
Certifying Proofs for LTL Model Checking
Alberto Griggio, Marco Roveri and Stefano Tonetta

FBK-irst, Trento, Italy
Email: {griggio,roveri,tonettas}@fbk.eu

Abstract—In the context of formal verification, certifying
proofs are proofs of the correctness of a model in a deduction
system produced automatically as outcome of the verification.
They are quite appealing for high-assurance systems because
they can be verified independently by proof checkers, which are
usually simpler to certify than the proof-generating tools.

Model checking is one of the most prominent approaches to
formal verification of temporal properties and is based on an
algorithmic search of the system state space. Although modern
algorithms integrate deductive methods, the generation of proofs
is typically restricted to invariant properties only.

In this paper, we solve this issue in the context of Linear-
time Temporal Logic. By exploiting the k-liveness algorithm, we
show how to extend proof generation capabilities for invariant
checking to cover full LTL properties, in a simple and efficient
manner, with essentially no overhead for the model checker. We
implemented the technique on top of an IC3 engine, and show
the feasibility of the approach on a variety of benchmarks.

I. INTRODUCTION

The application of formal methods in the certification of
high-assurance systems demands the qualification of the veri-
fication tools to ensure a sufficient level of confidence in their
results. However, verification tools such as model checkers can
be quite complex with numerous heuristics and combinations
of techniques. The idea of certifying model checking [?] to
generate deductive proofs as byproduct of the verification is
therefore quite appealing, because the proof can be verified
by independent proof checkers, which are usually simpler to
certify than the proof-generating tools.

Most modern model checking techniques integrate search-
based and deductive methods such as induction. In particular,
many current model checking algorithms are based on a
sequence of SAT queries to find inductive invariants incremen-
tally (e.g., IC3 [?]). Nevertheless, most works on certifying
model checkers go back a decade, are mainly theoretical and
based on µ-calculus, while practical SAT-based approaches are
currently limited to invariant properties.

In this paper, we address the problem of generating a
proof in the context of Linear Temporal Logic (LTL) [?]
model checking. The main obstacle to proof generation is
due to the various transformations applied to the problem:
model checking is reduced by contradiction to finding a
counterexample; LTL formulae are encoded into symbolically-
represented automata; multiple fairness conditions resulting

This work has received funding from the EU’s H2020 research and innova-
tion programme under the Grant Agreement No. 700665 (project CITADEL)
and from the EU’s ECSEL JU and Italy’s MIUR under the Grant Agreement
No. 692474 (project AMASS).

from such encoding are reduced to one; liveness is reduced
typically to safety.

We propose a sound and complete approach, where the
proof is generated from the inductive invariant obtained with
the k-liveness algorithm [?] by combining standard resolu-
tion with inference rules specific for LTL, and reasoning by
contradiction: by assuming that initially the negation of the
property holds, we prove that a certain fairness condition
can be visited at most k times, in contradiction with the
validity of the fairness condition itself. The resulting approach
is simple and efficient, and it can be implemented on top of any
state-of-the-art LTL model checker based on the combination
of k-liveness with an engine for invariant properties that is
capable of producing inductive invariants (e.g., IC3 [?]). The
proposed approach results in essentially no overhead for the
model checker. We have implemented the technique on top
of the IC3IA [?] engine leveraging on the MATHSAT [?]
SMT solver as backend. Our experimental results show the
feasibility of the approach on a variety of benchmarks taken
from the literature, and confirm the small impact of the proof
construction on the overall verification process. Finally, we
also implemented a prototype proof-checker in Python to
check the correctness of the generated proofs, and we executed
it on each of the generated proofs. The results show that, for
our prototype implementation, the cost of proof checking is
comparable with the cost of verification.

This paper is structured as follows. In Sect. II we analyze the
related works. In Sect. III we provide the needed background.
In Sect. IV we discuss the proposed approach to compute
proofs for LTL model checking, and in Sect. V we show the
results of our experimental evaluation. Finally, in Sect. VI we
draw conclusions and outline future work.

II. RELATED WORK AND CONTRIBUTIONS

Deductive systems for temporal logics have been widely
studied [?], [?], [?], [?], [?]. The idea of certifying model
checking is to generate deductive proofs automatically as
byproduct of a model checking algorithm.

The closest work to ours is [?], which describes a de-
ductive proof system for verifying properties expressed in
the µ-calculus, and shows how to generate a proof in this
system from a model checking run. The proposed approach
is applicable both for explicit state and symbolic search.
The proof system and the proof generation process draw on
results which relate model checking for the µ-calculus to
winning parity games [?]. The system was implemented (as
a prototype) on top of a BDD-based engine (COSPAN [?]);

it is however unclear how to adapt it to modern SAT-based
engines. Our approach instead implements proof generation on
top of SAT-based algorithms without any substantial overhead
or modification of the model checking engine. Moreover,
although in terms of expressiveness LTL is more restricted
than µ-calculus, in [?], LTL is assumed to be encoded and it is
not shown how to convert the proof for the resulting µ-calculus
formula to a proof for LTL. Our work instead produces a
proof using inference rules for LTL, automatically reverting
the internal automata construction.

Other approaches targeting model checking of linear-time
properties include [?], [?], [?], [?] and [?]. These works are
however mostly theoretical, and to the best of our knowledge,
with no implementation available.

Related, but slightly-different, problems are addressed in
[?], [?], and [?]. The first work gives a technique to incre-
mentally build a (partial) deductive proof from the search per-
formed by a model checker for incomplete (partially specified)
systems while proving a given LTL property holds; the second
focuses on runtime monitoring, proposing a local proof system
for LTL and showing how such a system can be used for
the construction of online runtime monitors; the third work
instead discusses a proof system to provide evidence why a
trace violates an LTL specification, as opposed to certifying
why the property holds on the system under verification.

