+ICB V+AI+NK

4 V+AR+ICB+AM V+AI+AR+AM

5 V+AR+NK+ICB+AM CX+V+AI+AR+AM

6 CX+V+AR+NK+ICB+AM CX+V+AI+AR+NK+AM

Table 2.2: Table of the model predicted best and worst treatment protocols
for mouse PCa model. The most and the least efficacious combination therapies sorted
by the total number of treatments included in each therapy. Therapies are indicated
by the following abbreviations: Androgen Deprivation (CX), Anti-IL-2 (AI), Anti-Treg
(AR), Anti-MDSC (AM), Vaccine (V), infusion of NK cells (NK) and Immune-Checkpoint
Blockade (ICB).

When monotherapy is considered, our simulations indicate that castration is the the most

effective treatment, with a 33% smaller tumor size at week 4 compared to the untreated. On

the other hand, cancer vaccination is predicted to be the least beneficial one, with almost no

effect on the tumor (Fig. 2.6(a)). In the case of dual-drug therapies, androgen deprivation

combined with one immunotherapy is shown to increase the percentage of tumor reduction in

all cases (Fig. 2.6(b)). In particular, androgen deprivation coupled with ICB is predicted to be

the most effective therapy, with 64% tumor reduction compared with the untreated. Conversely,

the addition of vaccination to androgen deprivation induces a less than one percent decrease,

suggesting a minimal contribution of this immunotherapy to contain the tumor burden. However,

vaccination is showing a complex behaviour and its contribution to the tumor-size reduction is

highly dependent on the other drugs included in the combination therapy. For example, it shows

an antagonistic behaviour with anti-IL2, anti-Treg and NK infusion, because the predicted tumor

inhibition of these treatments, tested as single drugs, is higher than the one obtained by combining

them with the vaccine. Conversely, vaccine exhibits an additive effect when combined with
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Figure 2.6: Predicted tumor inhibition percentages for different terapeutic
protocols in mouse PCa model. The model-predicted effect of (a) single-, (b) dual-
and (c) triple-drug therapies. Therapies have been sorted by their tumor inhibition per-
centage compared to the untreated case, after 4 weeks of therapy. Treatments are named
by the following abbreviations: Androgen Deprivation (CX), Anti-IL-2 (AI), Anti-Treg
(AR), Anti-MDSC (AM), Vaccine (V), injection of NK cells (NK) and Immune-Checkpoint
Blockade (ICB).
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androgen deprivation or anti-MDSC and a synergistic effect with ICB (Fig. 2.6(b)). Furthermore,

when vaccine is administered in combination with androgen deprivation and ICB, we observed a

75% tumor reduction, reaching the highest percentage of tumor reduction among the triple-drug

therapies (Fig. 2.6(c)). Additional simulations performed combining four, five, and six treatments

are shown in Fig. 2.18.

To further explore the presence of synergistic effects among the treatments, we need of a

sort of correlation measure. In the literature there are several methods to assess the synergy

of combination therapies. A comprehensive review has been written by Foucquier and Guedj

[114]. Among these techniques, we chose the Bliss combination index (BCI) [115], which is one

of the most commonly used. The BCI is defined as a ratio between the efficacy of two therapies

supposing that these do not interact and the efficacy of the same therapies administered together.

To calculate this index, we need to express treatment effects as probabilities. Therefore, the first

term of the ratio, describing the effect of non-interacting therapies A and B, is computed by using

the law of total probability:

P (A ∪B) = P (A) + P (B)− P (A ∩B),

which, considering the independence between A and B, becomes:

P (A ∪B) = P (A) + P (B)− P (A)P (B).

If we consider the tumor inhibition percentages as probabilities, we define the BCI of two

treatments A and B as:

BCI(A,B) =
Ti(A) + Ti(B)− Ti(A)Ti(B)

Ti(A+B)
,

where Ti(x) indicates the model-predicted percentage of tumor inhibition, compared to the un-

treated case, obtained by applying the therapy x. In the case of Ti(A+B), this corresponds to the
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model-predicted percentage of tumor inhibition given by the combination of the two treatments

A and B.

When BCI(A,B) < 1, the model-predicted effect on tumor size of the combination therapy

A+B is stronger than the one of the two non-interacting therapies A and B. Therefore, the two

therapies are predicted to be synergistic. Conversely, when BCI(A,B) > 1, the two therapies

are considered antagonist.

Considering dual-drug therapies, this analysis identified anti-MDSC and NK infusion as the

most synergistic treatments (BCI = 0.38), as shown in Figure 2.7(a). Despite being highly

synergistic, this therapy does not reach the highest control of tumor size, that is, instead, obtained

coupling CX and ICB, as described above. Indeed, the BCI of CX + ICB is 0.79, indicating a

modest synergy that is nonetheless sufficient to reach a 64% tumor inhibition (Fig. 2.6(b)). In

addition to the dual-drug therapies, the BCI can be computed for all treatment combinations.

We observe that also the BCI of more than two treatments has been evaluated by considering

couple of therapies. Indeed, for determining the BCI of three therapies A, B and C, we computed

BCI(A + B,C), BCI(A,B + C) and BCI(A + C,B), obtaining different values. The complete

table is reported in the supplementary file available at https://www.cosbi.eu/fx/0293/BCI.

xlsx. By considering all the possible combinations, the most synergistic therapy is given by the

the addition of AM to a therapy that includes V and NK infusion.

We also attempted to use these results to estimate the minimal dose to maintain a satisfactory

treatment efficacy. For this analysis, the minimal satisfactory tumor inhibition was fixed to the

theoretical value obtained assuming that the two drugs have no interaction (A∪B in Eq. (??)).

If we consider the most promising dual-drug therapy, CX and ICB, half-dose of ICB is enough to

obtain the same effect of ICB ∪ CX (Fig. 2.7(b)).

The results obtained from synergy analysis and tumor inhibition evaluation are complemen-

tary and their combination is essential for a more complete view of the system behavior. Hence,

we built a decision tree that integrates the computed synergistic effect and the predicted percent-

age of tumor inhibition (Fig. 2.8). Motivated by the lack of efficacious treatments for advanced

castration resistant PCa, we set out to identify an effective immunotherapy for subjects with
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2.4. Identification of effective drug combinations for prostate cancer treatment

AIPC, which in our model develops after androgen deprivation therapy. For this reason, the

androgen deprivation therapy has been set as the root of the decision tree. The immunother-

apies have been included as internal nodes, connected to each other and to the root by edges,

annotated with the BCI value. Only edges with a synergistic value (BCI ¡=0) are reported. The

paths from the root to the terminal nodes represent the possible combined therapies and the

position of the nodes along the tree reflects the efficacy of the therapies in inhibiting the tumor

growth, according to the scale reported on the right (the most effective therapies are positioned

lower down). This chart highlights that adding ICB to CX seems the most promising therapeutic

combination to keep under control the tumor growth, notwithstanding the need to add at least

one additional treatment to reduce more than 3% the tumor size compared to the baseline. If

additional therapies are added, our simulations suggest vaccination as the most effective, leading

to a 34% tumor reduction compared to baseline and 75% compared to the untreated.

Figure 2.7: Mouse PCa model - synergistic treatments. (a) Treatment BCIs
calculated between the corresponding column and row label. BCIs of the most synergistic
treatments among all (NK + AM) and the most synergistic treatments relative to androgen
deprivation (CX + ICB) have been highlighted in bold. (b) Tumor inhibition rates of CX
and ICB as monotherapies, of ICB and CX interacting as a dual-therapy, of ICB and CX
not interacting (ICB∪ CX), and of ICB half-dosage and CX interacting as a dual-therapy.
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2. A QSP model of prostate cancer immunotherapy in mice

Figure 2.8: Mouse PCa model - treatment decision tree. Limiting the tree to androgen depriva-
tion as root node, therapies have been step-wise combined to synergise (BCI reported on the corresponding
edge). Each node position has been computed according to the relative tumor change after 4 weeks (scale
on the right). Combined therapies at the bottom are the most effective on the tumor size. The scale
thickness emphasizes the nodes able to decrease the tumor size with respect to (w.r.t.) the baseline. For
simplicity, branches showing the same pattern have been replaced by stars indicating the branch of refer-
ence (∗1 = CX+V+AM, ∗2 = CX+V+ICB, ∗3 = CX+AM+ICB). Treatments are named by the following
abbreviations: Androgen Deprivation (CX), Anti-IL-2 (AI), Anti-Treg (AR), Anti-MDSC (AM), Vaccine
(V), injection of NK cells (NK) and Immune-Checkpoint Blockade (ICB).
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2.5 Materials and methods

Computational environment

The model has been implemented as a set of Matlab functions [116], which have been simulated

by the state-of-the-art ode15s integrator. For the model calibration, we used the evolutionary

strategy provided in the optimization toolbox of Matlab: the genetic algorithm (ga). The op-

timization algorithm has been parameterized considering a population size of 200 individuals, a

crossover fraction of 0.9 and a tolerance function of 10−2.

Structural identifiability analysis

A structural identifiability analysis has been performed by means of the Matlab toolbox GenSSI

[84]. The software requires: (i) a list of all the model variables and their relations inside the

mathematical model; (ii) a list of all the model parameters, by also specifying the ones that have

to be estimated; (iii) the model initial conditions for running the simulations; and (iv) a list

of the experimentally observed quantities, which can be model variables or a function of these.

Unfortunately, the algorithm has some limitations that prevent the complete specification of all

the experimental data employed during the model calibration phase. In particular, we excluded

from this analysis the in vitro data and the ratios of the system variables in different experimental

conditions (see section 2.2 for a complete description of the experimental data). Despite these

limitations, the analysis guarantees a local identifiability.

Sensitivity analyses

A local and a global sensitivity analysis have been performed on tumor size, which is the main

variable discussed in this work. To conduct the Local Sensitivity Analysis (LSA), we considered

the total amount of tumor as X = X1 + X2 and we evaluated the tumor LSA value of a model

parameter p by using the logarithmic LSA introduced in the Chapter 1. Starting from the Eq.
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2. A QSP model of prostate cancer immunotherapy in mice

(1.8), we approximated ∂X(t,p)
∂p by the central finite difference, obtaining:

LSA(p) =
X(tf , p+ ∆p)−X(tf , p−∆p)

2 ·∆ ·X(tf , p)
,

where tf is the last simulated time point (49 days).

For implementing the Global Sensitivity Analysis (GSA), we computed the median value of

1000 LSAs for each model parameter, starting from random parameter estimates inside the model

parameter space. To increase the reliability of the analysis, we computed the GSA by considering

the complete LSA profiles:

LSA(p) =

∫ tf

0

X(t, p+ ∆p)−X(t, p−∆p)

2 ·∆ ·X(t, p)
dt,

while in the previous LSA we computed the tumor sensitivity only at the last simulated time

point. This choice allowed to better capture the sensitivity of the overall tumor dynamics with

respect to each parameter perturbation. The parameter space has been defined according to the

following constraints. For the 28 parameters estimated by optimization methods, we used the

same range of variability considered for the model calibration. For all the remaining parameters,

we considered a variation of 30% their initial literature estimate. The results of both LSA and

GSA obtained by fixing ∆ = 1% are shown in the Appendix A.
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2.6 Additional Figures

This appendix is devoted to the inclusion of additional figures discussed in this chapter.

Figures 2.9-2.17 shows the variable dynamics expressed in terms of fold-change with respect

to their initial values. The simulation time is fixed to 7 weeks. The experimental data (red dots)

are compared to the simulated behaviors (solid lines). Within the tumor chart, the dark blue

line represents the total tumor volume while the light blue line represents the predicted AIPC

dynamics.

Figure 2.18 includes the tumor inhibition percentages corresponding to all the possible com-

bination therapies of the seven treatments implemented.

���� ���

Figure 2.9: Mouse PCa model dynamics under vaccine therapy. (a) Variables of the
prostate gland compartment. (b) Variables of the lymphoid tissue compartment.
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2. A QSP model of prostate cancer immunotherapy in mice

(a)   (b)

Figure 2.10: Mouse PCa model dynamics under androgen deprivation + anti-IL2
combintion therapy. (a) Variables of the prostate gland compartment. (b) Variables of the
lymphoid tissue compartment.

           (a)   (b)

Figure 2.11: Mouse PCa model dynamics under androgen deprivation + anti-Treg
combination therapy. (a) Variables of the prostate gland compartment. (b) Variables of the
lymphoid tissue compartment.
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  (a)    (b)

Figure 2.12: Mouse PCa model dynamics under androgen deprivation + vaccine
+ anti-Treg combination therapy. (a) Variables of the prostate gland compartment. (b)
Variables of the lymphoid tissue compartment.

 ������ (a)        (b)

Figure 2.13: Mouse PCa model dynamics under androgen deprivation + vaccine
combination therapy. (a) Variables of the prostate gland compartment. (b) Variables of the
lymphoid tissue compartment.
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2. A QSP model of prostate cancer immunotherapy in mice

Figure 2.14: Mouse PCa model dynamics under androgen deprivation + ICB combi-
nation therapy. (a) Variables of the prostate gland compartment. (b) Variables of the lymphoid
tissue compartment.

(a)    (b)

Figure 2.15: Mouse PCa model dynamics under androgen deprivation + anti-MDSC
combination therapy. (a) Variables of the prostate gland compartment. (b) Variables of the
lymphoid tissue compartment.
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     (a)  (b)

Figure 2.16: Mouse PCa model dynamics under androgen deprivation + ICB +
anti-MDSC combination therapy (a) Variables of the prostate gland compartment. (b)
Variables of the lymphoid tissue compartment.
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2. A QSP model of prostate cancer immunotherapy in mice

Figure 2.17: Mouse PCa model dynamics under NK infusion. (a) Variables of the
prostate gland compartment. (b) Variables of the lymphoid tissue compartment. To reproduce
the infusion of NK cells with a dose nine times grather than the physiological NK amount [95],
we increased NK initial value assuming the same multiplicative factor.
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Figure 2.18: Predicted tumor inhibition percentages for different terapeutic
protocols in mouse PCa model - complete scheme. The model predicted effect
of all the possible combination therapies. Therapies have been sorted by their tumor
inhibition percentage compared to the untreated case, after 4 weeks of therapy. Treatments
are named by the following abbreviations: Androgen Deprivation (CX), Anti-IL-2 (AI),
Anti-Treg (AR), Anti-MDSC (AM), Vaccine (V), injection of NK cells (NK) and Immune-
Checkpoint Blockade (ICB).
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2.7 Table of parameters

Parameter Description Value Estimation Proce-

dure

aCI Activation rate of IL-2 by

CTLs

5.84 10−2 day−1 taken from [23]

aDC Activation rate of CTLs by

Dendritic cells

4.24 10−1 day−1 optimized around the

value from [23] +/-

30%

aDfDr Transformation rate of

functional Dendritic cells

into regulatory Dendritic

cells

1.43 10−2 day−1 taken from [23]

aDR Activation rate of Treg by

mature Dendritic cells

1.06 10−1 day−1 taken from [23]

aDrR Activation rate of Tregs by

regulatory Dendritic cells

6.75 10−2 day−1 taken from [23]

aIC Maximal activation rate of

CTLs by IL-2

7.70 102 day−1 unconstrained

optimization

aIN Maximal activation rate of

NK by IL-2

7.43 10−2 day−1 optimized around

the value from

[21] after non-

dimensionalization

+/- 30%
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aIR Activation rate of Treg by

IL-2

5.06 10−2 day−1 taken from [23]

aV D Activation rate of mature

Dendritic cells by Vaccine

8.08 10−1 day−1 optimized around the

value from [23] +/-

30%

aXD Activation rate of mature

Dendritic cells by Tumor

2.73 10−1 optimized around the

value from [23] +/-

30%

aXM Maximal activation rate of

MDSC by Tumor

6.70 10+2 day−1 optimized around

the value from

[106] after non-

dimensionalization

+/- 30%

aXR Activation rate of Treg by

Tumor

2.06 10−2 day−1 taken from [23]

kantiII Inhibition rate of IL-2 by

anti-IL-2 drug

7.14 10−1 day−1 taken from [23]

kantiMM Inhibition rate of MDSC

by the drug Cabozatinib

7.57 10+1 day−1 optimized in [0, 100]

kantiRR Inhibition rate of Treg by

anti-Treg drug

1.43 day−1 taken from [23]
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2. A QSP model of prostate cancer immunotherapy in mice

kCX Killing rate of tumor by

CTLs

6.55 10−4 day−1 optimized in

[0, kPengCX ], where

kPengCX is the kCX

estimated in [23]

kMC CTL cytotoxic effect

MDSC-dependent inhibi-

tion

9.62 10−2 day−1 optimized in

[0.001, 10]

kMN NK cytotoxic effect

MDSC-dependent inhibi-

tion

3.88 optimized in

[0.001, 10]

kNX Maximal killing rate of Tu-

mor by NK cells

7.22 10−3 day−1 optimized in

[0.001, 10]/7

kRC CTL cytotoxic effect Treg-

dependent inhibition

1.00 10−1 day−1 optimized in

[0, kPengRC ], where

kPengRC is the kRC

estimated in [23]

kRN NK cytotoxic effect Treg-

dependent inhibition

2.07 optimized in

[0.001, 10]

kXN Inactivation rate of NK by

Tumor

1.60 10−3 day−1 optimized in

[0.0001, 1]
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mC Migration rate of CTLs out

of the lymphoid tissue

4.29 10−1 day−1 optimized around the

value from [23] +/-

30%

mD Migration rate of mature

Dendritic cells out of the

prostate gland

9.36 10−1 day−1 optimized around the

value from [23] +/-

30%

mR Migration rate of Treg out

of the lymphoid tissue

1.43 10−2 day−1 taken from [23]

pC Probability of migrating

CTLs to reach the prostate

gland

0.5 taken from [23]

pD Probability of migrating

mature dendritic cells to

reach the lymphoid tissue

0.5 taken from [23]

pR Probability of migrating

Treg cells to reach the

prostate gland

0.5 taken from [23]

rM Mutation rate of ADPC

into AIPC

8.11 10−1 day−1 optimized around the

value from [23] +/-

30%
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rp1 Proliferation rate of

Androgen Dependent

Prostate Cancer cells

(ADPC)

3.63 10−2 day−1 optimized around the

value from [23] +/-

30%

rp2 Proliferation rate of

Androgen Independent

Prostate Cancer cells

(AIPC)

1.70 10−1 day−1 optimized around the

value from [23] +/-

30%

sI IL-2 saturation level for

CTL clonal expansion

7.72 104 optimized around the

value from [24] +/-

30%

sM Tumor cells saturation

level for MDSC clonal

expansion

1.82 10+4 optimized around

the value from

[106] after non-

dimensionalization

+/- 30%

sN IL-2 saturation level for

NK clonal expansion

1.49 10+2 optimized around

the value from

[21] after non-

dimensionalization

+/- 30%

δICB Effect of ICB drugs on

CTL killing rate

1.09 10+1 optimized in [1, 100]
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λA Decay rate for Androgens

under androgen depriva-

tion therapy

9.90 10−2 day−1 computed as ex-

plained in the

description of Eq.

