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Abstract 

The human brain is a complex network in which hundreds of brain regions are interconnected 

via thousands of axonal pathways. The capability of such a complex system emerges from 

specific interactions among smaller entities, a set of events that can be described by the 

activation of interconnections between brain areas. Studies that focus on brain connectivity 

have the aim of understanding and modelling brain function, taking into account the spatio-

temporal dynamics of neural communication between brain regions. The majority of current 

knowledge regarding brain connectivity has been obtained from stand-alone neuroimaging 

methods. Nevertheless, the use of a multi-modal approach seems to be a powerful way to 

investigate effective brain connectivity, overcoming the limitations of unimodal approaches. 

In this review, we will present the advantages of an integrative approach in which transcranial 

magnetic stimulation-electroencephalography coregistration is combined with magnetic 

resonance imaging methods to explore effective neural interactions. Moreover, we will 

describe possible implementations of the integrative approach in open- and closed-loop 

frameworks where real-time brain activity becomes a contributor to the study of cognitive 

brain networks. 
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Brain networks and how to study their organization 

In recent years, the concept of networks (Sporns, 2011) has been adopted to define several 

complex systems in almost all fields, such as economics, politics and biology. In neuroscience, 

the term “network” implies several system properties that accurately characterize the 

complexity of brain connectivity; these properties include highly structured connectivity 

patterns, multiscale organization and non-linear dynamics. On a large scale, the brain’s 

composite “wiring diagram forms a network of hundreds of brain regions and thousands of 

white matter axonal pathways interconnecting those regions” (from van den Heuvel & 

Sporns, 2011) (see Sporns, 2011, 2013). Brain function emerges from the activation of these 

pathways, which can be dynamically reconfigured according to contingent demands. Such 

flexibility underlies the brain’s ability to sustain cognitive functions and to adapt and adjust 

to changing environments (Bassett and Sporns, 2017). 

Neuroscience researchers have expressed great interest in exploring the dynamics of brain 

network connectivity. The field of brain connectivity can be referred to as “connectomics”, an 

area of research that aims to provide comprehensive maps of all neural connections within 

the nervous system. These neural maps incorporate several levels and include the following: 

structural descriptions of connectivity, i.e., structural elements and connections forming the 

human brain (Lang, Tomé, Keck, Górriz-Sáez, and Puntonet, 2012); functional descriptions of 

connectivity, i.e., the statistical correlations between distinct brain regions in terms of 

information processing (Friston, Frith, Liddle, and Frackowiak, 1993); and effective 

descriptions of connectivity, i.e., the description of the causal influences that given neural 

units exert over other neural units (see Box 1). As a general example, brain connectivity may 

be compared to the organization of a city: neighbourhoods, which represent regions, are 

connected by streets, which represent structural connectivity. Such architecture influences 

how people move around the city and intermingle with each other, representing functional 

connectivity. Notably, the directionality of human interactions in the city can also be 

described, as some people influence the behaviour of other people, representing the effective 

connectivity among elements of the network. This analogy highlights that the relationship 

between structure and function is dynamic because it is arranged based on contingent 

demands, which can be represented by a person acting toward goals in a changing 

environment (see Friston, Frith, Liddle, and Frackowiak, 1993; Sporns and Betzel, 2016). 
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Therefore, active connections are determined by many factors, such as the type of 

information, the amount of processing required, the state of the subject, any previous 

experience, and the complex relations among these elements. Thus, understanding how 

dynamical neuronal patterns give rise to human brain functions is one of the most intriguing 

and prevalent questions in neuroscience. Nonetheless, at present, researchers have not 

achieved a complete understanding of how the intricate structural architecture of the brain 

sustains functional brain dynamics. 

In recent studies, brain connectivity has been investigated mainly by means of stand-alone 

neuroimaging methods. The principal instruments of investigation are structural magnetic 

resonance imaging (MRI), functional MRI, diffusion tensor imaging (DTI), computational 

tractography, positron emission tomography, functional near-infrared spectroscopy, 

transcranial magnetic stimulation (TMS), electroencephalography (EEG), and 

magnetoencephalography. Most of these neuroimaging methods address functional and 

effective connectivity, while MRI and DTI address structural connectivity (see Figure 1). 

However, each individual neuroimaging technique has both strengths and weaknesses. One 

possibility for addressing these weaknesses is to combine techniques, such that it becomes 

feasible to merge information and overcome some of the limitations of individual techniques. 

Here, we outline what we consider to be a promising approach for studying connectomics. 

This approach takes advantage of the integration of TMS, EEG and MRI and imitates the 

strategy of the nervous system, relying single-element interactions to produce a complex 

behaviour. We believe that TMS and EEG steered by MRI information might incorporate the 

complexity of the phenomenon into a whole if used in a method-comprehensive context. 

First, we will briefly describe the state of art of the TMS-EEG coregistration approach 

(Bortoletto, Veniero, Thut, and Miniussi, 2015; Daskalakis, Farzan, Radhu, and Fitzgerald, 

2012; Ilmoniemi and Kičić, 2010; Miniussi and Thut, 2010; Tremblay and others, 2019) and 

then emphasize the opportunity offered by the integration of TMS-EEG with MRI. Last, we 

will contemplate future scenarios in which TMS-EEG (or based on the integration type: EEG-

TMS) and online measures of activity could be used in an open-/closed-loop approach to 

explore and modify neural activity in the brain. This integrative approach holds remarkable 

promise as a probe to elucidate basic mechanisms in both the normal and pathological brain. 

https://doi.org/10.1177/1073858420916452
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Thus, it opens new opportunities for integrative neuroscience to be used for diagnostic and 

therapeutic purposes. 

