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INTRODUCTION

From the pioneering work by Richard Stanley [65] in 1975, combinatorial commuta-

tive algebra has been an active area of research that, as the name suggests, lies at the

intersection of commutative algebra with combinatorics. New methods have evolved out

of an influx of ideas from such diverse areas as polyhedral geometry, theoretical physics,

representation theory, homological algebra, symplectic geometry, graph theory, integer pro-

gramming, symbolic computation, and statistics. Also a broad range of books and lectures

has been devoted to the resulting combinatorial techniques for dealing with polynomial

rings, semigroup rings, and determinantal rings, see, e.g., [5], [6], [19], [20], [29], [31], [36],

[54], [66], [67], and [69].

Since the early 1990s, a classical object in commutative algebra has been the study

of binomial ideals. Frequently, methods used in combinatorics can be exploited to address

problems arising from the study of binomial ideals. One of the first articles where binomial

ideals appeared is [28], where the relation ideals of semigroup rings were identified as bino-

mial ideals. But, a first systematic treatment of binomial ideals and toric rings is given in

the Sturmfels’ book [67], with applications to convex polytopes and integer programming.

Eisenbud and Sturmfels, in [20], develop a general theory of binomial ideals and their pri-

mary decomposition, that will be the starting point for a lot of further works. In that work,

lattice ideals were first systematically studied. They are binomial ideals with generators

given by all the elements of an integer lattice. Note that toric ideals are lattice ideals for

which the lattice is the kernel of an integer matrix. The study of lattice ideals is a rich sub-

ject on its own, see [54], [67] for the general theory and [53] for recent developments. In [40],

Hoşten and Shapiro introduce lattice basis ideals which are binomial ideals with generators

given by the elements of a basis of a saturated integer lattice. Another intensively-studied

class of binomial ideals is that of the ideals generated by a subset of 2-minors of an m×n-

matrix Xmn of indeterminates. They are a generalization of the determinantal ideals with

k = 2, which are ideals generated by all the k-minors of Xmn [6]. Hoşten and Sullivan in

[40] consider the ideals of adjacent minors and Diaconis, Eisenbud, and Sturmfels in [15]
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compute the primary decomposition of these ideals. This dissertation is devoted to the

study of two classes of ideals of 2-minors: binomial edge ideals and polyomino ideals.

Binomial edge ideals arise from finite graphs and this class of binomial ideals is one

of the most studied. Their appeal results from the fact that the homological properties of

these ideals reflect nicely the combinatorics of the underlying graphs. They were introduced

in 2010 by Herzog, Hibi, Hreinsdóttir, Kahle and Rauh in [30], and independently by

Ohtani in [55]. In the last decade, several works devoted to the study of the algebraic

and homological properties of these ideals have been produced. Given a simple graph G,

with vertex set V (G) = [n] and edge set E(G), the binomial edge ideal JG of G is the

ideal in S = K[x1, . . . , xn, y1, . . . , yn] generated by all fij = xiyj − xjyi, with i < j and

{i, j} ∈ E(G). Looking at the definition, it can be seen immediately that the ideal of 2-

minors of a 2×n-matrix may be interpreted as the binomial edge ideal of a complete graph

on [n], where a complete graph Kn on [n] is such that E(Kn) = {{i, j} | 1 ≤ i < j ≤ n}.

Whereas, the ideal of adjacent minors may be interpreted as the binomial edge ideal of a

path graph, where a path graph Pn on [n] is such that E(Pn) = {{i, i+ 1} | 1 ≤ i ≤ n− 1}.

Moreover, binomial edge ideals arise naturally in the study of conditional independence

ideals, and they generalize a class which has been studied by Fink [24].

A basic result on binomial edge ideals is that the initial ideal of JG is squarefree, which

implies that JG is a radical ideal. In particular, in [30], the authors completely describe

the Gröbner basis of JG with respect to the monomial order induced by x1 > x2 > · · ·xn >

y1 > y2 > · · · > yn. Moreover, they provide the minimal prime ideals of JG and the Krull

dimension of S/JG by means of particular subsets of the vertices of G, the cutsets of G. A

subset T of V (G) is said to be a cutset of G if the number of connected components, c(T ),

induced by removing T from V (G) is greater than the number of connected components

induced by removing T \ {i} from V (G), for all i ∈ T . Denote by C(G) all the cutsets of

G, then

dimS/JG = max
T∈C(G)

{n− c(T ) + |T |}.

In general, all the cutsets of a graph, and consequently the induced connected components,
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must be found in order to apply this formula. In [59], an algorithm for this aim is described,

but, unfortunately, it is exponential in time and space. For some classes of graphs, this

computation could result easier, but not trivial. In Subsection 3.1.2, we will provide a

linear in time and space algorithm (see Theorem 3.1.7) that computes the Krull dimension

of S/JG, when G is a block graph. A connected induced subgraph of G that has no cutset of

cardinality 1 and is maximal with respect to this property is a block. A connected induced

subgraph of G that is a complete graph is called a clique. A graph is called block graph,

or clique tree, if all its blocks are cliques. The idea of our algorithm is to find a minimal

prime ideal of minimum height since it induces the Krull dimension of S/JG.

Another fundamental invariant that has been studied intensively is the Castelnuovo-

Mumford regularity of binomial edge ideals. Matsuda and Murai, in [52], first investigated

the regularity, proving, for any connected graph G on [n], that ` ≤ reg S/JG ≤ n − 1,

where ` is the length of the longest induced path of G. In the same paper, they conjecture

that reg S/JG is exactly n − 1 if and only if G is a path of length n. In [45], Kiani

and Saeedi Madani give a positive answer to Matsuda-Murai conjecture. In [62], it is

conjectured that reg S/JG ≤ c(G), where c(G) is the number of maximal cliques of G.

In [23], Ene and Zarojanu prove this for some classes of graphs, including block graphs.

Furthermore, Kiani and Saeedi Madani characterized all graphs whose binomial edge ideal

have regularity 2 and regularity 3, see [61] and [63]. In a very recent work [22], a new

upper bound for any connected graph G has been proved by Ene, Rinaldo, and Terai, that

is reg S/JG ≤ n− dim ∆(G), where ∆(G) is the clique complex of G, that is the simplicial

complex of all cliques of G. It is still an open problem to determine an explicit formula for

the regularity of binomial edge ideals in terms of the combinatorics of the graph.

Other important invariants, strictly related to the regularity, which are provided by

the graded finite free resolution are the extremal Betti numbers of JG. Let M be a finitely

graded S-module. A Betti number βi,i+j(M) 6= 0 is called extremal if βk,k+` = 0 for all pairs

(k, `) 6= (i, j), with k ≥ i, ` ≥ j. A nice property of the extremal Betti numbers is that M

has a unique extremal Betti number if and only if βp,p+r(M) 6= 0, where p = proj dim M

and r = reg M . Over the last few years, extremal Betti numbers have been studied by

different researchers, also motivated by Ene, Hibi, and Herzog’s conjecture ([21], [35]) on the
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equality of the extremal Betti numbers of JG and in<(JG). Some works in this direction are

[3], [14], and [17], but the question has been completely and positively solved by Conca and

Varbaro in [10]. For some classes of graphs, the extremal Betti numbers of JG are explicitly

provided, for instance by Dokuyucu, in [17], and by Hoang, in [38]. In [35], Herzog and

Rinaldo compute one of the distinguished extremal Betti numbers of the binomial edge

ideal of a block graph and classify all block graphs admitting precisely one extremal Betti

number, by listing the forbidden induced subgraphs (which are 4 in total). A natural lower

bound for the regularity of any block graph arises from these results. At the same time,

Jayanthan et al in [42] and in [43] obtain a related result for trees, a subclass of block

graphs.

Inspired by the results in [35], we define a new class of graphs, the flower graphs

(see Definition 3.1.11), for which we compute the superextremal Betti numbers and the

regularity. As a consequence, we then obtain new lower bounds for the regularity of any

block graph (see Theorem 3.1.15 and Corollary 3.1.17). All these facts have been exploited

by Kumar, in a very recent work [46], to classify all generalized block graphs that admit

a unique extremal Betti number, where generalized block graphs are the generalization

of block graphs and were introduced in [45]. Moreover, he proves that the Castelnuovo-

Mumford regularity of binomial edge ideal of a generalized block graph is bounded below

by m(G) + 1, where m(G) is the number of minimal cutset.

Finally, in Subsection 3.1.4, we state one of the main results of this part. Indeed,

we provide an efficient method to compute the Castelnuovo-Mumford regularity of any

binomial edge ideal of block graphs (see Theorem 3.1.20) by means of a unique block graph

traversal.

In Section 3.2, we study the extremal Betti numbers for binomial edge ideals of some

classes of Cohen-Macaualy graphs: cone, bipartite and fan graphs. In general, it is hard to

identify Cohen–Macaulay binomial edge ideals. A full classification of such ideals seems to

be impossible. Cone graphs were introduced and investigated by Rauf and Rinaldo in [58].

They construct Cohen-Macaulay graphs by means of the formation of cones: connecting

all the vertices of two disjoint Cohen-Macaulay graphs to a new vertex, the resulting graph

is Cohen-Macaulay. For these graphs, we give the regularity and also the Cohen-Macaulay
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type (see Lemma 3.2.4 and Proposition 3.2.5). Bipartite and fan graphs are studied by

Bolognini, Macchia and Strazzanti in [4]. They classify the bipartite graphs whose bino-

mial edge ideal is Cohen-Macaulay. In particular, they present a family of bipartite graphs

Fm whose binomial edge ideal is Cohen-Macaulay, and they prove that, if G is connected

and bipartite, then JG is Cohen-Macaulay if and only if G can be obtained recursively by

gluing a finite number of graphs of the form Fm via two operations. In the same article,

they describe a new family of Cohen-Macaulay binomial edge ideals associated with non-

bipartite graphs, the fan graphs. For both these families, in [41], Jayanthan and Kumar

compute a precise expression for the regularity. In Subsection 3.2.3, we provide the unique

extremal Betti number of the binomial edge ideal of Cohen-Macaulay bipartite and fan

graphs. In addition, we exploit the unique extremal Betti number of S/JFm to describe

completely its Hilbert-Poincaré series.

The other class of ideals generated by some 2-minors, that we will consider in this

work, is that of polyomino ideals. Polyominoes are two-dimensional objects obtained by

joining edge by edge squares of the same size. They are studied from the point of view

of combinatorics, e.g. in tiling problems of the plane, as well as from the point of view

of commutative algebra, associating binomial ideals to polyominoes. The latter were first

introduced by Qureshi in [56]. An inner interval of a polyomino P is an interval [a, b] ⊂ N2

such that all the cells of [a, b] belong to P , as well. Given an inner interval [a, b] of P , an

inner 2-minor of P is the binomial xaxb − xcxd ∈ S = K[xv|v is a corner of P ], where c

and d are the other two corners of [a, b]. The polyomino ideal of P is the binomial ideal of

S generated by all the inner 2-minors of P .

