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Abstract—The very large bandwidth available in the 60 GHz
band allows, in principle, to design highly accurate positioning
systems. Integrating such systems with standard protocols (e.g.,
IEEE 802.11ad) is crucial for the deployment of location-based
services, but it is also challenging and limits the design choices.
Another key problem is that consumer-grade 60 GHz hardware
only provides coarse channel state information, and has highly
irregular beam shapes due to its cost-efficient design. In this
paper, we explore the location accuracy that can be achieved
using such hardware, without modifying the 802.11ad standard.
We consider a typical 802.11ad indoor network with multiple
access points (APs). Each AP collects the coarse signal-to-noise
ratio of the directional beacons that clients transmit periodically.
Given the irregular beam shapes, the challenge is to relate each
beacon to a set of transmission angles that allows to triangulate a
user. We design a location system based on particle filters along
with linear programming and Fourier analysis. We implement
and evaluate our algorithm on commercial off-the-shelf 802.11ad
hardware in an office scenario with mobile human blockage.
Despite the strong limitations of the hardware, our system
operates in real-time and achieves sub-meter accuracy in 70%
of the cases.

I. INTRODUCTION

Communications in the millimeter-wave (mmWave) band
place strong requirements on the hardware. The very high
frequency, bandwidth, and data rates require high processing
power at the transceivers. To ensure that consumer-grade
mmWave hardware is viable, the design of commercial off-
the-shelf devices is often tailored to specific applications. For
instance, IEEE 802.11ad access points (APs) use cost-efficient
phased antenna arrays that result in extremely irregular beam
shapes [1]. Further, their firmware operates on coarse Signal-
to-Noise Ratio (SNR) values to select the best transmit sector.
While sufficient for communications in scenarios with a small
number of nodes, this strongly limits other mmWave use cases
such as high accuracy positioning.

Related work shows that mmWave signals can provide sub-
centimeter accuracy [2], but this requires specialized hardware
such as motorized horn antennas. This allows location systems
to precisely estimate the incidence angle of a signal, since the
beam shapes of horn antennas are much more focused than the
ones of consumer-grade phased antenna arrays. As a result,
existing mmWave positioning systems are not integrated with
mmWave communication systems [3], [4]. The difference in
terms of hardware requirements is significant. Implementing

both communications and localization on a common cost-
efficient consumer-grade platform is highly challenging, but
still crucial to enable next-generation location-based services.

In this paper, we explore the accuracy of mmWave posi-
tioning that can be achieved using commercial off-the-shelf 60
GHz IEEE 802.11ad hardware. We consider a typical indoor
60 GHz network deployment with multiple APs per room.
This ensures coverage despite the high attenuation in the 60
GHz band and the high probability of blockage. Further, we
do not modify the operation of 802.11ad, but only collect
information that is available at the APs as a natural by-product.
Specifically, we collect the SNR with which the APs receive
the sector sweep messages of the clients in a room.

According to the standard, clients transmit such messages
periodically on each of their transmit sectors to cover all
directions. The standard considers idealized sectors which are
triangle-shaped, and thus cover a well-defined angular range.
Locating the client based on such a sector model given the
location of the APs is straightforward. However, the shape
of the sectors used in consumer-grade commercial hardware
is not only highly irregular, but also does not clearly point
towards a specific direction since the underlying beam patterns
often have two or more equally-strong lobes [1], [5]. As a
result, relating a sector identifier to an angular direction is
highly challenging. Furthermore, current 60 GHz hardware
uses quasi-omnidirectional beam patterns for reception and
thus does not perform receive beam training. This addition-
ally limits the angular information that such consumer-grade
hardware can provide for positioning. Finally, triangulation re-
quires that at least three APs are in range in order to determine
the location of the client. Since blockage in mmWave networks
is common, this cannot always be ensured, and the positioning
system should be designed to cope with missing information.

We address the above issues as follows. Instead of relating
each sector identifier to a specific angle, we design a method to
compute a sparse channel decomposition conveying the power
and the angle of departure of each propagation path. We then
merge the information of all APs and all beam patterns to
estimate the location of the user. To this end we use linear
programming along with Fourier analysis. In addition, we
prevent location errors due to blockages by using a particle
filter that implements a mechanism similar to “dead reckon-
ing.” This limits the location error even if a client is in range
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of less than three APs. Our approach operates in real-time
since it updates the location estimation dynamically each time
a client performs a sector sweep. We implement our system
on commercial off-the-shelf 60 GHz APs with electronically
steerable phased antenna arrays and a limited SNR accuracy of
0.25 dB. We modify the APs’ firmware to obtain the SNR of
each sweep message that the AP receives. Other than that, the
modified firmware behaves exactly the same as the original
one. This major effort results in a first-of-its-kind real-time
testbed, that allows us to obtain unprecedented insight into
practical mmWave location systems.