(2.11)

λAI Decay rate for anti-IL-2 9.90 10−2 day−1 computed as ex-

plained in the

description of Eq.

(2.11) by consider-

ing the correspondent

anti-IL-2 drug half-life

λAM Decay rate for Cabozatinib 4.75 day−1 computed as ex-

plained in the

description of Eq.

(2.11) by considering

the correspondent

anti-MDSC drug

half-life
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λAR Decay rate for anti-Treg 9.90 10−2 day−1 computed as ex-

plained in the descrip-

tion of Eq. (2.11) by

considering the cor-

respondent anti-Treg

drug half-life

λICB Decay rate for ICB 1.39 10−1 day−1 computed as ex-

plained in the

description of Eq.

(2.11) by considering

the correspondent

ICB drug half-life

λV Decay rate for Vaccine 9.90 10−2 day−1 computed as ex-

plained in the

description of Eq.

(2.11) by considering

the correspondent

vaccine half-life

µ1 ADPC death rate 1.01 10−2 day−1 optimized around the

value from [23] +/-

30%
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µ2 AIPC death rate 1.48 10−1 day−1 optimized around the

value from [23] +/-

30%

µC CTL death rate 1.46 10−1 day−1 optimized around the

value from [23] +/-

30%

µD Dendritic cell death rate 9.29 10−2 day−1 taken from [23]

µI IL-2 death rate 3.05 10−2 day−1 taken from [23]

µM MDSC death rate 2.94 10−1 day−1 optimized around

the value from

[106] after non-

dimensionalization

+/- 30%

µR Treg death rate 8.07 10−2 day−1 taken from [23]

µN NK cell death rate 9.00 10−2 day−1 calculated as in [21]

(see NK Eq. (2.7) for

details)
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ρM MDSC source 3.24 10−1 optimized around

the value from

[106] after non-

dimensionalization

+/- 30%

ρN NK cell source 9.00 10−2 day−1 computed by impos-

ing the steady state as

explained in NK Eq.

(2.7)

Table 2.3: Table of mouse PCa model parameters. The table provide the parameter
estimates, with the corresponding descriptions, values and estimation procedure.
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Chapter 3

A mathematical model of

castration-resistant prostate cancer

immunotherapy in humans

In this chapter we propose a mathematical model of human prostate cancer developing the

castration-resistant form. The purpose of this contribution is to study the qualitative behav-

ior of the system when different immunotherapies are administered, evaluating their effects for

long times. Unlike the model presented in the Chapter 2, which has been calibrated on pre-clinical

data, this work includes parameters estimated from literature human data. Therefore, this model

represents an improvement in the direction of mathematical models as tool for supporting clinical

decisions.

The model extends a previous one presented by Rutter and Kuang [24]. The authors described

the CTL tumor inhibition and the mutation from Androgen Dependent Prostate Cancer (ADPC)

cells to Androgen Independent Prostate Cancer (AIPC) cells, but they did not consider the

capacity of the immune system to regulate immune reactions. In order to further increase the

accuracy of the model in capturing the cancer dynamics, we include in the system the description

of the immune-suppressive tumor microenvironment by means of the Treg cells. Moreover, in
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addition to the androgen deprivation and dendritic cell vaccine considered in the Rutter and

Kuang paper, we also include a treatment with the drug ipilimumab, a particular anti-CTLA4

currently under clinical trial for advanced prostate cancers (NCT03061539, NCT02985957).

This chapter mainly consists of the results included in the submitted work “Modeling the

effect of immunotherapies on human castration-resistant prostate cancer”. The limitation and

possible future extensions are discussed in the final Chapter 4.

3.1 Mathematical model

The presented mathematical model is composed of 8 ordinary differential equations describing

the evolution in time of the following variables:

X1: amount of androgen dependent prostate cancer cells (number of cells);

X2: amount of androgen independent prostate cancer cells (number of cells);

C: amount of circulating CTLs (number of cells);

R: amount of circulating regulatory T cells (number of cells);

IL: concentration of interleukin-2 in blood (ng/ml);

D: amount of circulating dendritic cells (number of cells);

A: concentration of androgen (ng/ml);

IP : amount of ipilimumab (mg).

Figure 3.1 shows a schematic representation of the model-variable interactions. PCa is repre-

sented by its two forms. The ADPC grows stimulated by the androgens but, when the androgen

level decreases as result of the androgen deprivation therapy, the ADPC undergoes apoptosis.

However, the androgen reduction contributes to create an ideal microenvironment for AIPC cells

proliferation. The CTL can counteract the tumor by killing both forms of cancer cells. The CTL
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activity is down-regulated by the Treg cells, which inactivate them, allowing the tumor grow.

The inteleukin-2 (IL-2) stimulates the activation of T cells, both Treg and CTL, which, however,

are mainly activated by the dendritic cells.

Figure 3.1: Human PCa model diagram. Cells are represented in orange squared boxes,
while molecules in green rounded ones. The cancer is in its two forms: Androgen Dependent
Prostate Cancer (ADPC) and Androgen Independent Prostate Cancer (AIPC). Other players
involved: Dendritic cells (D), regulatory T cells (Treg), Cytotoxic T Lymphocytes (CTL), An-
drogens (A) and Interleukin-2 (IL-2). Double arrow represents transformations, single lines rep-
resent promotions and inhibitions, while dashed lines depict the three implemented treatments:
androgen deprivation therapy (CX), vaccine (V) and anti-CTLA4 drug (AC).

The dashed lines in the diagram represent the treatments considered. We include androgen

deprivation therapy (CX), vaccine (V), as an infusion of dendritic cells, and anti-CTLA4 drug

(AC), with ipilimumab. Table 3.1 shows a schematic description of these treatments.
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Therapy Abbreviation Description Reference

androgen

deprivation
therapy

CX chemical or surgical castra-
tion

[24]

vaccine V continuous administration
of dendritic cells

[24]

anti-CTLA4 AC single or multiple doses of
3 mg/kg of ipilimumab

[117]

Table 3.1: Table of the treatments for human PCa model. Summary of the
treatments implemented in the mathematical model.

In the following we introduce the system equation. Eq. (3.1) describes the dynamics of ADPC

cells:

dX1

dt
= r1 A X1 (1− X1 +X2

K
)︸ ︷︷ ︸

tumor proliferation

−µ1 (1− A

a0
) X1︸ ︷︷ ︸

death

−m1 (1− A

a0
)X1︸ ︷︷ ︸

mutation

(3.1)

− C X1

(
eCX

gCX + (X1 +X2)
+ kIp IP

)
︸ ︷︷ ︸

tumor killing by CTL

.

The first term represents the tumor proliferation, which is supposed to be logistic according

to [24], while the second one is the death term. We observe that both the proliferation and

the death terms depend on the androgen concentration. Indeed, since the steady state value

of the androgens is the basal level a0 = 30 ng/ml, in the untreated scenario, the tumor death

rate is zero. On the contrary, when the castration is considered, the androgen level reaches a

concentration close to zero and, accordingly, the proliferation rate decreases, while the death

term increases, by determining the extinction of these cells. However, the androgen reduction

increases the mutation rate (“mutation” term), which turns the ADPC into AIPD, describing

the effect of the selective pressure due to the androgen deprivation therapy. The “tumor killing

by CTL” term is composed by two expressions. The first describes the standard cytotoxic effect
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of CTLs, which is negatively regulated by the amount of cancer cells as in [24], reflecting the

tumor ability to bypass the immune control by reducing the CTL efficacy. Against this inhibition

of the immune reaction, the second part of this term describes the anti-CTLA4 therapy, herein

represented by the drug ipilimumab. We model the effect of this ICB treatment by enhancing the

CTL tumor-killing capacity, according to biological evidences [96; 117]. Experimental studies,

indeed, show an increasing number of tumor-infiltrating T cells after ipilimumab administration,

thus intensifying the CTL-tumor interactions [118].

Eq. (3.2) refers to the AIPC cells:

dX2

dt
= r2 X2

(
1− X1 +X2

K

)
︸ ︷︷ ︸

tumor proliferation

+ m1 (1− A

a0
)X1︸ ︷︷ ︸

mutation

(3.2)

− C X2

(
eCX

gCX + (X1 +X2)
+ kIp IP

)
︸ ︷︷ ︸

tumor killing by CTL

.

In this case, the “tumor proliferation” term does not depend on the androgen level. The other

terms replace those described above for the Eq. (3.1).

Eq (3.3) describes the CTL dynamics:

dC

dt
= eC

D

gC +D︸ ︷︷ ︸
CTL activation

by Dm

+
eIC C IL
gIC + IL︸ ︷︷ ︸

CTL activation
by IL-2

− µC C︸ ︷︷ ︸
death

− kR C R︸ ︷︷ ︸
CTL inactivation

by Treg

. (3.3)

CTLs are activated by dendritic cells and IL-2 as described in the first two activation terms. The

CTLs are either reduced by the death term or inactivated by Treg cells, as described by the last

term. This inactivation term is supposed to be proportional to the amount of CTL and Treg cells

by a mass action law.
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The Treg dynamics is explained in Eq. (3.4):

dR

dt
= aR D︸ ︷︷ ︸

Treg proliferation
by Dm

− µR R︸ ︷︷ ︸
death

+ aIR IL︸ ︷︷ ︸
Treg proliferation

by IL-2

. (3.4)

The first two terms reproduce the Treg proliferation and death as in Kronik et al.[119]. The last

proliferation term has been included to describe the role of IL-2 in Treg activation [120].

The dedritic cells dynamics is described in Eq. (3.5):

dD

dt
= sD︸︷︷︸

source

+ v︸︷︷︸
vaccine

− µD D︸ ︷︷ ︸
death

. (3.5)

Unlike the description provided in Rutter and Kuang paper [24], we considered that there is a

baseline level of circulating dendritic cells due to the source term sD. The last two terms, instead,

are maintained from the original model, and they represent the effect of the vaccine and the death

term, respectively. The vaccine is herein simulated as a constant infusion of dendritic cells and,

when it is not administered, it is set to zero.

The Eq. (3.6) refers to the IL-2:

dIL
dt

= eI
C (X1 +X2)

gI + (X1 +X2)︸ ︷︷ ︸
IL-2 proliferation

by tumor and CTL

+ µI (i0 − IL)︸ ︷︷ ︸
proliferation and death

. (3.6)

The first term represents the IL-2 proliferation due to tumor cells and CTLs as described in

[24]. The death term from [24] (−µI IL) has been slightly modified by the parameter i0, which

represents the baseline level of IL-2 in healthy condition .

The androgen Eq. (3.7) is the only equation maintained as in [24] without modifications:

dA

dt
= γA (a0 − A)︸ ︷︷ ︸

proliferation and death

− γA a0 1CX︸ ︷︷ ︸
androgen deprivation

effect

. (3.7)
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It shows two different behaviors of the androgen level according to the value of the boolean

function 1CX , which is set to 1 when the the androgen deprivation therapy is considered, otherwise

is set to 0. Indeed, when 1CX = 0, the equation becomes:

dA

dt
= γA(a0 − A),

which maintains the derivative equal to zero as A(0) = a0. Conversely, when 1CX = 1, the

androgen level exhibits an exponential decay with rate γA.

Eq. (3.8) describes the variation in time of the drug ipilimumab, which is the anti-CTLA4

considered in our model:

dIp
dt

= − λP Ip︸ ︷︷ ︸
ICB

degradation

. (3.8)

This drug is supposed to degrade with a rate λP . At the times of ipilimumab administration, we

assumed that the value of Ip is instantaneously increased of a fixed amount corresponding to the

dosage.

In addition to the PCa dynamics and its interactions with the immune system, the model

describes the evolution of the Prostate Specific Antigen (PSA) concentration, which is supposed

to be linear with the amount of cancer cells, in accordance with other modeling approaches

[24; 121; 122]:

PSA(t) = cPSA (X1(t) + X2(t)). (3.9)

3.2 Model calibration

Before estimating the model parameter, we performed an a priori structural identifiability anal-

ysis by the Matlab toolbox GenSSI [84], which guaranteed the global parameter identifiability

(see technical detail in Section 2.5). In the following, we explain in detail, for each equation, the

estimation procedure for the parameter identification. For a complete overview of the parameter

estimations we refer to the Table 3.5.
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Eq. (3.1) and (3.2) The prostate tumor is represented by two different equations describing

the dynamics of ADPC and AIPC. The proliferation, death and mutation rates of both ADPC and

AIPC cells are taken from the original model [24], but we changed the estimate of the parameter

K, expressing the tumor carrying capacity. Following the procedure exposed by Rutter and

Kuang [24], we adapted the parameter K to the experimental data used for model calibration.

Indeed, the authors considered K as a ratio between the average prostate weight (11 mg) and

the average prostate cells weight (1 ng). However, the average prostate weight in patients with

advanced castration-resistant prostate cancer is often higher than 11 mg, as reported in several

papers [123–125]. We extrapolated this information from [124] in which the prostate volume is

associated with the Gleason score (GS), an indicator of the aggressiveness of cancer (high GS

value corresponds to aggressive cancer). We fixed the GS as 8 (the higher GS considered in

that paper) and we observed in the Figure 2 of [124] the column corresponding to the major

percentage of patients with GS = 8. We found that the prostate volume is between 100 cm3 and

114.9 cm3, thus we consider the average value of 107 cm3. Since the prostate volume is a good

approximation of the prostate weight [126], 107 cm3 = 107 g. Therefore:

K = 107 109cells.

This constant K represents a saturation for cancer cell growth , because we supposed that the

tumor reaches its maximal expansion occupying the most of the prostate volume in the high stage

of disease.

The parameters regarding the CTL tumor killing capacity in untreated condition was also

maintained as in [24]. However in our model we added the description of the anti-CTLA4 treat-

ment, which increases the activity of the immune reaction against the tumor. To include this treat-

ment, we considered the Small et al. paper [117]. This study involved patients with metastatic

castration-resistant prostate cancer treated with a single dose of ipilimumab of 3 mg/Kg. Since

Small et al. did not observe an increment in CTL number in peripheral blood (Figure 1.B in

[117]), we reproduced the effect of ipilimumab as an increasing in the CTL tumor-killing capac-
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ity. Therefore, we added a term in the tumor equations, which is proportional to the amount

of drug, the number of CTL and the number of tumor cells by a parameter kIp. To estimate

this parameter, we considered data extrapolated from Figure 3 in [117], showing the variation

in time of PSA of the two patients with major PSA decline after the ipilimumab infusion. We

collected data from day 7 (when a dose of ipilimumab was injected) to the second month. Then,

we computed the mean values reported in Table 3.2. To estimate kIp, we set the initial values

Time (day) PSA ( ng
mL

)

7 31.31

14 22.35

28 26.18

60 18.14

Table 3.2: Experimental data used for human PCa model calibration. The mean
values for the PSA level registered in the two patients reported in the Figure 3 of [117].

according to the experimental protocol followed by Small et al.. They considered patients subject

to androgen deprivation therapy with advanced castration-resistant prostate cancer that, in our

model, means a small value for X1(0) and A(0). To evaluate the amount of castration-resistant

cancer cells, we focused on the PSA level registered at the time of injection in Figure 3 of [117]

and we use the Eq. (3.9) to calculate the total amount of cancer cells:

X1(0) +X2(0) =
PSA(0)

cPSA
=

31.31

1.93 10−9
= 16.2 109 cells. (3.10)

Once we fixed the amount of androgen and cancer cells, we simulated the system with andro-

gen deprivation therapy (see the blue line in Figure 3.4) and we checked the values of the other

variables at the time point in which the total tumor corresponds to 16.2 109 cells. Precisely, we

set:

X1(0) = 0.0001 109 cells, X2(0) = 16.2227 109 cells, C(0) = 2.79 104 cells,
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R(0) = 2.103 109 cells; D(0) = 4.26 107 cells,

I(0) = 0.01161 ng/mL, A(0) = 0.0001 ng/mL.

