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This paper considers the problem of estimating the trajectory of an autonomous underwater vehicle

(AUV) via a single passive receiver, without any anchor nodes or receiving arrays, and with the

only help of a sequence of known acoustic signals emitted by the AUV. This scenario is of interest

in case multilateration-based alternatives would require the deployment of many receivers and

imply exceedingly high costs, e.g., for the coverage of wide areas. The proposed method exploits

the knowledge of environmental parameters such as the sound speed profile, bathymetry and

bottom sediments in order to estimate the location of the AUV, taking advantage of the spatial

dependency of channel impulse responses that arises from the diverse bathymetry around the

receiver. This dependency is captured by comparing channel estimates against a database of

channel responses, pre-computed through an acoustic propagation model. This yields multiple

likely AUV locations, which are filtered via a path tracking method similar to the Viterbi algorithm,

in order to estimate the trajectory of the AUV. Results obtained both from simulations and from a

sea experiment show that the proposed method can estimate node locations and paths with a small

error, especially considering the use of a single receiver. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5138605

[KTW] Pages: 4774–4789

I. INTRODUCTION

Estimating the location of an autonomous underwater

vehicle (AUV) is a required step for the operation of these

devices for applications like ocean exploration, control of

secure areas, and environmental monitoring. In these applica-

tions, the AUV covers large areas, and its self-navigation

system may drift significantly. Localizing the AUV via non-

inertial systems may greatly help reduce such drift and

improve the AUV’s location reckoning. Localization is typi-

cally achieved through a set of fixed receiving hydrophones

spread across the AUV deployment area. Yet, due to the wide

area covered by the AUV during its mission, its transmissions

tend to be detected very sparsely over both space and time.

This is especially the case if the AUV’s mission area is very

large, and would imply the (expensive) deployment of a signif-

icant amount of equipment in order to cover the intended area

with a sufficient density to enable reliable multilateration esti-

mates. Instead, in order to balance a reasonable target detec-

tion probability with long term deployment constraints and

costs, the coverage of large areas is typically achieved through

sparse deployments. As a result, it is often the case that the sig-

nals used to detect a target are practically received only by a

single receiver. Most existing algorithms to localize sub-

merged devices require the presence of several anchor nodes,2

or prescribe message exchanges between the device and the

anchors.3 Alternatively, range estimates from a single mobile

anchor have been suggested assuming knowledge of the

receiver’s movement between subsequent transmissions

through, e.g., acceleration measurements.4 Yet, this also

requires interaction with the device to be localized.

In this paper, we propose a solution for the challenge of

localizing a non-collaborative single AUV. As opposed to

localization methods that rely on a receiving array, our

method assumes only the presence of a single stationary and

passive receiving element, and the knowledge of the trans-

mitted signal (for example, the structure of the AUV pinger’s

signals), but does not require knowledge of the pinger’s

transmission times. Our approach is inspired by localization

algorithms based on fingerprinting:5 these algorithms evalu-

ate the correlation between some significant and distinguish-

able channel characteristics (e.g., the power-delay profile,

the number of distinguishable arrivals, the angular spectrum

of these arrivals, and so forth), and the same characteristics

preliminarily measured at a number of locations and col-

lected together in a fingerprint database. Instead, our method

hinges on the spatial diversity of the sea bottom bathymetry

to match the measured channel impulse response (CIR) with

a set of CIRs generated through an acoustic propagation

model. To that end, we target those environments where the

bathymetry and the sound speed profile (SSP) in the water

column induce different CIRs for different emitter-receiver

location pairs. This is often the case for shallow-water envi-

ronments with a diverse non-flat bathymetry, but also for

deeper waters where sea bottom hills, mountains, or steep

slopes may exist.

a)A preliminary version of this work has been presented at the IEEE WPNC

2017 Conference, Bremen, Germany.
b)Also at University Carlos III, Madrid, Spain.
c)Electronic mail: paolo.casari@imdea.org
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We base our method on the modeling of expected acous-

tic CIRs for different possible locations of an acoustic source

around the moored receiver. After measuring the CIR for

each received signal, we correlate it with the pre-computed

modeled CIRs in order to estimate the distance, depth, and

bearing of the transmitter. This makes it possible to point the

location of the sound-emitting AUV to the position for

which the modeled CIR best fits the measured CIR. We

repeat the process as the AUV moves and keeps emitting sig-

nals. The result is a sequence of location estimates whose

size equals the number of detected sound emissions. These

location estimates are expected to be noisy since there may

be several modeled CIRs that are significantly correlated

with each measured CIR. To filter this noise, we create a

trellis of possible locations which are chosen from the output

of the cross-correlation between the modeled and measured

CIRs, and which satisfy a given maximum AUV speed. The

final path of the AUV is obtained via an efficient trellis

search process similar to the Viterbi algorithm.

Our contribution is twofold:

• A localization approach for an AUV using a single receiv-

ing element;
• An efficient method to reduce the state space resulting

from the cross-correlation of modeled and measured CIRs,

and thereby significantly decrease the complexity of the

AUV path estimation process.

We evaluate our method through both simulations

(based on real bathymetry and sound speed information) and

a proof-of-concept sea trial. Our results show that the pro-

posed approach can estimate the AUV path with an accept-

able localization error.

The remainder of this paper is organized as follows:

Section II provides an account of related work; Sec. III

details the localization algorithm; Sec. IV presents simula-

tion results; Sec. V describes our proof-of-concept sea trial;

and Sec. VI concludes the paper.

II. RELATED WORK

A. Techniques for underwater acoustic localization

A comprehensive survey of underwater acoustic locali-

zation is presented in Refs. 6 and 7, and involves techniques

for range estimation, bearing estimation, or both. Typical

approaches to localization include long baseline7 (based on

trilateration, and thus requiring the interaction between the

device to be localized and the anchors), short baseline (usu-

ally operated from a single vessel), and ultra-short baseline

systems,8 that estimate the location of the device via time of

arrival (ToA) and angle of arrival measurements. As the

accuracy of the angle estimation process directly depends on

the stability of the equipment and is sensitive to a strong

multipath, range-based approaches are more typically used.

Typical underwater ranging schemes rely on ToA, time

difference of arrival, or received signal strength, which is

translated into distance via an acoustic propagation model.9

ToA measurements can be obtained by separately analyzing

the reflection patterns of transmitted signals,10 which can be

estimated via matched filtering or by using phase-only

correlation and the kurtosis metric to mitigate channel-

enhanced noise.11 Still, ToA measurements tend to be noisy

due to multipath: mistaking a non-specular multipath com-

ponent for the direct path is often regarded as measurement

noise,12 and can be mitigated by transmitting signals having

a narrow auto-correlation,13,14 or by averaging ToA mea-

surements over different signals.15 Yet, instead of consider-

ing multipath as a distortion, the wealth of multipath arrivals

can be exploited in passive systems in order to improve the

localization accuracy, as well as to find the range of the

acoustic source16 or to localize it with multiple receivers

through a propagation model.17

In the literature, the closest approaches to our proposed

scheme target localization with less than three reference

nodes, often by exploiting some form of knowledge about

the environment. For example, the work in Ref. 18 intro-

duced a model-based range-bearing localization scheme that

employs two receiving hydrophones. The method identifies

multipath arrivals at the hydrophones and tracks them using

a particle filter. An ambiguity surface is then constructed

based on the expected multipath structure (derived via a ray

model) and used to determine the most likely target location.