 

Figure 1. Connectivity can be represented based on the resolution that a given method 

occupies in this space. This figure shows the spatial and temporal resolution of the principal 

neuroimaging methods used to study brain connectivity. However, it is not merely the spatial 

and temporal selectivity that make neuroimaging a useful experimental approach; it is the 

ability of each single method to also define functional or structural connectivity. An ideal 

approach would integrate some of these techniques, covering a larger area of the figure space. 

fNIRS, functional near-infrared spectroscopy; PET, positron emission tomography; fMRI, 

functional magnetic resonance imaging; MRI, magnetic resonance imaging; DTI, diffusion 

tensor imaging; EEG, electroencephalography; TMS, transcranial magnetic stimulation; MEG, 

magnetoencephalography. 

 

Features of TMS-EEG integration 

In the last two decades, the combination of single-pulse TMS and EEG, i.e., TMS-EEG, has been 

proposed as an ideal tool to investigate cortical excitability and effective connectivity in 

normal (Rogasch and Fitzgerald, 2013; Siebner and others, 2009; Thut and Pascual-Leone, 

2010) and pathological brains (e.g., Bagattini and others, 2019; Darmani and Ziemann, 2019; 
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Massimini, Ferrarelli, Sarasso, and Tononi, 2012; Ragazzoni and others, 2017; Sarasso and 

others, 2014; Trevizol and Blumberger, 2019) (see Box 2). Using EEG to track the activity 

induced by TMS, which propagates directly or indirectly to anatomically and functionally 

connected regions (Bonato, Miniussi, and Rossini, 2006; Ilmoniemi and others, 1997; Rogasch, 

Thomson, Daskalakis, and Fitzgerald, 2013; Voineskos and others, 2010), it is possible to 

investigate communication across networks at rest and during execution of cognitive tasks 

(Bortoletto, Veniero, Thut, and Miniussi, 2015). The spreading of activity that reaches 

connected areas, including those that are spatially distant (Komssi and others, 2002), depends 

on the underlying intra- and inter-hemispheric structural pathways and on the parameters of 

the induced electric field. When the induced electric field is stronger, the TMS-induced 

spreading is also more robust (Nieminen, Koponen, and Ilmoniemi, 2015). Given that the 

strength of the effect of TMS depends on the coil geometry and stimulation parameters, such 

as the position and orientation of the coil, which affects the depolarization of the neurons 

(Casarotto and others, 2010; Komssi, Kähkönen, and Ilmoniemi, 2004), spreading can be used 

as a dependent variable. 

The cortical response induced by the TMS can be evaluated as an evoked response that 

provides information on phase-locked oscillations to the TMS pulse (TMS-evoked potentials 

– TEPs) or as a total oscillatory response (also called event-related spectral perturbation), 

which captures both the phase-locked and non-phase-locked oscillations following TMS pulse 

(Pellicciari, Veniero, and Miniussi, 2017). The former provides measures of effective 

connectivity with high temporal resolution by analysing the amplitude and latencies of TEPs 

across the scalp or of the global field power (Hill, Rogasch, Fitzgerald, and Hoy, 2016, but see 

Conde and others 2019). The latter allows us to explore the impact of TMS in the frequency 

domain, which provides an opportunity to examine the functional specificity of brain rhythms 

in cognition (Thut and Miniussi, 2009). Although most studies have measured TMS-EEG after 

motor cortex stimulation, it is possible to observe the cortical response to TMS in other 

cortical areas (Bagattini and others, 2019; Rosanova and others, 2009). In all cases, an 

appropriate control condition should be employed when running connectivity protocols 

because TMS-EEG might also produce peripheral stimulation that can result in confounding 

cortical activation (Conde and others 2019). 

https://doi.org/10.1177/1073858420916452
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Importantly, accumulated evidence has demonstrated that cortical responses recorded in 

different cortical areas with TMS-EEG have a high level of reproducibility and importantly can 

be used as measure sensitive to longitudinal changes (Casarotto and others, 2010; Farzan and 

others, 2010; Kerwin, Keller, Wu, Narayan, and Etkin, 2018; Lioumis, Kičić, Savolainen, 

Mäkelä, and Kähkönen, 2009). For instance, Casarotto and others (2010) evaluated the 

similarities/differences between pairs of TEPs recorded in the same/different stimulation 

conditions through a single-subject comparison. The obtained index (Divergence Index) was 

able to detect whether a change in the perturbation parameters occurred or not, proving that 

the obtained measures are sensitive to evaluating longitudinal changes. 

Consequently, TMS-EEG measures may provide potential biomarkers in neurological (Koch 

and others, 2018; Koch, Martorana, and Caltagirone, 2019) and psychiatric diseases. Koch and 

others, 2018, have provided evidence of informative TMS-EEG measurements concerning the 

evaluation of Alzheimer’s disease patients before and after a treatment protocol. The TMS-

EEG signal indexed an increase in neural activity of the parietal cortex, measured as a change 

in amplitude of the global mean field power peaks and augmentation of brain oscillations in 

the beta band. It has also been possible to evaluate changes in the functional connections 

between the parietal cortex and medial frontal areas within the default mode network. 

Moreover, a recent review (Hui, Tremblay, and Daskalakis, 2019) reports evidence of the 

involvement of alterations in gamma oscillations in the prefrontal areas for depression and 

the potential of TMS-EEG to identify this as a reliable biomarker. Other studies (Colombo and 

others, 2019) have focused on the possibility of deriving an index from TMS-EEG, which may 

be helpful for supporting the diagnosis and valuation of clinical conditions (i.e., consciousness 

disorders). 