In order to define the ipilimumab dose, we needed the average weigh of patients considered in

the Small et al. experiments [117]. Although the authors did not include the patient weights in

their study, they reported the median age (70 years) and race, divided in Caucasian (86%) and

Hispanic (14%). By considering these characteristics, we focused on Fryar et al. paper [127] that

compare the mean body weight over the last years. We fixed the average weights of men around

70 years old and we computed the weighted arithmetic mean taking into account the percentages

of Caucasian and Hispanic men in Small et al. experiment as:

W = wC 0.86 + wH 0.14 = 88.5 kg. (3.11)

Therefore, we found Ip(0) = 3 mg/kg 88.5 kg = 265.5 mg.

Simulating the system with the anti-CTLA4 therapy, we minimized the weighted square

differences between the model output and the data in Table 3.2, obtaining the estimate kIp =

5.44 10−9 1
day mg cells . The data fit is shown in Figure 3.2.

Eq. (3.3) The parameters regulating the first three terms has been maintained as in the

original model [24]. However, our model includes the regulative term representing the CTL

inactivation mediated by Treg cells: −kR R C.

To estimates kR, we considered a no-tumor equilibrium point, from de Pillis et al. [21]:

C0 = 2.4 104cells/L, R0 = 1.1 108cells/L, I0 = 2.99 10−3ng/mL,

and we set the baseline of androgen as A0 = 30ng/mL, according to [24]. For the baseline

level of dendritic cells, instead, we referred to Fearnley et al. [128], in which is reported D0 =

9.8 106cells/L. We considered an average blood volume of 5 L to convert these concentrations in
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Figure 3.2: Human PCa model fitting experimental data. The model predicted
PSA dynamics in case of treatment with ipilimumab. The experimental data taken from
Figure 3 in Small et al. paper [117] are reported as points with the relative error bars.

number of cells::

C0 = 1.2 105cells; R0 = 5.5 108cells; D0 = 4.9 107cells; (3.12)

I0 = 2.99 10−3ng/mL; A0 = 30ng/mL.

Therefore, we imposed:

Ċ = 0 ⇐⇒ eC D0

gC +D0
− µC C0 + C0

eICI0

gIC + I0
− kR R0 C0 = 0

from which kR = 32.81 10−9 (cells d)−1.
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Eq. (3.4) The first two terms in the Treg equation are taken from Kronik et al. model [119].

The authors explored the prostate cancer growth by means of its interactions with the immune

system, represented by dendritic cells, CTL and Treg cells, and they described the latter by the

equation:

Ṙ = aRDR − µRR,

where DR represents the regulatory dendritic cells. Kronik et al. did not consider the IL-2, which

is included in our starting model and has a role in Treg activation and functions [120]. In order

to describe this regulation, we added the ”Treg proliferation by IL-2” term in the Treg equation.

We assumed that the presence of IL-2 stimulates the production of Treg by a mass action term

like other mathematical models [23; 129; 130].

The two parameters aR and µR are estimated by Kronik et al. from the literature. The rate of

Treg proliferation induced by dendritic cells, aR, has been computed considering that the dendritic

cells induce the activation of 0.36 Treg cells in 120 hours [131], so aR ≈ 3 10−3 h−1 = 0.072 d−1.

The death rate of Treg cells, µR, has been approximated by fitting data from [132]. They obtained

aR ≈ 3 10−2 h−1 = 0.72 d−1. The parameter aIL, regarding the activation rate of Treg by the

IL-2, is estimated by imposing the no-tumor steady state (3.12). Therefore, we obtained:

Ṙ = 0 ⇐⇒ aR D0 − µR R0 + aIL I0 = 0

from which aIL = 131.26 109 cells
d

mL
ng .

Eq. (3.5) and (3.6) In order to make consistent our system with the no-tumor steady state

(3.12), we modified the dendritic and IL-2 equations taken from [24]. We supposed that there is

a baseline level for both dendritic cells and IL-2 in healthy conditions. To describe this, we added

the source term sD in the Eq. (3.5) and i0 in the Eq. (3.6), computed by imposing the no-tumor

steady state (3.12) : sD = 0.686 107 cells
d and i0 = 2.99 10−3ng/mL.
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Eq. (3.7) The equation regarding the androgen level has been taken from [24] without chang-

ing the single terms or parameters.

Eq.(3.8) The degradation rate of the drug ipilimumab has been computed following the stan-

dard approach as:

λP =
ln(2)

t1/2
,

where t1/2 = 12.5 days is the ipilimumab half-life [117].

Eq. (3.9) We supposed that the PSA is linearly correlated with tumor volume, as in [24; 121;

122], so:

PSA(t) = cPSA (X1(t) +X2(t)). (3.13)

We estimated the value of cPSA according to biological data from Konyaliouglu et al. paper [125].

The authors measured the average PSA level and tumor volume in prostate cancer patients as

10.6 ng/mL and 5.5 cm3, respectively. Since the volume and the prostate weight are close [126],

by considering the average weight of a cells as 1 ng [24], we computed the average amount of

prostate cancer cells as:

(X1 +X2)M =
5.5 g

10−9 g
= 5.5 109cells,

therefore:

cPSA =
PSAM

(X1 +X2)M
=

10.6

5.5 109

ng

mL cells
= 1.93 10−9 ng

mL cells
.

3.3 Model simulations and sensitivity analysis

The presented mathematical model can be used as a tool for simulating different scenarios. We

set the simulation time to 7 years in order to reach the steady state for all the model variables

and to study the effect of the therapies for long times.
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Figure 3.3: Human PCa model dynamics in untreated case. Dynamics of the
system variables and PSA level without any treatment.

In the untreated case (Fig. 3.3), the predicted PSA level quickly reaches its maximal concen-

tration, which means that the tumor grows, filling the most of the prostate volume. We observe

that, without the castration therapy, the androgen level remains constant and the AIPC does not

evolve, so the production of PSA is mainly due to the ADPC cells. The immune system reaches

a steady state, which is the consequence of immunosuppressive mechanisms. Indeed, compared

to the initial values corresponding to the no-tumor steady state, the CTLs decrease and the Treg

cells increase stimulated by the tumor.

Our model includes three different therapies: androgen deprivation therapy, dendriric cell

vaccine and anti-CTLA4. We consider the androgen deprivation therapy and its combination

with the other two, because we are interested in evaluating the effects of the immunotherapies

on the AIPC form, which is assumed to develop after androgen deprivation therapy.

Figure 3.4 shows the dynamics in case of both androgen deprivation therapy (blue lines) and
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Figure 3.4: Human PCa model dynamics under androgen deprivation therapy
and under androgen deprivation + vaccine combination therapy. Dynamics of
the system variables and PSA level under androgen deprivation therapy (blue lines) and
under androgen deprivation and vaccine combined therapy (orange lines).

in combination with dendritic vaccine (orange lines). Unlike the untreated case, the androgen

deprivation leads to an initial reduction in PSA level as the ADPC cells undergo apoptosis,

according to the reduction of the androgen level. The castration also promotes an immune

reaction, by increasing the number of CTLs and by reducing the amount of Treg cells. However,

the tumor develops into the AIPC form, which proliferates in an ideal environment deprived of

androgens, and then the tumor volume starts to increase, producing PSA. Over the simulation

time, the high-tumor steady state is reached, confirming that, when the AIPC cells develop, the

androgen deprivation therapy does not lead to a tumor eradication. The presence of the dendritic

cell vaccine does not change the scenario observed when only the castration is considered, except

for an increasing in immune cell production.

The effect of the combination of androgen deprivation and anti-CTLA4 therapies is showed

in Figure 3.5. Since the ipilimumab has a half-life of 12.5 days [117], this drug quickly degrades.
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Therefore, we administered this therapy after the evolution of AIPC to observe its tumor in-

hibitory effect. At the time of ipilimumab infusion (highlighted in the charts with a red line), we

can see a reduction of AIPC cells. However, this is not enough to control the tumor growth: after

a while the AIPC starts increasing again and the system reaches the high-tumor steady state.

Figure 3.5: Human PCa model dynamics under androgen deprivation + single
anti-CTLA4 combination therapy. Dynamics of the system variables and PSA level
when androgen deprivation and anti-CTLA4 combined therapy is administered. The red
line in the charts indicates the ipilimumab administration time.

The promising predicted effect of the anti-CTLA4 treatment and the rapid degradation of the

drug ipilimumab suggest us that an intermittent administration protocol could be efficacious in

the tumor control. In the literature there are clinical trials involving intermittent administration

of ipilimumab, often combined with other therapies [133]. In particular, the study by Slovin et al.

[134] evaluates the efficacy of drug escalating doses of ipilimumab, alone or in combination with

radiotherapy, on patients with metastatic castration-resistant prostate cancer. The patients were

treated with 3, 5 or 10 mg
kg , infused every 3 weeks for 4 doses. In order to reproduce this protocol,

we needed to set the corresponding initial condition. To allow the tumor cells to proliferate as
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AIPC, we simulated the system by imposing androgen deprivation therapy (1CX = 1 in Eq. (3.7)).

Thus, we detected the values for all the model variables according to the baseline PSA registered

by Slovin et al.. Although this PSA values were different for each group of patients, to compare

the efficacies of escalating dosage, we arbitrary set the initial state according to the baseline PSA

of 91ngml detected in patients treated with low dosage (3 mg
kg ). Through this procedure, we found

the following initial states for the model variables:

X1 = 0 cells; X2 = 4.7 · 1010 cells; C = 2.63 · 104 cells; R = 2.53 · 1010 cells;

IL = 1.38 · 10−2 ng
ml ; D = 4.9 · 107 cells; A = 0 ng

ml .
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Figure 3.6: Human PCa model dynamics under intermittent anti-CTLA4 on
castrated patients. Dynamics of the system variables and PSA level intermittent anti-
CTLA4 combination therapy is administered on castrated patients. The simulations re-
produce the experimental protocol proposed by Slovin et al. [134] (2013).

81



3. A mathematical model of castration-resistant prostate cancer
immunotherapy in humans

Figure 3.6 shows the numerical results for intermittent administration of ipilimumab by fol-

lowing the clinical trial proposed in Slovin et al. work [134]. The model predicts that low and

medium doses of ipilimumab are not enough to arrest the tumor growth. When the intermittent

administrations end, the tumor mass growths by reaching the high-tumor steady state. By in-

creasing the dose of 10 mg
kg , the model predicts a sort of cancer dormancy. In fact, the tumor

seems to be eradicated for years, until it starts increasing again, with an uncontrollable tumor

growth.

Encouraged by the positive results obtained by implementing intermittent administration

of anti-CTLA4, we reproduced an intermittent protocol repeated for years, coupled with the

androgen deprivation therapy, in order to realize a long-term therapy which could be able to

keep the tumor under control. Therefore, we simulated the system with one low-dose injection of

ipilimumab per year, reproduced in Figure 3.7.

Figure 3.7: Human PCa model dynamics under androgen deprivation + long-
term intermittent anti-CTLA4 combination therapy. Dynamics of the system vari-
ables and PSA level when androgen deprivation and long-term intermittent anti-CTLA4
combination therapy is administered. The subject receives one injection of 3 mg/kg of
ipilimumab per year.
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The model predictions provided in Figure 3.7 show a tumor reduction and all the variables

of the system move close to the no-tumor steady state. One infusion per year for 7 years allows

the control of tumor growth but it is not enough to eradicate the cancer. Indeed, by increasing

the simulation time, the model suggests that, after some years, the AIPC proliferates and the

system reaches again the high-tumor steady state. However, by extending the proposed inter-

mittent therapy to 22 years, the no-tumor steady state becomes attractive, thus determining the

extinction of tumor cells (see Figure 3.12).

In order to investigate the dependence of the model dynamics on these parameter estimates, we

performed a Local Sensitivity Analysis (LSA). The corresponding results are shown in Appendix

B. The LSA highlights the obvious high dependence of tumor on its death and proliferation rates,

as well as on the tumor carrying capacity, in all the reproduced experimental scenarios. The

tumor is also predicted to be influenced by the estimated parameter kIP , representing the CTL

tumor killing rate due to the ipilimumab infusion, when the anti-CTLA4 therapy is administered.

Moreover, the tumor shows a dependence on the androgen baseline level and their turnover rate,

which decreases by increasing the simulation time (Figures B.1 and B.2).

3.4 Model reduction

In order to use more efficiently the qualitative analysis methods, we moved to a reduced model

with constant parameters. First of all, we assumed that also ipilimumab is administered with a

constant infusion, substituting (8) with

Ip
dt

= dP − λP Ip. (8’)

In order to define the constant dosage for the drug ipilimumab, we focused on the proposed

long-term therapy, corresponding to one injection per year. We have seen that, maintaining a

dose of 265.5 mg of ipilimumab per year, but administering the drug with a constant infusion of

dP = 0.737mg/day, the system dynamics observed in Figure 3.7 do not change (see Figure 3.14).
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Therefore, we can consider constant infusion for long-term therapies without loss of generality.

We was interested in looking the evolution of castration-resistant cancer cells, that, in our

model, develop after androgen deprivation therapy, thus we set this as the mainstay treatment.

The androgen equation than becomes dA
dt = −γA A. Moreover, we observed that dendritic cells,

interleukin 2 and androgens vary in time scales shorter that the one of the other cell populations,

as shown in [24], as well as the drug ipilimumab. Since our modifications of the Rutter and

Kuang’s model did not impact on the time scale, we followed the procedure described in [24], by

assuming a quasi-steady state (QSS) for these variables, which means:

dA

dt
= 0 =⇒ A∗ = 0;

dD

dt
= 0 =⇒ D∗ =

sD + v

µD
;

dIL
dt

= 0 =⇒ IL(C,X1, X2) = i0 +
eI C (X1 +X2)

µI (gI + (X1 +X2))
;

dIp
dt

= 0 =⇒ I∗p =
dP
λP

;

where the star notation indicates the variables becoming constant.

The obtained QSS-system is:



dX1
dt = −µ1 X1 −m1 X1 − eX C X1

gX+(X1+X2) − kIp I
∗
P C X1,

dX2
dt = r2 X2

(
1− X1+X2

K

)
+ m1 X1 − eX C X2

gX+(X1+X2) − kIp I
∗
P C X2,

dC
dt = sC − µC C + C IL(C,X1,X2) eIC

gIC+IL(C,X1,X2) − kR C R,

dR
dt = sR − µR R + aIR IL(C,X1, X2),

where the source terms are:

sR = aR D∗, (3.14)
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sC = eC
D∗

gC + D∗
. (3.15)

We also observed that, in the androgen deprivation scenario, limt→∞X1(t) = 0 and dX1
dt < 0,

thus the limiting system (LS) is:



dX2
dt = r2 X2

(
1− X2

K

)
− eX C X2

gX+X2
− kIp I

∗
P C X2,

dC
dt = sC − µC C + C IL(C,0,X2) eIC

gIC+IL(C,0,X2) − kR C R,

dR
dt = sR − µR R + aIR IL(C, 0, X2).

(LS)

We was interested in studying the equilibrium points, therefore we focused on the (LS) without

loss of generality. To verify that the (LS) is a good approximation of our model, we plotted the

solutions of the complete system versus the (LS) in Figure 3.8. For long times the solutions

overlap, thus we studied the equilibrium points of the (LS).

3.5 Equilibrium points

In this section we perform a qualitative analysis of the (LS). We further analyze the equilibrium

points, their stability and how these change with respect to the tumor proliferation rate. We

analytically find a no-tumor equilibrium point and the conditions that ensure its stability. How-

ever, when the tumor is present, the simulations show another high-tumor equilibrium point. We

study the stability of this numerical equilibrium by using MatCont [77], a Matlab toolbox that

allows us to analyze the character of the equilibrium point by changing a fixed parameter. We

evaluate how the system behavior changes when the immunotherapies are administered to assess

which therapy leads to a major effect on tumor proliferation and we discuss these results from a

biological point of view. All the immunotherapies considered in this analysis have been adminis-

tered with continuous infusions, in order to avoid drug degradation and to allow the steady state

analysis.
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Figure 3.8: Human PCa model dynamics - complete system versus limiting
system. Long time simulations for the complete system dynamics (red line) compared to
the limiting system dynamics (blue line).