We deploy our testbed both in a large empty indoor space,
as well as in an open-plan office space with mobile human
blockage, furniture, and static obstacles such as pillars. On
average, we achieve sub-meter location accuracy in 70% of
the cases. For our best results, this value increases up to 87%.
This is a remarkable result given the tremendous constraints
that consumer-grade hardware imposes on mmWave channel
decomposition methods and localization algorithms. We are
the first to explore the limitations of a location system imple-
mented on such hardware. Our contributions are as follows:

• We analyze the limitations of consumer-grade mmWave
hardware for user positioning, and show how to tackle
them using techniques such as Fourier analysis and
particle filtering.

• We design and implement a mmWave location system
for IEEE 802.11ad devices with zero overhead and no
modification to the protocol.

• Our system operates in real-time on off-the-shelf 60 GHz
APs in real-world scenarios. To this end, we modify the
firmware of the APs while maintaining compliance to the
IEEE 802.11ad standard.

• We achieve sub-meter location accuracy in 70% of the
cases despite highly irregular beam shapes, 0.25 dB SNR
quantization, and no receiver beam training.

The remainder of this paper is structured as follows. Sec-
tion II surveys related work. In Section III, we explain the
operation of our localization system. We then present our
practical implementation in Section IV and our testbed results
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Wireless localization is a very well investigated research
area [6]. A large body of work studies localization using
signals below 10 GHz such as WiFi at 2.4 and 5 GHz. The
recent advances in mmWave communication systems have
drawn attention to higher frequencies, where the large avail-
able bandwidth inherently allows for much higher location
accuracy [7]. In this section, we first survey techniques for
lower frequency bands and then study the techniques that are
designed for mmWave scenarios [8].

A. Low Frequency Localization

Existing localization approaches are often based on trian-
gulation or multilateration [9]. The key idea is to estimate the
distance, the angle of arrival (AoA), or both from two or more

APs to the client that shall be localized. Systems based on
distance ranging are strongly dependent on the accuracy of the
ranging process [10]. A common approach is to estimate the
distance based on the received signal strength (RSS), which
typically results in very coarse results. Estimating the time
of flight (ToF) can yield more accurate location [11] but
requires precise timing and synchronization among devices.
Systems based on AoA estimation [12], [13] require an array
of antennas at the receiver but achieve high accuracy in
networks with many APs. The key problem for both distance
and AoA estimation is distinguishing the line-of-sight (LoS)
path from reflected non-line-of-sight (NLoS) paths. This is
particularly relevant at low frequencies due to the rich multi-
path environment. Still, sophisticated localization algorithms
can exploit multipath to perform simultaneous localization
and mapping (SLAM) [14]. In SLAM, the system tracks
how reflections change as the user moves in order to map
obstacles [15]. To improve the accuracy of localization systems
at low frequencies, related work suggests using additional
information such as gyroscope and sensor readings [16].

B. High Frequency Localization

Localization is an inherent feature of mmWave systems
due to the sparseness of the channel and the use of di-
rectional communication [7]. Since the wavelength is in
the order of millimeters, even mobile nodes can fit large
antenna arrays. Related work shows how fully digital an-
tenna array architectures allow for highly accurate localization
mechanisms based on massive multiple-input-multiple-output
(MIMO) [17]. However, commercial mmWave hardware typ-
ically features analog antenna arrays with a single transceiver
chain, which only allows for coarse AoA estimation based on
analog beamforming. Most existing work does not consider
such limitations but instead studies theoretical performance
assuming idealized hardware. For this ideal case, results show
that mmWave localization can not only reveal the position of
a device but also its orientation [18]. Further studies indicate
that SLAM is feasible in mmWave [4], and that the use
of Orthogonal Frequency-Division Multiplexing (OFDM) in
mmWave can allow a multiple-input-single-output (MISO)
system to estimate location [19].