The work in [?] presents an LTL model checker whose code
has been completely verified using the Isabelle theorem prover.
The proof consists of the formal verification of a few hundred
lines of “formalized pseudocode”, and a verified refinement
step in which mathematical sets and other abstract structures
are replaced by implementations of efficient structures. The
resulting checker is slower than unverified checkers, but it can
be used as a trusted reference implementation.

Finally, some theorem provers for LTL can produce proofs,
such as TRP++ [?] and TeMP [?]. Both systems are based on
the temporal resolution calculus and can produce fine-grained
proofs, which can then be inspected and checked to certify
the correctness. However, no automatic proof checkers are
available.

Overall, to the best of our knowledge, no previous work
provides the following contributions:
• a proof-generation technique extending a SAT-based LTL

model checking algorithm;
• a proof-generation technique for LTL based on symbolic

encoding, reverting the internal automata construction;
• a proof-generation technique for LTL validity based on

model checking;
• an available effective implementation of proof generation

from LTL model checking.

III. BACKGROUND

We work in the setting of Boolean (i.e. propositional)
logic, with the standard notions of satisfiability, validity,
interpretations and models. We denote propositional variables
with v, x, y, and formulae with φ, ψ, f , α, β, I,T , possibly with
subscripts or primes (e.g v1, x ′). If V,V ′ are (disjoint) sets

of variables, we write φ(V,V ′) to stress that all the variables
occurring in φ belong to V ∪ V ′. We use ite(φc, φt, φe) as a
shorthand for (φc → φt) ∧ (¬φc → φe). Given a variable v, a
formula φ and a formula ψ not containing v, we denote with
φ[v := ψ] the result of substituting v with ψ everywhere in
φ. We extend this to sets of variables in a pointwise manner.
If V and V ′ are two disjoint sets of variables, we might write
φ[V := V ′] as φ′. A counter is an integer-valued variable c that
occurs in two kinds of predicates: comparisons with constants,
such as c = 0 or c ≤ 10; and conditional increments, such as
ite(f , c′ = c + 1, c′ = c). Abusing notation, and for the sake
of readability, in the following we sometimes use counters to
denote their equivalent propositional encoding.1

A. Transition Systems

A transition system M is a tuple M = 〈V, I,T〉 where V is a
set of (propositional) state variables, I(V) is a formula repre-
senting the initial states, and T(V,V ′) is a formula representing
the transitions.

A state of M is an assignment to the variables V . We denote
with ΣV the set of states. We say that a state s ∈ ΣV is a
model for a formula φ(V) (denoted s |= φ(V)) if substituting
in φ the values of the variables in s, the formula φ evaluates
to >. A [finite] path of M is an infinite sequence s0, s1, . . .
[resp., finite sequence s0, s1, . . . , sk] of states such that s0 |= I
and, for all i ≥ 0 [resp., 0 ≤ i < k], si, s′i+1 |= T . Given
σ := s0, s1, . . ., with σ[j] we denote the state sj , and with
σ j the path sj, sj+1, Given two transitions systems M1 =
〈V1, I1,T1〉 and M2 = 〈V2, I2,T2〉, we denote with M1 ×M2 the
synchronous product 〈V1 ∪ V2, I1 ∧ I2,T1 ∧ T2〉.

B. Invariant Properties

Given a Boolean combination φ of predicates, the invariant
model checking problem, denoted with M |= f in φ, is the
problem to check if, for all finite paths s0, s1, . . . , sk of M ,
sk |= φ.

Most model checkers prove an invariant property by gener-
ating a stronger invariant formula ψ that is inductive, i.e. such
that: (i) I → ψ; (ii) ψ ∧ T → ψ ′; and (iii) ψ → φ.

C. LTL

Given a set of propositional variables V , LTL formulae are
built using Boolean connectives and the temporal operators X
(“next”) and U (“until”). Formally,
• a variable v ∈ V is an LTL formula,
• if φ1 and φ2 are LTL formulae, then ¬φ1, φ1 ∧ φ2, Xφ1

and φ1Uφ2 are LTL formulae.
We use the standard abbreviations: > := p∨¬p, ⊥ := p∧¬p,

Fφ := >Uφ, and Gφ := ¬F¬φ.
Given an LTL formula φ, a sequence σ of assignments to

V , and an index i, we define σ, i |= φ, i.e., that σ satisfies the
formula φ in i, as follows:
• σ, i |= v iff σ[i] |= v

1This can be done in a standard way, using e.g. a unary or a binary encoding
for integer numbers and the required comparison and increment operations;
we refrain from giving the full details of this in order to save space.

• σ, i |= φ ∧ ψ iff σ, i |= φ and σ, i |= ψ
• σ, i |= ¬φ iff σ, i 6 |= φ
• σ, i |= Xφ iff σ, i + 1 |= φ
• σ, i |= φUψ iff for some j ≥ i, σ, j |= ψ and for all

i ≤ k < j, σ, k |= φ.
Finally, σ |= φ iff σ, 0 |= φ.

Given an LTL formula φ, the LTL model checking problem,
denoted with M |= φ, is the problem to check if, for all
(infinite) paths σ of M , σ |= φ.

Given an LTL formula φ, the LTL validity problem, denoted
by |= φ, is the problem of checking if σ |= φ for all (infinite)
paths over ΣV . The validity problem can be reduced to the
model checking problem by considering the universal model
MU = 〈V,>,>〉. It is easy to prove that |= φ iff MU |= φ.