To localize a source, the work in Ref. 5 proposes to match

received signals against a set of fingerprints measured by an

array of receivers. The authors test the feasibility of their

approach in a pool, which represents a static environment

where fingerprints remain sufficiently stable over time.

However, systematic fingerprint measurements in uncon-

trolled open sea environments would be more challenging,

due to the rapidly changing nature of underwater acoustic

channels.

Matched-field processing, a family of array processing-

based methods to estimate the parameters of the ocean wave-

guide based on the full field structure of acoustic signals, can

also be extended to underwater localization.19 For example,

the work in Ref. 20 assumes the three-dimensional knowl-

edge of the SSP and of the bathymetry over a 600� 600 km2

area. The area is further divided into squares of side 5 km

and normal mode theory is employed to predict sound propa-

gation for a hypothetical source located in the center of each

square. The sound field replicas thus obtained are matched to

the acoustic field measurements collected through a 21-

element vertical array in order to infer the most likely loca-

tion of the source. Matched-field localization has been

recently achieved using compressed sensing (CS), which has

the advantage of providing sparse solutions to inference

problems using convex optimization.21 Specifically, the pro-

posed approach employs CS (implemented through the basis

pursuit algorithm and the Lasso path) to find the best match

between field replicas and measurements, and shows that CS

reliably handles coherent sources as well. Earlier, CS was

considered to localize an underwater device by means of

ultra-wideband radio CIR fingerprinting.22 Here, CS is imple-

mented using the orthogonal matching pursuit and Lasso-II

algorithms. Although the method achieves good localization

accuracy, it remains suitable only for very short ranges due to

the strong attenuation of radio frequency waves in salted

waters. An approach to estimate the range of a source with

respect to a single receiver is presented in Ref. 23. The
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authors assume that a moving source transmits signals with

a period Dt while moving around a hydrophone, and deter-

mine striation patterns in the function relating the signal

observation time to Dt. These patterns are then employed

to infer the velocity and range of the source based on the

assumption that the ranging operations take place in a

shallow-water environment with waveguide invariant b ¼ 1.

When b is unknown, the Automatic Identification System of

nearby vessels can be opportunistically used to estimate it

by relating their received signal, intensity, and frequency to

their known position.24

The presence of an array of transmitters is assumed in

Ref. 25, where the authors pre-compute the CIR from each

transmitter at all points of a grid that finely covers the water

column along a given bearing. The location of a receiver is

estimated by comparing the CIRs measured by the receiver

against pre-computed CIRs. The system finally employs the

determined location to tune transmit beamforming. In Ref.

26, an AUV is located by fusing AUV heading and velocity

information from some external sensors with acoustic phase

information. The phase is measured from a batch of signals

transmitted by a fixed projector of known location and

received by a single hydrophone at the AUV.

B. Differences with respect to indoor localization

While fingerprinting is an established localization tech-

nique for terrestrial radio networks,27,28 one of its key

assumptions is that radio measurements are repeatable and

slowly varying in space29 so that a device can actually afford

to compute several statistics of a received radio signal and

fuse them into a fingerprint vector.30 Conversely, the under-

water acoustic channel tends to be much more dynamic, with

several arrivals coming from multiple reflections over the

surface, bottom, and volume scatterers. Moreover, the spatial

coherence of the underwater channel is very limited, and a

transmitter could experience very different channels when

communicating to a static receiver from different locations.

Similar uses of ray tracing to aid indoor localization (e.g.,

see Ref. 31) typically do not experience these issue, as they

can rely on more stable radio channels. Filtering multiple

sequential measurements through the Viterbi algorithm32 or

other techniques (such as probability maps reproducing the

expected movement of mobile devices33 or conditional ran-

dom fields34) makes it possible to eliminate this uncertainty.

However, the number of possible indoor positions to be

matched by a terrestrial radio fingerprinting algorithm is usu-

ally limited, yielding a state space of tractable size. On the

contrary, in our underwater approach the location of the

target could be anywhere around the location of the single

receiver, yielding an order-of-107 state space size. This calls

for methods to reduce the complexity of trellis exploration.

We also remark that direction-of-arrival fingerprinting-based

localization has been reconsidered in the field of millimeter

wave communications (e.g., see Refs. 35 and 36), where,

however, the devices can leverage large arrays to reliably

decouple propagation paths in the received angular spectra.

This is in contrast with our assumption of using a single

receiving element, and remains very different from the rich

CIRs usually measured in underwater communications.

C. Summary

The literature that most closely relates to our paper is

summarized in Table I, where we report the requirements,

description, and shortcomings of each approach. From this

comparison, it becomes clear that the most prominent contri-

bution of our approach is the localization of a moving AUV

in three-dimensions using a single receiver (and assuming

only a single transmitter at the AUV). While our approach

has some aspects in common with matched field processing

and fingerprinting, it remains unique in that it reduces the

ambiguity of the matching between measured and pre-

computed CIRs through a trellis search approach similar to

the Viterbi algorithm, rather than resorting to fusing infor-

mation from multiple transmitters or receivers. Moreover,

we only process acoustic data, and do not require any exter-

nal sensors to support the localization process.

With respect to the preliminary work in Ref. 1, the algo-

rithm presented in this paper is much less sensitive to trel-

lises that are not fully connected and to imperfect estimates

of the initial AUV location; in addition, we include a perfor-

mance verification through a sea experiment, and compare

against benchmark approaches both in the simulations and in

the sea experiment.

III. ALGORITHM DESCRIPTION

A. Key idea

We summarize the key idea behind our algorithm with

the help of the flow chart in Fig. 1. We operate the AUV

localization algorithm from a single receiver deployed at a

known and well-explored stationary location. We assume

that the sea bottom is diverse around the receiver (e.g., see

Fig. 2), leading to a spatially-dependent CIR, which we

exploit in order to estimate the location of the AUV via a

fingerprinting-based location system. Since such a system

requires to measure a three-dimensional database of finger-

prints (which is not feasible in underwater scenarios due to

the resource- and time-intensiveness of underwater acoustic

measurements), we resort to a database of modeled CIRs

instead. Such database is pre-computed via a numerical

sound propagation model, such as the Bellhop ray tracing

simulator (see Chap. 3 in Ref. 37, and Ref. 38).