Practical mmWave localization work is limited. Related
work shows that triangulation [3] and ranging with multilater-
ation [20] are feasible in practice. However, such approaches
assume specialized hardware such as lab-grade horn antennas
and accurate measurement equipment. Moreover, they often
do not enable simultaneous communication and localization.
In contrast, our solution allows for both, and is designed for
consumer-grade devices with strong hardware impairments.
Thus, our system clearly stands apart from all of the above
body of work.

III. LOCALIZATION ALGORITHM

One of the motivations for our work is that making a
mmWave network aware of the client locations opens up
interesting opportunities to, for example, optimize client-AP
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associations dynamically according to mobility, AP coverage,
and traffic requirements. In turn, this makes the network much
more robust to interference, and improves fairness by load
balancing clients across available APs. It also increases the
resilience to mutual signal blockage among different users, as
this could be foreseen and remediated in a preemptive manner.

Client localization can be achieved at zero communication
overhead thanks to the information collected by 802.11ad-
compliant APs during the beam training phase. Our algorithm
comprises two main components to localize a client despite
the limitations of consumer-grade devices: i) a simple linear
programming formulation that allows the network to estimate
the angle of departures (AoDs) of the mmWave signal from
the client, in a way that such AoDs are compatible with
SNR values measured by the APs for different beam pattern
choices of the client; and ii) a modified particle filter (PF)
that obtains feasible estimates of the client’s location while
the client moves. Most importantly, step i) is not based on
any simplifying assumption such as custom beam pattern
design, “triangular” beam pattern shapes, or the availability
of phase information; additionally, step ii) is based on low-
complexity particle updating formulas, and on an informed
way of creating new particles that have a higher probability
of being generated at the actual location of the client, thus
speeding up the convergence of the PF and substantially
improving its accuracy. In the following, we provide the details
of our localization algorithm.

A. Angle-of-Departure estimation

Call ai and x the coordinates of AP i and client node to
be localized (see Figure 1) and ϕ is the client orientation with
respect to an absolute coordinate system. For transmission,
the client can choose among a total of B = 34 beam patterns
pb(θ), for b = 1, . . . , B, where θ is the emission angle and
pb(θ) is the amplitude gain of pattern b along θ. Whenever a
client performs beam training, each AP records the received
signal strength indicator (RSSI) and the SNR corresponding
to every beam pattern tested by the client that was detected
by the AP. The APs then forward this information to a central
server, where the location process runs. Call γ(b)

i the SNR (in
dB) measured by AP i when the client transmits with beam
pattern b, and let P (b)

Ri
= 10γ

(b)
i /20 be the corresponding signal

amplitude.
The most critical issues for the design of the localization

algorithm involve the lack of phase information (which makes
the problem non-linear and prohibits typical angle decompo-
sition algorithms), the rough quantization of log-scale SNR
values with a resolution of 0.25 dB, and a device firmware
which is often too slow to log RSSI and SNR information for
all client beam patterns. Ultimately, the latter issue results in
incomplete measurements.

A typical assumption for angle estimation is that the energy
carried by the LoS path from the client to any AP i exceeds
the energy of NLoS paths. In order to find the LoS AoDs θ̂i
that best match the SNR measurements of the APs, it would

x

a2

a3

a1

Fig. 1. Reference scenario for the localization algorithm. The irregular beam
patterns of a consumer-grade mmWave device may generate NLoS paths
(dashed lines) with similar power as LoS paths (solid lines).

then be sufficient to solve the following minimum mean-square
error (MMSE) problem:

θ̂i = argmin
θ

min
α

�

b∈Bi

�
P

(b)
Ri

− α pb(θ)
�2

. (1)

However, the assumption that the LoS path predominates the
RSSI and SNR measurements is not true in practice, as the
transmit beam patterns of mmWave devices can emit signif-
icant power through secondary lobes, resulting in significant
NLoS path energy reaching the receiving APs. An example
using two beam patterns from the Talon AD7200 devices
is shown in Figure 1. Assume that the client at location x
communicates to the AP at a3 through the beam pattern plotted
in blue (and specifically through its large lobe pointing towards
the bottom-left corner). A secondary lobe just above the main
one would similarly amplify a NLoS path reaching a3, making
the NLoS path power non-negligible with respect to that of the
LoS path.