D. Symbolic LTL Model Checking

The automata-based approach [?] to LTL model checking
is to build a transition system M¬φ with a set of fairness con-
ditions F¬φ such that M |= φ iff M × M¬φ |= ¬

∧
f ∈F¬φ GF f .

This reduces to finding a counterexample as a fair path, i.e.,
a path of the system that visits each fairness condition in F¬φ
infinitely many times.

Following [?], the encoding of an LTL formula φ over
variables V into a transition system M¬φ = 〈V¬φ, I¬φ,T¬φ〉
with fairness conditions F¬φ is defined as follows:
• V¬φ = V ∪ {vXβ | Xβ ∈ Sub(φ)} ∪ {vX(β1Uβ2) | β1Uβ2 ∈

Sub(φ)}
• I¬φ = Enc(¬φ)
• T¬φ =

∧
vXβ ∈V¬φ β↔ Enc(β)′

• F¬φ = {Enc(β1Uβ2 → β2) | β1Uβ2 ∈ Sub(φ)}
where Sub is a function that maps a formula φ to the set of
its subformulae, and Enc is defined recursively as:
• Enc(v) = v

• Enc(φ1 ∧ φ2) = Enc(φ1) ∧ Enc(φ2)
• Enc(¬φ1) = ¬Enc(φ1)
• Enc(Xφ1) = vXφ1

• Enc(φ1Uφ2) = Enc(φ2) ∨ (Enc(φ1) ∧ vX(φ1Uφ2))

E. Degeneralization

In explicit-state model checking, the standard way to encode
a Generalized Büchi Automaton with n fairness conditions into
an equivalent “degeneralized” one (i.e., with one fairness), is to
fix an order on the fairness conditions, replicate the automaton
n times, and move from the i-th copy to the next one as soon
as the i-th fairness condition is visited. Symbolically, this can
be achieved as follows.

Given a transition system M = 〈V, I,T〉 with fairness
conditions F = { f1, . . . , fn}, we build an equivalent system
with a single fairness condition f by considering M × Mdeg,
where Mdeg = 〈Vdeg, Ideg,Tdeg〉 is defined as follows:
• Vdeg = V ∪ {s}
• Ideg = s=0
• Tdeg =

∧
0≤i<n−1(s = i → ite(fi+1, s′ = s + 1, s′ = s))∧

(s=n − 1→ ite(fn, s′=0, s′= s))
and f = s=0 ∧ f1.

Most standard symbolic model checkers use a different
encoding, which does not fix an ordering on the fairness
conditions: one propositional variable per fairness condition
is set to true whenever the fairness condition is visited, and
when all the variables are true they are reset to false. The
proof generation described in the next section is based on
the above encoding with fixed ordering (see Section IV-D for
details on the reason). We analyze the impact of this choice
experimentally in Section V.

F. K-Liveness and SAT-based Symbolic Model Checking

SAT-based algorithms take as input a propositional transi-
tion system and a property, and try to solve the verification
problem with a series of satisfiability queries. IC3 [?] is a
symbolic model checking algorithm for the verification of
invariant properties. It builds an over-approximation of the
reachable state space, using clauses obtained by generalization
while disproving candidate counterexamples. In the case of
finite-state systems, the algorithm is implemented on top of
Boolean SAT solvers, fully leveraging their features. IC3 has
demonstrated to be extremely effective, and it is a fundamental
core in all the engines in hardware verification.

K-liveness [?] is an algorithm recently proposed to reduce
liveness checking (and so also LTL verification) to a sequence
of invariant checking problems. K-liveness uses the standard
approach, outlined above, to reduce the LTL verification
problem M |= ϕ to M ×M¬ϕ ×Mdeg |= ¬GF f . Its key insight
is that, for finite-state systems, this is equivalent to find a k
such that f is visited at most k times, which in turn can be
reduced to invariant checking.

In [?], it is proved that, for finite-state systems, M |= ¬GF f
iff there exists k such that f can be visited at most k times
along a path of M . The last check can be reduced to an
invariant checking problem of the form M ×Mc |= f in (c ≤ k),
where Mc := 〈Vc, Ic,Tc〉 is defined as follows: Vc := {c},
Ic := c = 0, Tc := ite(f , c′ = c + 1, c′ = c). K-liveness is
therefore a simple loop that increases k at every iteration and
calls a subroutine SAFE to check the invariant (c ≤ k) on
M × Mc . In particular, the implementation in [?] uses IC3
as SAFE and exploits the incrementality of IC3 to solve the
sequence of invariant problems in an efficient way.

G. Deduction Systems

A deduction system consists of a set of axiom schemes
and inference rules. We use natural deduction [?] notation to
represent proofs. A proof is a tree of formulae where leaves
are axioms or hypothesis, and any other formula is obtained by
the application of an inference rule. Proofs for propositional
formulae can be built using the following resolution rule and
set of axioms (see e.g. [?]):

α1 ∨ ψ ¬ψ ∨ α2
α1 ∨ α2

RES

¬(a ∨ b) ∨ a ∨ b
OR-L

¬a ∨ (a ∨ b)
OR-R

¬(a ∧ b) ∨ a
AND-L

¬a ∨ ¬b ∨ (a ∧ b)
AND-R

In order to use resolution proofs inside other proofs, we use
the reductio ad absurdum rule. If a proof of ⊥ can be derived
using ¬α as hypothesis, we can extend it to a proof of α,
removing α from the hypothesis.