Whenever an acoustic signal is received from the AUV,

we estimate the CIR of the corresponding acoustic channel

and correlate it with our database. In order to reduce the

complexity of this step, we first correlate the CIR with spec-

ular and surface-reflected arrivals from the modeled CIRs:

this excludes bearing-dependent bottom arrivals and allows

us to retrieve a set of possible values for the AUV’s depth

and distance. We then compute one further round of cross-

correlations, this time with the whole CIR (thus including

bottom reflections), for the selected depths and distances,

and for every bearing value. The result is a number of possi-

ble AUV locations. We repeat the process for several subse-

quent acoustic signals emitted from the AUV, which may

4776 J. Acoust. Soc. Am. 146 (6), December 2019 Dubrovinskaya et al.



correspond to the same location or to different locations in case

the AUV is moving. Finally, we apply an efficient, low-

complexity tracking mechanism in order to filter all matching

locations found, and to obtain a source trajectory estimate.

Figure 3 presents an example of the output of four sub-

sequent location estimates. Figures 3(a)–3(d) show a map of

the scenario. Our single receiver is shown as a centrally

located square, whereas the AUV that moves along the tra-

jectory is represented as a black line. At each of the positions

marked by two concentric circles, the AUV emits a signal

that is employed by the receiver to compute location esti-

mates as explained above. In Figs. 3(a)–3(d), these location

estimates are represented as gray crosses, where a darker

gray shade indicates a higher confidence. The algorithm out-

puts multiple estimates for each AUV location, each with

different levels of confidence (higher confidence is repre-

sented using a darker gray shade in Figs. 3(a)–3(d)]. Note

that the point of highest confidence may not be the closest to

the actual AUV location.

To rule out spurious estimates, we order the computed

locations into a trellis [Fig. 3(e)], and run a forward–back-

ward path search procedure similar to the Viterbi algorithm.

In this case, the black path in Fig. 3(e) is selected, corre-

sponding to the trajectory shown in Fig. 3(f).

B. Preliminary assumptions and setup

The first step to localize the AUV is to detect its peri-

odic pinger signals. We assume that no prior information is

available about the location, the instantaneous speed, or the

trajectory of the AUV, and that the AUV does not collabo-

rate to the localization process. Hence, a solution based on

updating the parameters of a dynamic model for the AUV

through filtering is not an option in our scenario. We only

assume that the emitted signal’s waveform is either known,

or can be reliably estimated, such that the CIR can be evalu-

ated. By this, we take into account received multipath, but

ignore interference. Hence, our method is geared into the

TABLE I. Summary of the most relevant related work.

Ref. Approach Requirements Details Shortcomings

18 (2015) Multipath tracking � Two receivers � Compare multipath vs ray model � Assumes isovelocity profile

� Known environmental parameters � Particle filter extracts arrivals

� Ambiguity surface search

5 (2009) Fingerprinting � Fingerprint database � Database of modeled CIRs �Multiple receivers

� Broadband signal � Pattern matching of CIR measurements at

different frequencies

�Maintenance of fingerprint

database in ocean environments

20 (1990) Matched field

processing

� Hydrophone array

� Known environmental parameters

� Acoustic field replica computation

� Gridded virtual source positioning

� Requires multiple receivers to

decrease ambiguity

�ML or Bartlett processing

22 (2014) Radio UWB

fingerprinting

� UWB radio modeling to pre-

compute field dictionary

�Multiple antennas

� UWB fingerprinting

� CS solution via orthogonal matching pursuit

and Lasso-II

�Multiple antennas

� Limited to short-range

localization

21 (2017) CS, matched field

proc.

� Hydrophone array

� Known environmental parameters

� Acoustic field replica computation

� CS solution via basis pursuit and Lasso

�Multiple receivers

23 (2012) Range estimation � Single receiver � Source velocity computation � Range-only

� Known waveguide invariant � Identification of point closest to receiver

25 (2018) Fingerprinting � Known environmental parameters � CIR computation over a fine two-dimensional

vertical grid

�Multiple projectors

� Fixed-bearing localization

�Matching with measurements from multiple

transmitters

26 (2014) Acoustics-aided

inertial tracking

� External bearing/speed sensor � Extract phase from train of sine waves

� Solves inverse problem to determine AUV

location

� Requires accurate bearing/

speed measurements

FIG. 1. Block diagram of the AUV location and path estimation algorithm.
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localization of a single source. We assume that an initial sur-

vey has been carried out in order to measure the bathymetry

of the area surrounding the moored receiver with a fine reso-

lution. The 1-m resolution obtained by a 400-kHz multibeam

sonar (see our experimental results in Sec. V) is more than

sufficient in this respect. We further require periodic direct

or indirect measurements of the local SSP.

The area explored to localize the AUV is limited by the

coverage of the bathymetry measurements, by the reception

capabilities of the receiver, and by constraints on the emit-

ter’s source level. This yields a bounded depth range

between zs
min and zs

max. We further assume the AUV is mov-

ing at an absolute maximum speed of vs
max, known to the

receiver. This leads to an expectation on the maximum dis-

tance traveled by the AUV between two subsequent emis-

sions. We note that the knowledge of the AUV’s maximum

speed is not strictly required, but the availability of this

information improves the performance and greatly reduces

the complexity of our method. At different locations,

indexed by n¼ 1,…,NL, the source emits acoustic signals

that are detected by the receiver along with each significant

multipath arrival. The locations are expressed in terms of a

cylindrical coordinate system as xs
n ¼ ðus

n; b
s
n; z

s
nÞ where, at

location index n, us
n 2 ½0; umax� is the great-circle distance in

meters between the receiver and the source, bs
n 2 ½0�; 360�Þ

is the bearing of the AUV with respect to the receiver (i.e.,

the angle at which the receiver sees the source, measured

clockwise from due north) and zs
n 2 ½zs

min; z
s
max�. We define

the AUV’s path as the ordered source location sequence

fxs
n;…; xs

NL
g.

The database of modeled CIRs set up by the receiver is

computed at all points of a cylindrical grid designed to span

the ranges U ¼ fdu; 2du;…; umaxg, the bearing angles

B ¼ fdb; 2db;…360
�g, and the depth values Z ¼ fzs

min; z
s
min

þdz;…; zs
maxg. The set of grid points is then defined as

G ¼ U � B � Z, where we denote guibizi
2 G as the ith grid

point, i ¼ 1;…; jGj. This corresponds to the first box in Fig. 1.

C. AUV location estimation

For each grid point guibizi
, the receiver models the

expected CIR using a propagation model. For this purpose,

we employ the Bellhop ray tracing software. Bellhop is an

established solution to numerically solve pressure wave

propagation equations by taking into account boundary con-

ditions. In particular, Bellhop can factor in, among others:

the SSP at multiple points throughout the water body section

that joins the transmitter to the receiver; the relevant

bathymetry in the area, including abrupt changes; the shape

of surface waves; and the geo-acoustic properties of the sea

bottom sediments. Bellhop has been used to model acoustic

FIG. 2. (Color online) Illustration of our single-receiver localization method. When the environment is sufficiently diverse (a), the CIRs differ significantly

across different locations (c) and (d). This can be leveraged for localization.
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channels in different communication contexts and served as

the basis for more complex models (e.g., see Refs. 39 and

40). In our context, Bellhop yields accurate time-of-arrival

information for each acoustic path and sufficiently accurate

complex amplitude information, so that the outcome of cor-

relation operations can be trusted. We will show that

Bellhop offers sufficiently reliable CIR modeling in a sea

trial in Sec. V.