To avoid making the above assumption, we take a different
approach, and assume that the power received from mmWave
signals from the client dominates noise in the APs’ SNR
measurements. Since we have neither phase information from
the APs nor access to the phased antenna array weights, we
cannot estimate how different multipath components of the
same transmitted signals interfere in the complex domain. In
the same vein, we cannot directly apply the non-coherent
path estimation approach in [21], due to the AP’s coarse
dB-scale quantization of measured SNR values. Hence, we
conservatively constrain the measured amplitude to be less
than the sum of the amplitude of all paths, if such paths were
interfering constructively. This makes it possible to formulate
the AoD estimation problem as the following linear program
with variables αi(θ):

min
�

θ

αi(θ)

� �

b∈Bi

pb(θ)
2

�1/2

(2a)

s.t.
�

θ

αi(θ)pb(θ) ≥ P
(b)
Ri

, ∀b ∈ Bi (2b)

αi(θ) ≥ 0 , ∀θ ∈ Θ (2c)

where Bi is the set of beam patterns for which AP i was
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Fig. 2. Different channel decompositions. Left: MMSE result from Eq. (1).
Center: Linear programming result with variables αi(θ) in problem (2). Right:
smoothed linear programming (using the variables vi(θ) defined in Eq. (8)).

able to retrieve RSSI and SNR measurements,1 and Θ is
the set of the decision variables, whose cardinality depends
on the resolution of the angular domain quantization. The
latter is a design parameter and is set to 400 points in our
implementation. The term (

�
b∈Bi

pb(θ)
2)1/2 in the objective

function prevents giving excessive weight to AoDs that have
a much higher relative gain along direction θ. Besides being
very fast to solve, problem (2) has a solution bounded by 0.
It is easy to prove that, as a consequence, the number of non-
zero components of αi is bounded by |Bi|. In practice, the
total number of non-zero terms αi(θ) tends to be very low.

As an example, in the left and center panels of Figure 2,
we show the AoD estimation results obtained by four different
APs using the MMSE approach in (1) and the linear program-
ming approach in problem (2). The dots on the outer circle of
the plots correspond to actual AoDs. We observe that the linear
programming solution estimates a number of likely directions,
among which at least one is in fact very close to the LoS
path between the AP and the client. Conversely, the MMSE
solution shows larger discrepancies between the estimated and
the actual LoS angles.

B. Goodness function for the user location

We now leverage the terms αi(θ) estimated through (2) to
find a position x̂ and orientation ϕ̂ for the client that agree with
the angular estimation by different APs. Define θ̂x,ϕi = θ̂xi +ϕ
as the AoD of the LoS mmWave path emanating from the
client as estimated by anchor i, when the client has orientation
ϕ, and the angles θxi refer to the case where the user is aligned
to the reference coordinate system, i.e., ϕ = 0. Call

Gx(ϕ) =
�

i

Hx
i (ϕ) =

�

i

αi(θ̂
x,ϕ
i ) , (3)

where x is the location of the user. We define an angular
goodness function for the user location as

L(x) = max
ϕ

Gx(ϕ) . (4)

The expression in (3) can be reformulated as follows:

Gx(ϕ) =
�

i

�αi, δθ̂x,ϕ
i

� (5)

1Due to firmware inefficiencies, this is typically a subset of 65% to 75%
of the beam patterns available to the client, and this subset changes across
different measurements.

where δθ̂x,ϕ
i

(θ) is the Dirac delta distribution centered on θ̂x,ϕi

and �·, ·� denotes the inner product. Since θ̂x,ϕi = θ̂xi + ϕ, we
have δθ̂x,ϕ

i
= δθ̂x

i
⊗ δϕ where, ⊗ denotes circular convolution

over the angular domain. Therefore, using Fourier transform
properties,

Hx
i (ϕ) = �αi, δθ̂x,ϕ

i
� = �αi, δθ̂x

i
⊗ δϕ�

= �F(αi),F(δθ̂x
i
)F(δϕ)� = �F(αi)F(δθ̂x

i
)†,F(δϕ)�

= �F−1
�
F(αi)F(δθ̂x

i
)†
�
, δϕ� , (6)

where F( · ) and F−1( · ) are the discrete and inverse discrete
Fourier transform (DFT) operators, respectively, and the de-
pendence on ϕ of the terms on the right hand side of (6) has
been dropped for clarity. Eq. (6) finally simplifies to

Hx
i = F−1

�
F(αi)F(δθ̂x

i
)†
�
. (7)