[¬α]....
⊥
α RAA

As for temporal operators, we use the following generaliza-
tion inference rule: if a proof of α can be derived without any
hypothesis, then we can derive Gα, and thus also Xα:

α
Gα G

α
Xα X

and we use the following axioms:

(aUb) ↔ (b ∨ (a ∧ X(aUb)))
UNTIL

(aU(b1 ∨ b2)) ↔ ((aUb1) ∨ (aUb2))
UNTIL-OR

((b1 ∧ b2)Ua) ↔ ((b1Ua) ∧ (b2Ua))
UNTIL-AND

X¬a↔ ¬Xa
NEXT-NOT

X(a ∨ b) ↔ (Xa ∨ Xb)
NEXT-OR

X(a ∧ b) ↔ (Xa ∧ Xb)
NEXT-AND

The following are abbreviations of multiple applications of the
above rules:
• LTL expansion is obtained by multiple application of

UNTIL, AND-L, AND-R, OR-L, OR-R:

α↔ E xp(α)
EXP

where E xp is defined recursively as:
– E xp(v) = v

– E xp(φ1 ∧ φ2) = E xp(φ1) ∧ E xp(φ2)
– E xp(¬φ1) = ¬E xp(φ1)
– E xp(Xφ1) = Xφ1
– E xp(φ1Uφ2) = E xp(φ2) ∨ (E xp(φ1) ∧ X(φ1Uφ2))

• X distribution is obtained by multiple application of
NEXT-NOT, NEXT-AND, NEXT-OR:

Xα
Next(α)

XDIS

where Next is defined recursively as:
– Next(v) = Xv

– Next(φ1 ∧ φ2) = Next(φ1) ∧ Next(φ2)
– Next(¬φ1) = ¬Next(φ1)
– Next(Xφ1) = XXφ1
– Next(φ1Uφ2) = Next(φ2) ∨ (Next(φ1) ∧ XX(φ1Uφ2))

• ∧ removal is obtained by combining RES with AND-L:
α1 ∧ α2
α1

ANDL
α1 ∧ α2
α2

ANDR

• U distribution is obtained by combining RES with UNTIL-
AND:

(α1 ∧ α2)Uβ
α1Uβ UAL

(α1 ∧ α2)Uβ
α2Uβ UAR

• G distribution is obtained by combining RES with UNTIL-
OR:

G(α1 ∧ α2)

Gα1
GAL

G(α1 ∧ α2)

Gα2
GAR

• G removal is obtained by combining UNTIL and OR-R:

Gα
α GN

H. Resolution Proofs for Invariant Properties

In case of an invariant property φ, an inductive invariant
ψ can be used to generate a proof of φ. In fact, since the
formulae I → ψ, ψ ∧ T → ψ ′, ψ → φ are valid, we can
obtain a resolution proof for each of them. Using an inductive
inference rule, we can then deduce that φ holds in all reachable
states.

IV. CERTIFYING PROOFS FOR LTL MODEL CHECKING

A. Overview of the Approach

As described in Section III, the standard symbolic LTL
model checking approach proceeds through a sequence of
transformations. Thus, from the original problem M |= φ, we
arrive at the problem M ×M¬φ ×Mdeg ×Mc |= f in c ≤ k from
which we can extract an inductive invariant ψ. In order to
generate the proof for the original problem, we conceptually
reverse this sequence showing how to generate a proof for each
step. In Section IV-C, we show how to generate a proof from ψ
of M×M¬φ×Mdeg |= ¬GF f ; in Section IV-D, we show how to
generate a proof from ψ of M×M¬φ |= ¬(GF f1∧ . . .∧GF fn);
finally, in Section IV-E, we show how to generate a proof from
ψ of M |= φ.

B. LTL Model Checking and LTL Validity

Consider the LTL model checking problem M |= φ, where
M = 〈V, I,T〉. With abuse of notation, we consider T also
as an LTL formula, identifying v′ with Xv for every variable
v ∈ V . In order to prove that M |= φ, we provide a proof of
(I ∧GT) → φ.

Note that, in case the original problem is the validity of an
LTL formula φ, we reduce it to the model checking problem
MU |= φ (as explained in Section III-D) generating a proof of
φ since the initial and transition conditions of MU are true.

C. Certifying Proofs for K-Liveness

We consider first the special case of proving M |= ¬GF f ,
where f is a propositional formula over V . In order to prove
(I ∧ GT) → ¬GF f , we use the following inference rule,
denoted with KL (see Section IV-F for proof of correctness):

(Pi) (Pn0) (Pp0) . . . (Pnk) (Ppk)
(ι ∧Gτ) → ¬GFρ KL

where the premises of the rule KL are:

ι→ α0 (Pi)
G((α0 ∧ τ ∧ ¬ρ) → Xα0) (Pn0)
G((α0 ∧ τ ∧ ρ) → Xα1) (Pp0)
...

G((αk ∧ τ ∧ ¬ρ) → Xαk) (Pnk)
G((αk ∧ τ ∧ ρ) → ⊥) (Ppk)

Intuitively, this means that if we have conditions
α0, . . . , αk+1 such that α0 is implied by ι, αi is inductive
relative to ¬ρ for 0 ≤ i ≤ k, αi+1 is implied by αi ∧ ρ after a
transition for 0 ≤ i ≤ k, and αk+1 = ⊥, then any path starting
from ι can visit ρ finitely many times only.

When checking M |= ¬GF f , we instantiate the rule using
ι = I, τ = T , ρ = f , and αi are obtained by the inductive
invariant generated with k-liveness.

If c is the counter introduced by k-liveness to count the
occurrences of f and ψ is the inductive invariant over V ∪ {c}
obtained to prove that c ≤ k, then we instantiate the rule KL
using αi = ψ[c := i].