 

Features of TMS-EEG and MRI integration 

As described in the previous section, TMS-EEG has a high temporal resolution that helps to 

infer effective connectivity. However, the spatial resolution is low both for localizing the 

target region and for estimating the sources of the TMS-induced responses. Therefore, TMS-

EEG has often been integrated with MRI to improve the spatio-temporal information of brain 

network connectivity. The choice of proposing a methodologically integrated approach relies 
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on the possibility of establishing an efficient tool for exploring connectivity in a 

comprehensive scenario. The advantages of involving an integrated approach are several. 

Many studies have integrated TMS-EEG with MRI to guide target location based on individual 

features. MRI information is of high importance when the target area is not the primary motor 

cortex, which is the only area that can be functionally localized with TMS using an objective 

method (i.e., motor evoked potential). In fact, using MRI to guide target location allows us to 

overcome the high interindividual variability of cortical areas. The spatial definition of the 

regions of interest by MRI is more accurate and can help provide precise constraints to TMS 

navigation (Ning, Makris, Camprodon, and Rathi, 2019). Ning and colleagues (2019) 

demonstrated a quantitative assessment of topographic precision and variability to identify 

cortical targets for neuromodulation. They described how several variables might impact the 

reliability of the targeting strategy, such as the data quality and the pre-processing. Moreover, 

the spatial resolution of TMS depends on several variables, such as coil geometry, coil 

orientation, pulse intensity, and head/brain anatomy. Individualized modelling or empirical 

assessments of the TMS-induced electric field may be an important additional step to 

maximize the efficacy of target and network modulation with TMS. Since a different 

architecture may correspond to differences in functional signal propagation, it would be 

possible through the combination of TMS-EEG and structural and functional maps to enhance 

the structural resolution and focus the stimulation to the interesting nodes with millimetric 

precision. Having the precise coordinates of the target areas derived from neuroimaging maps 

reveals a more accurate definition of the structural nodes and thus the opportunity to use 

spatial constraints for a more precise TMS-EEG connectivity evaluation. 

The most common approach is to define the target based on anatomical landmarks. This 

approach is essential if the stimulation site is outside the primary motor, somatosensory or 

visual cortexes. Having the precise structural description of the target area reduced the inter- 

and intra-individual variability to the TMS-induced response. The anatomical landmarks 

derive from the MRI acquisition. The coil is positioned using the individual coordinates and 

monitored during the whole recording through a neuronavigation system. The anatomical 

landmarks used in neurophysiological measurements involved both anterior and posterior 

regions, i.e., prefrontal and parieto-occipital cortices (Gonzalez-Escamilla and others, 2018; 
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Mattavelli and others, 2019; Schauer and others, 2016; Vernet, Brem, Farzan, and Pascual-

Leone, 2015). 

Moreover, the target can be individuated based on cortical activity associated with a specific 

task. With this approach, the accuracy of individualizing the involved cortical area to a specific 

cognitive task is higher. The cortical coordinates, used for TMS-EEG, derive from the 

coregistration of the fMRI, used for detecting task-based activation, to the structural imaging 

of each individual. Even if the literature has identified the main (i.e., average) areas involved 

during any cognitive task, individuals have differences in structural and functional brain 

organization. In the presence of the activation maps, it is feasible to investigate such nodes 

with simultaneous TMS-EEG recordings, with a deeper precision in stimulating the target 

cortical node. Referring to the TMS-EEG literature, this approach is rare. Usually, individual 

anatomical landmarks are used based on previous fMRI studies (Kroczek, Gunter, Rysop, 

Friederici, and Hartwigsen, 2019; Pisoni, Romero Lauro, Vergallito, Maddaluno, and Bolognini, 

2018). This approach is mainly used to inform stand-alone methods, such as TMS studies 

(Bolognini, Rossetti, Fusaro, Vallar, and Miniussi, 2014; Bolognini, Rossetti, Maravita, and 

Miniussi, 2011; Rocchi, Casula, Tocco, Berardelli, and Rothwell, 2016). 

Interestingly, the target area can also be individuated based on MRI-based connectivity, with 

the possibility of investigating the relationship between structural indexes of anatomical 

connectivity and the temporal dynamics through TMS-EEG. The chance of implementing 

connectivity MRI measurements for both guiding and exploring the relation between the 

temporal dynamics and the underlying structural pathways represents a novel and promising 

approach for a better understanding of network activity (Figure 3). A great possibility for 

reaching this aim may correspond to integrating TMS-EEG with MRI, fMRI and DTI. The latter 

has great potential for describing how brain areas are connected to each other and thus to 

functions. Data analysis of the complex structural organization of the brain and the 

contributions of DTI provides quantitative information about the white matter of the brain. 

Through mathematical models called constrained spherical deconvolution (Tournier, 

Calamante, and Connelly, 2007), it is possible to estimate the distribution of fiber orientations 

and generate tractograms (Olivetti, Sharmin, and Avesani, 2016; Porro-Muñoz and others, 

2015). They represent the structural connectome of the brain and can then be used as the 

underlying map to plan specific explorations of effective connectivity. 

https://doi.org/10.1177/1073858420916452
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In fact, in an integrative scenario, functional regions of interest can be used to define the 

structural pathways underlying the functional network of interest. In this way, it would be 

possible to explore the functional dynamics of a target network, with its related anatomical 

connections. To reach this aim is crucial to extrapolate measures for both the structural and 

functional information and explore their relationship. 

The integrated TMS-EEG-MRI approach is the most informative. However, a few technical 

limitations must be considered. The first challenge to face consists of finding a conjunction 

within all the different neuroimaging methods. The spatio-temporal characteristics, of each 

involved method, are different and thus lead us to focus on cortical information. Of course, 

this is an essential lack in the more in-depth comprehension of the dynamical integration at 

the basis of network processing. Another consequence of this issue is the restriction of the 

reconstruction of white matter pathways. 