3.5.1 No-tumor equilibrium point

To compute the equilibrium point without tumor, we set X2 = 0 in the (LS), and then we

calculated the other variable steady-states:

Ċ = 0 ⇐⇒ sC − µC C +
C IL(C, 0, X2) eIC
gIC + IL(C, 0, X2)

− kR C R = 0,

Ṙ = 0 ⇐⇒ sR − µR R + aIR IL(C, 0, X2) = 0.

We observed that, in this condition and without any treatment, IL(C, 0, 0) = i0, I∗P = 0,

v = 0 and D0 = sD/µD = 0.049 109cells. The other variables of (LS) are:

R0 =
sR + aIR i0

µR
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and

C0 =
sC

µC + kRR0 − i0 eIC
gIC+i0

, (3.16)

where C0 > 0 only if µC +kRR0 >
i0 eIC
gIC+i0

, condition verified for our parameter estimates. Then,

the no-tumor equilibrium point is

E0 = (X0
2 , C0, R0) = (0, 1.2 · 105, 5.5 · 108).

In order to study the stability of the no-tumor equilibrium point we evaluated the jacobian

matrix in E0:

J(E0) =


r2 − eXC

0

gX
0 0

... −µC − kRR0 + i0eiC
gIC+i0

−kRC0

... 0 −µR

 (3.17)

and the roots of its characteristic polynomial, which are:

λ1 = −µR;

λ2 = i0eIc
gIC+i0

− µC − kRR0;

λ3 = r2 − eXC
0

gX
.

We note that λ1 < 0 and also λ2 < 0 when C0 exists, according to Eq. (3.16). Therefore, the

no-tumor equilibrium point is stable if

r2 <
eXC

0

gX
,

which, from a biological point of view, means that the tumor proliferation rate must be less than

the CTL tumor killing capacity.

This condition allowed us to analyze the qualitative behavior of E0 with respect to the tumor

proliferation rate r2. The equilibrium point changes its stability when the tumor proliferation
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rate reaches the critical threshold r∗BP = eXC
0

gX
: for r2 < r∗BP the no-tumor equilibrium point is

stable, otherwise is unstable.

The point r∗BP is associated to a transcritical bifurcation. To prove this, we followed the

Boldin’s approach [135], by adapting her results to our system. To this scope, we grouped the

variables of the system (LS) into an invading population, composed of the tumor cells X2 and

a resident community composed of immune system cells z = (C,R). Therefore, (LS) can be

re-written as: 
dX2
dt = G(X2, z, r2)X2

dz
dt = h(X2, z, r2)

(3.18)

where G ∈C 1(R× R2 × R,R) and h ∈C 1(R× R2 × R,R2) are defined as follows:

G(X2, z, r2) = r2

(
1− X2

K

)
− eXC

gX +X2
, (3.19)

and

h(X2, z, r2) = h(X2, z) =

h1(X2, z)

h2(X2, z)

 =

sC − µCC + eICCIL(C,0,X2)
gIC+IL(C,0,X2) − kR C R

sR − µRR+ aIRIL(C, 0, X2)

 . (3.20)

Let us consider the equilibrium E0 = (0, z0) = (0, C0, R0), and therefore, we linearize the system

around E0 by writing the Jacobian as:

J(0, z0, r2) =

G(0, z0, r2) 0

hX2(0, z0) hz(0, z0)

 , (3.21)

where hX2(0, z0) = ∂h
∂X2

(0, z0) and hz(0, z0) = ∂h
∂z (0, z0). Hence, the spectrum of the matrix

(3.21) will be σ(J(E0, r2)) = σ(G(E0, r2)) ∪ σ(hz(E0)). In particular, σ(G(E0, r2)) only contains

the eigenvalue λ = G(E0, r2) = r2 − eXC
0

gX
= r2 − r∗BP . We can now prove that for r2 = r∗BP a

transcritical bifurcation occurs, by the following theorem:

88



3.5. Equilibrium points

Theorem 1. Consider the system (3.18), such that there is an equilibrium E0 = (0, z0) and for

r2 = r∗BP , λ = 0 ∈ σ(J(E0, 0)). Let d
dr2

(G(E0, r2)) |r2=r∗BP
> 0, i.e. the function crosses the

origin with non-zero derivative, and

1

2
M =

∂G

∂X2
(E0, r

∗
BP )−

2∑
k=1

∂G

∂zk
(E0, r

∗
BP )

(
H−1
z HX2

)
k
, (3.22)

where Hz = hz(E0) and HX2 = hX2(E0). Therefore:

(i) if M > 0 there exists a positive equilibrium branch corresponding to a locally asymptotically

stable steady state of the system (3.18), i.e. there is a supercritical transcritical bifurcation;

(ii) if M < 0 there exists a positive equilibrium branch corresponding to an unstable steady state

of the system (3.18), i.e. there is a subcritical transcritical bifurcation.

In order to use this result, we evaluated:

d

dr2
(G(E0, r2)) |r2=r∗BP

= 1 > 0,

∂G

∂X2
(E0, r

∗
BP ) = r∗BP

(
1

gX
− 1

K

)
,

∂G

∂C
(E0, r

∗
BP ) = −eX

gX
,

∂G

∂R
(E0, r

∗
BP ) = 0

H−1
z =

 1
β

−kRR0

µRβ

0 − 1
µR

 ,
where β = −µC + i0eIC

gIC+i0
− kRR0,

HX2 =

 eICgICC0IX2
(E0)

gIC+i0

aIRIX2(E0)

 ,
with IX2(E0) = ∂IL

∂X2
(E0) . By substituting the parameter estimates in Table 3.5, we found

M = 1.9 · 10−5 > 0.
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The stability of the no-tumor steady state can be affected by immunotherapy administrations.

Even though, in absence of tumor, studying the effect of a therapy might seem useless, this

suggests which conditions make the steady state attractive in realistic pathological scenarios.

Considering the continuous vaccine therapy, the value of C0 considerably increases because

the infused dendritic cells activate CTLs. For instance, with an infusion rate of v = 0.0275 109

cells/day, D0
v = (sD + v)/µD = 0.2454 109 cells and, consequently, sC = eC

D0
v

gC + D0
v

= 7.6 10−3

cells/day, which determines an increasing of the critical value r∗BP .

In the case of anti-CTLA4 therapy, we added an extra term to the equation, changing the

jacobian J(E0), so that λ3 = r2 − eXC
0

gX
− kP I∗PC0 and the threshold becomes: r∗BP = eXC

0

gX
+

kP I∗P C0.

These results show a promising increase in the region of stability of E0, for both vaccine and

anti-CTLA4 therapies.

3.5.2 Positive equilibrium point

By looking at the numerical simulations we observed a positive equilibrium point. The tumor,

indeed, for large times tends to a saturation level represented by the tumor carrying capacity K.

The existence of this positive equilibrium point is due to the presence of the transcritical bifur-

cation for r2 = r∗BP , proved before. Indeed, when this bifurcation occurs, a positive equilibrium

branch runs into a negative one, i.e. an eigenvalue of the Jacobian matrix crosses the zero with

non-zero derivative. In the following we refer to the critical value r∗BP as Branching Point (BP).

Numerically we found the equilibrium:

E1 = (X1
2 , C1, R1) = (107 · 109, 2.5 · 104, 2.6 · 109).

Studying the stability of this positive equilibrium point by analytical methods is complicated,

thus we observed its qualitative behavior by using MatCont [77]. As shown in Figure 3.9, without

administering any immunotherapy, the positive equilibrium E1 is stable with a number of cancer

cells close to K (107 billion of cells), until the tumor proliferation rate reaches very low values.
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When r2 reaches the critical value r∗LP , corresponding to a Limit Point (LP), the branch of

positive equilibria turns backwards and becomes unstable. In other words, for r2 ∈ [r∗LP , r
∗
BP ],

both the high-tumor (blue line) and no-tumor equilibria are stable, and there exists an unstable

low-tumor equilibrium (green line). Solutions are attracted to the high-tumor or the no-tumor

dependently of the initial conditions. The high-tumor equilibrium is globally asymptotically

stable for r2 > r∗BP . We observe that the order of magnitude of our estimated r2 is 10−3 (Table

3.5), while the one of the critical values r∗LP and r∗BP is 10−6. For this reason, we can suppose

that, for all reasonable patient-specific tumor proliferation rates, this high-tumor equilibrium

remains stable for each tumor initial condition different from zero, when immunotherapies are

not considered.

Figure 3.9: Positive equilibrium point of the human PCa model - vaccine versus
untreated. Stability of the equilibrium E1 when the tumor proliferation rate r2 changes.
The chart shows the equilibrium curve when no immunotherapies are administered (no
treatment case) and under continuous vaccine with a dose of 0.0275 109cells/day. The
curves split into two branches: the high-tumor (blue line) and low-tumor (green line).

When the vaccine is administered, with a constant injection of v = 0.0275 109 cells/day, the

branch of positive equilibrium discussed before moves to the right (see Figure 3.9). Although the

BP in the vaccine case is much greater than the BP found without treatments, the LP is close to

91



3. A mathematical model of castration-resistant prostate cancer
immunotherapy in humans

the previous LP value, so the high-tumor equilibrium ceases to exist only for very small values

of the proliferation rate. This property, combined with the shape of the curve, suggests that

the basin of attraction of the no-tumor equilibrium point is small also in the vaccine case. This

hypothesis has been confirmed by the Figures 3.16a and 3.16b, which highlight that, considering

r2 close to r∗BP , for X2(0) > 109 cells, the system converges to the high-tumor steady state. This

result is very slightly affected by the vaccine dose. Indeed, also by increasing the infusion rate to

15-times stronger than the dosage considered, the curve slightly moves to the right, but both the

critical values r∗LP and r∗BP maintain the same order of magnitude (see the Figure 3.13).

Administering the anti-CTLA4 therapy, the qualitative behavior of the branch of positive

equilibria considerably changes as shown in Figure 3.10 (note the different scale of the x-axis in

Fig. 3.10, compared to Fig. 3.9).

In this figure, the charts corresponding to a constant dosage of ipilimumab are compared to

the no-treatment case. The effect of the anti-CTLA4 treatment on E1 stability is evident: the

equilibrium curve consistently moves to the right, reaching realistic critical values for r∗LP . Indeed,

the estimated value for r2 (6 · 10−3) is lower than r∗BP , suggesting that tumor eradication may

be possible with this treatment. However, the values of the low-tumor branch for r2 ∈ [r∗LP , r
∗
BP ]

induce to suspect that the basin of attraction of the no-tumor steady-state is small. This has

been confirmed by our simulations in Figure 3.17, showing that the high-tumor steady-state is

attractive for low tumor initial conditions, for all the tumor proliferation rates in that range. This

property seems to contradict the simulations in Figure 3.14, which show a tumor control with a

constant ipilimumab infusion of 0.73 mg/day.

In order to investigate the conflicting behaviors, we reproduced two different administration

protocols. We simulated the injection of 0.73 mg/day of ipilimumab administered with the

androgen deprivation therapy (scenario 1 in Figure 3.11) and after 3 years of androgen deprivation

therapy (scenario 2 in Figure 3.11). This in silico result highlights a different system behavior

by changing the ipilimumab administration time. The scenario 2 confirms that, if the AIPC

proliferates, the ipilimumab coupled with the androgen deprivation cannot control the tumor

growth even if the value of X2 at the start of the therapy is low. On the contrary, if we administer
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Figure 3.10: Positive equilibrium point of the humn PCa model - anti-CTLA4
therapy versus untreated. Stability of the equilibrium E1 when the tumor proliferation
rate r2 changes. The chart shows the equilibria curve in case of anti-CTLA4 administered
with constant infusion of dP = 0.73 mg/day, compared to the curve obtained without
immunotherapies (no treatment case). The curves split into two branches: the high-tumor
(blue line) and low-tumor (green line).

the two therapies together, the growth of AIPC cells can be restrained and the system reaches

the no-tumor steady state.

3.6 Synergy between immunotherapies and hints for

future works

In this section we introduce some preliminary results which are a first step for future extensions

of the work presented in this chapter. The treatments included in our model can involve adverse
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Figure 3.11: Human PCa model dynamics under anti-CTLA4 infusion - differ-
ent scenarios. Dynamics of the system variables and PSA level when androgen depri-
vation therapy and continuous infusion of 0.73 mg/day of anti-CTLA4 are administered
with two different protocols. The scenario 1 corresponds to the androgen deprivation and
anti-CTLA4 combination therapy, while in the scenario 2 the anti-CTLA4 is administered
3 years after the androgen deprivation therapy.

events, which impact on the predicted efficacies of the therapies. Thus, future extensions of

this work could consider the toxicity of the drugs. Moreover, since the model includes two

different immunotherapies, they could be combined to evaluate the predicted effect of this drug

combination. To this purpose, evaluating the synergy between these treatments represents a

crucial starting point. Therefore, we estimated the synergy reproducing the procedure exposed

by Lai et al. [32], which takes into account the drug toxicities. They considered two therapies, A

and B, and compared the predicted tumor reduction of the combined therapy A+B at standard

doses γA and γB, with the one obtained with the single therapies administered with doses of

γA(1 + θA) and γB(1 + θB). The parameters θA and θB are correlated with drug toxicities. Their

values have been arbitrary chosen by the authors in [0, 1], where 1 represents no relevant toxicities

and 0 corresponds to an irreversible adverse condition. Therefore, the synergy of the drugs A
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and B has been defined as

σ(A,B) =
E(γA, γB)

max {E(γA (1 + θA), 0), E(0, γB(1 + θB))}
− 1, (3.23)

where E(x, y) represents the efficacy of a therapy with two treatments administered with doses

x and y. If the efficacy of the combined therapy is greater than the efficacies of the single-drug

administrations, σ(γA, γB) > 0 and the two drugs A and B are predicted to be synergistic.

Conversely, if σ(γA, γB) < 0 the two drugs are antagonistic.

Following the approach introduced in [32], we focused on the (LS) system and we evaluated the

synergy between vaccine (V) and anti-CTLA4 (AC) therapies for castrated patients developing

the AIPC. For choosing realistic values of θV and θAC , we referred to experimental data. It

has been demonstrated that, in castration-resistant prostate cancer patients, the dendritic cell

vaccine sipuleucel-T exhibits Adverse Events (AEs) [136; 137]. The most of these side effects have

been classified as grade 1 and 2 (68%). However, among the patients subjected of sipuleucel-T

infusion, about the 31% of them presents severe AEs (grade 3, 4 or 5). All these side effects can

be resolved within 1 or 2 days [137].

On the other hand, patients with metastatic melanoma treated with ipilimumab mainly show

from mild to moderate AEs (grade 1 and 2) [138], but AEs of grade 3 or 4 have been shown in

20%−45.8% of the patients [139; 140]. The only available information regarding the AE resolution

time refers to the Immune-Related Adverse Events (IRAEs), which represent the most common

side effects, since they are observed in approximately the 60% of the treated patients [139; 140].

The average resolution time for IRAEs of grade ≥ 3 is 5.15 weeks [139; 140], while, for moderate

IRAEs (grade 2) is approximatively 5.45 weeks [139–142] (for further details see Table 3.3). All

the toxicities-related information are reported in Table 3.4, with the corresponding references.

These experimental results suggest that the toxicity of ipilimumab is higher than the one of

the sipuleucel-T vaccine, which, according to the definition of the coefficient θ introduced in [32],
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References Resolution time
of IRAEs grade 2
(weeks)

Resolution time of
IRAES grade ≥ 3
(weeks)

[140] 4.9 4.9

[139] 6 8

[141] - 3.7

[142] - 4

Average 5.45 5.15

Table 3.3: Resolution times of the immune-related adverse events due to ipili-
mumab administration - experimental data. Resolution times of IRAEs in different
clinical experiments.

References % AE % AE grade ≥ 3
w.r.t. total patients

% AE grade 1 and 2
w.r.t. total patients

[140] 96.9 44.4 52.5

[139] 80 22.9 61.68

Average 88.5 31 57

Table 3.4: Percentage of adverse events due to ipilimumab administration -
experimental data. Percentages of patients showing Adverse Events (AEs) and Immune-
Related Adverse Events (IRAE) in different clinical experiments.

means θAC < θV . Therefore, the values of θV and θAC have been chosen as:

θx = 1− Tx, (3.24)

where Tx expresses the toxicity of the drug x and it has been defined according to the experimental

data as:

Tx =

(
1− 1

txM

)
P xM +

(
1− 1

txS

)
P xS . (3.25)
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The variables txM and P xM represent, respectively, the resolution time and the percentage of the

patients who exhibit moderate AEs (grade 1 and 2) after the administration of the drug x.

Conversely, txS and P xS are the resolution time and the percentage of the patients who exhibit

severe AEs (grade 3, 4 and 5), after the administration of the drug x. This definition of toxicity

is a sort of weighted average of the percentages of patients showing moderate and severe AEs, in

which the weights are represented by a function of the resolution times. We supposed that the

optimal resolution time is 1 day and, for higher values of tx, the contribution of the corresponding

percentage P x grows, increasing the value of the toxicity of x.