Since ψ is the inductive invariant obtained with k-liveness
we know that the following propositional formulae are valid:

I ∧ c = 0→ ψ

ψ ∧ T ∧ ite(f , c′ = c + 1, c′ = c) → ψ ′

ψ → c ≤ k

Therefore also the following formulae are valid:

I → ψ[c := 0] (p0)
(ψ[c := 0] ∧ T ∧ ¬ f) → Xψ[c := 0] (p00)
(ψ[c := 0] ∧ T ∧ f) → Xψ[c := 1] (p01)
...

(ψ[c := k] ∧ T ∧ ¬ f) → Xψ[c := k] (pkk)
(ψ[c := k] ∧ T ∧ f) → ⊥ (pk)

Note that, the formulae α0, . . . , αk above are not required
to be in any specific form. In particular, when instantiating
them with the inductive invariant ψ, we can apply standard
equivalence-preserving simplifications (e.g. α ∧ > ≡ α) after
the substitution of counter values.

For each formula p ∈ {p0, p00, p01, ..., pk}, we can obtain
a resolution proof:

p....
⊥

Using rules RAA and G, we obtain a proof for each premise
of the rule KL, obtaining a proof of (I ∧GT) → ¬GF f in the
following form:

[¬p0]....
⊥

p0 RAA

G(p0)
G

[¬p00]....
⊥

p00 RAA

G(p00)
G

[¬p01]....
⊥

p01 RAA

G(p01)
G

. . .

[¬pk]....
⊥

pk
RAA

G(pk)
G

(I ∧GT) → ¬GF f
KL

D. Generalization to Multiple Fairness Conditions

We now consider the case M |= ¬(GF f1 ∧ . . . ∧ GF fn),
where f1, . . . , fn are propositional formulae over V . In order
to prove (I ∧ GT) → ¬(GF f1 ∧ . . . ∧ GF fn), we generalize
the rule KL into rule GKL. Rule GKL derives (ι ∧ Gτ) →
¬(GFρ1 ∧ . . . ∧GFρn) from the following premises:

ι→ α01 (P01)
for 0 ≤ i ≤ k, 1 ≤ j ≤ n

G((αi j ∧ τ ∧ ¬ρj) → Xαi j) (Pni j)
for 0 ≤ i ≤ k, 1 ≤ j < n

G((αi j ∧ τ ∧ ρj) → Xαi j′) (Ppi j)
for 0 ≤ i < k

G((αin ∧ τ ∧ ρn) → Xαi′1) (Pin)
G((αkn ∧ τ ∧ ρn) → ⊥) (Pkn)

where j ′ = j + 1 and i′ = i + 1.
Again, this rule can be instantiated from the inductive

invariant generated by k-liveness when using the degeneral-
ization described in Section III-E. More concretely, if c is
the counter used to count the occurrences of the fairness
conditions, s is the counter used to track if the i-th fairness
has been visited, and ψ is the inductive invariant, we set
αi j = ψ[c := i, s := j − 1] and generate a resolution proof
for the following valid formulae (as in the previous case, we
can simplify the formulae after substituting counter values,
before generating the proofs):

I → ψ[c := 0, s := 0] (p01)
for 0 ≤ i ≤ k, 1 ≤ j ≤ n
(ψ[c := i, s := j − 1] ∧ T ∧ ¬ fj) → Xψ[c := i, s := j − 1] (pni j)

for 0 ≤ i ≤ k, 1 ≤ j < n
(ψ[c := i, s := j − 1] ∧ T ∧ fj) → Xψ[c := i, s := j] (ppi j)

for 0 ≤ i < k
(ψ[c := i, s := n−1] ∧ T ∧ fn) → Xψ[c := i+1, s := 0] (pin)
(ψ[c := k, s := n − 1] ∧ T ∧ fn) → ⊥ (pkn)

Similarly to the previous case, we can transform the res-
olution proofs for these lemmas in temporal proofs for the
premises of the rule GKL.

E. Certifying Proofs for LTL

We consider here the general case of M |= φ. The procedure
described in Section III-F reduces the problem to M ×M¬φ |=
¬(GF f1∧ . . .∧GF fn), where M×M¬φ = 〈V ∪V¬φ, I∧ I¬φ,T ∧
T¬φ〉. Applying the procedure described above, we obtain a
temporal proof of (I ∧ I¬φ ∧ G(T ∧ T¬φ)) → ¬(GF f1 ∧ . . . ∧
GF fn).

Every variable vXβ ∈ V¬φ is associated with a temporal
formula Xβ. We denote by Enc−1(α) the formula obtained
from α by substituting every vXβ with Xβ. By applying this
substitution in the mentioned proof, we obtain a proof of (I ∧
Enc−1(I¬φ) ∧G(T ∧ Enc−1(T¬φ))) → ¬(GFEnc−1(f1) ∧ . . . ∧
GFEnc−1(fn)).

From this, as shown in Figure 1, we derive a proof of (I ∧
GT) → φ with three resolution steps, using GFEnc−1(fi),
GEnc−1(T¬φ), and ¬Enc−1(I¬φ) → φ as lemmas.