 

 

Figure 2. The scheme represents the three stand-alone methods [tractography (diffusion 

tensor imaging, DTI); functional magnetic resonance imaging, fMRI; and transcranial 

magnetic stimulation-electroencephalography coregistration, TMS-EEG] and the nature of the 

connectivity measure that can be provided by each method: structural, functional and 

effective, respectively. The integration of these neuroimaging methods can provide a more 

complete explanation of cortical connectivity if performed during the maximal information 

exchange between areas. 

https://doi.org/10.1177/1073858420916452
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Through the proposed methodological combination of TMS-EEG and neuroimaging, it is 

feasible to increase the spatial constraints for a better explanation of the temporal dynamics. 

The high spatial resolution of MRI and tractograms can help clarify the architecture of the 

brain (Bullmore and Sporns, 2009). From the connection of each local neuronal community, 

it is possible to define a map of the brain architecture. “This means that all nodes of a large 

system are linked by relatively few intermediate steps. Most nodes maintain only a few direct 

connections, mostly within a clique of neighbours” (from Bullmore and Sporns, 2009). The 

resulting architectural map is the structural connection pattern of each node with other 

nodes. This is in line with the idea of combining structural and functional connectivity to 

provide constraints that inform effective connectivity (Seghier and Friston, 2013). The 

functionality of these nodes may be different based on their interactions and can be 

evaluated by TMS-EEG. Therefore, a different node rearrangement of the functional 

organization may correspond to different measurements. Hence, with the proposed TMS-

EEG-MRI integrative approach, it will be feasible to provide strong and informed structural 

constraints to the exploration of neurophysiological signal propagation into the intricate brain 

architecture. At the same time, it will be feasible to study the prediction of the signal flow 

among the fibers drawn by tractography. 

The topological organization of brain properties in terms of regional connectivity has been 

recently studied with graph theory (Bassett and Sporns, 2017; Bassett and Bullmore, 2006). 

Graph theory has helped clarify how human cognitive functions are linked to neuronal 

network structures by applying models called graphs, which describe brain connectivity. With 

the TMS-EEG-MRI approach, directed graphs are produced. The nodes are detectable by 

functional MRI, the edges are measurable by diffusion imaging, and the directions are tested 

by TMS-EEG. 

 

https://doi.org/10.1177/1073858420916452
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Figure 3. The image describes the possibility of integrating TMS-EEG and DTI with correlation 

analysis. a) The two cortical areas shown here (red spheres) are structurally connected by a 

direct path. In the proposed example, a single-pulse TMS is delivered over the left region of 

interest. b) The TMS-evoked potentials (TEPs) recorded in the area contralateral to the 

stimulated area, which is structurally connected (blue circle), are averaged, and the 

correlation of each time point with the size of the tractogram is evaluated. In the TEP graph, 

the significant component is overlaid with a grey bar; under the graph, the topographic 

correlation is illustrated. 

 

Mapping brain connectivity: network routing strategy 

As we have described above, with the proposed TMS-EEG-MRI approach (or perhaps, 

considering the roles of the different methods, a more appropriate acronym would be MRI-

TMS-EEG) it is feasible to obtain a detailed view of the spatial (MRI provides the structural 

pathways), temporal (EEG is able to measure the time course of the activity of the cortical 

areas) and effective (TMS gives the information about directionality) features of brain 

function at a macroscopic level (Figure 4). This approach increases the level of detail with 

which the causal links between brain architecture and dynamics can be examined, which 

could radically improve our understanding of brain connectivity (Avena-Koenigsberger, Misic, 

and Sporns, 2017). This integrative approach may be useful in better understanding the 

communication of signals among nodes in complex networks. Determining how and which 

https://doi.org/10.1177/1073858420916452
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spatio-temporal routes are used by the signal in each circumstance represents a feasible 

method for achieving deeper knowledge of the flow of information in the brain. This 

information flow may follow different routes (Avena-Koenigsberger and others, 2019). Some 

EEG signal components may follow short, direct pathways, while others may follow more 

complex routes, moving through more nodes of the same networks. Recently, there has been 

a strong interest in modelling networks (network neuroscience) to describe and predict their 

function. The topology of connectivity is able to shape the pattern of interaction between the 

elements of a system, which, in turn, regulates its global behaviour. Routing communication 

describes the possibility of two nodes of a network to communicate if they are joined by a 

path, where the length of the path is crucial for the efficacy of the communication. For 

example, in real neural systems, the number of synapses between systems is ideally 

minimized, considering that the risk of noise and the metabolic cost increase with the path 

length. 

 

 

Figure 4. Integrating physiological evidence from TMS-EEG may improve network modelling 

to better describe signal propagation among the elements of a network. The image (from 

Bortoletto, Veniero, Thut, and Miniussi, 2015) “represents the modular organization of the 

https://doi.org/10.1177/1073858420916452
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brain network. (a) Nodes (grey circles), local hubs (grey squares) and rich-club hubs (red 

squares) are included, along with their short-range (black lines) and long-range (red lines) 

connections. (b) Coloured arrows represent the causal interactions between nodes and the 

latency of signal propagation from the TMS pulse. After TMS, the activation of the target area 

travels to other nodes of the same module through short-range connections. (c) When two 

lower-degree nodes of the same network are stimulated by TMS, the signal propagates within 

the same module. Different nodes (site-specific responses) are activated at first, followed 

eventually by the hubs connected to both initial sites (site-invariant responses)” (see 

Bortoletto, Veniero, Thut, and Miniussi, 2015). 