By considering the average experimental data of the sipuleucel-T and ipilimumab drugs re-

ported before, and coupling Eq.s (3.24) and (3.25), we obtained θV = 0.67 and θAC = 0.15.

By numerical simulation, we estimated the value of σ(V,AC) = 0.2, confirming the synergistic

property of this combination therapy.

3.7 Materials and methods

Computational environment

The model has been implemented as a set of Matlab functions [116], which have been simulated

by the state-of-the-art ode15s integrator. For the model calibration, we used the function fmincon

within the Matlab optimization toolbox. To guarantee a complete exploration of the parameter

space, the fmincon algorithm has been execute within a multi-start strategy by means of the

multistart Matlab function.

Structural Identifiability analysis

A structural identifiability analysis has been performed by means of the Matlab toolbox GenSSI

[84]. The software requires: (i) a list of all the model variables and their relations inside the

mathematical model; (ii) a list of all the model parameters, by also specifying the ones that have

97



3. A mathematical model of castration-resistant prostate cancer
immunotherapy in humans

to be estimated; (iii) the model initial conditions for running the simulations; and (iv) a list of

the experimentally observed quantities, which can be model variables or a function of these. The

execution of the GENSSI algorithm confirmed the structural global identifiability of the model

parameters.

Local Sensitivity Analysis

A LSA has been performed on tumor size. We considered the total amount of tumor as X =

X1 +X2 and we evaluated the tumor LSA value of a model parameter p by using the logarithmic

LSA introduced in the Chapter 1. Starting from the Eq. (1.8), we approximated ∂X(t,p)
∂p by the

central finite difference, obtaining:

LSA(p) =
X(tf , p+ ∆p)−X(tf , p−∆p)

2 ·∆ ·X(tf , p)
,

where tf is the last simulated time point. The results obtained by fixing ∆ = 1% and two different

simulation times (tf = 4 months and tf = 6) are shown in the Appendix B.

3.8 Additional figures

Figure 3.12 provides the system dynamics when the intermittent anti-CTLA4 therapy is ad-

ministered for long time. The system shows two different dynamics for anti-CTLA4 therapy

administered for 22 years and for 21 years. The charts show that, after 22 years of therapy,

the no-tumor steady state becomes attractive, determining the eradication of the tumor, while,

administering this therapy for 21 years, the system converges to the high-tumor steady state.

Figure 3.13 shows the qualitative behavior of the high-tumor steady state in case of vaccine.

The chart provides two curves, regarding the effect of continuous vaccine in low dose (2.75 ·

107 cells/day) and high dose (4.13 · 108 cells/day), in order to prove that the vaccine dose does

not affect the qualitative behavior of the system.
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Figure 3.12: Human PCa model dynamics under androgen deprivation inter-
mittent anti-CTLA4 infusion - long-term therapy. Dynamics of the system vari-
ables and PSA level when castrated patients are subject to intermittent infusion of 256.5
mg per year of the drug ipilimumab for 22 years (blue line) and for 21 years (orange line).

Figure 3.14 shows the dynamics in case of androgen deprivation combined with anti-CTLA4

therapy, comparing the intermittent and the continuous administration protocols of the drug

ipilimumab. The figure highlights that the two different schedules do not affect the system

dynamics for long period.
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Figure 3.13: Positive equilibrium point of human PCa model - high versus low
doses of vaccine. Stability of the equilibrium E1 when the tumor proliferation rate r2

changes. The chart shows the equilibria curves when the vaccine is administered in low
( 2.75 · 107cells/day) and high doses ( 15 · 2.75 · 107cells/day). The curves split into two
branches: the high-tumor (blue line) and low-tumor (green line).
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Figure 3.14: Comparison of human PCa model dynamics under androgen depri-
vation therapy combined to different administration protocols of anti-CTLA4
therapy. Dynamics of the system variables and PSA level when androgen deprivation
therapy is combined with anti-CTLA4, which is administered with different protocols.
The drug ipilimumab is injected every year with a dose of 265.5 mg (blue line), or with a
constant infusion of 0.73 mg/day (orange line).
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3.9 Basin of attractions

To further investigate the basin of attractions of the two steady states E0 and E1, we evaluate

where the system converges by changing the initial point. We consider three main scenarios

regarding different treatment conditions, where the critical interval of r2 changes according to

the different values of r∗BP and r∗LP :

- Scenario 1, without immunotherapies, where r2 ∈ [6.7 · 10−7, 9.1 · 10−6].

- Scenario 2, with dendritic cell vaccine, where r2 ∈ [1.2 · 10−6, 3 · 10−5].

- Scenario 3, with anti-CTLA4 therapy, where r2 ∈ [0.0027 , 0.0092].

We plot a two-dimensional grid describing the initial conditions of X2 and R. We define the mesh

on X2R-plane and, by starting from the corresponding initial condition, we plot a red point if

the system converges to the hihg-tumor steady state, and a blue point if the system converges to

the no-tumor steady state. For each simulation we fix the value of C(0) in [2.5 · 104, 1.3 · 105] and

the proliferation rate r2.

The first row in the Figures 3.15, 3.16, and 3.17 represents the results for tumor proliferation

rates close to the corresponding r∗BP , by fixing C(0) = Cmax = 1.3 · 105 cells (first column)

and C(0) = Cmin = 2.5 · 104 cells (second column). The second row, instead, refers to tumor

proliferation rates close to the corresponding r∗LP , by fixing C(0) = Cmax = 1.3 · 105 cells (first

column) and C(0) = Cmin = 2.5 · 104 cells (second column). Figure 3.17 includes additional

charts. For a detailed description see the figure captions.

In all the scenarios considered, the results show that the stability of the equilibrium points

seems depend only on the initial condition ofX2. Moreover, we observe that the basin of attraction

of E0 is small for every realistic tumor proliferation rate, i.e. rates with order of magnitude of

10−4 or 10−3.
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(a) (b)

(c) (d)

Figure 3.15: Basin of attractions of the human PCa model steady states -
scenario 1. Basin of attraction of the steady states E1 and E0. By varying the initial
condition of AIPC cells (on the x-axis) and of Treg cells (on the y-axis), the charts depict
a blue point if the dynamics converge to E0, while a red point if converge to E1. For each
simulation, the initial value of the CTLs is fixed in [2.5 ·104 , 1.3 ·105] and the proliferation
rate r2 in [6.7 · 10−7, 9.1 · 10−6]. (a) Simulation with high value of CTLs, C(0) = 1.3 · 105

cells, and high tumor proliferation rate r2 = 8.1 · 10−6. (b) Simulation with low value
of CTLs, C(0) = 2.5 · 104 cells, and high tumor proliferation rate r2 = 8.1 · 10−6. (c)
Simulation with high value of CTLs, C(0) = 1.3 · 105 cells, and low tumor proliferation
rate r2 = 7.2 · 10−7. (d) Simulation with low value of CTLs, C(0) = 2.5 · 104 cells, and low
tumor proliferation rate r2 = 7.2 · 10−7.
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(a) (b)

(c) (d)

Figure 3.16: Basin of attractions of the human PCa model steady states -
scenario 2. Basin of attraction of the steady states E1 and E0. By varying the initial
condition of AIPC cells (on the x-axis) and of Treg cells (on the y-axis), the charts depict
a blue point if the dynamics converge to E0, while a red point if converge to E1. For each
simulation, the initial value of the CTLs is fixed in [2.5 ·104 , 1.3 ·105] and the proliferation
rate r2 in [1.2 ·10−6, 3 ·10−5]. (a) Simulation with high value of CTLs, C(0) = 1.3 ·105 cells,
and high tumor proliferation rate r2 = 2 · 10−5. (b) Simulation with low value of CTLs,
C(0) = 2.5 · 104 cells, and high tumor proliferation rate r2 = 2 · 10−5. (c) Simulation with
high value of CTLs, C(0) = 1.3 · 105 cells, and low tumor proliferation rate r2 = 2.2 · 10−6.
(d) Simulation with low value of CTLs, C(0) = 2.5 · 104 cells, and low tumor proliferation
rate r2 = 2.2 · 10−6.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Basin of attractions of the human PCa model steady states - scenario
3. Basin of attraction of the steady states E1 and E0. By varying the initial condition of AIPC
cells (x-axis) and of Treg cells (y-axis), the charts depict a blue point if the dynamics converge
to E0, while a red point if converge to E1. For each simulation, the initial value of the CTLs is
fixed in [2.5 · 104 , 1.3 · 105] and the proliferation rate r2 in [0.0027 , 0.0092]. (a) Simulation
with high value of CTLs, C(0) = 1.3 · 105 cells and high tumor proliferation rate r2 = 0.0082.
(b) Simulation with low value of CTLs, C(0) = 1.3 · 105 cells and high tumor proliferation rate
r2 = 0.0082. (c) Simulation with high value of CTLs, C(0) = 1.3 · 105 cells and low tumor
proliferation rate r2 = 0.0037. (d) Simulation with low value of CTLs, C(0) = 1.3 · 105 cells and
low tumor proliferation rate r2 = 0.0037. (e) Simulation with high value of CTLs, C(0) = 1.3 ·105

cells and tumor proliferation rate as the r∗BP of vaccine case, r2 = 9 · 10−6. (f) Simulation with
low value of CTLs, C(0) = 1.3 · 105 cells and tumor proliferation rate as the r∗BP of vaccine case,
r2 = 9 · 10−6.
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3.10 Table of parameters

Equation Parameter Description Value References

P
C

a
E

q
s.

(3
.1

)
an

d
(3

.2
)

r1 Proliferation rate of

androgen dependent

prostate cancer cells

(ADPC)

5.67 10−4 day−1 [24]

K Tumor carrying capac-

ity

107 109cells 3.2

µ1 Death rate of ADPC 0.064 day−1 [24]

m1 Maximum mutation

rate of ADPC into

AIPC

0.5 10−4 day−1 [24]

eCX Maximal killing rate of

tumor by CTL in un-

treated case

0− 1 day−1 [24]

gCX CTL saturation level

for tumor cells inhibi-

tion

10 109 cells [24]

kIP Maximal killing rate of

tumor by CTL due to

the drug ipilimumab

5.44 10−9 1/day

(mg cells)−1

3.2

a0 Baseline serum levels of

androgen

30 ng/ml [24]
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P
C

a
E

q
s.

(3
.1

)
an

d
(3

.2
)

r2 Proliferation rate of

androgen independent

prostate cancer cells

(AIPC)

0.006 day−1 [24]

C
T

L
E

q
.

(3
.3

)

eC Maximal activation

rate of CTL by den-

dritic cells

0.02 109 cells/day [24]

gC Dendritic cells satura-

tion level for T cell

clonal expansion

0.4 109 cells [24]

eIC Maximal activation

rate of CTL by IL-2

0.1245 day−1 [24]

gIC IL-2 saturation level for

T cell clonal expansion

1000 ng/ml [24]

µC Death rate of CTL 0.03 day−1 [24]

kR Inactivation rate of

CTL by Tregs

32.81 10−9 (day ·

cells)−1

3.2

T
re

g
E

q
.

(3
.4

)

aR Activation rate of Treg

by mature dendritic

cells

0.072 day−1 [119]

µR Death rate of Treg 0.72 day−1 [119]

aIR Activation rate of Treg

by IL-2

131.26 109

(ml/ng)(cells/day)

3.2
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D
en

d
ri

ti
c

ce
ll

E
q
.

(3
.5

) sD Source of dendritic cells 0.00686 109 cells/day 3.2

v Dendritic cells vaccine

dose

0.0275 109cells/day [24]

µD Death rate of dendritic

cells

0.14 day−1 [24]

IL
-2

E
q
.

(3
.6

)

eI Maximal activation

rate of IL-2 by CTL

and tumor

5 10−6 (ng/ml)(cells·

day)−1

[24]

gI Tumor cells saturation

level for CTL stimula-

tion of IL-2

10 109cells [24]

µI Death rate of IL-2 10 day−1 [24]

i0 Baseline level of IL-2 0.00299 ng/ml 3.2

Eq. (3.7) γA androgen turnover rate 0.08 day−1 [24]

Eq. (3.8) λP Ipilimumab death rate 0.055 day−1 3.2

Eq. (3.9) cPSA Rate of PSA secreted

by tumor cells

1.93 10−9 (ng/ml)

(1/day cells)

3.2

Table 3.5: Table of human mathematical model parameters. The table provide the
parameter estimates, with the corresponding descriptions, values and estimation procedure.
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Chapter 4

Conclusion

This dissertation exposes the two mathematical models on PCa developed during my PhD period.

The two works present substantial differences in both the model formulation and calibration, and

the system analysis. Indeed, the first model, describing the evolution of PCa in mice, includes 19

ODEs and, compared with the existing PCa models [23; 24; 119; 121; 143–145], it comprehends

more mechanistic details about the tumor microenvironment. This accurate description allowed

us to test different types of immunotherapy, obtaining a comprehensive view of the treatment

effects, which is the aim of this work. The second model, comprehending 8 ODEs, describes the

dynamics of human PCa. This model has been reduced to a three-dimensional model and it has

been studied by the steady-state analysis, comparing the efficacy of the two immunotherapies

considered.

Chapter 2 is dedicated to the murine PCa mathematical model, which has been developed

by starting from a preexistent model by Peng et al. [23]. In addition to the tumor-immune

interactions described in the original model, we implemented the immuno-suppression exerted

by MDSCs, immune cells that have been recently demonstrated to be important contributors to

PCa progression [92; 93; 146–149]. Targeting MDSCs is emerging as an attractive therapeutic

option to improve the response rate to immunotherapy and patient survival in several cancers

[150]. Interestingly, a recent phase II clinical trial in melanoma (NCT02403778) showed that the
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4. Conclusion

addition of an anti-MDSC agent to ICB therapy seems to be safe and it increases the number of

activated T cells [151]. However, additional clinical studies are needed to evaluate the effectiveness

of this approach. Furthermore, we added NK cells, components of the innate immune branch

exerting a cytotoxic action without the need of prior antigen exposure [152; 153]. The potential

of NK cells in cancer immunotherapy has been pointed out by numerous preclinical studies that

showed several attractive features of these cells [154]. Above all, NK cells display an overall safe

profile, given by their limited in vivo persistence, the lack of clonal expansion, and the absence

of the immune rejection associated with allogeneic transplantation [155]. Despite these positive

characteristics, the use of NK cell-based immunotherapy in clinical settings is still at the beginning

and the availability of a mathematical model describing NK cell action could support the design

of new studies. In addition, we included the ICB treatment as an increment in the CTL tumor-

killing capacity, according to the biological evidences indicating that immune-checkpoints limit

T cell effector functions [96; 117; 156]. The ICB therapies have been proven promising for several

types of solid tumors, so much so that, in recent years, the FDA approved ICB treatments for

metastatic melanoma and renal carcinoma [60]. These successes lead to an increasing interest

also in the context of prostate cancer[157], and a combination of two different ICB drugs is

currently under phase II clinical trial for metastatic castration-resistant prostate cancer [158]

(NCT02985957).

Our model offers the possibility of testing in silico a variety of combinatorial immunotherapies

and identifying the most promising ones. In particular, in this study we evaluated the effect of

combination immunotherapies in subjects developing AIPC after androgen deprivation therapy,

considering both the impact on tumor size and the synergistic effects. Given the high number of

immunotherapies currently available, it is not feasible to test all combinations in animal models

and clinical setting. Our mathematical model offers a cost-effective approach to identify in silico

the most promising combination therapies. This is particularly relevant for prostate cancer, a

type of tumor that so far did not respond well to immunotherapy. The ICB therapy, for example,

despite the promising results in the treatment of other solid tumors, has not yet been approved

for prostate cancer. A possible explanation of the lack of satisfactory results could be due to a
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strong immuno-suppressive tumor microenvironment [56; 159; 160].

Interestingly, our simulations indicate that anti-MDSC combined with ICB almost double the

efficacy of ICB alone (44% vs 26% tumor reduction compared to untreated). When considering

dual-drug therapies, our results showed ICB as the most effective immunotherapy in subjects

under androgen deprivation therapy. Supporting these findings, a phase II clinical trial testing

androgen deprivation therapy and ICB reported a reduction in PSA levels and tumor reduction

in 25% of patients [161].

The mathematical model presented in Chapter 2 has been developed with the aim of building

a tool to test in silico the efficacy of cancer immunotherapies. To bypass the paucity of public

data from human studies, the model has been calibrated using data derived from prostate cancer

mouse models and in vitro experiments. Given the high number of parameters, we performed

a identifiability analysis by the Matlab toolbox GenSSI, which guaranteed a local parameter

identifiability. In addition, to investigate the impact of data availability on model predictions, we

performed a local and a global sensitivity analyses on the tumor size, which is the main variable

discussed in the result section (see Sections 2.2, 2.5 and the Appendix A). As expected, both

the analyses showed that the tumor dynamics resulted to be highly influenced only by the tumor

proliferation and death rates, and by the effect of CTL and NK cells killing abilities. Moreover,

when the ICB is administered, also the CTL killing capacity due to this drug is predicted to

influence the tumor size. Therefore, the results obtained from the sensitivity analyses suggest

that the model predicted tumor size is poorly affected by parameter uncertainty, except for the

few parameters playing a crucial role in tumor dynamics.