Finally, we provide a proof for each lemma. Note that,
given the specific construction of M¬φ , Enc−1(T¬φ) and
GFEnc−1(fi) are always valid formulae. Moreover, note that
Enc−1(I¬φ) = E xp(¬φ) and that Enc−1(T¬φ) is in the form∧
β Xβ↔ Next(E xp(β)).
The following are therefore proofs for the above lemmas:

¬φ↔ E xp(φ)
EXP

¬Enc−1(I¬φ) → φ
ANDL

β↔ E xp(β)
EXP

X(β↔ E xp(β))
X

Xβ↔ Next(E xp(β))
XDIS

[G(β1Uβ2 ∧ ¬β2)]

Gβ1Uβ2
GAL

β1Uβ2
GN

Fβ2
UAR

[G(β1Uβ2 ∧ ¬β2)]

G¬β2
GAR

⊥
RES

F(β1Uβ2 → β2)
RAA

GF(β1Uβ2 → β2)
G

Example 1: We work out a full example showing the
different steps from model checking to proof generation.

Le us consider the transition system M = 〈V, I,T〉 where:

V := {x, y, z} I := > T := (x → y′) ∧ (y → z′)

and let us consider the property φ = G(x → Fz).
φ contains two U-formulae: F(¬(x → Fz)), which we

abbreviate by F1, and Fz.
The transition system for the negation ¬φ is M¬φ =
〈V, I¬φ,T¬φ〉 where:
• V¬φ = {x, z, vXF1, vXFz}
• I¬φ = Enc(¬φ) = (x ∧ ¬(z ∨ vXFz)) ∨ vXF1

• T¬φ = (vXF1 ↔ ((x
′ ∧ ¬(z′ ∨ v′XFz)) ∨ v′XF1

)) ∧ (vXFz ↔
(z′ ∨ v′XFz))

with fairness conditions Enc(f1) and Enc(f2) where:

f1 = ¬F1 ∨ ¬(x → Fz) f2 = ¬Fz ∨ z

Mdeg and Mc are defined as in Sections III-E and III-F.
Let us suppose that k-liveness produces the following in-

ductive invariant:

ψ =(Enc(¬φ) ∧ (¬x ∨ z ∨ vXFz) ∧ s = 0)∨
(y ∧ ¬z ∧ vXG¬z ∧ s = 1)

After substituting and simplifying, we obtain:
α01 = Enc(¬φ) ∧ (¬x ∨ z ∨ vXFz)
α02 = y ∧ ¬(z ∨ vXFz)
α11 = α12 = ⊥

Let us consider only a non-trivial case and produce a proof
for T L := (Enc(¬φ) ∧ (¬x ∨ z ∨ XFz) ∧ T ∧ T¬φ ∧ f1) →
(Xy ∧ X¬z ∧ ¬XFz).

From the SAT solver we can obtain the following resolution
proof for L = Enc(¬φ)∧(¬x∨Enc(Fz))∧T ∧T¬φ∧Enc(f1)∧
(¬y′ ∨ Enc(Fz)′):

L

x → y′

L

Enc(¬φ)

L

Enc(f1)

x ∧ ¬Enc(Fz)
x

y′

L

T¬φ

L

Enc(¬φ)

L

Enc(f1)

x ∧ ¬Enc(Fz)
¬Enc(Fz)

¬Enc(Fz)′
L

¬y′ ∨ Enc(Fz)′

¬y′

⊥

In order to obtain a proof of T L it is sufficient to substitute
in the above proof the variables vXF1 and vXFz with respec-
tively XF1 and XFz.

Finally, to obtain a proof of (I ∧ GT) → φ we instantiate
the lemmas to remove I¬φ , T¬φ , and the fairness conditions.

For example, the proof for the lemma GF f1 is obtained by
substituting β1 with F1 and β2 with ¬(x → Fz) as follows:

[G¬ f1]
GF1

GAL

F1
GN

F(¬(x → Fz))
UAR

[G¬ f1]
G¬(¬(x → Fz))

GAR

⊥
RES

F f1
RAA

GF f1
G

F. Correctness

In the above proofs, we only used the rules defined in
Section III-G and the new rule GKL (rule KL is a special case
of GKL where n = 1).

Let us denote deducibility with this set of rules by `GKL. In
the following, we prove soundness and completeness of the
proofs.

Theorem 1: If `GKL α then |= α.
Proof. All rules and axioms described above are trivial apart
from rule GKL. So, we prove that if σ satisfies (P01), (Pni j) for
0 ≤ i ≤ k, 1 ≤ j ≤ n, (Ppi j) for 0 ≤ i ≤ k, 1 ≤ j < n, and (Pin)
for 0 ≤ i ≤ k, then σ |= (ι ∧ Gτ) → ¬(GFρ1 ∧ . . . ∧ GFρn)
holds. By contradiction, suppose σ |= (ι ∧ Gτ) ∧ (GFρ1 ∧
. . . ∧ GFρn), then σ satisfies each ρj infinitely many times.
So, let us define (k+1) × n points ti j such that t00 = 0 and
for all i, j, 0 ≤ i ≤ k, 1 ≤ j ≤ n, ti, j is such that for all
h, ti, j−1 ≤ h < ti, j σ, h 6 |= ρj and σ, ti j |= ρj and, for all i,
0 ≤ i < k, ti+1,0 = ti,n + 1. Due to (P01), σ, t00 |= α01. Due to
(Pni j), for all i, j, 0 ≤ i ≤ k, 1 ≤ j ≤ n, σ, ti j |= αi, j . Due
to (Ppi j), for all i, j, 0 ≤ i ≤ k, 1 ≤ j < n, σ, ti j + 1 |= αi j′ .
Due to (Pin), for all i, 1 ≤ i ≤ k, σ, ti0 |= αi1. Due to (Pkn),
σ, tk,n |= ⊥, which is a contradiction. Therefore σ |= (ι ∧
Gτ) → ¬(GFρ1 ∧ . . . ∧GFρn). �

Corollary 1: If `GKL (I ∧GT) → φ then M |= φ.
Theorem 2: If M |= φ then `GKL (I ∧GT) → φ.