Two pending and of interest questions regarding polyomino ideals are to classify those

that are prime and to prove if they are radical ideals. In this work, we focus on the first

question. We said that a polyomino is prime if its polyomino ideal is prime. In [33],

[34] and [57], the authors prove that simple polyominoes are prime. Roughly speaking, a

simple polyomino is a polyomino without holes. Whereas, polyominoes having one or more

holes are called multiply connected polyominoes, using the terminology adopted in [25], an

introductory book on polyominoes.
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In general, giving a complete characterization of the primality of multiply connected

polyomino ideals does not seem to be so easy. A family of prime polyominoes obtained by

removing a convex polyomino by a given rectangle has been showed in [37] and [64].

In Section 4.1, we give a necessary condition for the primality of the polyomino ideal.

This condition is related to a sequence of inner intervals contained in the polyomino, called

a zig-zag walk (see Definition 4.1.2). In particular, we prove that if the coordinate ring

K[P ] = S/IP is a domain then P should have no zig-zag walks (see Proposition 4.1.5). We

conjecture that this is also a sufficient condition for K[P ] to be a domain. We verify this

conjecture computationally for all the multiply connected polyominoes with at most 14

cells. In support of our conjecture, we define a new infinite family of polyominoes, called

grid polyominoes, that are obtained by removing inner intervals from a given rectangle in

a way that avoids the existence of zig-zag walks. By using a Gröbner basis technique and

lattice ideals, we prove that grid polyominoes are prime (see Theorem 4.2.9).

Moreover, we present a toric ideal associated with a polyomino, generalizing Shikama’s

definition in [64]. This toric ideal contains the polyomino ideal (see Proposition 4.1.1).

Moreover, if the polyomino contains a zig-zag walk, the binomial associated with the zig-

zag walk belongs to the toric ideal and the above inclusion is strict.

This thesis is organized as follows:

• Chapter 1 and 2 are both devoted to introducing all the definitions, notions, and

well-known results that will be used in the other chapters. In particular, we briefly

recall classical objects in commutative algebra, such as Gröbner basis, Krull dimen-

sion, depth, and the minimal graded free resolution of a module, together with some

homological invariants related to it. We introduce the binomial ideals, including ide-

als generated by some 2-minors, and we focus on the presentation of binomial edge

ideals and polyomino ideals. Moreover, we summarize basic terminologies arising

from graph theory.

• Chapter 3 and 4 contain all and only the original results of this dissertation. In
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Chapter 3, we will study Krull dimension, regularity and Betti numbers of binomial

edge ideals of some classes of graphs. Whereas, in Chapter 4, we will investigate the

primality of polyomino ideals.
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Chapter 1

PRELIMINARIES

1.1 BASIC COMMUTATIVE ALGEBRA

In this section, we recall basis concepts from commutative algebra which are relevant

for the subjects treated in the later chapters. We begin with a review on Krull dimension,

regular sequences and depth of a module. We then describe the relationship, known as

Auslander–Buchsbaum formula, between the depth of a graded S-module M and its projec-

tive dimension, where S is a polynomial ring, and study in more detail the finite minimal

graded free S-resolution of M. The regularity and the graded Betti numbers of M will be

defined via this resolution.

Throughout this dissertation all rings are considered to be commutative and with

unity. For further detail on the results presented in this section, we refer the reader to

classical books in commutative algebra, see [1], [5], [12], [18], [20], [29], and [31].

1.1.1 Dimension, regular sequences and depth

Let R be a ring and I ⊂ R be an ideal of R. We denote by Spec(R) the spectrum of

R, that is the set of all prime ideals of R, and by Min(R) the set of all the minimal prime

ideals of R. Let p ∈ Spec(R). The height of p, denoted by height p, is the supremum of

lengths of chains of prime ideals descending from p. Whereas, the height of any ideal I ⊆ R

is defined as follows

height I = min{height p | p ∈ Spec(R) and I ⊂ p}.

The Krull dimension of R, denoted by dimR, is defined as

dimR = sup{height p | p ∈ Spec(R)}.

In general, it holds dimR/I + height I ≤ dimR. The Krull dimension of an R-module M

is defined as the maximal length of the chains of ideals p ∈ Spec(R) such that Mp 6= 0, or,

equivalently,

dimM = dim(R/AnnR(M)),
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where AnnR(M) = {r ∈ R | for all m ∈ M, rm = 0} is the annihilator of M . Another

equivalent definition of the Krull dimension of a graded module M can be given by means

of its Hilbert series, as we will show afterwards.

Examples 1.1.1 (a) Let S = K[x1, . . . , xn] be the polynomial over a field K with n

indeterminates. The following

(x1, . . . , xn) ⊃ (x1, . . . , xn−1) ⊃ · · · ⊃ (x1) ⊃ (0)

is a decreasing sequence of prime ideals, then dimS ≥ n. Actually, no prime ideals

chain of greater length exists, and the Krull dimension of S is exactly n (see Theorem

[18, Corollary 10.13]).

(b) Let S = K[x1, x2, x3], and consider the prime ideals p0 = (x1) and p1 = (x2, x3) of S.

Let I = p0 ∩ p1 ⊂ S. Since height p0 = 1 and height p1 = 2, it follows height I = 1.

A graded ring is a ring R together with a family (Ri)i∈Z of K-vector spaces, such that

R = ⊕∞
i=0Ri, R0 = K, and RiRj ⊆ Ri+j for all i, j ∈ Z. A graded ring R is standard graded

if R = K[R1]. The simplest example of standard graded ring is given by the polynomial

ring over K in the indeterminate x1, . . . , xn graded by 1.

A graded R-module is an R-module M together with a family (Mi)i∈Z of K-vector

spaces and such that M = ⊕
i∈ZMi, with RiMj ⊂Mi+j for all i, j ∈ Z. Thus each Mi is a

K-module. An element x of M is homogeneous (of degree i) if x ∈ Mi for some integer i,

and we write deg x = i. Any element y ∈ M has a unique presentation y = ∑
i yi, where

yi ∈Mi for all i ∈ Z, and all but a finite number of the yi are 0. The nonzero components

yi are called the homogeneous components of y.

Given a graded R-module M and an integer a, the graded R-module M(a) shifted by

a is the R-module M equipped with the new grading M(a)j = Ma+j for all j ∈ Z.

The following objects are relevant examples of graded rings. An ideal I ⊂ R is called

a graded ideal, if I = ⊕
j∈Z Ij, where Ij = I ∩ Rj for all j ∈ Z. An ideal I ⊂ R is graded if

and only if I is generated by homogeneous elements of R if and only if for f ∈ I, all the

homogeneous components of f also belong to I.
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Example 1.1.2 The polynomial ring S = K[x1, . . . , xn] can be graded by assigning to

xi the degree ai ∈ N>0. Let n = 3, and a1 = 1, a2 = 3, a3 = 4. Then the polynomial

f = x1x2 − x3 is homogeneous of degree 4. If Si denotes the set of all monomials of S of

degree i, then S inherits a structure of Z-graded ring, and I = (f) is a graded ideal of S.

From now on, our general assumption is that S denotes the standard graded poly-

nomial ring K[x1, . . . , xn] in n indeterminates over a field K, m = (x1, . . . , xn) the graded

maximal ideal of S, and M a finitely generated graded S-module.

Definition 1.1.3 A sequence f = f1, . . . , fm ∈ m of homogeneous elements of S is called an

M-regular sequence or simply M-sequence, if fi is a nonzerodivisor on M/(f1, . . . , fi−1)M

for all i = 1, . . . , n. The maximal possible length of an M -sequence is called the depth of

M , denoted depth M .

Examples 1.1.4 (a) The typical example of a regular sequence of S is the sequence of

the indeterminates x1, . . . , xn.

(b) Let n = 4, and M = K[x1, . . . , x4]/(x2(x4 − x1)). The sequence x1, x2x3 − x2
4 is an

M -regular sequence.

Under our general assumption, any permutation of a regular sequence is regular. In

general, it holds depth M ≤ dimM . A relevant class of modules are those for which it

holds the equality.

Definition 1.1.5 An S-module M is called Cohen-Macaulay if

depth M = dimM.

An important property of a Cohen–Macaulay module is that it has no embedded

prime ideal. Moreover, all minimal prime ideals have the same height. Rings with this

property are called unmixed. On the other hand, an unmixed module need not to be

Cohen–Macaulay, as the following example shows.

Example 1.1.6 Let S = K[x1, x2, x3, x4] and I = (x1, x2) ∩ (x3, x4) ⊂ S. S/I is unmixed

but is not Cohen-Macaulay, since depth S/I = 1 but dimS/I = 2.
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The following result summarizes two fundamental properties of Cohen-Macaulay rings.

Theorem 1.1.7. The following holds:

1. If R be a Cohen-Macaulay ring, then height I + dimR/I = dimR, for any graded

ideal I.

2. Let f be a regular R-sequence. R is Cohen-Macaulay if and only if R/(f) is Cohen-

Macaulay.

1.1.2 Free resolution, Castelnuovo-Mumford regularity and Hilbert function

A complex F of S-modules is a sequence of modules Fi and maps ϕi : Fi → Fi−1 such

that, for all i, it holds ϕi−1 ◦ϕi = 0. The i-th homology of F, denoted Hi(F), is the module

Hi(F) = kerϕi/Im ϕi+1.

A free S-module is a module F which is a direct sum of modules of the form S(d), for some

d ∈ Z. A free resolution of an S-module M is a complex

F : · · · → Fi
ϕi−→ Fi−1 → · · · → F1

ϕ1−→ F0
ϕ0−→M → 0

of free S-modules Fi such that Hi(F) = 0 for all i 6= 0, and H0(F) ∼= M . If there exists an

integer ` > 0 such that F`+1 = 0 and Fi 6= 0 for all 0 < i < `, then we say that F is a finite

free resolution of length `.

A finitely generated graded free S-module is a module F which admits a finite

basis of homogeneous elements. If the basis elements are of degree a1, . . . , ar, then

F ∼=
⊕r
j=1 S(−aj).

Theorem 1.1.8 (Hilbert syzygy theorem). Any finitely generated graded S-module admits

a finite graded free resolution of length < n, by finitely generated free modules.

A graded free S-resolution of M is a free resolution F of M , where M is a graded

S-module, the Fi are graded free modules, and the maps are homogeneous maps of degree

0, that is ϕi((Fi)n) ⊂ (Fi−1)n. Such a resolution cannot be unique, since it depends on the

choice of the basis of M , and, consequently, of the modules Fi. A graded free S-resolution
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of M is called minimal if Im ϕi ⊂ mFi−1. The minimal graded free S-resolutions F of M

is, due to Hilbert syzygy theorem, of length < n, and is unique, up to isomorphism. The

latter implies that the number of generators of each degree required for the free modules

Fi depends only on M , and F can be rewritten in the following form

F : · · · →
⊕
j

S(−j)βi,j → · · · →
⊕
j

S(−j)β1,j →
⊕
j

S(−j)β0,j →M → 0.

The numbers βi,j are called the graded Betti numbers of M and they are denoted βi,j(M).