 

Although routing communication is efficient in describing communication for small networks, 

the issue becomes more delicate when we consider conditions that present a higher level of 

complexity. Modelling information processing among a large number of elements is 

challenging (Tadić, Andjelković, and Melnik, 2019). The difficulty in explaining the flow of 

information in the brain relies on the nature of the electrophysiological brain signal 

(Deslauriers-Gauthier and others, 2019). Different components of the signal may encode 

different information, which may follow several different routes, such that the overall 

information flow is spread across all the routes of each signal component. The integration of 

the functional dynamics is essential for explaining the mechanism that enables information 

to flow efficiently among different elements of a network through a complex topology 

(Deriche, 2016). Capitalizing on the strengths of the integrated TMS-EEG and MRI approach 

can help characterize the physiological basis of this information flow. Correlating spatially 

distributed physiological signals with structural pathways, within clear confines, has the 

potential to explain the relation between network dynamics and network topology. 

Furthermore, positive consequences may follow in the clinical domain. The proposed 

integrated approach will merit consideration as an instrument for sensitive quantification of 

previously subjective signal signatures (see Box 2). 

 

EEG-informed systems: future implementations of EEG-TMS 

https://doi.org/10.1177/1073858420916452
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Thus far, we have described the advantages of implementing an integrative TMS-EEG 

approach for studying network activity. We will now detail the potential of using an 

informative EEG-TMS system, where the brain activity recorded by EEG drives stimulation in 

the exploration of brain dynamics. Neuroimaging methods have mainly investigated the brain 

in an “offline, open-loop” fashion using an a priori-defined stimulus protocol to dictate the 

input and its timing. Then, the outputs measured offline are used to modify protocols in 

subsequent experiments or to formulate theories. Although this approach has been truly 

productive (e.g., Romei, Gross, and Thut, 2010; Thut, Schyns, and Gross, 2011), it has not 

taken the brain into consideration as a fully active effector (Bergmann, 2018). In the offline, 

open-loop approach, the neurophysiological or behavioural responses are analysed after 

brain stimulation in an a posteriori procedure, which fails to take into consideration the state 

of the brain at the moment of the input. 

Broadly defined, a brain state can be considered the recurring set of activity of a neural 

population underlying a specific configuration over a defined time period and characterized 

by specific contingencies (Bergmann, Karabanov, Hartwigsen, Thielscher, and Siebner, 2016). 

Therefore, such a configuration relies on a specific neuronal population with 

excitatory/inhibitory circuits that can define the final output of the network. More 

specifically, the coordinated activity of such a neural population defines the extension of the 

network and characterizes the functional state. Therefore, defining the activity-dependent 

network configuration becomes a key element to characterize the principle of brain 

functioning for any given function (Zrenner, Belardinelli, Müller-Dahlhaus, and Ziemann, 

2016; Zrenner, Desideri, Belardinelli, and Ziemann, 2018) underlying that the dynamic aspect 

is a key element to advance our understanding. The EEG-TMS guided by MRI provides new 

opportunities for studying the brain by designing stimulation protocols that are controlled in 

real time by the brain state itself via the EEG signal and thus creating an online, open-loop 

system (Karabanov, Thielscher, and Siebner, 2016) to test different specific configurations. 

The estimation of brain states may be reached in different ways, e.g., with a measure of 

frequency of an oscillation of interest (i.e., alpha oscillation) or with the instantaneous phase 

(Bergmann and others, 2012; Sauseng, Klimesch, Gerloff, and Hummel, 2009; Thut and others, 

2011), although the estimation should take into consideration several aspects that may affect 

its accuracy. Stimulation intensity, coil geometry, coil orientation, and skull distance may 

https://doi.org/10.1177/1073858420916452
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interfere in obtaining a clear cortical response. Moreover, it might be difficult to measure 

undisturbed brain states, given that the tool that we use to evaluate the state can 

contaminate the measured brain activity. Even single TMS pulses induce changes in cortical 

excitability; therefore, we might underestimate the dependence of a previous TMS pulse on 

the response modulation of a second single pulse (Pellicciari, Miniussi, Ferrari, Koch, and 

Bortoletto, 2016). Additionally, other technical issues are important to take into 

consideration, such as EEG impedance, which may affect the current density recorded, which 

would be distorted by the electric fields generated by TMS (Saturnino, Madsen, and 

Thielscher, 2019). 

This approach can be developed even further when the system/network output is controlled 

using a closed-loop approach (Figure 5). Therefore, an evolution in testing brain functions is 

to use an online open- or closed-loop approach, where the brain activity informs the input or 

even controls the system (Bergmann, 2018; Zrenner, Belardinelli, Müller-Dahlhaus, and 

Ziemann, 2016). 

As a standard definition, an open loop is a type of control system in which the input (here, 

the TMS pulse) to the brain is delivered at a predefined set point (here, a given brain state) 

and implies that the output (here, the brain response) has no “direct” influence (i.e., control) 

on the next input to the brain (i.e., influences of the input will be related only to the eventual 

reaching of the abovementioned set point by the brain state). Thus, we can manipulate the 

inputs based on the set point to be delivered at a given moment to obtain the 

desired/predicted effect on the output of the system. Therefore, the state of the brain is used 

to guide the stimulation (i.e., control signal), allowing an improvement in testing the brain 

response in specific conditions but without “direct” feedback to the system. The control 

action relates to the given TMS parameters applied in a given area identified by MRI. 
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Figure 5. Schematic of the combined EEG-TMS and MRI approach. a) After the definition of 

the anatomy of the system by means of tractograms derived from MRI, TMS can be navigated 

(nTMS) within the confines of the skull to accurately target TMS. b) The system output can be 

recorded by EEG (or other biobehavioural markers) and supplied to the different loops. The 

green arrows represent an open-loop approach, a type of control system in which the input to 

the brain is given at a predefined set point defined by real-time analyses and classifier 

algorithms (c), and the approach implies that the output has no “direct” influence on (i.e., 

control over) the next input to the brain. The blue arrows represent a closed-loop approach 

that uses feedback where a specific portion of the output signal (d) is fed back to the TMS 

controller (e) to induce a precise stimulation to drive a given state in the brain. 