The results of both identifiability and sensitivity analyses provide an indication of the relia-

bility of model predictions, but additional efforts could be devoted to identify a new calibration

targeted to human data. In this case, it would be fundamental to add a peripheral compartment

to the model, because most of the human data derives from peripheral tissues, such as blood. In

this context, our model represents an initial step toward the development of a QSP model in-

cluding the pharmacokinetics and pharmacodynamics descriptions. Future extensions could also

address the mechanism of action of the drugs. For example, we could better describe MDSC and
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4. Conclusion

Treg regulations, considering the intracellular signaling of these cells to identify new targets of

anti-MDSC and anti-Treg drugs. Moreover, we could include a more detailed description of the

IL-2 production and Treg dynamics [108; 162] with a specific focus on the mechanisms that can

be potential targets of prostate cancer therapies. The model capabilities could also be enhanced

by including in the tumor equations a stochastic ”mutation” term, which describes the evolution

from ADPC into AIPC considering both the mutation randomness and the selective pressure due

to androgen deprivation therapy. An additional aspect that could be taken into account is the

toxicity of the treatments. For example, some immunotherapies, by enhancing T cell activity,

can induce strong, life-threatening immune reactions [163]. In this perspective, the availability

of data related to the treatment side-effects would be highly beneficial because it would allow

extending the synergy analysis by including the toxicity effect [32] and thus better supporting

clinical decision-making.

In Chapter 3, we present the human PCa mathematical model, developed from the one

proposed by Rutter and Kuang [24]. The model includes the androgen deprivation therapy, as

classical treatment for PCa patients, and other two immunotherapies, the approved dendritic cell

vaccine sipuleucel-T and an anti-CTLA4, the ipilimumab drug, the ICB currently under phase II

clinical trial (NCT02985957, NCT03061539). By observing the model simulations, the vaccine is

predicted to increase the immune cells activation, but it does not enhance the effect of the immune

system on tumor cells. Therefore, the AIPC proliferates and the system goes to an high-tumor

steady state. Conversely, the treatment with ipilimumab shows an inhibitory effect on tumor

cells, which, however, in single dose, is not enough to control the tumor growth. Nevertheless,

the in silico results suggest that intermittent administrations of the drug ipilimumab, combined

with the androgen deprivation therapy, may reduce the tumor volume, confirming the potential

anti-tumor effect of this combination therapy against prostate cancer.

To examine in depth the effect of the immunotherapies on the AIPC, we set the androgen-

deprivation as the mainstay treatment and we focused on those cases in which the tumor evolves

in the androgen-independent form as consequence of the castration therapy. We reduced the

system to (LS) and we studied how the qualitative behavior of (LS) changes, depending on
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the variation of the tumor proliferation rate, when the immunotherapies are administered with

constant infusion. These results showed that the vaccine slightly enhances the effect of the

androgen deprivation therapy, but the basin of attraction of the no-tumor equilibrium remain

small and, for every reasonable values of the tumor proliferation rate, the high-tumor steady

state is attractive. When we considered the ipilimumab constant infusion, the system was able

to reach the no-tumor equilibrium point for reasonable values of the tumor proliferation rate,

thus we observed a situation with two equilibria, the high-tumor and no-tumor, both attractive.

The convergence of the system to a tumor eradication or a tumor uncontrollable growth seems to

depend on the schedule of the therapies, since the model shows different behaviors by changing

time schedules. Indeed, the model predicts a tumor control when the anti-CTLA4 treatment

is administered at the same time with the androgen deprivation therapy. Conversely, if we

administer the drug ipilimumab after 3 years, this allows the AIPC to start the proliferation and

the system converges to the high-tumor steady state. Interestingly, there are biological evidences

that highlight the synergistic effect of the ipilimimuab coupled with androgen deprivation therapy

[164; 165].

The model presented in Chapter 3, compared to the murine PCa model introduced in the

Chapter 2, represents a step forward for the mathematical description of human prostate cancer

and, therefore, an improvement in the direction of mathematical models supporting medical de-

cisions. Indeed, since the model calibration has been performed with human data, the presented

results can be discussed from a clinical point of view. However, it is important to notice that,

despite our results suggest the combination of castration and anti-CTLA4 as the most promising

therapy, the combined administration could be unnecessary, since the androgen deprivation ther-

apy is effective in most of patients [53], who do not necessitate of other additional treatments.

Our model, in fact, considers only those cases in which the tumor evolves to the AIPC form, since

the mutation from ADPC into AIPC is described by a deterministic term. This term represents

the selective pressure due to the androgen deprivation but it does not consider the randomness of

the mutations. Therefore, rather than supporting a combined administration of anti-CTLA4 and

androgen deprivation therapies, the model highlights the importance of frequent clinical controls
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4. Conclusion

for castrated patients, to prevent the development of the AIPC cells. Moreover, it is important to

highlight that the effect of the anti-CTLA4 therapy has been estimated by using the only avail-

able experimental data provided in Small et al. paper [117], regarding patients who received the

major benefits from this treatment. For this reason, the ipilimumab effect could be overestimated

and a new calibration with a more wide range of clinical data should be performed. The LSA on

tumor confirmed that this variable is influenced by the parameter kIP , representing the tumor

killing rate by CTLS due to the drug ipilimumab. In addition, the presented description of the

tumor microenvironment is limited to few variables; further extensions will include other impor-

tant immune cells, such as myeloid derived suppressor cells and natural killer cells, as potential

targets for PCa therapies [93; 148; 152; 154].

As for the work presented in Chapter 2, also the human PCa model does not consider the

side effects of the treatments. Future extensions will comprehend the toxicity of the drugs, since,

especially for the ipilimumab, adverse events could be consistent and they can affect the out-

comes of clinical experiments [166; 167]. Moreover, future model analysis will include the effect

of the vaccine and anti-CTLA4 combination therapy, which is under phase I clinical trial [168].

This study observes that this combination therapy is synergistic and well tolerated, showing a

significant increase in serum antibodies specific for the prostate tumor-associated antigen. From

this perspective, at the end of the Chapter 3, we evaluated the synergy between the two im-

munotherapies, the sipuleucel-T vaccine and the ipilimumab anti-CTLA4, taking into account

their toxicities, and our estimate confirmed the expected synergy between the two drugs. To

compute the coefficient of synergy, we extrapolated information from experimental data and we

defined the toxicity for a generic drug x. At this stage of work, this value does not depend on

the drug doses. However, studies on metastatic melanoma patients observed that the toxicity of

ipilimumab dependents of its dose [169; 170]. In the future, we will improve this definition of the

toxicity, introducing a dose-dependent function.
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Appendix A

Local and Global Sensitivity

Analyses of mouse PCa model

This appendix includes the results of the local and global sensitivity analyses on tumor size.

The LSA value has been computed by the formula:

LSA(p) =
X(tf , p+ 1%p)−X(tf , p− 1%p)

0.02 ·X(tf , p)
,

by fixing the simulation time tf = 49 days.

To implement the GSA we sampled the parameter space by 1000 random parameter sets and,

for each of these sets, a LSA has been performed by the formula:

LSA(p) =

∫ tf

0

X(t, p+ 1%p)−X(t, p− 1%p)

0.02 ·X(t, p)
dt.

Therefore, for each parameter, we extrapolated the GSA as the median of the LSA values com-

puted for the different parameter sets.

These results are discussed in Section 2.2. Figures A.1-A.11 shown the LSA and GSA values,

which are sorted by the highest GSA absolute values.
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A. Local and Global Sensitivity Analyses of mouse PCa model

LSA abs LSA GSA abs GSA Parameter Prmeter description

8.99 8.99 61.96 61.96 rp1 Proliferation rate of ADPC

-0.14 0.14 -4.26 4.26 kNT Maximal killing rate of tumor by NK

0.34 0.34 3.23 3.23 krn NK cytotoxic effect Treg-dependent inhibition

0.00 0.00 2.82 2.82 kxn NK inactivation by tumor

0.05 0.05 2.73 2.73 kmn NK cytotoxic effect MDSC-dependent inhibition

-0.08 0.08 -2.67 2.67 kcx Maximal killing rate of tumor by CTL

-0.05 0.05 -2.57 2.57 mum MDSC death rate

0.04 0.04 2.21 2.21 rhoM source of MDSC

-0.10 0.10 -2.08 2.08 rhoN Source of NK

-0.24 0.24 -1.81 1.81 mur Treg death rate

-0.02 0.02 -1.29 1.29 adc Activation rate of CTLs by Dendritic cells

0.01 0.01 1.17 1.17 kmc CTL inhibition by MDSC

0.14 0.14 1.03 1.03 air Activation rate of Treg by IL-2

0.01 0.01 0.60 0.60 axm Maximal activation rate of MDSC by tumor

-0.01 0.01 -0.60 0.60 sm Tumor cells saturation level for MDSC clonal expansion 

0.10 0.10 0.49 0.49 mun NK death rate

-0.01 0.01 -0.43 0.43 mc Migration rate of CTL out of Lympoid tissue

0.10 0.10 0.43 0.43 axr Activation rate of Treg by tumor

0.02 0.02 0.37 0.37 muc CTL death rate

0.01 0.01 0.31 0.31 adr Activation rate of Treg by mature Dendritic cells

0.01 0.01 0.23 0.23 krc CTL inhibition by Treg

0.01 0.01 0.22 0.22 adfdr Transformation rate of  D_f cells to D_r

-0.05 0.05 -0.20 0.20 mui IL-2 death rate

0.06 0.06 0.18 0.18 aci Activation rate of IL-2 by CTL

0.00 0.00 0.09 0.09 adrr Activation rate of Treg by regulatory dendritic cells.

0.01 0.01 0.09 0.09 mr Migration rate of Treg out of Lymphoid tissue

0.00 0.00 -0.05 0.05 mud Dendritic cells death rate

0.00 0.00 -0.04 0.04 axd Activation rate of mature dendritic cells by tumor

0.00 0.00 0.03 0.03 si IL-2 saturation level for CTL clonal expansion

0.00 0.00 -0.03 0.03 aic Maximal activation rate of CTL by IL-2

-0.01 0.01 0.01 0.01 md Migration rate of mature Dendritic cells out of prostate

0.00 0.00 0.00 0.00 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.00 0.00 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 ra1 ADPC death rate

0.00 0.00 0.00 0.00 rm Mutation rate of AD into AI

0.00 0.00 0.00 0.00 rp2 Proliferation rate of AIPC

0.00 0.00 0.00 0.00 ra2 AIPC death rate

0.00 0.00 0.00 0.00 avd Activation rate of mature Dendritic cells by vaccine

0.00 0.00 0.00 0.00 lamA death rate of androgens

0.00 0.00 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamV Degradation rate of vaccine

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0.00 0.00 lamAR Dengradation rate of anti-Treg 

Untreated case

Figure A.1: Sensitivity analyses of mouse PCa model in untreated case. Local
and globl ensitivity analyses on tumor size in the untreated case. The values are sorted by
the highest GSA absolute values.
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LSA abs LSA GSA abs GSA Parameter Parameter description

38.07 38.07 210.28 210.28 rp2 Proliferation rate of AIPC

-33.16 33.16 -159.79 159.79 ra2 AIPC death rate

0.65 0.65 8.00 8.00 rp1 Proliferation rate of ADPC

-0.26 0.26 -6.18 6.18 kcx Maximal killing rate of tumor by CTL

-0.11 0.11 -5.71 5.71 mum MDSC death rate

-0.20 0.20 -4.61 4.61 adc Activation rate of CTLs by Dendritic cells

0.09 0.09 4.45 4.45 rhoM source of MDSC

-0.08 0.08 -3.89 3.89 kNT Maximal killing rate of tumor by NK

0.08 0.08 3.36 3.36 rm Mutation rate of AD into AI

0.06 0.06 3.04 3.04 kmc CTL inhibition by MDSC

0.06 0.06 2.93 2.93 kmn NK cytotoxic effect MDSC-dependent inhibition

-0.11 0.11 -2.43 2.43 axd Activation rate of mature dendritic cells by tumor

0.00 0.00 2.40 2.40 kxn NK inactivation by tumor

0.20 0.20 2.34 2.34 krn NK cytotoxic effect Treg-dependent inhibition

-0.19 0.19 -2.29 2.29 mur Treg death rate

-0.05 0.05 -1.68 1.68 rhoN Source of NK

0.02 0.02 1.60 1.60 axm Maximal activation rate of MDSC by tumor

-0.02 0.02 -1.60 1.60 sm Tumor cells saturation level for MDSC clonal expansion 

0.13 0.13 1.29 1.29 air Activation rate of Treg by IL-2

-0.07 0.07 -1.10 1.10 mc Migration rate of CTL out of Lympoid tissue

0.06 0.06 0.99 0.99 adr Activation rate of Treg by mature Dendritic cells

0.09 0.09 0.87 0.87 muc CTL death rate

0.12 0.12 0.86 0.86 krc CTL inhibition by Treg

0.00 0.00 0.71 0.71 md Migration rate of mature Dendritic cells out of prostate

-0.06 0.06 -0.67 0.67 ra1 ADPC death rate

0.05 0.05 0.50 0.50 mun NK death rate

0.03 0.03 0.44 0.44 adfdr Transformation rate of  D_f cells to D_r

0.04 0.04 0.42 0.42 axr Activation rate of Treg by tumor

0.06 0.06 0.31 0.31 aci Activation rate of IL-2 by CTL

-0.16 0.16 0.23 0.23 lamA death rate of androgens

-0.03 0.03 -0.21 0.21 mui IL-2 death rate

0.01 0.01 0.19 0.19 adrr Activation rate of Treg by regulatory dendritic cells.

-0.01 0.01 -0.12 0.12 mud Dendritic cells death rate

0.01 0.01 0.09 0.09 si IL-2 saturation level for CTL clonal expansion

-0.01 0.01 -0.09 0.09 aic Maximal activation rate of CTL by IL-2

0.01 0.01 0.04 0.04 mr Migration rate of Treg out of Lymphoid tissue

0.00 0.00 0.00 0.00 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.00 0.00 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 avd Activation rate of mature Dendritic cells by vaccine

0.00 0.00 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamV Degradation rate of vaccine

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0.00 0.00 lamAR Dengradation rate of anti-Treg 

Androgen deprivation therapy

Figure A.2: Sensitivity analyses of mouse PCa model under androgen depri-
vation therapy. Local and global sensitivity analyses on tumor size under androgen
deprivation therapy. The values are sorted by the highest GSA absolute values.
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A. Local and Global Sensitivity Analyses of mouse PCa model

LSA ABS GSA abs GSA Parameter Description

8.95 8.95 60.98 60.98 rp1 Proliferation rate of ADPC

-0.20 0.20 -5.75 5.75 kcx Maximal killing rate of tumor by CTL

-0.08 0.08 -4.83 4.83 mum MDSC death rate

-0.14 0.14 -4.07 4.07 adc Activation rate of CTLs by Dendritic cells

0.07 0.07 3.99 3.99 rhoM source of MDSC

-0.06 0.06 -3.29 3.29 kNT Maximal killing rate of tumor by NK

0.05 0.05 2.83 2.83 kmc CTL inhibition by MDSC

0.05 0.05 2.57 2.57 kmn NK cytotoxic effect MDSC-dependent inhibition

0.00 0.00 2.06 2.06 kxn NK inactivation by tumor

-0.06 0.06 -1.78 1.78 avd Activation rate of mature Dendritic cells by vaccine

-0.16 0.16 -1.71 1.71 mur Treg death rate

0.17 0.17 1.58 1.58 krn NK cytotoxic effect Treg-dependent inhibition

-0.04 0.04 -1.28 1.28 rhoN Source of NK

0.06 0.06 1.19 1.19 lamV Degradation rate of vaccine

0.02 0.02 1.09 1.09 axm Maximal activation rate of MDSC by tumor

-0.02 0.02 -1.09 1.09 sm Tumor cells saturation level for MDSC clonal expansion 

-0.06 0.06 -1.09 1.09 mc Migration rate of CTL out of Lympoid tissue

0.11 0.11 0.99 0.99 air Activation rate of Treg by IL-2

0.08 0.08 0.93 0.93 muc CTL death rate

0.09 0.09 0.74 0.74 krc CTL inhibition by Treg

0.04 0.04 0.69 0.69 adr Activation rate of Treg by mature Dendritic cells

0.04 0.04 0.53 0.53 adfdr Transformation rate of  D_f cells to D_r

-0.02 0.02 0.48 0.48 md Migration rate of mature Dendritic cells out of prostate

0.04 0.04 0.35 0.35 mun NK death rate

0.04 0.04 0.29 0.29 axr Activation rate of Treg by tumor

0.06 0.06 0.24 0.24 aci Activation rate of IL-2 by CTL

0.01 0.01 0.17 0.17 adrr Activation rate of Treg by regulatory dendritic cells.