The output of Bellhop includes a list of expected multi-

path arrivals, along with their amplitude, phase, delay, and

reception angle. Moreover, for each arrival, Bellhop reports

the list of bottom and surface reflections it incurred. This

information is employed to construct two modeled

responses, namely a partial CIR hð1Þuizi
ðtÞ, containing only the

specular and surface-reflected arrivals,41 and the complete

CIR h
ð2Þ
uibizi
ðtÞ. As the specular and surface-reflected arrivals

are practically independent of the bearing of the AUV rela-

tive to the receiver and rather depend only on the SSP, on ui

and on zi, the subscript bi has been dropped in hð1Þuizi
ðtÞ.

From the modeled CIRs, the receiver obtains two sepa-

rate fingerprints, hð1Þuizi
and h

ð2Þ
uibizi

. When the source is at loca-

tion xn, its emitted signal is received as

rnðtÞ ¼ bhunbnzn
ðtÞ � sðtÞ þ �ðtÞ; (1)

where bhunbnzn
ðtÞ is the CIR estimated from a received signal,

s(t) is the emitted signal waveform, �ðtÞ is the ambient noise,

and � denotes convolution. The receiver then computes

f ð1Þuizi
¼ hð1Þuizi

ðtÞ � sðtÞ ; (2a)

f
ð2Þ
ujbjzj
¼ h

ð2Þ
ujbjzj
ðtÞ � sðtÞ; (2b)

and matches rnðtÞ against the fingerprints f ð1Þuizi
and f

ð2Þ
ujbjzj

corre-

sponding to the grid points in G as follows.

For each point ðuiziÞ in the grid, we compute the nor-

malized correlation

Cð1Þuizi
ðnÞ ¼

ðþ1
0

rnðtÞ f ð1Þuizi
ðt� sÞ dt

ðT

0

rnðtÞ2dt

ðþ1
0

f ð1Þuizi
ðtÞ2dt

 !1=2
; (3)

where T is the signal’s duration and s is the time epoch cor-

responding to the correlation maximum. Note that in Eq. (3)

we perform a normalized correlation to reduce the sensitivity

to CIRs characterized by different power attenuation. Define

Mð1ÞðnÞ as the set of all pairs (uj, zj) corresponding to those

Cð1Þuizi
ðnÞ that exceed a certain threshold HD, 8 ðui; ziÞ 2 G,

where we set HD, using the analysis in Ref. 42. We remark

that we do not limit set Mð1ÞðnÞ to contain just the coordi-

nates of the single grid point yielding the maximum correla-

tion. In fact, the estimation of the correct distance and depth

may still be hindered by the lack of, e.g., the specular arrival,

which can occur in the presence of SSP patterns with a suffi-

ciently steep gradient and for a sufficiently large distance

FIG. 3. High-level illustration of the key idea behind our single-receiver localization process. (a)–(d) show a sound source moving along a straight trajectory.

At four locations, the source emits a signal. The receiver (located at the center of the area) measures the CIR and compares it against a database of modeled

channel responses. This translates into the location estimates indicated by the crosses, where a darker gray shade indicates higher confidence. A trellis search

algorithm (e) is then applied to find the most likely source path (f).
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between the AUV and the receiver (e.g., see the example

on p. 46 of Bellhop’s manual38). Including a number of pos-

sible matching locations yields more robustness against

such errors. The above steps correspond to boxes 2 and 3 in

Fig. 1.

For each ðuj; zjÞ 2 Mð1ÞðnÞ and 8 b 2 B, we compute

the following normalized correlations:

C
ð2Þ
ujbjzj
ðn; sÞ ¼

ðþ1
0

rnðtÞ f ð2Þujbjzj
ðt� sÞ dt

ðT

0

rnðtÞ2dt

ðþ1
0

f
ð2Þ
ujbjzj
ðtÞ2dt

 !1=2
: (4)

Call

qn
xj
¼ maxs C

ð2Þ
ujbjzj
ðn; sÞ; (5)

and define Mð2ÞðnÞ as the set of all triples pk ¼ ðuk; bk; zkÞ
corresponding to the Rð2Þ highest values of qn

pk
8 ðuj; zjÞ

2 Mð2ÞðnÞ and 8 b 2 B, where Rð2Þ is a user-defined parame-

ter (in our performance evaluation, we set Rð2Þ ¼ 70). The

above steps correspond to boxes 4 and 5 in Fig. 1.

In ideal conditions, e.g., with an extremely dense grid G,

in the absence of noise, and with perfect environmental

information, it would be enough to limit set Mð2ÞðnÞ to the

coordinates of the point pk ¼ ðuk; bk; zkÞ for which qn
pk

is

highest. However, in any practical scenario, the grid point

closest to the actual position of the AUV might not yield the

highest correlation due to noise, outdated environmental

information, or a combination of both. In this perspective, it

is convenient to set Rð2Þ to some large value. On the other

hand, it is computationally infeasible to have an exceedingly

large set G. For this reason, we reduce the complexity of the

search whenever possible by limiting the location search

area through a bound on the distance between the AUV and

the receiver. For example, if the source level is known, this

bound can be obtained based on a received signal strength

indicator (RSSI).43 Furthermore, in the following we present

a filtering scheme that reduces the complexity of path

estimation.

D. AUV path estimation

After determining the possible matching locations

Mð2ÞðnÞ for n ¼ 1;…;NL, we proceed to find the most likely

sequence of AUV’s locations among all possible options

using a path estimation algorithm. Without prior information

about the AUV motion pattern, we avoid assuming a

dynamic model solved by filtering, but rather work on a trel-

lis such as the one shown in Fig. 4. The trellis has NL stages,

one for each transmission received from the AUV. In each

stage, different nodes represent different estimated locations,

so that the first stage of the trellis represents all location

estimates for the first detected signal from the AUV [set

Mð2Þð1Þ], the second stage contains the estimates in set

Mð2Þð2Þ, and so forth until the last stage, which contains

the estimates in Mð2ÞðNLÞ. We assign a confidence index

to each node in the trellis [the value of the normalized

cross-correlation between the modeled and measured chan-

nels, see Eq. (5)], and organize them into a Rð2Þ � NL matrix

T (boxes 6 and 7 in Fig. 1). Both the nodes in the ith trellis

stage and the entries in the ith column of T are sorted in

order of decreasing confidence, i.e., ½T�1;i ¼ qi
p1
; ½T�2;i ¼ qi

p2
;

½T�Rð2Þ;i ¼ qi
p

Rð2Þ
, and

qi
p1
> qi

p2
> � � � > qi

p
Rð2Þ
: (6)