The above formulation is exact only if AoD estimates
are not affected by any error. In order to compensate for
measurement errors, we substitute αi(θ) with a cyclically
convoluted version

vi(θ) = αi(θ)⊗ g(θ) , (8)

where g(θ) = exp
�
−θ2/(2σ2

e)
�
/
�
2πσ2

e is a Gaussian kernel
of standard deviation σe = 10◦. The right panel in Figure 2
shows the result of this convolution. We then define

Ḡx(ϕ) =
�

i

H̄x
i (ϕ) , (9)

where H̄x
i = F−1

�
F(vi)F(δθ̂x

i
)†
�
, and

L̄(x) = max
ϕ

Ḡx(ϕ) . (10)

The objective function in (10) can be used to evaluate the
goodness of a given client location for a set of power measure-
ments per client beam pattern, and can be computed even if
the involved angles do not exactly coincide with the AP angle
measurements. Notably, the formula is very fast to compute,
as it involves only the computation of FFT/IFFT, products
and the maximum operator. We use (10) to develop a PF that
processes AP measurements and localizes a mmWave device
in real time.

C. Distance-based SNR likelihood

We will now provide a function to determine how likely a
SNR measurement is given that the user is located in a given
position. To do this, we will consider that the maximum SNR
(in dB) measured by AP i for the best client beam pattern
follows a log-normal distribution, conditioned to a path loss
model, i.e.,

γ
(max)
i ∼ N

�
γ̄
(max)
i (�x− ai�),σ2

d

�
, (11)

where � ·� is the Euclidean norm and γ̄
(max)
i (�x−ai�) is the

expected value of the maximum SNR according to the path
loss propagation model

γ̄
(max)
i (�x− ai�) = κ− 10η log10(�x− ai�) . (12)
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Fig. 3. Path loss regression model for the computation of γ(max)
i .

We estimate the parameters κ and η of the model by measuring
pairs of γ̄

(max)
i (�x − ai�) against log10(�x − ai�) values in

an empty room, for random locations and orientations of the
client and of the APs. We then perform a linear regression to
estimate the values of the two parameters. The result is shown
in Figure 3. The distance-based likelihood of the maximum
SNR measurements can be finally written as

D(x)=
�

i

1√
2πσd

exp

�
−

�
γ
(max)
i −γ̄

(max)
i (�x−ai�)

�2

2σ2
d

�
(13)

In (13), σd = 15 dB, which is a sufficiently large value to
take into account additional attenuation caused by partial or
full signal blockage. We remark that this method is only a
rough consistency check, and not a full ranging method based
on the precise calibration of the SNR measurement provided
by the hardware. In fact, the value output by the function
D(x) is not used to determine the user location, but rather to
help filter spurious solutions when more than one location is
feasible from the AoD estimation.

D. Modified particle filter for client localization

In order to localize the user in real time, we employ a
modified PF algorithm, shown in Figure 4. The top part of the
flow chart behaves like a typical PF. Particles are generated at
random for the initialization of the algorithm, grouped in the
initial particle set, and evolved according to a mobility model.
The fitness of the evolved position is updated based also on
the objective functions in (10) and (13), which incorporates
measurements collected by the APs. Evolved particles are
grouped in the posterior set and become the past particle set
for the next PF cycles.

We modify the particle generation procedure in order to
incorporate a single “informed” particle in the initial particle
set when a new AoD estimate is computed by the APs. The
informed particle is positioned at a location computed using
an angle difference of arrival (ADoA) algorithm applied to
the three angle measurements with greatest associated αi(θ)
among those computed by the different APs. This solution can
be computed in closed form (it is basically an intersection of
circumferences), which is much faster than computing, e.g.,
x̂ = argmaxx L̄(x). The informed particle has 0 speed and
an initial fitness value equal to 1 in order to satisfy the fitness
normalization criteria, and is evolved like all other particles.
When creating the set of posterior particles, we apply a proper
fitness renormalization, in order to avoid giving excessive
weight to the offspring of the informed particle.

Fig. 4. Modified particle filter flowchart.