-0.03 0.03 -0.15 0.15 mui IL-2 death rate

0.00 0.00 -0.11 0.11 axd Activation rate of mature dendritic cells by tumor

-0.01 0.01 -0.10 0.10 mud Dendritic cells death rate

0.01 0.01 0.09 0.09 si IL-2 saturation level for CTL clonal expansion

-0.01 0.01 -0.09 0.09 aic Maximal activation rate of CTL by IL-2

0.01 0.01 0.02 0.02 mr Migration rate of Treg out of Lymphoid tissue

0.00 0.00 0.00 0.00 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.00 0.00 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 ra1 ADPC death rate

0.00 0.00 0.00 0.00 rm Mutation rate of AD into AI

0.00 0.00 0.00 0.00 rp2 Proliferation rate of AIPC

0.00 0.00 0.00 0.00 ra2 AIPC death rate

0.00 0.00 0.00 0.00 lamA death rate of androgens

0.00 0.00 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0.00 0.00 lamAR Dengradation rate of anti-Treg 

Vaccine 

Figure A.3: Sensitivity analyses of mouse PCa model under vaccine therapy.
Local and global sensitivity analyses on tumor size under vaccine therapy. The values are
sorted by the highest GSA absolute values.
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LSA abs LSA GSA abs GSA Parameter Description

38.08 38.08 210.09 210.09 rp2 Proliferation rate of AIPC

-33.17 33.17 -159.94 159.94 ra2 AIPC death rate

-0.35 0.35 -8.91 8.91 kcx Maximal killing rate of tumor by CTL

0.65 0.65 7.90 7.90 rp1 Proliferation rate of ADPC

-0.12 0.12 -7.32 7.32 mum MDSC death rate

-0.27 0.27 -7.12 7.12 adc Activation rate of CTLs by Dendritic cells

0.11 0.11 5.74 5.74 rhoM source of MDSC

0.07 0.07 4.49 4.49 kmc CTL inhibition by MDSC

-0.05 0.05 -3.15 3.15 kNT Maximal killing rate of tumor by NK

0.08 0.08 3.14 3.14 rm Mutation rate of AD into AI

0.06 0.06 2.79 2.79 kmn NK cytotoxic effect MDSC-dependent inhibition

-0.11 0.11 -2.52 2.52 axd Activation rate of mature dendritic cells by tumor

-0.18 0.18 -2.29 2.29 mur Treg death rate

0.02 0.02 1.88 1.88 axm Maximal activation rate of MDSC by tumor

-0.02 0.02 -1.88 1.88 sm Tumor cells saturation level for MDSC clonal expansion 

0.00 0.00 1.87 1.87 kxn NK inactivation by tumor

-0.11 0.11 -1.72 1.72 mc Migration rate of CTL out of Lympoid tissue

-0.06 0.06 -1.53 1.53 avd Activation rate of mature Dendritic cells by vaccine

0.19 0.19 1.52 1.52 krc CTL inhibition by Treg

0.11 0.11 1.42 1.42 krn NK cytotoxic effect Treg-dependent inhibition

0.13 0.13 1.37 1.37 air Activation rate of Treg by IL-2

0.07 0.07 1.33 1.33 adr Activation rate of Treg by mature Dendritic cells

0.12 0.12 1.31 1.31 muc CTL death rate

0.00 0.00 1.19 1.19 md Migration rate of mature Dendritic cells out of prostate

-0.02 0.02 -1.17 1.17 rhoN Source of NK

0.05 0.05 0.95 0.95 lamV Degradation rate of vaccine

0.05 0.05 0.70 0.70 adfdr Transformation rate of  D_f cells to D_r

-0.06 0.06 -0.67 0.67 ra1 ADPC death rate

0.07 0.07 0.39 0.39 aci Activation rate of IL-2 by CTL

0.02 0.02 0.37 0.37 mun NK death rate

0.03 0.03 0.35 0.35 axr Activation rate of Treg by tumor

0.02 0.02 0.27 0.27 adrr Activation rate of Treg by regulatory dendritic cells.

-0.03 0.03 -0.20 0.20 mui IL-2 death rate

0.02 0.02 0.17 0.17 si IL-2 saturation level for CTL clonal expansion

-0.02 0.02 -0.17 0.17 aic Maximal activation rate of CTL by IL-2

-0.01 0.01 -0.16 0.16 mud Dendritic cells death rate

-0.16 0.16 0.13 0.13 lamA death rate of androgens

0.00 0.00 0.01 0.01 mr Migration rate of Treg out of Lymphoid tissue

0.00 0.00 0.00 0.00 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.00 0.00 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0.00 0.00 lamAR Dengradation rate of anti-Treg 

Androgen deprivation therapy + vaccine

Figure A.4: Sensitivity analyses of mouse PCa model under androgen depriva-
tion + vaccine combination therapy. Local and global sensitivity analyses on tumor
size under androgen deprivation + vaccine combination therapy. The values are sorted by
the highest GSA absolute values.

119



A. Local and Global Sensitivity Analyses of mouse PCa model

LSA abs LSA GSA abs GSA Parameter Description

38.28 38.28 214.41 214.41 rp2 Proliferation rate of AIPC

-33.30 33.30 -161.46 161.46 ra2 AIPC death rate

0.66 0.66 8.23 8.23 rp1 Proliferation rate of ADPC

0.00 0.00 -6.69 6.69 kcx Maximal killing rate of tumor by CTL

-0.02 0.02 -6.32 6.32 mum MDSC death rate

0.06 0.06 5.08 5.08 krn NK cytotoxic effect Treg-dependent inhibition

0.33 0.33 -5.03 5.03 kNT Maximal killing rate of tumor by NK

-0.12 0.12 4.77 4.77 rhoM source of MDSC

-0.23 0.23 -4.58 4.58 adc Activation rate of CTLs by Dendritic cells

0.08 0.08 3.77 3.77 rm Mutation rate of AD into AI

-0.01 0.01 -3.38 3.38 mur Treg death rate

0.02 0.02 3.22 3.22 kmc CTL inhibition by MDSC

0.00 0.00 3.20 3.20 kxn NK inactivation by tumor

0.07 0.07 3.19 3.19 kmn NK cytotoxic effect MDSC-dependent inhibition

0.00 0.00 -2.53 2.53 rhoN Source of NK

0.09 0.09 1.98 1.98 adr Activation rate of Treg by mature Dendritic cells

-0.07 0.07 -1.76 1.76 axd Activation rate of mature dendritic cells by tumor

0.00 0.00 1.73 1.73 axm Maximal activation rate of MDSC by tumor

-0.16 0.16 -1.73 1.73 sm Tumor cells saturation level for MDSC clonal expansion 

-0.07 0.07 -1.06 1.06 mc Migration rate of CTL out of Lympoid tissue

-0.16 0.16 0.90 0.90 muc CTL death rate

0.06 0.06 0.81 0.81 axr Activation rate of Treg by tumor

0.04 0.04 0.75 0.75 air Activation rate of Treg by IL-2

-0.06 0.06 -0.70 0.70 ra1 ADPC death rate

0.11 0.11 0.68 0.68 krc CTL inhibition by Treg

0.00 0.00 0.67 0.67 mun NK death rate

0.02 0.02 0.48 0.48 adfdr Transformation rate of  D_f cells to D_r

0.12 0.12 0.41 0.41 lamA death rate of androgens

0.01 0.01 -0.38 0.38 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.08 0.08 0.29 0.29 aci Activation rate of IL-2 by CTL

-0.30 0.30 0.28 0.28 adrr Activation rate of Treg by regulatory dendritic cells.

-0.06 0.06 0.27 0.27 md Migration rate of mature Dendritic cells out of prostate

0.00 0.00 0.22 0.22 lamAI Degradation rate of anti-IL-2

0.11 0.11 -0.17 0.17 mud Dendritic cells death rate

-0.28 0.28 0.12 0.12 mr Migration rate of Treg out of Lymphoid tissue

-0.01 0.01 -0.05 0.05 mui IL-2 death rate

0.10 0.10 0.04 0.04 si IL-2 saturation level for CTL clonal expansion

0.01 0.01 -0.04 0.04 aic Maximal activation rate of CTL by IL-2

-0.11 0.11 0.00 0.00 ain Maximal activation rate of NK by IL-2

-0.01 0.01 0.00 0.00 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 avd Activation rate of mature Dendritic cells by vaccine

-0.04 0.04 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.05 0.05 0.00 0.00 lamV Degradation rate of vaccine

0.12 0.12 0.00 0.00 lamAR Dengradation rate of anti-Treg 

Androgen deprivation therapy + anti-IL2

Figure A.5: Sensitivity analyses of mouse PCa model under androgen depriva-
tion + anti-IL2 combination therapy. Local and global sensitivity analyses on tumor
size under androgen deprivation + anti-IL2 combination therapy. The values are sorted by
the highest GSA absolute values.
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LSA abs LSA GSA abs GSA Parameter Description

38.32 38.32 237.94 237.94 rp2 Proliferation rate of AIPC

-0.58 0.58 -173.89 173.89 kNT Maximal killing rate of tumor by NK

-33.32 33.32 -173.58 173.58 ra2 AIPC death rate

-0.34 0.34 -105.06 105.06 rhoN Source of NK

0.39 0.39 90.38 90.38 krn NK cytotoxic effect Treg-dependent inhibition

-0.27 0.27 -79.23 79.23 kantirr Inhibition rate of Treg by anti-Treg drug

0.01 0.01 65.11 65.11 kxn NK inactivation by tumor

0.41 0.41 45.76 45.76 lamAR Dengradation rate of anti-Treg 

0.34 0.34 44.29 44.29 mun NK death rate

0.27 0.27 38.16 38.16 air Activation rate of Treg by IL-2

0.11 0.11 19.60 19.60 adr Activation rate of Treg by mature Dendritic cells

-0.07 0.07 -19.47 19.47 md Migration rate of mature Dendritic cells out of prostate

-0.06 0.06 16.82 16.82 axd Activation rate of mature dendritic cells by tumor

0.66 0.66 15.77 15.77 rp1 Proliferation rate of ADPC

-0.12 0.12 -11.20 11.20 mur Treg death rate

0.16 0.16 10.62 10.62 aci Activation rate of IL-2 by CTL

-0.08 0.08 -8.80 8.80 mui IL-2 death rate

-0.34 0.34 -7.68 7.68 kcx Maximal killing rate of tumor by CTL

0.09 0.09 7.33 7.33 rm Mutation rate of AD into AI

0.06 0.06 6.78 6.78 kmn NK cytotoxic effect MDSC-dependent inhibition

-0.12 0.12 -6.00 6.00 mum MDSC death rate

0.10 0.10 5.10 5.10 rhoM source of MDSC

0.08 0.08 4.18 4.18 axr Activation rate of Treg by tumor

0.06 0.06 -2.52 2.52 kmc CTL inhibition by MDSC

-0.19 0.19 2.49 2.49 adc Activation rate of CTLs by Dendritic cells

-0.16 0.16 2.04 2.04 lamA death rate of androgens

0.01 0.01 1.10 1.10 mr Migration rate of Treg out of Lymphoid tissue

-0.02 0.02 -1.04 1.04 sm Tumor cells saturation level for MDSC clonal expansion 

0.02 0.02 1.04 1.04 axm Maximal activation rate of MDSC by tumor

-0.06 0.06 -1.00 1.00 ra1 ADPC death rate

0.10 0.10 -0.65 0.65 muc CTL death rate

-0.06 0.06 0.47 0.47 mc Migration rate of CTL out of Lympoid tissue

0.01 0.01 0.31 0.31 adrr Activation rate of Treg by regulatory dendritic cells.

0.00 0.00 -0.28 0.28 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.27 0.27 sn IL-2 saturation level for NK clonal expansion

-0.01 0.01 -0.22 0.22 mud Dendritic cells death rate

0.04 0.04 0.03 0.03 adfdr Transformation rate of  D_f cells to D_r

0.09 0.09 -0.03 0.03 krc CTL inhibition by Treg

-0.02 0.02 0.03 0.03 aic Maximal activation rate of CTL by IL-2

0.02 0.02 -0.03 0.03 si IL-2 saturation level for CTL clonal expansion

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 avd Activation rate of mature Dendritic cells by vaccine

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamV Degradation rate of vaccine

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

Androgen deprivation therapy + anti-Treg

Figure A.6: Sensitivity analyses of mouse PCa model under androgen depri-
vation + anti-Treg combination therapy. Local and global sensitivity analyses on
tumor size under androgen deprivation + anti-Treg combination therapy. The values are
sorted by the highest GSA absolute values.
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A. Local and Global Sensitivity Analyses of mouse PCa model

LSA abs LSA GSA abs GSA Parameter Description

38.20 38.20 227.82 227.82 rp2 Proliferation rate of AIPC

-33.26 33.26 -169.59 169.59 ra2 AIPC death rate

-0.45 0.45 -76.03 76.03 kNT Maximal killing rate of tumor by NK

0.35 0.35 65.64 65.64 krn NK cytotoxic effect Treg-dependent inhibition

-0.30 0.30 -58.72 58.72 kantirr Inhibition rate of Treg by anti-Treg drug

-0.25 0.25 -41.74 41.74 rhoN Source of NK

0.01 0.01 37.83 37.83 kxn NK inactivation by tumor

0.43 0.43 31.39 31.39 lamAR Dengradation rate of anti-Treg 

0.13 0.13 25.50 25.50 adr Activation rate of Treg by mature Dendritic cells

-0.07 0.07 -23.02 23.02 md Migration rate of mature Dendritic cells out of prostate

0.30 0.30 20.49 20.49 air Activation rate of Treg by IL-2

0.25 0.25 16.43 16.43 mun NK death rate

-0.04 0.04 12.64 12.64 avd Activation rate of mature Dendritic cells by vaccine

0.66 0.66 12.17 12.17 rp1 Proliferation rate of ADPC

-0.49 0.49 -11.22 11.22 kcx Maximal killing rate of tumor by CTL

-0.16 0.16 -8.58 8.58 mum MDSC death rate

-0.12 0.12 -7.59 7.59 mur Treg death rate

0.14 0.14 7.21 7.21 rhoM source of MDSC

0.19 0.19 7.08 7.08 aci Activation rate of IL-2 by CTL

-0.09 0.09 6.60 6.60 axd Activation rate of mature dendritic cells by tumor

0.04 0.04 -5.98 5.98 lamV Degradation rate of vaccine

0.06 0.06 5.71 5.71 kmn NK cytotoxic effect MDSC-dependent inhibition

0.08 0.08 5.43 5.43 rm Mutation rate of AD into AI

-0.07 0.07 -4.27 4.27 mui IL-2 death rate

0.06 0.06 2.89 2.89 axr Activation rate of Treg by tumor

-0.31 0.31 -1.89 1.89 adc Activation rate of CTLs by Dendritic cells

0.02 0.02 1.49 1.49 axm Maximal activation rate of MDSC by tumor

-0.02 0.02 -1.49 1.49 sm Tumor cells saturation level for MDSC clonal expansion 

0.11 0.11 1.44 1.44 kmc CTL inhibition by MDSC

-0.16 0.16 1.19 1.19 lamA death rate of androgens

-0.06 0.06 -0.88 0.88 ra1 ADPC death rate

0.00 0.00 0.51 0.51 mr Migration rate of Treg out of Lymphoid tissue

-0.11 0.11 -0.46 0.46 mc Migration rate of CTL out of Lympoid tissue

0.18 0.18 0.43 0.43 muc CTL death rate

0.06 0.06 0.37 0.37 adfdr Transformation rate of  D_f cells to D_r

0.01 0.01 0.31 0.31 adrr Activation rate of Treg by regulatory dendritic cells.

-0.01 0.01 -0.21 0.21 mud Dendritic cells death rate

0.17 0.17 0.21 0.21 krc CTL inhibition by Treg

0.00 0.00 -0.11 0.11 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.11 0.11 sn IL-2 saturation level for NK clonal expansion

0.05 0.05 0.08 0.08 si IL-2 saturation level for CTL clonal expansion

-0.05 0.05 -0.08 0.08 aic Maximal activation rate of CTL by IL-2

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

Androgen deprivation therapy + vaccine + anti-Treg

Figure A.7: Sensitivity analyses of mouse PCa model under androgen depri-
vation + vaccine + anti-Treg combination therapy. Local and global sensitivity
analyses on tumor size under androgen deprivation + vaccine + anti-Treg combination
therapy. The values are sorted by the highest GSA absolute values.
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LSA ABS LSA GSA ABS GSA Parameter Description

-5.47 5.47 -98.09 98.09 kcx Maximal killing rate of tumor by CTL

-5.25 5.25 -95.83 95.83 deltaICB Effect of ICB drug on CTL killing rate

-4.46 4.46 -87.59 87.59 adc Activation rate of CTLs by Dendritic cells

-1.31 1.31 -79.24 79.24 mum MDSC death rate

-27.06 27.06 -76.63 76.63 ra2 AIPC death rate

1.12 1.12 65.48 65.48 rhoM source of MDSC

-3.35 3.35 -64.25 64.25 axd Activation rate of mature dendritic cells by tumor

1.23 1.23 59.30 59.30 kmc CTL inhibition by MDSC

3.94 3.94 56.74 56.74 lamICB Degradation rate of ICB

27.58 27.58 50.34 50.34 rp2 Proliferation rate of AIPC

-2.51 2.51 -29.73 29.73 mur Treg death rate

-1.83 1.83 -27.78 27.78 mc Migration rate of CTL out of Lympoid tissue

3.08 3.08 26.81 26.81 krc CTL inhibition by Treg

2.14 2.14 22.50 22.50 muc CTL death rate

0.99 0.99 19.30 19.30 adfdr Transformation rate of  D_f cells to D_r

1.87 1.87 19.07 19.07 air Activation rate of Treg by IL-2

0.65 0.65 8.70 8.70 adr Activation rate of Treg by mature Dendritic cells

1.08 1.08 8.51 8.51 aci Activation rate of IL-2 by CTL

-0.18 0.18 -7.94 7.94 sm Tumor cells saturation level for MDSC clonal expansion 

0.18 0.18 7.94 7.94 axm Maximal activation rate of MDSC by tumor

0.34 0.34 7.17 7.17 md Migration rate of mature Dendritic cells out of prostate

-0.58 0.58 -5.26 5.26 mui IL-2 death rate

0.24 0.24 4.11 4.11 adrr Activation rate of Treg by regulatory dendritic cells.