1. Setting the path weights

The objective of path estimation is to find the best

sequence of nodes across consecutive trellis stages. To that

end, a link exists between an entry in stage n and an entry in

stage nþ 1 if the locations represented by these nodes are

closer than the maximum distance the AUV could cover

when traveling at full speed vs
max between the nth and the

ðnþ 1Þ th signal detections (recall that the maximum abso-

lute speed is assumed to be known). Formally, call e‘n‘nþ1
the

edge that connects the ‘nth node at stage n in the trellis

(entry in column n of T) and the ‘nþ1th entry at column

nþ 1. Call Aðe‘n‘nþ1
Þ ¼ p‘n

and Sðe‘n‘nþ1
Þ ¼ p‘nþ1

the ancestor

and the successor of edge e‘n‘nþ1
, respectively. Define the

edge weight as

rðe‘n‘nþ1
Þ ¼

1 ; if dðp‘n
;p‘nþ1

Þ 	 dmax

dmax

dðp‘n
;p‘nþ1

Þ ; if dmax < dðp‘n
;p‘nþ1

Þ 	 1:5dmax

0 ; otherwise;

8>>>><>>>>:
(7)

where dðx; yÞ ¼ jjx� yjj2 is the Euclidean distance between

locations x and y, tn and tnþ1 are the reception epochs of the

nth and ðnþ 1Þ th detected signals, respectively, and dmax

¼ vs
maxðtnþ1 � tnÞ is the maximum distance that the AUV

could have traveled between time epochs tn and tnþ1. Only

edges with non-zero weights are considered for path estima-

tion. To form a continuous path, we require connected edges.

In particular, if for edge e‘n‘nþ1
it occurs that its ancestor p‘n

is

not a successor of any edge e‘n�1‘n
, or that its successor p‘nþ1

is

FIG. 4. Example of trellis employed by the tracking algorithm for the source

path estimation. Each node represents a location estimate. Trellis links exist

only among locations that are closer than the maximum distance dmax cov-

ered by the AUV when traveling at full speed between subsequent signal

transmissions.
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not an ancestor of any edge e‘nþ1;‘nþ2
, then the weight of edge

e‘n‘nþ1
is set as zero, and the edge is removed from the trellis.

We remark the similarities between the path estimation

algorithm and the Viterbi algorithm for tracking within a trellis

(see also Ref. 44). While the Viterbi algorithm would yield the

optimal solution, it would include all grid points in G in each

stage of the trellis. This would require jGj entries in each col-

umn of T, which would compound to a huge state space and

imply an exceedingly high computational complexity, espe-

cially if jGj is very large. In addition, solving through the

Viterbi algorithm would require an estimation for the emission

and transition probabilities, which involves some hard assump-

tions on the CIR and noise models. Instead, our version relies

on confidence indices and makes it possible to trim the state

space according to physical movement constraints. This leads

to a significant performance improvement and to a feasible

path estimation complexity.

2. Finding the best path

Let EðnÞ ¼ fe‘n‘nþ1
g be the set of edges that link a node

in stage n of the trellis to a node in stage nþ 1, and use Eq.

(7) to define the following metric for each edge:

kðe‘n‘nþ1
Þ ¼ qn

p‘n
qnþ1

p‘nþ1

rðe‘n‘nþ1
Þ; (8)

where the confidence indices are taken from T. Define a

generic path on the trellis as

W ¼ fe1;…; eNL
g; (9)

where ei is shorthand for e‘i‘iþ1
2 EðiÞ, and all edges are such

that SðeiÞ ¼ Aðeiþ1Þ; i ¼ 1;…;NL � 1. Define the overall

path metric as

KðWÞ ¼

YNL�1

i¼1

kðeiÞ

YNL�2

i¼1

qi
SðeiÞ

; (10)

i.e., as the product of the confidence metrics for all edges

that belong to the path, divided by the confidence of interme-

diate nodes in order to avoid accounting for them twice. The

path estimate is finally found as

bW ¼ arg max
W

KðWÞ; (11)

and we indicate the sequence of locations traversed by bW as

fbx1; bx2;…; bxNL
g.

As a means of measuring the discrepancy between the

true and the estimated sequence of AUV’s locations, we con-

sider the root-mean-square (RMS) point-wise distance

between corresponding points of the true and estimated

paths. Formally,

ed
Ŵ
¼ 1

NL

XNL

n¼1

dðbxn; x
s
nÞ

2

 !1=2

: (12)

We also convey the source bearing estimation effectiveness

of our approach via the bearing error

ea
Ŵ
¼ 1

NL

XNL

n¼1

jbbn � bs
nj; (13)

where dð�; �Þ denotes the distance between two points in the

cylindric coordinate system.

3. Refinement

In this section, we present two refinements to the above

algorithm. The first refinement relates to the possible case

that there exists no edge with a non-zero weight connecting

two trellis stages n and nþ 1. This would lead to a partition-

ing of the trellis. We correct for these cases by allowing

stage n - 1 to directly connect to stage nþ 1. Specifically,

the corresponding edge e‘n�1‘nþ1
will have a weight equal to

kðe‘n�1‘nþ1
Þ ¼ qn�1

p‘n�1

qnþ1
p‘nþ1

rðe‘n�1‘nþ1
Þ; (14)

where rð�Þ is the same as in Eq. (7).

The above recovery mechanism is further enhanced to

handle cases of broader trellis partitioning due to bursts of

errors. These bursts are caused by strong noise from, e.g., a

nearby vessel or waves, or due to erroneous bathymetry

information at some locations. The results of such bursts are

sets of short paths for which the maximization in Eq. (11) is

not optimal, i.e., the problem becomes non-convex.

Considering this case, we increase the number of paths in W
through our second refinement procedure as follows.

We start by observing that from the perspective of path

finding we can calculate paths by taking sets of estimated

locations either in the order they occur in time, or by revers-

ing this order. In other words, the trellis stages in Fig. 4 and

the corresponding columns in T can be flipped, such that the

first contains location estimates in Mð2ÞðNLÞ, the second

contains the estimates in Mð2ÞðNL � 1Þ, and so forth until

the last column, which contains the samples inMð2Þð1Þ. Call

WF a forward path on the trellis traversing locations

fx1; x2;…; xNL
g, and call WB a backward path computed on

the reversed trellis, traversing locations fyNL
; yNL�1;…; yN1

g.
If bWF and bWB are the best forward and backward paths

according to Eq. (11), respectively, we set the final path esti-

mate bW ¼ bWF if KðbWFÞ > KðbWBÞ, and bW ¼ bWB otherwise.

In case of significant interruptions in the trellis structure, the

above scheme increases the probability to find the correct

path. The scheme is also beneficial if the estimate of the ini-

tial location on the forward path is incorrect, making the

path search diverge to a mostly wrong sequence of locations.

In case of a well-connected trellis, instead the scheme is

likely to find the same path twice, with no effect on the accu-

racy of the algorithm.