1) Particle initialization and evolution: Call x, v and f
the location, the speed and the fitness of a particle. Together,
these three quantities constitute the state of the particle, where
the fitness values are normalized so that

�|P|
k=1 fk = 1. As an

initialization step, before any measurement, Nt particles are
initialized at random according to a Gaussian distribution of
mean and variance equal to the sample mean and numerical
covariance of the AP location set, with speed equal to 0
and fitness N−1

t . These particles are passed to the algorithm
as the past particles set Pp for the first iteration. At the
beginning of each iteration, an informed particle is generated
using an ADoA algorithm applied to the AoD measurements
assuming they are LoS. Note that this may not be possible in
some cases, e.g., due to lack of three AoDs or measurement
errors preventing the computation of a feasible solution. If the
informed particle can be computed, we evolve Nb particles
from it, and Ne = Nt − Nb from the initial particle set.
Otherwise, we evolve Ne = Nt only from the initial particles.
Call Pe and Pb the sets of particles thus evolved, where
Ne = |Pe| and Nb = |Pb|.

To evolve a particle from the past particle set, we first
choose a particle k at random with discrete probability dis-
tribution {f�}, � ∈ Pp. The procedure to evolve an informed
particle is analogous, except that in this case all particles have
the same parent. Call xk, vk and fk the location, speed and
fitness of particle k, respectively. We evolve a new particle
through the following update equations:

x� = xk + vkΔt+Δx+ tΔv
v� = vk +Δv ,

(14)

where the apex � denotes the state variables of the evolved
particle. The model in (14) is a uniform linear motion model,
with uncertainties Δx ∼ N (0,σ2

x I) and Δv ∼ N (0,σ2
vI) on

the position and on the speed, respectively, and Δt is the time
elapsed between the current and the previous measurement
epochs. We set σx = 2 m and σv = 1 m/s. Define

Δf = x� − (xk + vkΔt) = Δx+ΔtΔv , (15)

so that Δf ∼ N (0,σ2
x+Δt2σ2

v). To evolve the particle fitness
values, we rely on L̄(x) in (10) and D(x) in (13). Since L̄(x)
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Fig. 5. Talon Router in our testbed (left) and in the anechoic chamber (right).

and D(x) are independent of the particle speed, instead of
generating Δx and Δv directly, we generate a sample value
of Δf and compute Δx and Δv with maximum likelihood
such that Δf = Δx+ tΔv. It can be easily shown that

Δx = Δf σ2
x/(σ

2
x +Δt2σ2

v)
Δv = Δf Δt2σ2

v/(σ
2
x +Δt2σ2

v)
(16)

Therefore, the final update expression for xk becomes

x� = xk + vkΔt+Δf .
v� = vk +Δv .

(17)

In order to update the fitness of particle k based on the AP
measurements, we compute

f �
k = fk

1

2π(σ2
x +Δt2σ2

v)
exp

�
− �Δf�2
2(σ2

x +Δt2σ2
v)

�
L̄(x)D(x) ,

(18)
Multiplying by L̄(x) and D(x) includes the fitness update due
to the angle estimation and the SNR of the measurements.

2) Normalization: Usually, the fitness of evolved particles
is normalized such that

�
k∈Nt

fk = 1. However, in our
modified PF this would result in excessive weight being for
particles in set Pb, since all of these particles evolve from the
same informed particle which has fitness equal to 1. We correct
this by imposing that the probability of evolving from sets Pe

and Pb on the next measurement iteration is proportional to
the number of elements of each set as

�

k∈Pe

fk =
Ne

Nt
and

�

k∈Pb

fk =
Nb

Nt
. (19)

In the following, we set Nt = 1024 and Nb = 256.

IV. IMPLEMENTATION

We base the practical implementation of our location system
on the TP-Link Talon AD7200 router (see Figure 5, left),
which is the first 60 GHz device that fully implements the
IEEE 802.11ad standard. The Talon router uses a Qualcomm
QCA9500 60 GHz chipset that comes with a phased antenna
array of 32 antenna elements, whose phase and magnitude
can be individually controlled. The router has 34 predefined
antenna configurations hard-coded in the firmware, that can
be selected to steer the antenna array. We use the updated
firmware with version number “3.3.3.7759”.

270º

0º

90º

0º 0º

270º

90º

270º

90º

180º

Fig. 6. Examples of beam patterns used by the TP-Link Talon AD7200 router.