Construction 1.1.9 LetM be a graded S-module. Choose a homogeneous minimal system

of generators g1, . . . , gt of M with deg gi = di. Define F0 = ⊕t
i=1 S(−di) with homogeneous

basis f1, . . . , ft and deg fi = di. The map fi 7→ gi induces a surjective homogeneous map

ϕ0 from F0 to M . The kernel K0 of ϕo is again a finitely graded S-module. Choose a

homogeneous minimal system of generators g′1, . . . , g′t of K0 with deg g′i = d′i. Set F1 =⊕t′

i=1 S(−d′i) with homogeneous basis f ′1, . . . , f ′t and deg f ′i = d′i. Define ϕ1 : F1 → F0 by

ϕ1(f ′i) = g′i. By repeating this procedure, one gets a graded free resolution F of M . Since,

for all i ≥ 0, one has ϕi+1(Fi+1) ⊆ mFi, F is a minimal graded free resolution of M .

Example 1.1.10 Let S = K[x1, . . . , x4] and I = (g1, g2, g3), where g1 = x1x3 − x2
2, g2 =

x4x3 − x1x2, and g3 = x4x2 − x2
1. We now construct the minimal free resolution of S/I.

Let F0 = S. The kernel of the map ϕ0 : S → S/I is I, which is minimally generated by

g1, . . . , g3. So F1 = S(−2)3. The generator of I can be viewed as the 2 × 2 minors of the

2× 3-matrix:

M =

x4 x1 x2

x1 x2 x3

 .
One can show that the only relations among the 3 generators are

x4g1 − x1g2 + x2g3 = 0, and x1g1 − x2g2 + x3g3 = 0.

So F2 = S(−3)2. Since the map ϕ2 : F2 → F1 is injective, there are no further relations.

The minimal graded free resolution of S/I is thus

0→ S(−3)2 → S(−2)3 → S → S/I → 0.

12



Given a complex F of finitely generated free modules and a S-module N , then F⊗SN ,

N ⊗S F, HomS(F, N), and HomS(N,F) are still complexes with complex maps induced by

ϕ⊗SN , N ⊗S ϕ, HomS(ϕ,N), and HomS(N,ϕ), respectively. If F is a minimal graded free

resolution of M , it holds

TorSi (N,M) ∼= Hi(N ⊗ F),

where Tor stands for the derived functor Tor. This is a useful tool to compute the graded

Betti number of M , due to the following result:

Proposition 1.1.11. Let F be the minimal graded free resolution of M , then any minimal

set of homogeneous generators of Fi contains exactly dimK TorSi (K,M)j generators of degree

j. Consequently,

βi,j(M) = dimK TorSi (K,M)j.

Due to the Hilbert Syzygy Theorem and the previous proposition, it follows that

βi,j(M) = 0 for all i and j, with i > n. This means that there are only finitely many pairs

(i, j) for which βi,j(M) 6= 0.

The projective dimension of M , denoted proj dim M , is

p = proj dim M = max{i | βi,j(M) 6= 0},

and the Castelnuovo-Mumford regularity of M , denoted reg M , is

r = reg M = max{j − i | βi,j(M) 6= 0 for some i}.

Moreover, ifM is a Cohen-Macaulay module then the Cohen-Macaulay type ofM , denoted

CM-type(M), is

CM-type(M) =
∑
j

βp,p+j(M)

In the following, we briefly say regularity of M , instead of Castelnuovo-Mumford reg-

ularity of M . The (graded) Betti numbers of M are usually displayed by means of a table

called Betti diagram, as Table 1.1 shows.

13



0 · · · i · · · p

0 β0,0 · · · βi,i · · · βp,p
... ... · · · · · · · · · ...

j β0,j · · · βi,i+j · · · βp,p+j
... ... · · · · · · · · · ...

r β0,r · · · βi,i+r · · · βp,p+r

Table 1.1: Betti diagram.

Example 1.1.12 Let S/I be as in Example 1.1.10. Then the Betti numbers are β0,0 = 1,

β1,2 = 3, β2,3 = 2, and βi,j = 0 for all other (i, j).

0 1 2

0 1 - -

1 - 3 2

Therefore, proj dim S/I = 2, and reg S/I = 1.

A Betti number βi,i+j(M) 6= 0 is called extremal if βk,k+`(M) = 0 for all pairs (k, `) 6=

(i, j), with k ≥ i, ` ≥ j. In Table 1.2, the nonzero Betti numbers in the corners are the

extremal Betti numbers. M has a unique extremal Betti number, β̂(M), if and only if

βp,p+r(M) 6= 0.

By definition of projective dimension and regularity of M , there exist unique numbers

i and j such that βi,i+r(M) and βp,p+j(M) are extremal Betti numbers. We call them the

distinguished extremal Betti numbers of M . Let k be the maximal integer j such that

βi,j 6= 0 for some i. It is clear that βi,k(M) is an extremal Betti number for all i with

βi,k 6= 0, and that there is at least one such i. These Betti numbers are distinguished

by the fact that they are positioned on the diagonal {(i, k − i)|i = 0, . . . , k} in the Betti

diagram, and that all Betti numbers on the right lower side of the diagonal are zero. The

Betti numbers βi,k, for i = 0, . . . , k, are called superextremal, regardless of whether they are

zero or not. In Table 1.3, βi,m 6= 0 is one of the superextremal Betti numbers, the others

14



are on the same diagonal and are displayed using the symbol ∗. We refer the reader to [29,

Chapter 11] for further details.

0 1 · · · î · · · i · · · · · · p

0 β0,0 β1,1 · · · · · · · · · · · · · · · · · · βp,p
... ... ... · · · · · · · · · · · · · · · · · · ...

ĵ β0,ĵ β1,1+ĵ · · · · · · · · · · · · · · · · · · βp,p+ĵ 6= 0
... ... ... · · · · · · · · · · · · · · · · · · 0

j β0,j β1,1+j · · · · · · · · · βi,i+j 6= 0 0 · · · 0
... ... ... · · · · · · · · · 0 · · · · · · ...

r β0,r β1,1+r · · · βî,̂i+r 6= 0 0 0 · · · · · · 0

Table 1.2: Extremal Betti numbers.

0 · · · · · · i · · · · · · p

0 β0,0 · · · · · · · · · · · · ∗ 0
... ... · · · · · · · · · ∗ 0 ...

m-i β0,m−i · · · · · · βi,m 6= 0 0 · · · ...
... ... · · · ∗ 0 · · · · · · ...

r β0,r ∗ 0 · · · · · · · · · 0

Table 1.3: Superextremal Betti numbers.

Theorem 1.1.13 (Auslander-Buchsbaum). Let M be a finitely generated graded S-module.

Then

proj dim M + depth M = n.

If M is Cohen–Macaulay of dimension d, then the Auslander–Buchsbaum theorem

implies that proj dim M = n− d.
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Theorem 1.1.14. Let M be a finitely generated graded Cohen–Macaulay S-module. Then

M admits only one extremal Betti number which is β̂(M) = βp,p+r(M).

Sometimes we need to compare the regularity of modules in a short exact sequence.

Proposition 1.1.15. If 0 −→ A −→ B −→ C −→ 0 is a short exact sequence of graded

S-modules, then

1. reg A ≤ max{reg B, reg C + 1};

2. reg B ≤ max{reg A, reg C};

3. reg C ≤ max{reg A− 1, reg B};

An immediate consequence of the above proposition is that

reg A⊕B ≤ max{reg A, reg B}.

We finish this subsection with a review on the Hilbert function, a classical tool in

Commutative Algebra, that captures many useful numerical invariants. It plays an impor-

tant role in Algebraic Geometry as well, and it is becoming increasingly relevant also in

Computational Algebra.

The numerical function HM : Z → N with HM(i) = dimKMi is called the Hilbert

function of M . The formal Laurent series

HSM(t) =
∑
i∈Z

HM(i)ti

is called the Hilbert-Poincaré series of M . Due to the Hilbert-Serre’s theorem, the Hilbert-

Poincaré series is a rational function, that is HSM(t) = p(t)/(1 − t)n, where p(t) ∈ Q[t].

After cancellation, we obtain a presentation

HSM(t) = h(t)
(1− t)d , where h(t) ∈ Q[t] and h(1) 6= 0.

The number d is the Krull dimension of M . Let h(t) = ∑c
i=0 hit

i. The coefficient vector

(h0, h1, . . . , hc) is called the h-vector of M . The Hilbert function, and thus the Hilbert-

Poincaré series, is additive relatively to exact sequences: if 0 −→ A −→ B −→ C −→ 0 is

a short exact sequence of graded S-modules, then

HB(t) = HA(t) +HC(t), and HSB(t) = HSA(t) + HSC(t).
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By using the additivity of the Hilbert-Poincaré series, the polynomial p(t) is related

to the graded Betti numbers of M in the following way

p(t) =
∑
i,j

(−1)iβi,j(M)tj.

The degree of HSM as rational function, denoted a(M), that is a(M) = deg p(t) − n =

deg h(t)− d, is called a-invariant of M . It holds

a(M) ≤ reg M − depth M. (1.1)

The equality holds if M is Cohen-Macaulay. In this case, dimM = depth M , and

then deg h(t) = reg M .

Example 1.1.16 Let S = K[x1, x2, x3] be the standard graded polynomial ring and I =

(x2
1, x1x2, x1x3, x

3
3) ⊂ S. The Hilbert function of S/I is given by

HS/I(t) =


1, if t = 0;

3, if t ≥ 1.

In fact, for n = 2, the monomials of degree 2 in S/I are x2
2, x2x3, x

2
3, and for any degree

n ≥ 3, the monomials of degree n in S/I are xn2 , xn−1
2 x3, x

n−2
2 x2

3. It follows that the Hilbert-

Poincaré series is

HSS/I(t) =
∑
i≥0

3ti = 1 + 2t
1− t .

In this case, a(S/I) = 0. A free minimal graded resolution of S/I, computed using

Macaulay2 [27], looks like

0→ S(−4)→ S(−3)3 ⊕ S(−4)→ S(−2)3 ⊕ S(−3)→ S → S/I → 0,

and then the Betti table is

0 1 2 3

0 1 - - -

1 - 3 3 1

2 - 1 1 -
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Looking at the Betti table, we get reg S/I = 2 and proj dim S/I = 3. Since

dimS/I = 1, and by Auslander-Buchsbaum formula, depth S/I = 3 − proj dim S/I = 0,

S/I is not Cohen-Macaulay and, in particular, the inequality (1.1) is strict.

1.1.3 Gröbner Bases

The theory of Gröbner basis for polynomial rings was developed by Bruno Buchberger

in 1965. Thenceforth, Gröbner bases, together with initial ideals, provided new methods in

many different branches of mathematics. They have been used not only for computational

purposes but also to deduce theoretical results in commutative algebra and combinatorics.

In this subsection, we recall some definitions and relevant results about Gröbner basis.

Let S = K[x1, . . . , xn]. A monomial order on S is a total order < on the set of all

monomial of S, denoted by Mon S, such that

• 1 < m, for all m ∈ Mon S;

• if m1,m2 ∈ Mon S with m1 < m2, then m1m3 < m2m3 for all m3 ∈ Mon S.