The complexity of the algorithm relates to the number of

correlation operations and to the trellis search. For each received

source signal, the algorithm computes jjGj þ OðjMð1ÞðnÞjÞ

 jjGj correlations in order to extract the possible position esti-

mates in set Mð2ÞðnÞ, where j is a proportionality factor that

accounts for the search space reduction enabled, e.g., by RSSI
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bounding considerations as mentioned in Sec. III C. For a signal

of bandwidth–time duration product BT, the complexity of each

normalized cross correlation is OðB2Þ. With OðNLjMð2ÞðnÞjÞ
operations for the trellis search, the overall complexity is

OðNLjMð2ÞðnÞj þ jjGjB2Þ. Comparing this with the complex-

ity of the Viterbi algorithm, i.e., OðNLjGj2Þ (see also Ref. 32), a

significant complexity reduction exists.

E. Discussion

Our method considers the practical case of observing an

unknown target. This target can move in any dynamic pattern

and even irregularly. Hence, we avoid evaluating its position

through filtering, and rather follow a trellis search approach

over the confidence indices. This also means that the path

found from all feasible solutions is the one with maximum

overall confidence index, and thus isolated positions associated

to a high confidence value will not be chosen. This is appropri-

ate since we are looking for a systematic solution, rather than

an individual match. Our solution for the trellis search takes a

suboptimal approach by taking into account sets of only two

nodes. This has the drawback that a single node in the trellis

may have a higher impact than it should. Yet, without prior

knowledge of the target and to keep the calculations feasible

we avoid other solutions in the form of, e.g., dynamic program-

ming. Further, we note that the accuracy of our method

depends on the quality of the channel estimation process,

which improves with the bandwidth of the emitted signal.

For channel modeling, we use the bathymetry and the

SSP. Without up-to-date information about instantaneous

sea conditions, we avoid a time-varying propagation model

and use instead a static model. Instead, the time-variation of

the channel is taken into account by the AUV’s motion, both

by calculating different channels for different locations, and

by using the maximum velocity vs
max. This parameter trades

off complexity with performance, as higher values for the

maximum speed correspond to additional possible paths in

the considered trellis. Another significant assumption is the

ability to estimate the channel from the received signals.

Clearly the performance of our approach depends on the

accuracy of such estimation. While channel estimation is

beyond the scope of this work, possible techniques for such

an estimation can be rake receivers,45 blind source separa-

tion,46 or cyclo-stationary analysis,47 to name a few options.

IV. SIMULATION RESULTS

A. Scenario and parameters

For our simulations, we consider a portion of the San

Diego bay area, off the coast of southern California, which is

a well-explored area. We place the receiver at the coordi-

nates ½32:9390�N; 117:2816�W�. We take the area’s bathym-

etry data from the U.S. Coastal Relief model48 (revealing

that the average depth in the area is about 50 m), and employ

an SSP sample taken at the observed area. The SSP has a

downward-refractive shape, typical of shallow Californian

waters during warm seasons, as depicted in Fig. 2(b). We

assume that the water surface is flat.

In our simulations, we deploy both the receiver and the

source at depths of 10 m. Still, we remark that the receiver is

not aware of the source’s depth. The simulation starts by

deploying the emitting source at random in the area at a range

of 500 m from the receiver. The source then chooses a bearing

uniformly at random and moves along the corresponding direc-

tion with constant speed chosen at random for the time required

to carry out ten transmissions. The locations xs
n and xs

nþ1,

where two subsequent emissions take place, are chosen uni-

formly at random such that dðxs
n; x

s
nþ1Þ 	 dmax, and we set

dmax ¼ 50 m.

The fingerprint grid pre-computed by the receiver spans

a total range umax ¼ 1:5 km around the receiver, with a reso-

lution of 1 m. The whole azimuthal plane is considered, with

a resolution of 1�, and the CIRs are computed for all depths

between 5 and 15 m, also with a resolution of 1 m. This

choice leads to a total of about 6� 106 points in set G, and

emphasizes the need for our path finding algorithm, as it has

much lower complexity than the regular Viterbi algorithm.

The signal transmitted by the source, s(t), is chosen to

be a linear chirp signal of duration 100 ms and bandwidth of

10 kHz, centered at a carrier frequency of 12 kHz. Based on

these signal parameters and using the analysis in Ref. 42, for

the computation of Eq. (3) and the formation of setMð1ÞðnÞ,
we choose HD ¼ 0:1 8 n. For each emission from a given

source-receiver location pairs, the CIR is computed through

Bellhop,38 using as parameters the SSP and the available

bathymetry samples along the direction from the source to

the receiver. The ambient noise at the receiver is modeled as

an additive white Gaussian process, whose power is tuned so

as to achieve a prescribed signal-to-noise ratio (SNR).

B. Examples

A sample result from Eq. (3) is shown in Fig. 5(a). We

observe a clear peak suggesting that the source is located at

a distance of approximately 450 m from the receiver, at a

depth of 10 m. This is due to the presence of all expected

specular and surface-reflected arrivals in the received signal.

If, e.g., the specular arrival were missing, the correlation

peak at 450 m would not be as high. This is why we consider

all three significant peaks, including those at about 300 and

600 m, and for all depths where such peaks exceed HD.

To populate set Mð2ÞðnÞ, we set Rð2Þ ¼ 70. A sample

computation of Eq. (4) for some range-depth pairs in

Mð1ÞðnÞ is shown in Fig. 5(b). While in this particular case a

peak stands out corresponding to the correct bearing of about

150�, often such a favorable result does not occur. The cho-

sen value of Rð2Þ makes it possible to considerably increase

the probability that the actual bearing is included in

Mð2ÞðnÞ, while keeping the computational effort controlled.

C. Localization accuracy for varying SNR

We start our performance evaluation by running our

algorithm in the presence of exact environmental data under

different SNR values. The complementary cumulative dis-

tribution functions (CCDFs) of the root-mean-square error

(RMSE) affecting the distance and bearing estimates are

shown in Figs. 6(a) and 6(b), respectively. Thanks to the
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perfect knowledge of both the bathymetry and the SSP in

the observed area, neither result shows a significant depen-

dence on the SNR, even after decreasing it to as low as

3 dB, which tends to yield non-negligible spurious peaks in

the correlation outputs. We observe that the average RMSE

varies from about 120 m for a SNR of 30 dB, up to about

170 m for a SNR of 3 dB, with a median error around 80 m,

which is satisfactory given the grid resolution employed and

the use of a single receiving element. The bearing estima-

tion results show an even higher accuracy, with a mean esti-

mation error ea < 20� even for a SNR of 3 dB, and a median

error of less than 10�.

D. Localization accuracy for imperfect bathymetry
data

The above simulation results show accurate localization

for different SNR levels. However, the results are obtained

assuming perfect bathymetry and SSP knowledge. In our set-

ting, the receiver is an anchored station, e.g., a marine obser-

vatory, and thus we argue that accurate sound speed

measurements are possible and do often exist in such marine

observatories (e.g., see Ref. 49). Still, while fine-gridded

bathymetry mapping can be made around the observatory,

small errors and outdated measurements in the resulting

depth map may exist. We now explore the sensitivity of our

localization method to imperfect bathymetry information.