A. Firmware Modification

As the default firmware running on the QCA9500 chip does
not allow to access the signal strength of received frames, we
modified the firmware to integrate this feature [5], [22]. To this
end, we used the Nexmon firmware patching framework [23],
which enables the development of binary firmware extensions
in C. By matching the patterns of IEEE 802.11ad sector sweep
frames with the memory inside the chip, we identified the
parts of the firmware that were responsible for handling the
sector sweep frames. At these memory addresses, we patched
the firmware to extract the measured signal strength [5].
For each sector that is probed during the sector sweep, we
reveal the SNR and RSSI value. As the sector sweep is
performed periodically and probes all available sectors with
different beam-patterns, this effectively allows us to sense the
environment.

B. Beam pattern Measurement

To obtain the beam patterns of all the different sectors,
we conduct measurements using our modified firmware in
an anechoic chamber (Figure 5, right) [5]. This allows us
to avoid reflections that would reduce the accuracy of the
measurements. We place one device on a custom rotation
head that steers mechanically in different directions. A second
device is placed at a distance of 3m facing the rotating one.
To measure a beam pattern, we force the firmware to only use
that specific pattern and establish a connection between both
devices. We then record the SNR and RSSI while transmitting
ping messages to maintain the connection active. We adjust the
direction of the rotation head in steps of 1◦, and thus measure
the beam patterns with high accuracy. Figure 6 shows three of
the 34 beam patterns of the Talon router as an example. As
it is evident from the figure, their highly irregular shape and
lack of a clear main lobe [5] are a major challenges for the
localization algorithm.

V. EVALUATION

In this section we present our localization results. First we
describe our scenarios, then explain the metrics we use, and
finally show our results.

A. Testbed

We use eight Talon routers as APs and one as a station.
To this end, we install a variant of LEDE [24] ported to this
architecture along with the latest wil6210 device driver from
the Linux kernel and configure them accordingly. Due to the
inner workings of the firmware, we can only extract the SNR
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Fig. 7. Measurement setups

of the station’s sector sweep messages at the AP to which it
is associated. To circumvent this hardware limitation (without
very substantial firmware changes), we invert the role of the
station and the APs. As a result, all fixed nodes can connect
simultaneously to the node that the system is locating, enabling
us to obtain all of the SNR values. For clarity, we stick to the
same nomenclature regarding the APs and the station as in
previous sections.

We deploy our testbed in two different setups. The first
is an empty auditorium which is 11 × 21 meters large and
has no furniture, as shown in Figure 7a. This is a controlled
environment with no blockage or movement, and thus allows
us to study the accuracy of our system in an ideal setting. We
deploy the routers such that we obtain the best coverage in the
center of the room. We measure the location accuracy at 32
different positions on a grid of eight rows and three columns.
At each position, we consider four different orientations of the
station, pointing towards each of the walls of the room.

Figure 7b depicts our second setup, which is a real-world
office environment. The size of the room is 7.4×13.5 meters.
This scenario includes office furniture such as tables, screens,
and chairs. We test our system during office hours, that
is, humans are present and move according to their regular
activities. We deploy the APs such that we maximize coverage
in the area, taking into account the impact of columns. We
measure the location accuracy at 40 different positions, and
consider the same four different orientations at each position.

B. Metrics and Device Configurations

We evaluate the performance of our system in terms of the
localization error at each of the measurement positions in each
of our scenarios. We obtain 100 measurements per position and
device orientation. Thus, we have a total of 400 measurements
per position. This allows us to compute the location error for
a number of different device configurations. Specifically, we
consider three cases:

• Single antenna: Our first case is the standard device
configuration with a single antenna array. We include
measurements for all four possible orientations and con-
sider each orientation to be equally probable.

• Four antennas: Our second case considers a station with
four antenna arrays, since future mmWave systems are
likely to include more antenna arrays to combat blockage.
As a result, the location system obtains four different
location estimates. We implement an objective function
that computes a score for each of the four estimates based
on the likelihood of each estimate being correct. Our
system chooses the estimate with the highest score.

• Upper bound: Our last case is an upper bound. At
each location, we use the device antenna that results in
the smallest location error. For instance, for the antenna
facing a wall, the location error is much larger than for
one facing multiple APs. Note that the system cannot
know a priori which orientation is the most accurate one,
and thus this estimate provides an upper bound on the
performance that our system can theoretically achieve.

We show the error distributions as cumulative distribution
functions (CDFs). For the error maps, we depict the median
error of the measurements at each location, taking into account
the corresponding device configuration.