If α = (α1, . . . , αn) ∈ Nn, then xα ∈ Mon S stands for the monomial xα1
1 · · ·xαn

n .

Examples 1.1.17 Let α = (α1, . . . , αn),β = (β1, . . . , βn) ∈ Nn, with α 6= β, and xα,xβ ∈

Mon S.

(i) The lexicographic order on S induced by x1 > x2 > · · · > xn, denoted <lex, is defined

as xα <lex xβ if the leftmost nonzero component of the vector α− β is negative.

(ii) The graded lexicographic order on S induced by x1 > x2 > · · · > xn, denoted <grlex,

is defined as xα <grlex xβ if either (i) ∑n
i=1 αi <

∑n
i=1 βi or (ii)

∑n
i=1 αi = ∑n

i=1 βi and

the leftmost nonzero component of the vector α− β is negative.

(iii) The graded reverse lexicographic order on S induced by x1 > x2 > · · · > xn, denoted

<grevlex, is defined as xα <grevlex xβ if either (i) ∑n
i=1 αi <

∑n
i=1 βi or (ii) ∑n

i=1 αi =∑n
i=1 βi and the rightmost nonzero component of the vector α− β is positive.

Let < be a fixed monomial order. Let f = ∑k
i=1 aixαi be a polynomial in S. The

nonzero monomials aixαi in f are called terms of f . The initial monomial of f , denoted
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in<(f), is the greatest term of f with respect to the monomial order <. The leading

coefficient, lc(f), of f is the coefficient of in<(f).

Let I ⊆ S be an ideal of S. The initial ideal of I, denoted in<(I), with respect to < is

in<(I) = (in<(f) | f ∈ I) .

In general, if I = (f1, . . . , fk) is an ideal of S, the initial ideal of I is not the ideal generated

by {in<(f1), . . . , in<(fk)}, as the following example shows.

Example 1.1.18 Let S = K[x1, x2, x3], and let < be the lexicographic order with x1 > x2 >

x3. Let I = (f1, f2), with f1 = x3
1− x2, f2 = x2

1x2− x3. The polynomial f = x1x3− x2
2 ∈ I,

but in<(f) = x1x3 6∈ (in<(f1), in<(f2)) = (x3
1, x

2
1x2).

Let I be an ideal of S. A Gröbner basis of I with respect to < is a finite set of nonzero

polynomials G = {g1, . . . , gs} ⊂ I such that

in<(I) = (in<(gi) | gi ∈ G) .

A Gröbner basis of I always exists because the monomial ideal in<(I) is finitely generated.

Theorem 1.1.19. Let I be an ideal of S and G = {g1, . . . , gs} be a Gröbner basis of I with

respect to a monomial order <. Then I = (g1, . . . , gs), that is G is a system of generators

of I.

As Example 1.1.18 shows, the converse of Theorem 1.1.19 is not true: in general, a

system of generators of I is not a Gröbner basis of I. From now on, let < be a fixed

monomial order on S and we omit to say "with respect to <", if there is no danger of

confusion. The division algorithm plays a fundamental role in theory of Gröbner basis.

Theorem 1.1.20 (The division algorithm). Let g1 . . . , gs, f ∈ S be nonzero polynomials.

There exist f1, . . . , fs, f
′ ∈ S such that

f = f1g1 + f2g2 + · · ·+ fsgs + f ′ (1.2)

and the following conditions are satisfied:
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1. If f ′ 6= 0, then none of the initial monomials in<(gi), with 1 ≤ i ≤ s, divides any

term of f ′.

2. If fi 6= 0, then, for all 1 ≤ i ≤ s, in<(f) ≥ in<(figi)

The right-hand side of the Equation (1.2) is said to be a standard expression of f

with respect to g1, . . . , gs, and f ′ a remainder of f with respect to g1, . . . , gs. One also says

that f reduces to f ′ with respect to g1, . . . , gs. In general, the standard expression, and

consequently the remainder, is not unique. However, if G = {g1, . . . , gs} is a Gröbner basis

of an ideal I, then any nonzero polynomial f ∈ S has a unique remainder with respect to

G. Moreover, f reduces to 0 with respect to G if and only if f ∈ I.

The highlights of the theory of Gröbner bases must be Buchberger’s criterion and

Buchberger’s algorithm. Starting from a system of generators of an ideal, the algorithm

supplies the effective procedure to compute a Gröbner basis of the ideal. The discovery of

the algorithm is one of the most relevant achievements of Buchberger.

Let f, g ∈ S. The polynomial

S(f, g) = lcm(in<(f), in<(g))
lc(f)in<(f) f − lcm(in<(f), in<(g))

lc(g)in<(g) g

is called the S-polynomial of f and g.

Theorem 1.1.21 (Buchberger’s criterion). Let I be a nonzero ideal of S and G =

{g1, . . . , gs} a system of generators of I. Then G is a Gröbner basis if and only if for

all i 6= j, S(gi, gj) reduced to 0 with respect to g1, . . . , gs.

The Buchberger’s algorithm is an immediate consequence of the Theorem 1.1.21, and

it works as follows:

Let G be a system of generators of a nonzero ideal I of S.

• Step 1: For each pair of distinct polynomials in G compute the S-polynomial and a

remainder of it.

• Step 2: If all S-polynomials reduce to 0, then the algorithm ends and G is a Gröbner

basis of I. Otherwise, join one of the nonzero remainders to the system of generators,

call this new set G and go back to Step 1.
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The Buchberger’s algorithm terminates after a finite number of steps, since any mono-

mial ideal is finitely generated. The following result can be used to shorten the calculation

of Gröbner basis significanlty.

Lemma 1.1.22. Let f and g be nonzero polynomials and suppose that in<(f) and in<(g)

are relatively prime, that is lcm(in<(f), in<(g)) = in<(f)in<(g). Then S(f, g) reduces to 0

with respect to f, g.

Gröbner basis cannot be unique. In fact, if G = {g1, . . . , gs} is a Gröbner basis of I,

then any finite subset of nonzero polynomials of I which contains G is again a Gröbner

basis of I. By imposing more constraints on the possible generators it is possible to define

minimal and then reduced Gröbner bases.

A minimal Gröbner basis of I is a Gröbner basis G = {g1, . . . , gs} of I such that

(i) lc(gi) = 1, for all 1 ≤ i ≤ s,

(ii) {in<(g1), . . . , in<(gs)} is a minimal set of generators of in<(I).

A minimal Gröbner basis exists, but may be not unique. For example, if {g1, g2} is a

minimal Gröbner basis of I with in<(g1) < in<(g2), then {g1, g2 + g1} is again a minimal

Gröbner basis of I.

A reduced Gröbner basis of I is a Gröbner basis G = {g1, . . . , gs} of I such that

(i) lc(gi) = 1, for all 1 ≤ i ≤ s,

(ii) if i 6= j, then none of the terms of gj is divided by in<(gi).

A reduced Gröbner basis is a minimal Gröbner basis. However, the converse is false.

A reduced Gröbner basis exists and is uniquely determined: the importance of reduced

Gröbner bases lies in their uniqueness.

It is worth to underline that the Gröbner basis depends on the chosen monomial order,

as the following simple example shows

Example 1.1.23 Let S = K[x1, x2, x3, x4] and I = (f1, f2), where f1 = x1x4 − x2 and

f2 = x3 − x2
4.

Fix <lex induced by x1 > · · · > x4. With respect to <lex, the initial monomials of f1

and f2, that are x1x4 and x3 respectively, are relatively prime. By Lemma 1.1.22, {f1, f2}

is a (reduced) Gröbner basis of I.
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Now, fix <grevlex induced by x1 > · · · > x4. With respect to <grevlex, in<(f1) = x1x4

and in<(f2) = x2
4. Performing the first step of the Buchberger’s algorithm, one gets

S(f1, f2) = −x4f1 − x1f2 = x2x4 − x1x3 = f3.

Since in<(f3) = x2x4 is relatively prime with in<(f1) and in<(f2), by Lemma 1.1.22,

{f1, f2, f3} is a (reduced) Gröbner basis of I.

We conclude this subsection furnishing a way to compute the reduced Gröbner basis

of an ideal quotient, in a specific case. We recall the definition of ideal quotients. If I is an

ideal of S and f is a polynomial in S, then the following two subsets of S are again ideals:

(I : f) = {g ∈ S | fg ∈ I},

(I : f∞) = {g ∈ S | f rg ∈ I for some r ∈ N}.

The second one is also called the saturation of I with respect to f .

Lemma 1.1.24. [67, Lemma 12.1] Fix the graded reverse lexicographic monomial order

induced by x1 > · · · > xn, and let G = {g1, . . . , gs} be the reduced Gröbner basis of a

homogeneous ideal I ⊂ S. Then the set

{gi ∈ G | xn does not divide gi} ∪ {gi/xn | gi ∈ G and xn divides gi}

is a Gröbner basis of (I : xn). A Gröbner basis of (J : x∞n ) is obtained by dividing each

element gi ∈ G by the highest power of xn that divides gi.

1.2 GRAPH THEORY

In this section, we summarize basic terminologies on finite graphs.

A undirected graph G is a pair (V,E), where V is a set whose elements are called

vertices, and E is a set of unordered pairs of vertices, whose elements are called edges. The

vertex set and the edge set of G are often denoted by V (G) and E(G), respectively.

If the edges are considered as ordered pairs of vertices, than G is called a directed

graph. A finite graph is a graph G with a finite vertex set. In this dissertation, we will

consider only finite undirected graphs, and we will briefly call them graphs.
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Let G and H be two graphs. H is called a subgraph of G if V (H) ⊂ V (G) and

E(H) ⊂ E(G). A subgraph H of G is called an induced subgraph if H contains all the

edges {u, v} ∈ E(G), with u, v ∈ V (H). In this case, H is said to be the subgraph induced

by V (H).

Two graphs G1 and G2 are isomorphic if there exists a bijective map φ from V (G1)

to V (G2) such that {u, v} ∈ E(G1) if and only if {φ(u), φ(v)} ∈ E(G2).

Given two graphs G1, G2, their intersection is the graph G1 ∩G2 such V (G1 ∩G2) =

V (G1) ∩ V (G2) and E(G1 ∩ G2) = E(G1) ∩ E(G2). Whereas, their union is the graph

G1 ∪G2 such V (G1 ∪G2) = V (G1) ∪ V (G2) and E(G1 ∪G2) = E(G1) ∪ E(G2).

If e = {u, v} ∈ E(G), with u, v ∈ V (G), we say that u and v are adjacent and the

edge e is incident with, or joins, u and v. The degree of v ∈ V (G), denoted deg(v), is the

number of edges incident with v. A vertex with degree zero is called an isolated vertex,

and a vertex with degree 1 is called a leaf of G.

Example 1.2.1 In Figure 1.1, the vertices v1 and v3 have degree 1, whereas deg(v2) = 2.

The vertex v4 is an isolated vertex.

v1

v2

v3 v4

Figure 1.1

A walk of length n in G is a sequence of vertices v0, . . . , vn ∈ V (G), such that for each

1 ≤ i ≤ n, {vi−1, vi} ∈ E(G). A path of length n, denoted Pn, is a walk of length n whose

vertices are all distinct.