In the following analysis, to each true bathymetry sample

we add an offset drawn uniformly at random in the interval

½�y; y�, where y (in meters) is a tunable parameter. We collect

a Monte Carlo set of 100 source paths and compute the CCDFs

of the RMSE for both the distance and the bearing. The results

are shown in Figs. 7(a) and 7(b), respectively. We observe that,

as expected, mismatched bathymetry data worsens the path

estimation performance. However, for a limited offset on

bathymetry samples, up to y¼ 1 m, the median RMS distance

FIG. 5. (Color online) Example of corre-

lation values for xs ¼ ½446 m; 150�;
10 m� at a SNR of 30 dB, for different

values of the offset Dz between the actual

depth and the tested depth.

FIG. 6. (Color online) Accuracy of the path estimation algorithm in the presence of exact environmental data, for different values of the SNR. Even for low

values of the SNR the arrival structure in the CIRs does not change considerably, and has no significant effects on performance.
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error remains below 200 m (or 6% of the total observed area),

which is still a reasonably good result given the presence of a

single receiving element. Instead, an error of up to y¼ 5 m

yields a comparatively worse performance. However, we

remark that this is an extreme case, as such an error amounts to

about 10% of the average sea bottom depth in the area, and

current sea bottom mapping systems typically ensure sub-

meter bathymetry measurements for depths of less than 200 m

[e.g., this is the case for Kongsberg Maritime’s 400 kHz EM

2040 multibeam sonar system we use in our sea experiment

(Kongsberg, Kongsberg, Norway)].

Similar conclusions as for the distance-based sensitivity

of the algorithm can be drawn also for the bearing estimation

error. Figure 7(b) shows that for y¼ 1 m, the increase in the

median bearing estimation error is roughly 20�, and

increases to roughly 55� for y¼ 5 m. This result emphasizes

the need for accurate bathymetry information. Still, we argue

that even such rough localization estimates can be instru-

mental for some applications. For example, security or envi-

ronmental monitoring systems, where even a rough estimate

can trigger a more accurate investigation by human person-

nel or more complex detection mechanisms; or fauna and

habitat monitoring applications, where it is often sufficient

to find the approximate path of a vocalizing animal.

E. Localization accuracy for imperfect SSP data

In order to evaluate the impact of imperfect SSP data on

the performance of our algorithm, we add an offset drawn

uniformly at random in the interval ½�c; c� to each true SSP

sample, and carry out Monte Carlo simulations for different

values of c.

The CCDFs of the distance and bearing RMSE are pro-

vided in Figs. 8(a) and 8(b), respectively. While the chosen

values for c preserve the general downward-refractive prop-

erties of the SSP, even a small value tends to cause signifi-

cant changes in the structure of multipath arrivals. For

c¼ 0.25 m/s, we already observe a median distance error of

about 250 m and a median bearing error of about 30�. It

could be argued that these values are still practical for rough

localization applications, where the only need is to know

whether the AUV is practically following a desired trajec-

tory or is falling significantly off track. As expected, increas-

ing c tends to reduce both the distance and the bearing

estimation accuracy. This emphasizes the need to maintain

SSP estimates updated at the receiver, and to recompute the

CIRs in the grid G in the presence of significant changes.

We finally remark that, besides bathymetry and SSP,

high sea states may induce significant surface waves that

would also contribute to modifying surface-reflected multi-

path components of the modeled and measured CIRs. Since

it is not feasible to create different modeled CIR sets G for

many realizations of the surface waves and for different sea

states, in this case it would be appropriate to skip the

correlation-based depth/distance estimation that results in

sets Mð1ÞðnÞ. Instead, it would be possible to populate

Mð1ÞðnÞ with all pairs of depth and distance values that sat-

isfy RSSI bounds, and then proceed with the computation of

the cross-correlations that lead to setMð2ÞðnÞ.

F. Comparison against benchmark localization
schemes

We conclude our evaluation with a comparison among

our algorithm, its preliminary version,1 and a benchmark

scheme that, for every location index n corresponding to a

signal received by the buoy, chooses the most likely source

location as the grid point in Mð2ÞðnÞ yielding the largest

correlation value (dubbed “best point” in the following).

This is akin to a classical fingerprint-based localization

approach, where the fingerprint is defined as the value of

Eq. (4). Figure 9 shows the CCDFs of the distance and bear-

ing RMSE for all the above approaches carrying out all

FIG. 7. (Color online) Accuracy of the path estimation algorithm in the presence of imperfect bathymetry data. Erroneous bathymetry significantly affects the

algorithm’s performance. For limited errors (y¼ 1 m) the results are still viable for several applications.
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operations listed in Sec. III, including the forward– back-

ward refinement of Sec. III D 3.

The results confirm the expectation that our approach

achieves a lower estimation error. This is also due to the for-

ward–backward search refinement, which reduces the chance

that a comparatively low correlation value in the first point

of the source’s trajectory hampers the correct estimation of

the whole path. Specifically, the median distance RMSE

decreases from about 100 to about 50 m, in the presence of a

comparable angle RMSE. Although the best point scheme

provides a good estimation of the bearing in these simula-

tions, its distance error is still very significant, with 80% of

the errors being greater than 100 m. Moreover, while the tail

of the error distribution for the best point scheme is better

than for the algorithms in Ref. 1 and in this paper, these tails

already correspond to significant errors (e.g., >300 m in

terms of distance and >45� in terms of bearing).

V. EXPERIMENTAL RESULTS

A. Experiment setup

In Sec. IV, we explored the performance of our localization

scheme in simulations. Since these simulations rely heavily on

a numerical acoustic propagation model, we now complete our

analysis and show the performance achieved by our algorithm

in a sea trial. The experiment was carried out in February 2017

FIG. 8. (Color online) Accuracy of the path estimation algorithm in the presence of imperfect SSP data. Increasing deviations from the actual SSP tend to sig-

nificantly change the multipath arrival structure. For limited deviations, the median localization and angle error remain acceptable.

FIG. 9. (Color online) Comparison among different location estimation schemes: our algorithm, the preliminary version of our approach in Ref. 1, and the best

point benchmark (corresponding to selecting the location that yields the highest cross-correlation value).
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in northern Israel (coordinates 33�01057.000N 34� 55041.200E),

in waters with a maximum depth of 140 m. The measured

sound speed was 1529 m/s with a water temperature of 21 �C
at the sea surface, and 1521 m/s with a water temperature of

17 �C at the sea bottom. The sound speed gradient between the

surface and bottom was approximately constant. The current at

the water surface was roughly 0.5 knots, the wave height was

roughly 40 cm, and the sea bottom was sandy. A 5 m resolution

bathymetry was collected using a Kongsberg EM 2040

400 kHz multibeam sonar. The bathymetry of the explored

area is shown in Fig. 10(a), and included a steep slope ranging

from 60 to 140 m. The top-left side of the figure shows artificial

data as no measurements were collected in that region.