 

The other approach is a closed loop, which implies iteratively controlling the system state via 

a given signal with the additional purpose of reaching and maintaining a predefined set point. 

The aim is to reduce deviations from that set point by monitoring the parameter to provide 

feedback and adjusting the control signal (TMS) accordingly via a feedback loop. 

The logic of open-/closed-loop systems can be explained using the brain-computer interface 

(BCI) approach, but in the EEG-TMS approach, the production of a given brain activity is driven 

by the EEG-TMS interaction and not by the subject. BCIs are systems that allow brain activity 
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(i.e., via EEG recordings) to be utilized to control external devices without using the natural 

motor cortico-spinal pathways (Mak and Wolpaw, 2009). A BCI uses brain activity to obtain 

the information that modulates the outputs and provides feedback to the subject for learning 

how to control the output. With EEG-TMS, the inputs (i.e., TMS pulses) to the brain are 

controlled by the brain state. However, the different element is that the subject is not asked 

to drive a device, the brain pattern is modulated by the TMS pulse, while the EEG drives 

features of that pulse. 

Consequently, by these approaches using the EEG traces of a given brain state overlaid on 

MRI data, it is possible to iteratively adjust/decide TMS parameters. Examples include the 

timing and/or frequency, intensity, and stimulation site that will be used to test, suppress, 

facilitate, or even maintain that brain state with well-defined parameters by means of TMS 

(Bergmann, Karabanov, Hartwigsen, Thielscher, and Siebner, 2016; Thut and others, 2017). In 

short, we can reduce the reliance of experiments on stimulus-response statistics. Clearly, in 

order to develop an open-/closed-loop TMS-BCI, there must be a working understanding of 

the underlying neural response dependency (Panzeri, Safaai, De Feo, and Vato, 2016). With 

an open-loop EEG-TMS interface, we preferentially test the system in a given condition to 

establish how such a condition can determine the output. In a closed-loop EEG-TMS interface, 

the idea is that the feedback loop, via a controller, affects the system output. The former 

approach is ideal to study the system, and the latter approach is ideal to control it and define 

the consequences of a given state. 

With such approaches, we are able to measure brain state values through the oscillatory 

activity of neuronal populations (Buzsáki and Draguhn, 2004), which occurs on various spatial 

and temporal scales and can be quantified by several measures, from which the most relevant 

in this context might be the phase and the relative frequency. In fact, fluctuations in a brain 

state can be described as a phase shift of a specific frequency band that defines the 

development of excitatory and inhibitory periods (Destexhe, Hughes, Rudolph, and Crunelli, 

2007). For example, adopting EEG-TMS and MRI (Figure 5) in an open-loop design will allow 

us to evaluate changes in brain states through measures of neuronal synchronization, such as 

phase, thereby describing how a stimulated cortical area interacts with functionally and 

structurally connected areas. Triggering the TMS based on the phase component evoked by 

the previous pulse might guide the exploration of network connectivity based on the brain 
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states. This may be explained by the hypothesis of communication through coherence (CTC, 

Fries, 2005, 2015). Central to this hypothesis is that the modulation of oscillatory phase 

relationships among neuronal populations underlies communication. TMS pulses interact 

with oscillatory phases in terms of excitability, modifying the synchronization between 

oscillatory populations. The communication is facilitated when two oscillatory populations 

are aligned to their high excitability phases. Monitoring the phase time alignment of local 

rhythmic activity allows the temporal pattern of TMS inputs to be adjusted such that the 

exploration of cortical connectivity is conducted during the period of maximal information 

exchange. 

 

Applications of open-loop and closed-loop systems 

Recent studies have focused on applying TMS to the motor cortex with an open-loop 

approach (Gharabaghi, Kraus, Leao, and others, 2014; Kraus and others, 2016; Meincke, 

Hewitt, Batsikadze, and Liebetanz, 2016; Raco, Bauer, Tharsan, and Gharabaghi, 2016; Royter 

and Gharabaghi, 2016; Zrenner, Belardinelli, Müller-Dahlhaus, and Ziemann,  2016; Zrenner, 

Desideri, Belardinelli, and Ziemann, 2018), obtaining evidence of the impact of brain states or 

activity on cortical excitability. Zrenner (2018) provides a detailed description of how real-

time EEG can guide the exploration of corticospinal excitability through different phases of 

the endogenous sensorimotor mu-rhythm. The phase prediction was obtained with a fast 

Fourier transform. These studies opened new opportunities for adaptive TMS applications in 

the context of neurorehabilitation as a control system for neuromodulatory approaches 

(Zrenner, Belardinelli, Müller-Dahlhau, and Ziemann, 2016). 

Moreover, the application of a closed-loop system has guided the controlled release of a 

treatment drug in a medical context. Yang and Shanechi (2016) used a closed-loop system to 

monitor the brain state via EEG and control the level of burst suppression (i.e., amount of 

reduction in bursts of increased electrical activity); this feedback approach was successfully 

used to regulate, in real time, the injection of an anaesthetic drug to keep the patient in a 

constant state. 