Example 1.2.2 In Figure 1.2, some examples of paths are showed.
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P1 P2 P5

Figure 1.2: Paths.

We say that G is connected if for every pair of vertices u and v of G, there is a path

in G from u to V . Every graph G can be written as G = ∪ri=1Gi, where G1, . . . , Gr are the

maximal connected induced subgraphs of G, also called the connected component of G.

A cycle of length n, denoted Cn is a walk v0, . . . , vn, with n ≥ 3, vn = v0, and all the

vertices v0, . . . , vn−1 are distinct. A cycle is even (respectively, odd) if its length is even

(respectively, odd), that is, if it has an even (respectively, odd) number of vertices.

Example 1.2.3 In Figure 1.3, some examples of cycles are showed.

C3 C5

Figure 1.3: Cycles.

A chord of a cycle Cn in the graph G is an edge of G joining two non-adjacent vertices

of Cn. A graph is called chordal if every cycle of G of length greater than 3 has a chord in

G. Any induced subgraph of a chordal graph is chordal, as well.

Example 1.2.4 In Figure 1.4, it is displayed a chordal graph.
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Figure 1.4: A chordal graph.

The complete graph, denoted Kn, is the graph such that every pair of its n vertices is

adjacent.

Example 1.2.5 In Figure 1.5, some examples of complete graphs are showed.

K3 K5

Figure 1.5: Complete graphs.

A forest is a graph without cycles. A tree is a connected forest. A particular tree is a

graph consisting of three different edges that share a common vertex, and it is called claw,

see Figure 1.6.

Figure 1.6: Claw.

A graph G is bipartite if its vertex set V (G) can be partitioned into two disjoint subsets

A and B such that every edge of G has one vertex in A and one vertex in B. A graph G

is bipartite if and only if all the cycles of G are even.

25



Example 1.2.6 In Figure 1.7, it is showed an example of a bipartite graph.

Figure 1.7: A bipartite graph.

Let G be a graph and v 6∈ G. The cone of v on G, namely cone(v,G), is the graph

with vertices V (G) ∪ {v} and edges E(G) ∪ {{v, w} | w ∈ V (G)}.

Example 1.2.7 In Figure 1.8, an example of a cone graph is showed.

G

v

cone(v,G)

Figure 1.8: A cone graph.

Let G be a graph. A subset C of V (G) is called a clique of G if for all u, v ∈ C,

with u 6= v, one has {u, v} ∈ E(G). A maximal clique is a clique that cannot be extended

by including one more adjacent vertex. The clique degree of v, denoted by cdeg(v), is the

number of maximal cliques to which v belongs. A vertex v is called a free vertex of G if

cdeg(v) = 1, and is called an inner vertex of G if cdeg(v) > 1.

A finite simplicial complex ∆ is a collection of subsets of a finite set of vertices V such

that:

1. {v} ∈ ∆, for all v ∈ V ;
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2. H ∈ ∆ and G ⊂ H implies G ∈ ∆.

The clique complex ∆(G) of G is the simplicial complex of all its cliques. A clique C of

G is called face of ∆(G) and its dimension is given by |C| − 1. The maximal faces of ∆(G)

with respect to inclusion are called facets of ∆(G), and they are the maximal cliques of G.

The set of all the facets is denoted by F(∆(G)). The dimension of ∆(G) is the maximum

of the dimensions of all facets.

A set T ⊂ V (G) is called cutset of G if c(T \ {v}) < c(T ) for each v ∈ T , where c(T )

denotes the number of connected components induced by removing T from G. We denote

by C(G) the set of all cutsets of G. When T ∈ C(G) consists of one vertex v, v is called a

cutpoint.

A connected subgraph of G that has no cutpoint and is maximal with respect to this

property is a block. G is called block graph (or clique tree) if all its blocks are complete

graphs. One can see that a graph G is a block graph if and only if it is a chordal graph in

which every two maximal cliques have at most one vertex in common. Let G be a block

graph, an endblock of G is a block having at most one cutpoint.

Example 1.2.8 In Figure 1.9, it is showed an example of block graph. It consists of 11

blocks. The vertex v is an inner vertex, with cdeg(v) = 3. Whereas, the vertex w is a free

vertex. The block K4 is an endblock of the graph.

v w

Figure 1.9: A block graph
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A connected chordal graph is said to be a generalized block graph if for every Fi, Fj, Fk ∈

F(∆(G)), if Fi ∩ Fj ∩ Fk 6= ∅, then Fi ∩ Fj = Fi ∩ Fk = Fj ∩ Fk. One could see that all

block graphs are generalized block graphs.

Definition 1.2.9 A graph G is decomposable if exists a decomposition

G = G1 ∪G2 (1.3)

with V (G1) ∩ V (G2) = {v} such that v is a free vertex of G1 and G2. If G is not decom-

posable, we call it indecomposable. By a recursive decomposition (1.3) applied to each G1

and G2, after a finite number of steps we obtain

G = G1 ∪ · · · ∪Gr (1.4)

where G1, . . . , Gr are indecomposable and for 1 ≤ i < j ≤ r either V (Gi) ∩ V (Gj) = ∅ or

V (Gi) ∩ V (Gj) = {vij}, where vij is a free vertex of Gi and Gj. The decomposition (1.4)

is unique up to ordering and we say that G is decomposable into indecomposable graphs

G1, . . . , Gr.
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Chapter 2

BINOMIAL IDEALS

In this chapter, we introduce first the large class of binomial ideals. They are ideals

generated by binomials and their structure can be interpreted directly from their generators.

Since the early 1990s binomial ideals have been widely studied. In [20], a comprehensive

analysis of their algebraic properties is given. The study of binomial ideals is motivated by

the frequency with which they occur in interesting context, for instance, any toric variety

is defined by binomials. Moreover, they find application in an area of research, called

computational algebraic statistics, introduced first in [16]. Ideals generated by a subset

of 2-minors of a m × n-matrix of indeterminates and lattice ideals are other examples of

important classes of binomial ideals. Secondly, we present the two families of binomial

ideals that will be object of our study: binomial edge ideals and polyomino ideals. Both

of them may be viewed as ideals generated by a subset of 2-minors of a (2 × n)-matrix

of indeterminates. The former are ideals attached to a finite graph. The latter are ideals

attached to a polyomino. For both of them, definitions, preliminary and well-known results

on their algebraic properties arising from their combinatorial structure are given.

2.1 BINOMIAL, TORIC AND LATTICE IDEALS

In this section, we introduce binomial, toric and lattice ideals, and discuss some of

their properties.

Let S = K[x1, . . . , xn] be the polynomial ring over a field K. A binomial belonging to

S is a polynomial u− v, where u and v are monomials in S. A binomial ideal is an ideal of

S generated by binomials. Any binomial ideal is generated by a finite number of binomials.

One of the nice properties is the following

Proposition 2.1.1. [20, Proposition 1.1] Let I be a binomial ideal of S. The reduced

Gröbner basis of I with respect to an arbitrary monomial order consists of binomials.

There is no analogue of Proposition 2.1.1 for ideals generated by polynomials with more

than two terms. One immediate application of Proposition 2.1.1 is a test for binomiality.
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Corollary 2.1.2. [20, Corollary 1.2] Let < be a monomial order on S. An ideal I ⊂ S is

binomial if and only if the reduced Gröbner basis for I consists of binomials.

If I ⊂ S is a binomial ideal generated by the binomials f1, . . . , fr, any binomial

xα − xβ belonging to I can be written as linear combinations of the binomial generators

with coefficients which are monomials with unitary scalars:

xα − xβ =
s∑

k=1
(−1)ekxγkfik ,

where ek ∈ {0, 1}, γk ∈ Nn, 1 ≤ ik ≤ r, and γpfip 6= γqfiq , for all p 6= q. For a detailed

proof, see [31, Lemma 3.8].

Let T = K[t±1
1 , . . . , t±1

d ] be the Laurent polynomial ring over K in the variables

t1, . . . , td, and A ∈ Zd×n be a matrix with column vectors aj. We define a K-algebra

homomorphism

π : S −→ T with xj 7→ taj .

the image of π is the K-subalgebra K[ta1 , . . . , tan ] of T , denoted K[A] and called toric ring

of A. The kernel of π, denoted IA, is called toric ideal of A.

Given b = (b1, . . . , bn)t ∈ Zn, let fb ∈ S denote the polynomial defined by

fb = xb+ − xb− ,

where b+ denotes the vector obtained from b by replacing all negative components of b by

zero, and b− = −(b− b+).

Theorem 2.1.3. [31, Theorem 3.2] Any toric ideal is a binomial ideal. More precisely, let

A ∈ Zd×n. Then IA is generated by the binomials fb with b ∈ Zn and Ab = 0.

Example 2.1.4 Let

A =

1 2 1

0 1 3

 ∈ Z2×3.

The toric ring is K[A] = K[t1, t21t2, t1t32]. Since ker(A) = 〈(5,−3, 1)〉, we get that the toric

ideal is IA = (x5
1x3 − x3

2) ⊂ K[x1, x2, x3].
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It is clear that any toric ideal is a prime ideal. Actually, for the binomial ideals, it is

true also the converse.

Theorem 2.1.5. [31, Theorem 3.4] Let I ⊂ be a prime binomial ideal. Then I is a toric

ideal.

Now, we give another interpretation of toric ideals by means of lattice ideals. A lattice

L is a subgroup of Zn. In particular, L is a free abelian group of rank m ≤ n. The lattice

ideal of L, denoted IL, is the following binomial ideal in S given by

IL = (fb | b ∈ L) .

Any toric ideal is a lattice ideal. Indeed, if IA is a toric ideal, then, by Theorem 2.1.3,

IA is generated by the binomials fb with Ab = 0, that is IA = IL, with L = {b | Ab = 0}.

On the other hand, not all lattice ideal are toric ideals. One simple such example is the

ideal IL for L ⊂ Z2 with basis (2,−2)t. Here, IL = (x2
1 − x2

2) ∈ K[x1, x2]. If IL would be a

toric ideal it would be a prime ideal. But x2
1 − x2

2 = (x1 − x2)(x1 + x2), and so IL is not a

prime ideal.

We have the following general result:

Theorem 2.1.6. [31, Theorem 3.17] Let L ⊂ Zn be a lattice. The following conditions are

equivalent:

1. the abelian group Zn/L is torsionfree;

2. IL is a prime ideal.

The equivalent conditions hold if and only if IL is a toric ideal.

A lattice L ⊂ Zn is called saturated if for c ∈ Zn and a ∈ Z, ac ∈ L implies c ∈ L. This

is equivalent to saying there exists a d×n integral matrix A with rank A = d = n− rank L

and L = kerA ∩ Zn. The lattice ideal IL is prime if and only if L is a saturated lattice.