Proof. Let S := M×M¬φ×Mdeg×Mc , where M¬φ has fairness
conditions f1, . . . , fn and accepts the language of ¬φ, Mdeg has
a fairness condition f and accepts the language of GF f1∧. . .∧
GF fn, and Mc has a counter that counts the occurrence of f .
Since M has finitely many states, if M |= φ, then there exists

(I ∧ I¬φ ∧G(T ∧ T¬φ)) → ¬(
∧

1≤i≤n GF fi)
∧

1≤i≤n GF fi
(I ∧ Enc−1(I¬φ) ∧GT ∧GEnc−1(T¬φ)) → ⊥

RES
GEnc−1(T¬φ)

(I ∧GT) → ¬Enc−1(I¬φ)
RES

¬Enc−1(I¬φ) → φ

(I ∧GT) → φ
RES

Fig. 1. Overall proof structure for M |= φ

k such that S |= f in c ≤ k, and thus there exists an inductive
invariant ψ such that IS → ψ, ψ ∧ TS → ψ ′, and ψ → c ≤ k.
Then, formulae (p01), (pni j) for 0 ≤ i ≤ k, 1 ≤ j ≤ n, (ppi j)
for 0 ≤ i ≤ k, 1 ≤ j < n, and (pin) for 0 ≤ i ≤ k are all valid.
Following the construction shown in Sections IV-D and IV-E,
we can generate a proof of (I ∧GT) → φ. �

Corollary 2: If |= α then `GKL α.

V. EXPERIMENTAL EVALUATION

We have implemented our proof generation procedure on
top of IC3IA, a simple, open-source implementation of IC3
that uses the MATHSAT [?] SMT solver as backend. The tool
supports LTL model checking of both finite and infinite-state
systems (using a combination of implicit abstraction and well-
founded relations, as described in [?]), but currently proof
generation is only available for finite-state systems. Upon
successful verification, IC3IA generates a proof certificate
which can be checked by a simple companion proof checker,
using purely-syntactic operations. The resolution proofs for
the individual proof obligations, as described in the pre-
vious sections, are generated using the off-the-shelf proof-
production capabilities provided by MATHSAT. The core of
the (prototype) proof checker consists of about 500 lines of
Python code. The source code of both IC3IA and the proof
checker is available at http://es.fbk.eu/people/griggio/papers/
fmcad2018-ltlproofs.tar.bz2, together with the benchmark in-
stances used in our experimental evaluation, the log files of
our results and the scripts to reproduce them.

For our evaluation, we have collected a total of 1150
instances from three different sources:
• the 63 safe LTL model checking problems from the

2015 hardware model checking competition (denoted
HWMCC in the following); all the instances in this set
are non-trivial for the model checker, with several that
are very challenging also for state-of-the-art tools; all the
properties in this family are of the form ¬

∧
i(GF fi);2

• 519 unsatisfiable LTL formulae from a benchmark set
used in previous work on LTL satisfiability checking [?]
(denoted Schuppan in the following); this set contains
instances of varying difficulty, ranging from trivial to
moderately-challenging; several instances are randomly-
generated;

• 568 LTL model checking problems resulting from the
verification of contracts of a component-based model of

2The benchmarks are in the Aiger format, which doesn’t support arbitrary
LTL properties, but only liveness properties of the above form. For most of
the benchmarks, the input system therefore already corresponds to M ×M¬φ
for some LTL property φ.

an aircraft wheel braking system [?] (denoted WBS in the
following); the instances are typically easy, and many are
in fact trivial. 3

The main objective of our experimental analysis is to
demonstrate the feasibility of proof generation in practice. For
this, we performed three sets of experiments. In all cases, we
used a timeout of 1200 seconds and a memory limit of 7Gb;
all experiments were run on a cluster of Linux machines with
2.10GHz Intel Xeon E5-2620 CPUs and 128Gb of RAM.

A. Performance impact at model-checking time

In the first experiment, we evaluated the performance im-
pact of the modified monitor for handling multiple fairness
constraints with k-liveness, which is the only modification
required at model checking time for being able to produce
proofs. The results are shown in the scatter plot of Fig. 2,
in which we compare the results of running IC3IA with the
modified monitor that records the fairness conditions in a
fixed order (x-axis) against the results when running using the
standard monitor that doesn’t impose any order for recording
the fairness conditions (y-axis). The plot shows no clear trend
for the vast majority of the instances, suggesting that the two
encodings are essentially equivalent in terms of performance
on average.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

O
ri
g
in

a
l
e
n
c
o
d
in

g

Modified encoding (fixed order)

Fig. 2. Performance impact of the
modified encoding for handling mul-
tiple fairness constraints.

A notable exception is
the subset of problems in
the TRP/N12y group of the
Schuppan set: for these in-
stances, the modified mon-
itor results in a significant
slowdown (up to two or-
ders of magnitude on some
instances), leading to 13
more timeouts. For these in-
stances, it seems that the
initial ordering of fairness
conditions used by IC3IA,
which is based on the
unique internal IDs of expressions, is particularly problematic.
Randomly shuffling the initial list of fairness conditions greatly
mitigates the problem in this case. Although further more
in-depth analyses of the correlation between the introduced
overhead and the structure of the LTL properties under con-
sideration are out of the scope of the present paper, and
therefore left for future work, we can however observe that

3This is the case e.g. for some proof obligations generated for components
with a trivial assumption.

the choice of which encoding to use for handling multiple
fairness conditions can have an impact on performance for
two different, and at least partially conflicting, reasons. On one
hand, forcing to record fairness conditions in a fixed order and
one at a time has the effect of making model checker consider
longer sequences of transitions before it can converge to an
inductive invariant (e.g. for IC3 this causes the exploration of a
longer sequence of relatively-inductive frames before reaching
the fixpoint); on the other hand, however, using the modified
monitor allows k-liveness to prove properties with smaller
values of k, which in turn might allow the model checker
to converge faster. We illustrate both situations with a simple
example.