Another study applied a closed-loop system during a protocol that is normally used in motor 

rehabilitation. In this work, Markovic, Dosen, Cipriani, Popovic, and Farina (2014) explored 

https://doi.org/10.1177/1073858420916452


https://doi.org/10.1177/1073858420916452            The Neuroscientist published online: May 9, 2020   

 
20 

 

the possibility of improving grasping by combining the electromyography (EMG) signal and 

artificial vision in a group of healthy subjects. The authors showed that using a closed-loop 

system, it was possible to improve the subject’s motor performance. 

In general, we might use an open-loop protocol with an adaptive method for exploring how 

the system’s response sensitivity varies across stimulations or regions to define the “temporal 

dimension” of an effect. Based on the experimental aim, once we have established the 

parameters that increase or decrease the system sensitivity, we then design stimuli or 

experiments to estimate the model parameters. As efficiently as possible to increase or 

reduce the system sensitivity by a closed-loop approach to produce a reliable and repeatable 

performance. 

Studying the brain is challenging because the relevant stimulus space is often a high-

dimensional space (Mutanen, Nieminen, and Ilmoniemi, 2013), and neural responses are 

stochastic, meaning that repeated TMS of an area elicits variable responses. However, using 

an EEG-TMS open-loop approach, we can reduce the stimulus space. Moreover, any variations 

measured in this context should then be considered reflections of key physiological 

mechanisms in the workings of the brain (McDonnell and Ward, 2011; Panzeri, Harvey, Piasini, 

Latham, and Fellin, 2017). 

Open-/closed-loop system implementation with EEG-TMS is still technically difficult. It is 

extremely important to take into consideration that the loop between the stimulus and the 

signal must be on the order of milliseconds due to the phase dependence of brain activity to 

avoid phase shift. This reasoning is valid for all kinds of latencies; consequently, it is important 

that the delay in signal processing, while it is transferred to the buffer, must have a sub-

millisecond precision. Auspiciously, real-time processing of neural signals is becoming more 

feasible each day through the ever-increasing computational power of modern 

microprocessors. Other important obstacles with the concurrent EEG-TMS recording are the 

artifacts induced by the TMS pulse (approximately 5-10 msec) because of amplifier saturation 

(see Veniero, Bortoletto, and Miniussi, 2009). These artifacts can be approached with 

temporal interpolation, filtering, channel and/or epoch rejection and with algorithms, such as 

independent component analysis (ICA, Hyvarinen, 1999) or the source-estimate-utilizing 

noise-discarding (SOUND) algorithm ( Mutanen, Metsomaa, Liljander, and Ilmoniemi, 2018). 

ICA algorithms are a feasible means of removing ocular artifacts and residual TMS-related 
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artifacts. The SOUND algorithm might rid the neurophysiological data of the remaining 

nonstationary disturbances. Moreover, compatible equipment already exists and is available 

for the combined EEG-TMS recording. Therefore, the most important focus should be on the 

development of a robust and efficient pipeline for online analysis via a classifier algorithm. 

There are BCI studies from other fields, as cited above, which may be helpful in inspiring the 

future of this approach and the needed analysis (e.g., Kothe and Makeig, 2013; 

sccn.ucsd.edu/wiki/BCILAB). 

There is also a neural issue: while controlling a single neuron is a relatively straightforward 

problem that implies specific timing, the temporal dynamics can become highly complex at 

the network level. Therefore, we should take into account that physiological limitations are 

sometimes also present and arise from the constraints imposed by brain computation time. 

For example, the sensory systems have processing delays ranging between ~10 and 50 ms 

(e.g., somatosensory vs. visual) before the signal reaches the cortex. On the other hand, when 

TMS is delivered, it is conceivable that the response to stimulation extends to seconds as the 

signal is relayed through complex networks. Therefore, such delays should be considered, 

since they can be a key element in achieving an improved understanding of the temporal 

dynamics of the network. 

 

Conclusions 

Studying brain connectivity is simultaneously interesting and challenging. Connectivity has a 

complex nature that requires a complex system to explore it. However, it is very important to 

invest in an integrative approach in the field of connectomics. The potential advantage of 

combining different methods is that it yields, a single, more complex instrument, which can 

provide more information that reduces variability in the data. In this way, it may be possible 

to reduce the gap between function and structure in the context of integrative neuroscience. 

Considering the open-/closed-loop scenarios, the TMS trigger is temporally guided by brain 

activity that becomes part of the experimental protocol in an adaptive approach, and it is 

spatially guided by the nodes estimated from neuroimaging. By adopting such a configuration, 

it is possible to study and manipulate the brain by guiding it through one direction or another. 

Therefore, with the open-/closed-loop setting, we will be able to explore the cognitive 
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architecture and test our hypothesis online. This approach describes a process where theory 

can be extracted from direct applications and overcomes the fundamental limits of indirectly 

testing our hypotheses by a correlative approach on a static “picture” of the brain. This 

approach provides an opportunity to non-invasively characterize in real time the causal 

dynamic relationships between brain cognitive architecture and neural responses, with the 

goal of understanding how diverse functions are integrated to produce complex behaviours. 

  

https://doi.org/10.1177/1073858420916452


https://doi.org/10.1177/1073858420916452            The Neuroscientist published online: May 9, 2020   

 
23 

 

Box 1. Schematization of connectivity measures. 