Let B = {b1, . . . , bm} be a basis of a lattice L ⊂ Zn. The ideal

IB = (fbi
| bi ∈ B)

is called the lattice basis ideal of L. In general, IB is strictly contained in IL.
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Example 2.1.7 Let A = (1, 2, 1) ∈ Z1×3. The toric ideal IA is the lattice ideal IL of the

lattice L ∈ Z3 with basis B = {(1,−1, 1), (0, 1,−2)}. Then IB = (x1x3 − x2, x2 − x2
3) ⊂

K[x1, x2, x3], while IL contains the binomial x1 − x3 which does not belong to IB.

Given a lattice L, the lattice ideal of L can be computed from the lattice basis ideal

of L by taking the saturation with respect to the product of all variables

Theorem 2.1.8. [31, Corollary 3.22] Let L ⊂ Zn be a lattice. Then,

IL =
(
IB :

(
n∏
i=1

xi

)∞)
.

Return to the Example 2.1.7. Applying Theorem 2.1.8, one gets IL = (x1−x3, x2−x2
3).

As last part of this section, we give a brief overview on some classes of ideals generated

by a subset of minors of a m× n-matrix of indeterminates. Let

Xmn =


x11 · · · · · · x1n
... · · · · · · ...

xm1 · · · · · · xmn


be an m × n-matrix of indeterminates xij which generate the polynomial ring K[xij | 1 ≤

i ≤ m, 1 ≤ j ≤ n]. The ideals generated by all k-minors of Xmn are called determinantal

ideals and they have been studied from many different points of view, for a comprehensive

exposition see [6] and [5, Chapter 7]. These ideals are Cohen–Macaulay prime ideals, and

their Krull dimension is (k−1)(m+n−k+ 1) [39]. Similar determinantal ideals generated

by even more general sets of minors have been also investigated. There are many variations

such as ladder determinantal ideals [9], and mixed ladder determinantal ideals [26] where

the ideals of (mixed) minors in a ladder-shape region in Xmn are studied. In both cases,

these ideals are prime and Cohen–Macaulay.

An adjacent k-minor of Xmn is the determinant of a submatrix of Xmn with row

indices r1, . . . , rk and column indices c1, . . . , ck where these indices are consecutive integers,

that is ri+1 = ri+1 and cj+1 = cj +1, for all 2 ≤ i, j ≤ k. Let Imn(k) be the ideal generated

by all adjacent k-minors of Xmn.
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As opposed to the ideal of all k-minors, the ideal Imn(k) is far from being a prime ideal.

This ideal first appeared in [15] for the case k = 2 where primary decompositions of I2n(2)

and I44(2) were given. The motivation for studying Imn(2) comes from its applications in

algebraic statistics. Imn(2) is a binomial ideal and is a very special instance of a lattice

basis ideal, and minimal primes of lattice basis ideals have been characterized in [40].

The ideal generated by all adjacent 2-minors of Xmn is a lattice basis ideal, and the

corresponding lattice ideal is just the ideal of all 2-minors of Xmn. For ideals generated by

any set of adjacent 2-minors of Xmn, holds the following

Proposition 2.1.9. [31, Proposition 8.1] Let C be any set of adjacent 2-minors of Xmn,

and IC be the ideal generated by all the elements in C . Then

(a) IC is a lattice basis ideal;

(b) IC is a prime ideal if and only if all xij are nonzerodivisors modulo IC .

2.2 BINOMIAL EDGE IDEALS

Binomial edge ideals were introduced in 2010 by Herzog, Hibi, Hreinsdóttir, Kahle and

Rauh in [30], and independently by Ohtani in [55]. They are a natural generalization of

the ideals of 2-minors of a 2×n-matrix: their generators are those 2-minors whose column

indices correspond to the edges of a graph. Related to binomial edge ideals are the ideals

of adjacent minors considered by Hoşten and Sullivant [40]. When the graph is a path,

binomial edge ideals may be interpreted as an ideal of adjacent minors. This particular

class of binomial edge ideals has also been considered by Diaconis, Eisenbud and Sturmfels

in [15], where they compute the primary decomposition of this ideal.

In these last years, many algebraic and homological properties of binomial edge ide-

als have been widely investigated, such as their minimal prime ideals, Krull dimension,

Castelnuovo-Mumford regularity and the projective dimension, see for instance [30], [21],

[61], [45], and [58].

In this section, we summarize the main results on binomial edge ideals, needed for

further sections.
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2.2.1 The reduced Gröbner basis and the minimal prime ideals of a binomial

edge ideal

Let S = K[{xi, yj}1≤i,j≤n] be the polynomial ring in 2n variables with coefficients in a

field K. Let G be a graph with vertex set [n] = {1, . . . , n} and edge set E(G). Define

fij = xiyj − xjyi ∈ S.

The binomial edge ideal of G, denoted JG, is the ideal generated by all the binomials fij,

for i < j and {i, j} ∈ E(G).

Example 2.2.1 Let G = K3 be the complete graph with V (G) = [3]. Then,

JG = (x1y2 − x2y1, x2y3 − x3y2, x1y3 − x3y1) ∈ K[x1, x2, x3, y1, y2, y3].

One can easily observe that S/JG is not a domain, in general. For example, if G = P2,

with E(G) = {{1, 2}, {2, 3}}, then y2(x1y3− x3y1) ∈ JG = (x1y2− x2y1, x2y3− x3y2), while

neither y2 nor x1y3 − x3y1 belongs to JG. S/JG is a domain if and only if G is a complete

graph on [n], that is JG is the determinantal ideal generated by all 2-minors of X2n.

Firstly, we give a necessary and sufficient condition for JG to having a quadratic

Gröbner basis.

Theorem 2.2.2. [30, Theorem 1.1] Let G be a graph on [n], and let < be the lexicographic

order on S = K[{xi, yj}1≤i,j≤n] induced by x1 > x2 > · · · > xn > y1 > y2 > · · · > yn. The

following conditions are equivalent:

1. the generators fij of JG form a quadratic Gröbner basis;

2. for all edges {i, j} and {k, `}, with i < j and k < `, one has {j, `} ∈ E(G) if i = k,

and {i, k} ∈ E(G) if j = `.

Condition 2. of Theorem 2.2.2 depends on the labeling of the vertices.

Example 2.2.3 Let G1, G2 be two paths of length 2, with E(G1) = {{1, 2}, {2, 3}} and

E(G2) = {{1, 2}, {1, 3}}. The graphs G1 and G2 are isomorphic, but G1 satisfies condition

2, while G2 does not, indeed {1, 2}, {1, 3} ∈ E(G2), but {2, 3} 6∈ E(G2).
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A graph G on [n] is closed with respect to the given labeling of the vertices, if G satisfies

condition 2. of Theorem 2.2.2. A graph G with |V (G)| = n, is closed, if its vertices can

be labeled by the integer 1, 2, . . . , n such that G is closed with respect to this labeling. In

Theorem 2.2.2 the role of the lexicographic order on S is fundamental. In [13], the authors

prove that the existence of a quadratic Gröbner basis is not related to the lexicographic

order on S. Indeed, the closed graphs are the only graphs for which the binomial edge ideal

has a quadratic Gröbner basis with respect to some monomial order on S.

Theorem 2.2.4. [13, Theorem 3.4] Let G be a graph. The following are equivalent:

1. G is closed on [n];

2. JG has a quadratic Gröbner basis with respect to some monomial order on S.

To compute explicitly the reduced Gröbner basis of JG we need to introduce the

following concept. Let G be a graph on [n], and i, j ∈ V (G), with i < j. A path i =

i0, i1, . . . , ir = j from i to j is called admissible if

(i) ik 6= i`, for k 6= `;

(ii) for each k = 1, . . . , r − 1 one has either ik < i or ik > j;

(iii) for any proper subset {j1, . . . , js} of {i1, . . . , ir−1}, the sequence i, j1, . . . , js, j is not

a path.

Given an admissible path

π : i = i0, i1, . . . , ir = j

from i to j, we associate the monomial

uπ =
∏
ik>j

xik

∏
i`<j

yi`

 .
Example 2.2.5 Let G be the graph in Figure 2.1. An admissible path from 1 and 3 is

π : 1, 4, 5, 3 and uπ = x4x5, an admissible path from 1 and 4 is π′ : 1, 5, 4 and uπ′ = x5, an

admissible path from 2 and 5 is π′′ : 2, 1, 5 and uπ′′ = y1, and an admissible path from 3 to

5 is π′′′ : 3, 2, 1, 5 and uπ′′′ = y1y2. There is no other admissible path of G, except for the

edges of G.
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1 5

2 4

3

Figure 2.1

Theorem 2.2.6. [30, Theorem 2.1] Let G be a graph on [n]. Let < be the lexicographic

order on S induced by x1 > x2 > · · · > xn > y1 > y2 > · · · > yn. The set of binomials

G =
⋃
i<j

{uπfij | π is an admissible path from i to j}

is a reduced Gröbner basis of JG.

Return to Example 2.2.5. The reduced Gröbner basis of JG is

G = {f1,2, f1,5, f2,3, f2,4, f3,4, f4,5, uπf1,3, uπ′f1,4, uπ′′f2,5, uπ′′′f3,5}.

As an immediate consequence of Theorem 2.2.6 and since in<(JG) is a square-free monomial

ideal, one gets

Corollary 2.2.7. [30, Corollary 2.2] Let G be a graph on [n]. Then, JG is a radical ideal.

It follows that JG is the intersection of its minimal prime ideals. We want to determine

such prime ideals. We denote by C(G) the set of all cutsets of G. Let T ∈ C(G) and define

PT (G) =
(⋃
i∈T
{xi, yi}, JG̃1

, . . . , JG̃c(T )

)
⊆ S

where G1, . . . , Gc(T ) are the connected components induced by removing T from G, and

G̃i, for i = 1, . . . , c(T ), denotes the complete graph on V (Gi). Obviously, PT (G) is a prime

ideal. In fact, each JG̃j
is the ideal of 2-minors of a generic 2×nj-matrix, with nj = |V (Gj)|.

Since all the prime ideals JG̃j
, as well as the prime ideals (⋃i∈T{xi, yi}) are prime ideals in

pairwise different sets of variables, PT (G) is a prime ideal, too.
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Lemma 2.2.8. [30, Lemma 3.1] Let G be a connected graph on [n] and T ∈ C(G). Then,

PT (G) is a prime ideal of height n− c(T ) + |T |.

Theorem 2.2.9. [30, Theorem 3.2, Corollary 3.9] Let G be a connected graph on [n] and

T ∈ C(G). Then, PT (G) is a minimal prime ideal of JG, and

JG =
⋂

T∈C(G)
PT (G). (2.1)

It follows that JG is prime if and only if each connected component of G is a complete

graph. Moreover, JG is unmixed if and only if, for all T ∈ C(G), one has c(T ) = |T | + 1.

Lemma 2.2.8 and Theorem 2.2.9 yield a way to compute the Krull dimension of JG.

Corollary 2.2.10. Let G be a graph on [n]. Then,

dimS/JG = max
T∈C(G)

{n+ c(T )− |T |}. (2.2)

In particular, dimS/JG ≥ n+ c, where c is the number of connected components of G.

Let G be a graph on [n] with c connected components. Since any Cohen-Macaulay

ideal is unmixed, if JG is Cohen-Macaulay, then dim(S/JG) = n+ c.