The experiment included an 80 ft long vessel, RV EDEN,

and a 13 ft rubber boat dragging a floating buoy from which an

acoustic emitter was deployed, see Fig. 11. The rubber boat rep-

resented the opportunistic sounds source, and the RV EDEN

represented the single receiver. During the transmissions, the

distance between the vessels was roughly 1200 m. The transmis-

sions from the rubber boat included a sequence of 15 linear

chirps at the frequency range of 7 to 17 kHz, each of duration

of 1 s. Transmissions were made with the EvoLogics S2C R

7/17 W underwater acoustic software defined modem at a source

level of 170 dB re 1 lPa @1 m (EvoLogics, Berlin). Receptions

at the RV EDEN were made through the custom uRadar

recorder, whose receive sensitivity at the transmissions’ fre-

quency range is about 190 dBV re 1 lPa. Both the transmitter

and the receiver were deployed at a depth of 10 m. A time-

frequency spectrogram of the received signals is shown in

Fig. 10(b). Besides the transmitted chirp signals, we observe the

signals of the RV EDEN’s own echo-sounder. To mitigate the

ambient noise as well as the signals of the echo-sounder, we

filtered each chirp signal. Synchronization was performed using

a normalized matched filter.42

B. Results

We start from Figs. 12 and 13, which detail the results

of the comparison between the modeled CIRs and the

measured one for nine consecutive received signals. The

results are shown as a polar map centered around the loca-

tion of the RV EDEN, where each contour line represents a

distance of 300 m from the vessel. In Fig. 12, each small

gray cross represents a possible position for the source, i.e.,

a comparison output that passed the detection threshold HD

(see Sec. III C) and was included in setMð2ÞðiÞ; i ¼ 1;…; 9.

The thicker green cross marks the true location of the source.

We observe that, for each of the nine received signals, many

possible locations are obtained as a result of the cross-

correlation operations carried out by our method. Figure 14

shows one comparison between a CIR measured from a

received signal and the CIR template constructed starting

from Bellhop’s output (light blue) and corresponding to a

location close to the true location of the source. We observe

that although the channel model is imperfect, all significant

peaks in the measured CIR are well represented, leading to a

good overall matching. However, other locations also lead to

a similarly strong matching, resulting in several location

FIG. 10. (Color online) Setup of the sea experiment carried out in Mediterranean Sea waters near Haifa, Israel, in February 2017.

FIG. 11. (Color online) Picture of the buoy and ship from which the trans-

mitter and receiver were deployed, respectively.
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estimates being significantly far from the source, and collec-

tively resembling a random cloud of possible source

locations (the small gray crosses). The best point algorithm

(purple triangle), that points to the location yielding the max-

imum correlation for each signal, suffers from significant

errors in three cases out of nine. These results support the

simulation outcomes, showing that even when the bathyme-

try is fully known, relying only on the spatial diversity of the

CIR yields significant residual uncertainty. Processing the

outcome of the best point algorithm through a Kalman filter

does not yield significantly better results, even if the filter is

fed with the actual velocity of the AUV (in contrast with our

approach, that only requires to know the maximum AUV

velocity, vs
max). The corresponding location estimates are

shown in Fig. 14 as gray squares. Conversely, our algorithm

(red triangles) exploits the trellis search to achieve a more

precise estimation and removes outliers, resulting in a much

smaller localization error.

We also compare the above results against those of the

Viterbi algorithm. Given the size of the state space, in order

to be able to run the algorithm we artificially reduce the

search scope to a 90� sector centered on the true bearing of

the source, and to the distances ranging from 1000 to

1400 m. While this gives a clear advantage to the Viterbi

algorithm, it is a necessary step to allow the search space to

fit in its data structures. The Viterbi results are shown as

blue triangles in Fig. 12. We observe that the algorithm

correctly predicts the fact that the source is static, but

achieves a slightly worse location error despite the limita-

tion of the search scope. This outcome is due to systematic,

non-Gaussian errors incurred when modeling real underwater

propagation using an acoustic propagation model under

FIG. 12. (Color online) Sequence of location estimates for nine subsequent transmissions from a drifting source in the sea experiment, showing the true loca-

tion of the source (green cross), the estimate of our algorithm (red triangles), the best point benchmark estimates (purple triangles), the Kalman filter results

(gray squares), and the limited-scope Viterbi estimates (blue triangles).
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imperfect information (e.g., in this case, the resolution of the

bathymetry and SSP data).

In Fig. 13, we summarize the path estimation results for

all schemes with the same color coding as above. In this case,

the green crosses represent the average location of the drifting

RV EDEN throughout the experiment. The results show a nice

match between the estimated location and the true one for our

algorithm and the Viterbi algorithm, and for only a subset of

the location estimates of the best point algorithm. The Kalman

filter results also show that this method is very sensitive to

incorrect estimates of the initial location of the AUV.

The estimated locations predicted by our approach also

correctly follow the drifting direction of the source boat. The

total localization error for our algorithm is between 174 and

330 m, with a bearing error between 2� and 12�. While these

errors may seem large, we argue that they are still acceptable

for the task of localizing an AUV in a long term mission. This

is because, after a few hours and especially in deep waters, the

self-navigation system of the AUV would drift significantly:

thus, any localization solution of limited expected error will

benefit the operation.50 Moreover, compared to the typical

detection range of roughly 5 km for the AUV’s pinger (e.g.,

Ref. 51), the above reported localization error as in our experi-

ment is still a good result. Given that this result was obtained

using only one receiver in real sea conditions, it demonstrates

well the applicability of our suggested localization method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach for the acous-

tic localization of a non-cooperating AUV emitting acoustic

signal. Our approach relies on a single passive and stationary

receiving element and on the modeling of acoustic propagation

given knowledge of the bathymetry, SSP, and bottom sedi-

ments in the deployment area. The method is based on the

comparison of a CIR evaluated from a received acoustic signal,

against a database of CIR fingerprints. As the latter are mod-

eled instead of measured, we require no periodic channel fin-

gerprint acquisition in the area around the receiver. To filter

noise, locations that yield a good match between the measured

and the modeled channels are arranged into a trellis. A location

path is then estimated while limiting transitions between the

trellis nodes according to an assumed maximum velocity for

the AUV. Our approach makes it possible to estimate the path

traveled by the AUV with low complexity and with high accu-

racy. Such accuracy decreases (but still remains sufficient for a

variety of applications) if the receiver holds outdated environ-

mental data. A proof-of-concept sea experiment demonstrates

the applicability of our method to real sea conditions with a

localization error as low as 5.8%, which is a remarkably good

accuracy given the use of a single stationary receiver and the

realistic imperfect bathymetry and SSP measurements.

Future work will include a refinement considering a

finer non-uniform grid in locations where the input data

shows the largest variability, as well as extending the locali-

zation to multiple targets.
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