Example 2: Consider the following system M := 〈V, I,T〉:

V := {c, f1, . . . , fn+1} I := c = 0 ∧
∧n+1

i=1 ¬ fi
T := ite(c < n, c′ = c + 1, c′ = c) ∧

∧n+1
i=1 (f

′
i ↔ (c < n))

and suppose that n ≥ 1. M clearly satisfies the property ϕ :=
¬(
∧n+1

i=1 GF fi), since all the f ′i s will stabilize to false after
n + 1 transition steps. When using the monitor that doesn’t
force an ordering for recording the fairness conditions, the
k value needed for a k-liveness proof is n, since all fairness
conditions are true for the first n steps. However, when using
the modified monitor, M |= ϕ can be proved with k = 1.

Consider instead the following variant of M , in which T is
modified as follows:

T := ite(c < 1, c′ = c + 1, c′ = c) ∧
∧n+1

i=1 (f
′
i ↔ (c < 1)).

In this case, k = 1 is enough in both cases. However, the
modified monitor will cause IC3 to explore a much deeper
sequence of frames before finding an inductive invariant.

B. Overhead of proof generation
In our second experiment, we evaluated the impact of proof

generation on the total execution time. Fig.3 shows a plot
comparing the total time taken by IC3IA (x-axis) against the
time required to model-check the instances, without generating
a proof certificate (y-axis).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

M
o
d
e
l
c
h
e
c
k
in

g
 (

M
C

)
ti
m

e

Total time (MC + proof generation)

Fig. 3. Performance impact of proof
generation.

As we can see, the
overhead of generating a
proof gets progressively
smaller as the instances
become harder for the
model checker. Overall,
enabling proof generation
results in only one lost
instance compared to model
checking only when using
the same encoding for
handling multiple fairness
conditions; compared to the original encoding, 14 instances
are lost.4 A summary of the performance of the different
configurations of IC3IA is reported in Table I, where the
number of successfully solved instances for each benchmark
family is shown.

4See the discussion above about this.

TABLE I
SUCCESSFULLY SOLVED INSTANCES BY BENCHMARK FAMILY.

HWMCC Schuppan WBS All
Model Checking only
(original monitor for
multi fairness)

31 / 63 495 / 519 568 / 568 1094 / 1150

Model Checking only
(modified monitor for
multi fairness)

31 / 63 482 / 519 568 / 568 1081 / 1150

MC + Proof Generation 31 / 63 481 / 519 568 / 568 1080 / 1150

TABLE II
STATISTICS ON THE SIZE OF GENERATED PROOFS.

HWMCC Schuppan WBS All
Proof size
Median 31 151 11 31
9th percentile 64 363 31 307
Min 4 4 4 4
Max 78 723 51 723
Proof steps
Median 125858 9601 1215 1590
9th percentile 524519 169854 17054 128901
Min 46 5 5 5
Max 6377311 1025799 1674373 6377311
Temporal steps
Median 0 1031 9 17
9th percentile 0 15073 1 8705
Min 0 0 111 0
Max 0 128921 355 128921
Fairness conditions
Median 4 37 2 5
9th percentile 8 90 7 76
Min 1 1 1 1
Max 10 180 12 180
Memory used (MB)
Median 56.2 19.7 15.5 16.1
9th percentile 1163.8 31.7 29.3 31.3
Min 13.7 12.7 12.8 12.7
Max 1620.0 191.1 793.1 1620.0

Proof size: number of resolution proofs (generated by the SMT solver)
for proving I ∧GT → ¬(

∧
i GF fi).

Proof steps: total number of inference rules applied.
Temporal steps: total number of inference rules involving temporal axioms (from M¬φ).

C. Cost of proof checking

We conclude the section presenting some data about the
performance of the proof checker.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

P
ro

o
f
c
h
e
c
k
in

g
 t
im

e

Verification time (MC + proof generation)

Fig. 4. Performance of proof checking
(y-axis) vs verification time (x-axis).

Fig. 4 shows a scatter
plot comparing, for each
instance, verification (x-
axis) and proof checking
(y-axis) times, whereas
Table II presents some
statistics about the size of
the generated proofs. We
remark though that while
IC3IA is written in C++,
the current implementation
of the proof checker is a
prototype written in Python.
We expect that reimplementing the checker in C++ would
lead to very significant performance improvements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a sound and complete
approach for generating proofs for LTL model checking prob-
lems using the k-liveness algorithm. The technique can be
easily and efficiently implemented on top of modern SAT-
based model checkers, as demonstrated by our experimental
evaluation, and results in proofs that can be efficiently checked
(by independent tools) using purely-syntactic rules.

We see several directions for future work. First, we would
like to extend the technique to be applicable also to other SAT-
based LTL model checking algorithms, such as the liveness-to-
safety transformation of [?] and the FAIR algorithm of [?]. We
would also like to investigate generalizations of the approach
to infinite-state systems, using model checking algorithms that
combine liveness-to-safety, k-liveness and ranking function
synthesis [?]. Finally, from the practical perspective, we will
enhance our implementation and extend it from the current
prototype to a state-of-the art tool like NUXMV [?].