Example 2.2.11 Let G be the graph as in Figure 2.2.

1 2

3

4

5

6 7

Figure 2.2

The set of all the cutsets of G is C(G) = {∅, {2}, {6}, {2, 6}, {3, 5}, {2, 4, 6}}. For any

T ∈ C(G), one gets n + c(T ) − |T | = 8, that is dimS/JG = 8 and, in particular, JG is

unmixed. But, one can verify that JG is not Cohen-Macaulay.

Proposition 2.2.12. [60, Corollary 1.1], [4, Remark 3.1] Let G be a graph and u ∈ V (G)

be an inner vertex of G. Then,

JG = JG′ ∩Qu,
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where G′ is the graph obtained from G by connecting all the vertices adjacent to u, and

Qv = ⋂
T∈C(G),u∈T PT (G). Moreover, if u is a cutpoint of G, then

JG = JG′ ∩ ((xu, yu) + JG′′), (2.3)

where G′′ is the graph obtained from G by removing u.

The decomposition (2.3) will be extensively exploited to prove almost all the results

in Chapter 3. For this reason, we introduce the following

Set-up 2.2.13 Let G be a graph on [n] and u ∈ V (G) a cutpoint of G. We denote by

G′ the graph obtained from G by connecting all the vertices adjacent to u,

G′′ the graph obtained from G by removing u,

H the graph obtained from G′ by removing u.

Remark 2.2.14 Using the notation introduced in Set-up 2.2.13, since JG′ + ((xu, yu) +

JG′′) = ((xu, yu) + JH), the decomposition (2.3) of JG leads to the short exact sequence

0 −→ S/JG −→ S/JG′ ⊕ S/((xu, yu) + JG′′) −→ S/((xu, yu) + JH) −→ 0. (2.4)

From (2.4), we get the following long exact sequence of Tor modules

· · · → Ti+1,i+1+(j−1)(S/((xu, yu) + JH))→ Ti,i+j(S/JG)→

Ti,i+j(S/JG′)⊕ Ti,i+j(S/((xu, yu) + JG′′))→ Ti,i+j(S/((xu, yu) + JH))→ · · ·
(2.5)

where T Si,i+j(M) stands for TorSi,i+j(M,K) for any S-module M , and S is omitted if it is

clear from the context.

2.2.2 On the regularity of binomial edge ideals

Before introducing the results on the regularity of the binomial edge ideals, we state

the following result on the depth of the binomial edge ideals of chordal graphs.

Theorem 2.2.15. [21, Theorem 1.1] Let G be a chordal graph on [n] with the property that

any two distinct maximal cliques intersect in at most one vertex. Then depth S/JG = n+c,
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where c is the number of connected components of G. Moreover, the following conditions

are equivalent:

1. JG is unmixed;

2. JG is Cohen-Macaulay;

3. each vertex of G is the intersection of at most two maximal cliques.

Note that the class of graphs in Theorem 2.2.15 are exactly the block graphs.

Our next goal is to present lower and an upper bounds for the regularity of binomial

edge ideals appeared in [52]. Even if several results have been found for particular classes of

binomial edge ideals, as, for instance, closed graphs, here we state only general results. Let

G1, . . . , Gr be the connected components of G. If Si = K[{xj, yj}j∈V (Gi)], for i = 1, . . . , r,

then S/JG ∼=
⊗r
i=1 Si/JGi

. This equality shows that it is enough to consider connected

graphs. Whereas, the following result suggests considering indecomposable graphs.

Lemma 2.2.16. [42, Theorem 3.1] Let G be decomposable into G1, . . . , Gr. Then,

reg S/JG =
r∑
i=1

reg S/JGi
.

By comparing the Betti numbers of JG and JH , when H is any induced subgraph of

G, we obtain a lower bound for the regularity of G.

Lemma 2.2.17. [52, Corollary 2.2] Let G be a graph on [n] and let H be an induced

subgraph of G. Then, βi,j(S/JG) ≥ βi,j(S/JH), for all i, j.

An immediate consequence is the following:

Corollary 2.2.18. Let G be a graph on [n] and let H be an induced subgraph of G. Then,

reg (S/JG) ≥ reg (S/JH).

In [52], a lower and upper bound for the regularity of a generic binomial edge ideal is

given. Only for some classes of graphs, a precise formula for the regularity is known, for

instance, for closed graphs and Cohen-Macaulay binomial edge ideals of bipartite graphs.

In [61] and [63], Saeedi Madani and Kiani characterize all graphs whose binomial edge

ideals, as well as their initial ideals, have regularity 2 and 3.

39



Theorem 2.2.19. [52, Theorem 1.1] Let G be a connected graph on [n]. Then,

` ≤ reg S/JG ≤ n− 1,

where ` is the length of the longest induced path of G.

While drawing up this thesis, a new upper bound has been proved by Ene, Rinaldo,

and Terai in [22].

Theorem 2.2.20. [22, Theorem 2.1] Let G be a connected graph on [n]. Then,

reg S/JG ≤ n− dim ∆(G),

where ∆(G) is the clique complex of G.

If G is a closed graph, the lower bound in Theorem 2.2.19 is reached, and in particular

it holds reg S/JG = reg S/in<(JG) = `.

Example 2.2.21 Both inequalities in Theorem 2.2.19 could be strict, indeed consider the

graph G in Figure 2.3. G has 6 vertices, the length of the longest induced path of G is 3

but, using Macaulay2 [27], one gets reg S/JG = 4. It follows 3 < reg S/JG < 5.

Figure 2.3

Due to Theorem 2.2.19, if the binomial edge ideal of a connected graph has regularity

equal to 2, then it is a complete graph. Actually, it is true also the converse.

Proposition 2.2.22. Let G be a connected graph on [n]. Then, reg S/JG = 1 if and only

if G is a complete graph.

The upper bound for regularity in Theorem 2.2.19 is reached only for path graph. It

was conjectured by Matsuda and Murai in [52], and settled in affirmative by Kiani and

Saeedi Madani in [45].
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Theorem 2.2.23. [45, Theorem 3.4] Let G be a graph on [n]. Then, reg S/JG = n− 1 if

and only if G is a path graph.

In [23], the authors proved the conjecture posed in [62] for closed graphs and block

graphs. For these graphs, the regularity of S/JG is bounded below by the length of the

longest induced path of G and above by c(G), where c(G) is the number of maximal cliques

of G.

2.2.3 Cohen-Macaulayness

The classification of Cohen–Macaulay binomial edge ideals in terms of the underlying

graphs is still widely open and it seems rather hopeless to give a full classification. However,

many authors have studied classes of Cohen-Macaulay binomial edge ideals in terms of the

associated graph, see e.g. [2], [4], [21], [45], [58], [59], and [60].

In this subsection, we collect some of results concerning the unmixedness and Cohen-

Macaulayness of classes of binomial edge ideals, as closed and bipartite graphs.

By [21, Theorem 3.1], it holds that if G is a connected graph on [n] which is closed

with respect to the given labeling, then JG is Cohen-Macaulay if and only if in<(JG) is

Cohen-Macaulay. Moreover, closed graphs with Cohen-Macaulay binomial edge ideal have

the nice property that βij(JG) = βij(in<(JG)) for all i, j (see [21, Proposition 3.2]).

In [58], the authors investigate binomial edge ideals of graphs obtained by gluing of

subgraphs and the formation of cones.

Theorem 2.2.24. [58, Theorem 2.7] Let G be decomposable into G1 and G2. Then

depth S/JG = depth S1/JG1 + depth S2/JG2 − 2,

where Si = K[{xj, yj}j∈V (Hi)], for i = 1, 2. Moreover, JG is Cohen-Macaulay if and only if

JG1 and JG2 are Cohen-Macaulay.

Lemma 2.2.25. [58, Lemma 3.4] Let H = ⊔r
i=1Hi be a graph with Hi connected compo-

nents with r ≥ 1, and let G = cone(v,H). If JG is unmixed has at most two connected

components.
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Due to Lemma 2.2.25, if G is a cone, namely G = cone(v,H), it is necessary for G

being Cohen-Macaulay that H has at most two connected components.

Lemma 2.2.26. [58, Corollary 3.6, Corollary 3.7] Let H = H1 tH2 on [n] such that H1

and H2 are connected graphs and let G = cone(v,H). Then,

dimS/JG = max{dimS1/JH1 + dimS2/JH2 , n+ 1},

where Si = K[{xj, yj}j∈V (Hi)], for i = 1, 2. Moreover, JG is unmixed if and only if JH1 and

JH2 are unmixed.

The next result shows how to construct Cohen-Macaulay graphs by means of the

formation of cones.

Theorem 2.2.27. [58, Theorem 3.8] Let H = H1tH2 such that H1 and H2 are connected

graphs and let G = cone(v,H). If JH1 and JH2 are Cohen-Macaulay, then JG is Cohen-

Macaulay.

It is still an open question whether the converse of Theorem 2.2.27 is true.

In [4], a complete classification of Cohen-Macaulay binomial edge ideals of bipartite

graphs is given, and the next subsection is devoted to present this class of binomial edge

ideals.

2.2.4 Binomial edge ideal of bipartite and fan graphs

In [4], Bolognini, Macchia, and Strazzanti study unmixed and Cohen-Macaulay bi-

nomial edge ideal of bipartite graphs. A first distinguishing fact about bipartite graphs

with binomial edge ideal unmixed is that they have exactly two leaves. This, in particular,

means that the graph has at least two cutpoints. They exhibit an explicit and recursive

construction in graph-theoretical terms of all Cohen-Macaulay binomial edge ideals of bi-

partite graphs. Moreover, an other family of Cohen-Macaulay graphs appear in that work:

the fan graphs. Afterwards, in [41], the regularity of both Cohen-Macaulay binomial edge

ideals of bipartite and fan graphs is investigated. This section is devoted to recall defini-

tions and to collect all these results, while in Section 3.2.3, we provide the unique extremal

42



Betti number of these classes of Cohen-Macaulay binomial edge ideals.

For every m ≥ 1, let Fm denote the graph on the vertex set [2m] and with edge set

E(Fm) = {{2i, 2j − 1} | i = 1, . . . ,m, j = i, . . . ,m}. Any Fm is a bipartite graph.

Example 2.2.28 In Figure 2.4, some examples of bipartite graphs Fm, for m ∈ {2, 3, 4},

are displayed.

(a) The graph F2

2

1

4

3

(b) The graph F3

2

1 5

4 6

3

(c) The graph F4

2

1 5

4 6

3

8

7

Figure 2.4: Bipartite graphs Fm.

In [4], they prove that if G is connected and bipartite, then JG is Cohen-Macaulay if

and only if G can be obtained recursively by gluing a finite number of graphs of the form

Fm via two operations.

Operation ∗: For i = 1, 2, let Gi be a graph with at least one leaf fi. We denote by

G = (G1, f1) ∗ (G2, f2) the graph G obtained by identifying f1 and f2.