-0.06 0.06 -3.37 3.37 rm Mutation rate of AD into AI

0.40 0.40 3.16 3.16 si IL-2 saturation level for CTL clonal expansion

-0.40 0.40 -3.16 3.16 aic Maximal activation rate of CTL by IL-2

-0.20 0.20 -3.05 3.05 mud Dendritic cells death rate

0.37 0.37 2.50 2.50 axr Activation rate of Treg by tumor

-0.15 0.15 -2.34 2.34 lamA death rate of androgens

-0.04 0.04 -0.63 0.63 rhoN Source of NK

0.05 0.05 0.50 0.50 kmn NK cytotoxic effect MDSC-dependent inhibition

-0.05 0.05 -0.49 0.49 kNT Maximal killing rate of tumor by NK

0.01 0.01 -0.41 0.41 mr Migration rate of Treg out of Lymphoid tissue

0.04 0.04 0.28 0.28 mun NK death rate

0.13 0.13 0.13 0.13 krn NK cytotoxic effect Treg-dependent inhibition

0.29 0.29 0.11 0.11 rp1 Proliferation rate of ADPC

-0.03 0.03 -0.11 0.11 ra1 ADPC death rate

0.00 0.00 0.08 0.08 kxn NK inactivation by tumor

0.00 0.00 0.00 0.00 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.00 0.00 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 avd Activation rate of mature Dendritic cells by vaccine

0.00 0.00 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamV Degradation rate of vaccine

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0.00 0.00 lamAR Dengradation rate of anti-Treg 

Androgen deprivation therapy + Immune checkpoint blockade 

Figure A.8: Sensitivity analyses of mouse PCa model under androgen depriva-
tion + immune checkpoint blockade combination therapy. Local and global sensi-
tivity analyses on tumor size under androgen deprivation + immune checkpoint blockade
combination therapy. The values are sorted by the highest GSA absolute values.

123



A. Local and Global Sensitivity Analyses of mouse PCa model

LSA ABS LSA GSA ABS GSA Parameter Description

38.23 38.23 252.778 252.78 rp2 Proliferation rate of AIPC

-33.32 33.32 -195.332 195.33 ra2 AIPC death rate

-0.76 0.76 -23.0627 23.06 kNT Maximal killing rate of tumor by NK

-0.69 0.69 -19.5655 19.57 rhoN Source of NK

0.02 0.02 16.8539 16.85 kxn NK inactivation by tumor

-0.31 0.31 -14.0105 14.01 kcx Maximal killing rate of tumor by CTL

0.22 0.22 12.7313 12.73 kmn NK cytotoxic effect MDSC-dependent inhibition

0.19 0.19 11.5637 11.56 rhoM source of MDSC

-0.24 0.24 -11.3853 11.39 adc Activation rate of CTLs by Dendritic cells

0.65 0.65 9.49143 9.49 rp1 Proliferation rate of ADPC

0.22 0.22 7.24568 7.25 lamAM Degradation rate of anti-MDSC 

-0.13 0.13 -6.09555 6.10 axd Activation rate of mature dendritic cells by tumor

-0.23 0.23 -5.6008 5.60 mur Treg death rate

-0.06 0.06 -5.17332 5.17 mum MDSC death rate

0.17 0.17 4.68966 4.69 krc CTL inhibition by Treg

0.02 0.02 3.83778 3.84 kmc CTL inhibition by MDSC

-0.09 0.09 -3.77448 3.77 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.08 0.08 3.68106 3.68 rm Mutation rate of AD into AI

0.13 0.13 3.22405 3.22 muc CTL death rate

0.68 0.68 3.08348 3.08 mun NK death rate

0.16 0.16 3.08341 3.08 air Activation rate of Treg by IL-2

0.04 0.04 3.02284 3.02 axm Maximal activation rate of MDSC by tumor

-0.04 0.04 -3.02278 3.02 sm Tumor cells saturation level for MDSC clonal expansion 

0.07 0.07 2.93497 2.93 adr Activation rate of Treg by mature Dendritic cells

-0.09 0.09 -2.92812 2.93 mc Migration rate of CTL out of Lympoid tissue

0.19 0.19 1.99478 1.99 krn NK cytotoxic effect Treg-dependent inhibition

-0.01 0.01 1.33784 1.34 md Migration rate of mature Dendritic cells out of prostate

0.04 0.04 1.25305 1.25 adfdr Transformation rate of  D_f cells to D_r

0.05 0.05 1.18545 1.19 axr Activation rate of Treg by tumor

-0.06 0.06 -0.84111 0.84 ra1 ADPC death rate

0.07 0.07 0.79911 0.80 aci Activation rate of IL-2 by CTL

-0.04 0.04 -0.51237 0.51 mui IL-2 death rate

0.01 0.01 0.4112 0.41 adrr Activation rate of Treg by regulatory dendritic cells.

0.02 0.02 0.40275 0.40 si IL-2 saturation level for CTL clonal expansion

-0.02 0.02 -0.40272 0.40 aic Maximal activation rate of CTL by IL-2

-0.01 0.01 -0.26517 0.27 mud Dendritic cells death rate

0.01 0.01 0.09003 0.09 mr Migration rate of Treg out of Lymphoid tissue

-0.01 0.01 -0.02577 0.03 ain Maximal activation rate of NK by IL-2

0.01 0.01 0.02551 0.03 sn IL-2 saturation level for NK clonal expansion

-0.16 0.16 -0.00384 0.00 lamA death rate of androgens

0.00 0.00 0 0.00 avd Activation rate of mature Dendritic cells by vaccine

0.00 0.00 0 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0 0.00 lamICB Degradation rate of ICB

0.00 0.00 0 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0 0.00 lamV Degradation rate of vaccine

0.00 0.00 0 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0 0.00 lamAR Dengradation rate of anti-Treg 

Androge deprivation therapy + anti-MDSC

Figure A.9: Sensitivity analyses of mouse PCa model under androgen depri-
vation + anti-MDSC combination therapy. Local and global sensitivity analyses on
tumor size under androgen deprivation + anti-MDSC combination therapy. The values are
sorted by the highest GSA absolute values.
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LSA ABS LSA GSA ABS GSA Parameter Description

-6.42 6.42 -115.11 115.11 kcx Maximal killing rate of tumor by CTL

-26.39 26.39 -112.76 112.76 ra2 AIPC death rate

-6.16 6.16 -110.98 110.98 deltaICB Effect of ICB drug on CTL killing rate

26.74 26.74 105.16 105.16 rp2 Proliferation rate of AIPC

-4.96 4.96 -100.30 100.30 adc Activation rate of CTLs by Dendritic cells

4.36 4.36 66.56 66.56 krc CTL inhibition by Treg

4.51 4.51 65.27 65.27 lamICB Degradation rate of ICB

-3.57 3.57 -62.12 62.12 axd Activation rate of mature dendritic cells by tumor

-3.50 3.50 -58.10 58.10 mur Treg death rate

-0.65 0.65 -35.84 35.84 rhoN Source of NK

-0.70 0.70 -35.82 35.82 kNT Maximal killing rate of tumor by NK

2.90 2.90 35.48 35.48 muc CTL death rate

2.68 2.68 32.80 32.80 air Activation rate of Treg by IL-2

-2.09 2.09 -32.36 32.36 mc Migration rate of CTL out of Lympoid tissue

0.26 0.26 31.65 31.65 rhoM source of MDSC

0.36 0.36 27.84 27.84 lamAM Degradation rate of anti-MDSC 

0.93 0.93 23.24 23.24 adr Activation rate of Treg by mature Dendritic cells

1.14 1.14 18.92 18.92 adfdr Transformation rate of  D_f cells to D_r

1.56 1.56 14.18 14.18 aci Activation rate of IL-2 by CTL

-0.13 0.13 -13.44 13.44 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.19 0.19 12.78 12.78 kmn NK cytotoxic effect MDSC-dependent inhibition

0.09 0.09 11.20 11.20 kmc CTL inhibition by MDSC

0.64 0.64 10.96 10.96 mun NK death rate

0.01 0.01 10.74 10.74 kxn NK inactivation by tumor

-0.80 0.80 -8.34 8.34 mui IL-2 death rate

0.50 0.50 6.47 6.47 axr Activation rate of Treg by tumor

0.59 0.59 5.17 5.17 si IL-2 saturation level for CTL clonal expansion

-0.58 0.58 -5.17 5.17 aic Maximal activation rate of CTL by IL-2

0.28 0.28 5.01 5.01 adrr Activation rate of Treg by regulatory dendritic cells.

-0.23 0.23 -3.94 3.94 mud Dendritic cells death rate

-0.02 0.02 -3.81 3.81 mum MDSC death rate

0.27 0.27 2.61 2.61 rp1 Proliferation rate of ADPC

-0.06 0.06 -2.31 2.31 rm Mutation rate of AD into AI

0.03 0.03 2.21 2.21 axm Maximal activation rate of MDSC by tumor

-0.03 0.03 -2.21 2.21 sm Tumor cells saturation level for MDSC clonal expansion 

-0.14 0.14 -2.02 2.02 lamA death rate of androgens

0.13 0.13 -1.25 1.25 md Migration rate of mature Dendritic cells out of prostate

0.05 0.05 0.37 0.37 mr Migration rate of Treg out of Lymphoid tissue

0.12 0.12 0.32 0.32 krn NK cytotoxic effect Treg-dependent inhibition

-0.03 0.03 -0.28 0.28 ra1 ADPC death rate

-0.01 0.01 -0.12 0.12 ain Maximal activation rate of NK by IL-2

0.01 0.01 0.12 0.12 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 avd Activation rate of mature Dendritic cells by vaccine

0.00 0.00 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 lamV Degradation rate of vaccine

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0.00 0.00 lamAR Dengradation rate of anti-Treg 

Androgen deprivation therapy + Immune checkpoint blockade + anti-MDSC

Figure A.10: Sensitivity analyses of mouse PCa model under androgen de-
privation + immune checkpoint blockade + anti-MDSC combination therapy.
Local and global sensitivity analyses on tumor size under androgen deprivation + immune
checkpoint blockade + anti-MDSC combination therapy. The values are sorted by the
highest GSA absolute values.
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A. Local and Global Sensitivity Analyses of mouse PCa model

LSA abs LSA GSA abs GSA Parameter Description

9.04 9.04 60.74 60.74 rp1 Proliferation rate of ADPC

-0.53 0.53 -15.04 15.04 kNT Maximal killing rate of tumor by NK

1.15 1.15 12.33 12.33 krn NK cytotoxic effect Treg-dependent inhibition

0.21 0.21 10.66 10.66 kmn NK cytotoxic effect MDSC-dependent inhibition

0.01 0.01 9.05 9.05 kxn NK inactivation by tumor

-0.15 0.15 -4.37 4.37 mum MDSC death rate

0.13 0.13 3.80 3.80 rhoM source of MDSC

-0.60 0.60 -3.07 3.07 mur Treg death rate

-0.08 0.08 -2.75 2.75 kcx Maximal killing rate of tumor by CTL

0.41 0.41 2.08 2.08 mun NK death rate

0.36 0.36 1.90 1.90 air Activation rate of Treg by IL-2

-0.10 0.10 -1.43 1.43 rhoN Source of NK

0.01 0.01 -1.10 1.10 adc Activation rate of CTLs by Dendritic cells

0.00 0.00 1.04 1.04 kmc CTL inhibition by MDSC

0.06 0.06 0.95 0.95 adr Activation rate of Treg by mature Dendritic cells

0.02 0.02 0.84 0.84 axm Maximal activation rate of MDSC by tumor

-0.02 0.02 -0.84 0.84 sm Tumor cells saturation level for MDSC clonal expansion 

0.20 0.20 0.55 0.55 axr Activation rate of Treg by tumor

0.00 0.00 -0.39 0.39 mc Migration rate of CTL out of Lympoid tissue

-0.01 0.01 0.33 0.33 muc CTL death rate

-0.10 0.10 -0.26 0.26 mui IL-2 death rate

0.12 0.12 0.24 0.24 aci Activation rate of IL-2 by CTL

0.01 0.01 0.22 0.22 adfdr Transformation rate of  D_f cells to D_r

-0.06 0.06 -0.20 0.20 md Migration rate of mature Dendritic cells out of prostate

-0.01 0.01 0.20 0.20 krc CTL inhibition by Treg

0.04 0.04 0.18 0.18 mr Migration rate of Treg out of Lymphoid tissue

0.01 0.01 0.11 0.11 adrr Activation rate of Treg by regulatory dendritic cells.

-0.01 0.01 -0.06 0.06 mud Dendritic cells death rate

0.00 0.00 0.02 0.02 si IL-2 saturation level for CTL clonal expansion

0.00 0.00 -0.02 0.02 aic Maximal activation rate of CTL by IL-2

0.01 0.01 -0.01 0.01 axd Activation rate of mature dendritic cells by tumor

0.00 0.00 -0.01 0.01 ain Maximal activation rate of NK by IL-2

0.00 0.00 0.01 0.01 sn IL-2 saturation level for NK clonal expansion

0.00 0.00 0.00 0.00 lamAM Degradation rate of anti-MDSC 

0.00 0.00 0.00 0.00 ra1 ADPC death rate

0.00 0.00 0.00 0.00 rm Mutation rate of AD into AI

0.00 0.00 0.00 0.00 rp2 Proliferation rate of AIPC

0.00 0.00 0.00 0.00 ra2 AIPC death rate

0.00 0.00 0.00 0.00 avd Activation rate of mature Dendritic cells by vaccine

0.00 0.00 0.00 0.00 lamA death rate of androgens

0.00 0.00 0.00 0.00 kantirr Inhibition rate of Treg by anti-Treg drug

0.00 0.00 0.00 0.00 kantiii Inhibition rate of IL-2 by anti-IL-2 drug

0.00 0.00 0.00 0.00 lamICB Degradation rate of ICB

0.00 0.00 0.00 0.00 deltaICB Effect of ICB drug on CTL killing rate

0.00 0.00 0.00 0.00 kantiM Inhibition rate of MDSC by anti-MDSC drug

0.00 0.00 0.00 0.00 lamV Degradation rate of vaccine

0.00 0.00 0.00 0.00 lamAI Degradation rate of anti-IL-2

0.00 0.00 0.00 0.00 lamAR Dengradation rate of anti-Treg 

NK infusion

Figure A.11: Sensitivity analyses of mouse PCa model under NK infusion.
Local and global sensitivity analyses on tumor size under NK infusion. The values are
sorted by the highest GSA absolute values.
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Appendix B

Local Sensitivity Analysis of human

PCa model

This appendix includes the results of the LSA on tumor size. The LSA value has been computed

by the formula:

LSA(p) =
X(tf , p+ 1%p)−X(tf , p− 1%p)

0.02 ·X(tf , p)
,

by fixing the simulation time tf = 4 months (Figure B.1) and tf = 6 months (Figure B.2). These

results are discussed in Section 3.2 .

127



B. Local Sensitivity Analysis of human PCa model

(a) Untreated case (b) Androgen deprivation therapy

(c) Androgen deprivation + vaccine therapy (d) Androgen deprivation + anti-CTLA4 therapy

Figure B.1: Local sensitivity analysis oh human PCa model with tf = 4 months.
Tables show the LSA values of tumor variable for several treatment conditions. The values are
computed by considering the final tumor size, by fixing the simulation time to 4 months.
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(a) Untreated case (b) Androgen deprivation therapy

(c) Androgen deprivation + vaccine therapy (d) Androgen deprivation + anti-CTLA4 therapy

Figure B.2: Local sensitivity analysis oh human PCa model with tf = 6 months.
Tables show the LSA values of tumor variable for several treatment conditions. The values are
computed by considering the final tumor size, by fixing the simulation time to 6 months.
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