In studying connectivity, the aim is to understand how neural elements exchange signals and 

influence each other. Connectivity can be defined from an anatomical (i), functional (ii) or 

effective (iii) viewpoint. Anatomical/structural (i) connectivity corresponds to the anatomical 

layout of axons and synaptic connections that determines which neural units can directly 

interact with each other (Friston, 1994). Considering that the total number of neocortical 

neurons is 15 to 32 billion (with inter-individual variation) and that each neuron has an 

average of 7000 synaptic connections (Herculano-Houzel, 2009; Pakkenberg and Gundersen, 

1997; Walløe, Pakkenberg, and Fabricius, 2014), we can recognize that these are the 

anatomical constraints that limit which neural populations can link to form biological neural 

networks. Nevertheless, these wiring diagrams among neurons in the brain have a further 

grade of complexity that is defined by how “strong” or “direct” their interactions are. This 

increase in complexity is driven by communications between neurons and is defined by the 

“temporal correlations between spatially remote neurophysiological events”, or functional 

(ii) connectivity (Friston and others., 1993; Friston, Frith, and Frackowiak, 1993). Therefore, 

functional connectivity defines statistical dependencies and does not reveal the nature of the 

temporal correlation or allow the determination of instrumental interactions between 

regions, i.e., how well the activation in one node explains the activation in another and 

therefore what is the strength of the functional connection between the two, in a given state. 

Causal interactions are implemented in the study of effective (iii) connectivity, which is 

defined as the “causal influence that one neural system exerts over another either directly or 

indirectly” (Friston, Frith, and Frackowiak, 1993); thus, a causal model theoretically explains 

the initiation and direction of information flow. 
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Figure Caption Box 1 

Representation of the modes of brain connectivity. A) Sketches at the top illustrate structural 

(i) connectivity (fiber pathways), functional (ii) connectivity (correlations), and effective (iii) 

connectivity (information flow) among four brain regions in the macaque cortex (adapted 

from Figure 1 of http://www.scholarpedia.org/article/Brain_connectivity). 

B) Information flow of structural connectivity analysis by parcellation of the brain volume into 

coherent regions on the basis of structural or connectional features from magnetic resonance 

(MR) imaging. (a) Water molecules move faster along than across neuronal fiber. (b) Diffusion 

affects the electromagnetic waves radiated by precessing protons. (c) dMR imaging captures 

diffusion signals along different directions and forms images. (d) Fiber orientation 

distributions (FODs) are reconstructed from diffusion images. (e) Fiber tracts are simulated 

from FOD images. (f) The brain cortex is segmented into many regions using structural MR 

images. (g) Connectivity networks between cortex regions are constructed from fiber tracts 

(adapted from Li, Shi, and Toga, 2016). 

C) Extraction of brain networks from empirical data follows node assignment by placement of 

sensors and/or recording sites from EEG, but the same can be obtained from 

magnetoencephalography (MEG), fMRI and PET data (part of the figure adapted from 

thenassauguardian.com); (h) recording of time series data to estimate coupling; (k) 
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construction of a connection matrix representing functional/effective networks. Obtaining 

measures of effective connectivity with neuroimaging techniques requires complex causal 

models, such as dynamic causal modelling, Granger causality, and information-theoretic 

methods (Friston, Moran, and Seth, 2013; Sporns, Chialvo, Kaiser, and Hilgetag, 2004), given 

that these techniques cannot address causality. Causality can be inferred through 

perturbation by non-invasive brain stimulation and EEG recording (Bortoletto, Veniero, Thut, 

and Miniussi, 2015). 
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Box 2. Connectivity and neurological disorders 

The study of brain connectivity improves our knowledge about the functioning of the brain in 

a healthy condition, and when a chronic or an acute event affects the nervous system, it opens 

the opportunity to understand brain connectivity more thoroughly. Neurological diseases, 

such as neurodegenerative pathologies, alter nodes and thereby cause the network 

connections to be altered. The consequences of neurological events have an impact on both 

the topology and functioning of the network, resulting in behavioural deficits in everyday life. 

TMS-EEG has been employed to evaluate altered connectivity in specific pathologies such as 

Alzheimer’s disease (Casarotto and others., 2011; Koch and others., 2018; Bagattini and 

others 2019) and as a tool for the early diagnosis of mild cognitive impairment (Julkunen and 

others., 2008; Bagattini and others 2019). Koch and others (2018) measured changes in 

precuneus connectivity after a TMS protocol among patients in the early stages of Alzheimer’s 

disease. These alterations in the connections were followed by selective improvement of 

episodic memory. The evidence described by the authors shows that TMS-EEG is able to 

measure effective connectivity and may represent an important tool for clinical diagnosis, 

with a secondary prospect of tracking recovery and rehabilitation (e.g., Ragazzoni and others., 

2017). 

 

 

Figure Caption Box 2 

https://doi.org/10.1177/1073858420916452


https://doi.org/10.1177/1073858420916452            The Neuroscientist published online: May 9, 2020   

 
27 

 

Representation of TMS-evoked response (global mean field power, GMFP) and TMS-evoked 

oscillatory activity in patients with early-stage Alzheimer’s disease (from Koch and others, 

2018). The upper left panel (1 TMS-evoked cortical activity) shows that effective fronto-

parietal connectivity increases after the real stimulation protocol. The black line (A, B) 

represents the GMFP measurement before the repetitive TMS (or sham) stimulation protocol. 

The single TMS stimulation pulse was delivered over the prefrontal cortex (PC). The increase 

in cortical activity starts at 60 ms and lasts until 90 ms. The red line represents the same 

measure recorded after a two-week treatment (repetitive TMS or sham) that consisted of 

forty trains of 20 Hz stimulation for 2 s per train, alternating with 28 s of no stimulation. No 

significant effects were detectable when the same analysis was conducted on the cortical 

response after single-pulse TMS over the posterior parietal cortex (I-PPC) (C, D). 

The upper right panel (2 TMS-evoked oscillatory activity) shows the TMS-EEG response in the 

time-frequency domain. The results show an enhancement of beta activity in the PC in terms 

of spectral power after the real (A) and sham (B) stimulation protocols. As for the time 

domain, no significant effect was detectable when the same analysis was conducted on the l-

PPC (C, D) (from Koch and others, 2018).  
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