C. Results

In this section, we present the evaluation results of our
localization system. First, we discuss the behavior of the
system in a dense network deployment with a total of eight
APs. After that, we study the performance that we can achieve
with fewer APs. To this end, we discard the measurements of
some of the APs to obtain a sparse deployment scenario.

1) Dense Deployment: Figures 8 and 10 depict our mea-
surement results in the auditorium. In Figure 8, we show a
map of the median error for all of the measured positions
and orientations for the single antenna configuration including
some examples of the estimated locations. We observe that
our system achieves high accuracy throughout the room, with
slight degradations along the walls between APs. The under-
lying reason is that these areas have slightly worse coverage
from the rest of the APs. In Figure 10 we show the cumulative
distribution function for all of the measured positions. With
a single antenna system, we can obtain sub-meter accuracy
in roughly 70% of the cases. Further, the error is below 3m
in more than 87% of the occasions. For the upper bound, we
achieve sub-meter accuracy in 85% of the occasions while
the remaining 15% have an error below 3m. As expected, the
performance of a system with four antennas lies in between
the two above cases, also having a maximum error of 3m.

Figures 9 and 11 show the corresponding results for the
office environment. We observe a similar performance as for
the auditorium. However, since the room contains obstacles,
the system does not have full AP coverage at all of the
positions that we consider. The error map in Figure 9 shows
that, similarly to our previous results in Figure 8, we obtain the
highest accuracy in the central part of the scenario due to the
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Fig. 8. Auditorium error map. The white circles
represent two measured positions while the black
dots show their corresponding location estimations.

Fig. 9. Office error map. The white circles represent
two measured positions while the black dots show
their corresponding location estimations.
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Fig. 10. CDFs: Auditorium results
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Fig. 11. CDFs: Office results

better coverage of the APs. The above performance is remark-
ably good given that we perform the measurements during
office hours with the resulting intermittent human blockage.
Figure 11 shows that the system provides sub-meter accuracy
for 60% of the cases for both single and multiple antenna
configurations. The upper bound achieves sub-meter accuracy
80% of the times. The three different metrics converge at an
error of 3m for roughly 90% of the cases. As expected, the
accuracy is lower than in the auditorium case, but still close
to the upper bound. Future 60 GHz devices featuring more
directional beam patterns and more accurate SNR sampling
will provide even better results.

2) Sparse deployment: In Figures 12 and 13, we show
the performance of our system in the auditorium when less
than eight APs are available. To assess the performance
degradation, we consider four sparse arrangements of four to
six APs labeled “Scenario 1” to “Scenario 4” in Figure 16.
For the setups with five and six APs, we achieve a median
error meter between 1.5m and 1.7m for the single antenna
case. Four antennas improves the median error to around
1.2m. However, when reducing the number of APs to four
in our last setup, the median error increases to 2m and 1.8m,
respectively. We also observe occasional large outliers due to
the limited information available to the location system, which
are typically in parts of the map with sparse AP coverage.

Figures 14 and 15 depict an equivalent analysis for our
office environment. In this case, the performance of the
different sparse AP deployments is more similar. Surprisingly,
the performance is the same or even slightly better compared
to the more benign auditorium case. Even the scenario with

APs aligned in a single line which we expected to perform
badly shows results close to those of the other scenarios. The
system can locate a single antenna device with a median error
of 1.2m to 1.6m and with sub-meter accuracy 35% of the
time. Using four antennas improves these values to 1.1m to
1.4m and 40% of sub-meter accuracy. From the error maps
(not shown due to space constraints), we conclude that the
areas performing worst are the ones close to the walls, which
are the areas that experience the worst coverage.

VI. CONCLUSIONS

We design and implement a mmWave indoor localiza-
tion system that operates on commercial off-the-shelf IEEE
802.11ad hardware. This is particularly challenging due to
the strong limitations of consumer-grade hardware in terms
of SNR accuracy, beam pattern shapes, and the lack of
receiver beam training. Our system uses particle filtering along
with Fourier analysis to tackle these practical challenges. In
contrast to earlier work, our system does not change the
operation of IEEE 802.11ad, and thus allows for simultaneous
communications and localization. We modify the firmware of
a commercial IEEE 802.11ad router to implement and validate
our approach. The system operates in real-time and achieves
sub-meter accuracy in 70% of the cases, which is a remarkable
results given the limited capabilities of the hardware.
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Fig. 13. CDFs: Auditorium, 4 antennas
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Fig. 14. CDFs: Office, single antenna
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