Example 2.2.29 In Figure 2.5, it is displayed the graph obtained by gluing F3 and F4 via

the operation ∗.

f1 = f2

Figure 2.5: The graph F3 ∗ F4.
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Operation ◦: For i = 1, 2, let Gi be a graph with at least one leaf fi, vi its neighbour

and assume degGi
(vi) ≥ 3. We denote by G = (G1, f1) ◦ (G2, f2) the graph G obtained by

removing the leaves f1, f2 from G1 and G2 and by identifying v1 and v2.

Example 2.2.30 In Figure 2.6, it is displayed the graph obtained by gluing F3 and F4 via

the operation ◦.

v1 = v2

Figure 2.6: The graph F3 ◦ F4.

In G = (G1, f1) ◦ (G2, f2), to refer to the vertex v resulting from the identification of

v1 and v2 we write {v} = V (G1) ∩ V (G2). For both operations, if it is not important to

specify the vertices fi or it is clear from the context, we simply write G1 ∗G2 or G1 ◦G2.

Let Km be the complete graph on [m] and W = {v1, . . . , vs} ⊆ [m]. Let FW
m be the

graph obtained from Km by attaching, for every i = 1, . . . , s, a complete graph Khi
to Km

in such a way V (Km)∩ V (Khi
) = {v1, . . . , vi}, for some hi > i. We say that the graph FW

m

is obtained by adding a fan to Km on the set W . If hi = i + 1 for all i = 1, . . . , s, we say

that FW
m is obtained by adding a pure fan to Km on the set W .

Let W = W1 t · · · tWk be a non-trivial partition of a subset W ⊆ [m]. Let FW,k
m be

the graph obtained from Km by adding a fan to Km on each set Wi, for i = 1, . . . , k. The

graph FW,k
m is called a k-fan of Km on the set W . If all the fans are pure, we called it a

k-pure fan graph of Km on W .

Example 2.2.31 The graph showed in Figure 2.7 (a) is a 2-fan graph FW,2
6 with W =

{1, 2, 3} t {4, 5}, whereas the one in Figure 2.7 (b) is the 2-pure fan graph FW,2
6 with

W = {1, 2, 3} t {4, 5}.
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1

2 3

4

56

(a)

1

2 3

4

56

(b)

Figure 2.7: Fan graphs FW,k
m .

When k = 1, we write FW
m instead of FW,1

m . Consider the pure fan graph FW
m on

W = {v1, . . . , vs}. We observe that FW
m = cone(v1, F

W ′
m−1 t {w}), where W ′ = W \ {v1}, w

is the leaf of FW
m , {w, v1} ∈ E(FW

m ), and FW ′
m−1 is the pure fan graph of Kn−1 on W ′.

Theorem 2.2.32. [4, Lemma 3.2, Proposition 3.3, Theorem 4.9] Let G = Fm1◦· · ·◦Fmt◦F ,

where F denotes either Fm or a k-pure fan graph FW,k
m , with t ≥ 0, m ≥ 3, and mi ≥ 3 for

all i = 1, . . . , t. Then JG is Cohen-Macaulay.

Theorem 2.2.33. [4, Theorem 6.1] Let G be a connected bipartite graph. The following

properties are equivalent:

1. JG is Cohen-Macaulay;

2. G = A1 ∗A2 ∗ · · · ∗Ak, where, for i = 1, . . . , k, either Ai = Fm or Ai = Fm1 ◦ · · · ◦Fmt,

for some m ≥ 1 and mj ≥ 3.

3. JG is unmixed and for any non-empty C ∈ C(G), there exists v ∈ C such that

C \ {v} ∈ C(G).

In [41], the regularity of Cohen-Macaulay binomial edge ideals of fan and bipartite

graphs is computed.

Proposition 2.2.34. [41, Theorem 3.4] Let G = FW,k
m be the k-pure fan graph of Km on
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W , with m ≥ 2. Then

reg S/JG = k + 1.

When G = FW,k
m is a k-fan graph, it does not hold the equality in Proposition 2.2.34.

On the other hand, if k ≥ 2, the longest induced path of G has length 3. Then, by

Theorem 2.2.19, reg S/JG ≥ 3. But, by applying Lemma 2.2.16 and Lemma 2.2.17, one

gets an improved lower bound for the regularity of binomial edge ideals of fan graphs, that

is reg S/JG ≥ k + 1.

Proposition 2.2.35. [41, Proposition 4.1] For every m ≥ 2, reg S/JFm = 3.

Observe that if G = FW
m is a pure fan graph, the regularity of JG is equal to 3 for any

m and W ⊆ [m], then all of these graphs belong to the class of graphs studied by Madani

and Kiani in [63].

Proposition 2.2.36. [41, Proposition 4.3, Proposition 4.4, Remark 4.5] For m1,m2 ≥ 3,

let G = Fm1 ◦ F , where either F = Fm2 or F is a k-pure fan graph FW,k
m2 , with W =

W1 t · · · tWk and {v} = V (Fm1) ∩ V (F ). Then

reg S/JG =



6, if F = Fm2 ;

k + 3, if F = FW,k
m2 and |Wi| = 1 for all i;

k + 4, if F = FW,k
m2 and |Wi| ≥ 2 for some i and v ∈ Wi.

Proposition 2.2.37. [41, Theorem 4.6] Let m1, . . . ,mt,m ≥ 3 and t ≥ 2. Consider

G = Fm1 ◦ · · · ◦ Fmt ◦ F , where F denotes either Fm or the k-pure fan graph FW,k
m with

W = W1 t · · · tWk and |Wi| ≥ 2 for some i. Then

reg S/JG = reg S/JFm1−1 + reg S/JFm2−2 + · · ·+ reg S/JFmt−2 + reg S/JF\{v,f}

where {v} = V (Fm1 ◦ · · · ◦ Fmt) ∩ V (F ), v ∈ Wi and f is a leaf such that {v, f} ∈ E(F ).
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2.3 POLYOMINO IDEALS

Polyomino ideals are ideals generated by the inner 2-minors of a polyomino, and they

were first introduced by Qureshi in [56]. This section is devoted to recall definitions and

recent results on polyomino ideals. We refer the reader to [31] for a self-contained presen-

tation on polyomino ideals.

Let a = (i, j), b = (k, `) ∈ N2, with i ≤ k and j ≤ `, the set

[a, b] = {(r, s) ∈ N2 : i ≤ r ≤ k and j ≤ s ≤ `}

is called an interval of N2. If i < k and j < `, [a, b] is called a proper interval, and the

elements a, b, c, d are called corners of [a, b], where c = (i, `) and d = (k, j) (see Figure 2.8).

a

bc

d

Figure 2.8: A proper interval.

In particular, a, b are called diagonal corners and c, d anti-diagonal corners of [a, b].

The corner a (resp. c) is also called the left lower (resp. upper) corner of [a, b], and d

(resp. b) is the right lower (resp. upper) corner of [a, b].

A proper interval of the form C = [a, a+ (1, 1)] is called a cell. Its vertices V (C) are

a, a+ (1, 0), a+ (0, 1), a+ (1, 1) and its edges are E(C) = {a, a+ (1, 0)}, {a, a+ (0, 1)}, {a+

(1, 0), a+ (1, 1)}, {a+ (0, 1), a+ (1, 1)}.

Let P be a finite collection of cells of N2, and let C and D be two cells of P . Then

C and D are said to be connected if there is a sequence of cells C = C1, . . . , Cm = D of P

such that Ci ∩ Ci+1 is an edge of Ci for i = 1, . . . ,m − 1. In addition, if Ci 6= Cj for all

i 6= j, then C1, . . . , Cm is called a path connecting C and D (see Figure 2.9).

A finite collection of cells P is called a polyomino if any two cells of P are connected.
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C
D

Figure 2.9: A path connecting C and D.

We denote by V (P) = ⋃
C∈P V (C) the vertex set of P . The number of cells of P is called

the rank of P , and we denote it by rank (P).

Example 2.3.1 In Figure 2.10, there are displayed two collections of cells. The one on the

left is not a polyomino, since, for instance, the cells C and D are not connected. Whereas,

the one on the right is a polyomino.

C

D

Non-polyomino Polyomino

Figure 2.10: Two collections of cells.

Each interval I ⊂ N2 can be regarded as a polyomino in the obvious way. This

polyomino is denoted by PI . A polyomino Q is said to be a subpolyomino of a polyomino

P if each cell belonging to Q belongs to P , and we write Q ⊂ P .

A proper interval [a, b] is called an inner interval of P if all cells of [a, b] belong to P .

We say that a polyomino P is simple if for any two cells C and D of N2 not belonging to

P , there exists a path C = C1, . . . , Cm = D such that Ci /∈ P for any i = 1, . . . ,m. If the

polyomino is not simple then it is said multiply connected, following the notation used in

[25]. A finite collection H of cells not in P is called a hole of P , if any two cells in H are

connected through a path of cells in H, and H is maximal with respect to the inclusion.

Note that a hole H of a polyomino P is itself a simple polyomino.
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Example 2.3.2 In Figure 2.11, there are displayed two polyominoes. The one on the

left, (a), is a simple polyomino, whereas the one on the right, (b), is a multiply connected

polyomino, with two holes H1, H2.

(a) (b)

H1

H2

Figure 2.11: Simple and multiply connected polyominoes.

An interval [a, b] with a = (i, j) and b = (k, `) is called a horizontal edge interval of

P if j = ` and the sets {(r, j), (r + 1, j)} for r = i, . . . , k − 1 are edges of cells of P . If a

horizontal edge interval of P is not strictly contained in any other horizontal edge interval

of P , then we call it maximal horizontal edge interval. Similarly one defines vertical edge

intervals and maximal vertical edge intervals of P .

A polyomino P is called row convex if any two cells C = [(i, j), (i + 1, j + 1)], D =

[(k, j), (k + 1, j + 1)] of P with i < k, all cells [(`, j), (` + 1, j + 1)] ∈ P for i ≤ ` ≤ k.

Similarly, one defines column convex polyominoes. A polyomino is called convex if it is

both row and column convex.

Example 2.3.3 In Figure 2.12, there are displayed two polyominoes. Both of them are

row convex. The polyomino on the left, (a), is column convex, as well, but the one on the

right, (b), is not.

Let a = (a1, a2) and b = (b1, b2) ∈ V (P), we define on the vertices of P the following

total orders:
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(a) (b)

Figure 2.12: Convex and row convex polyominoes.

1. a <1 b if a1 < b1 or a1 = b1 and a2 < b2;

2. a <2 b if b1 < a1 or a1 = b1 and a2 < b2.

Let P be a polyomino, and let K be a field. We denote by S the polynomial ring over

K with variables xv, where v ∈ V (P). The binomial xaxb − xcxd ∈ S is called an inner

2-minor of P if [a, b] is an inner interval of P , where c, d are the anti-diagonal corners of

[a, b]. We denote byM the set of all inner 2-minors of P . The ideal IP ⊂ S generated by

M is called the polyomino ideal of P . We also set K[P ] = S/IP , and we call it call it the

coordinate ring of P .

2.3.1 Balanced and simple polyominoes

Among the polyominoes, the balanced polyominoes admit coordinate rings with many

nice properties. Let P be a polyomino and let I be the set of all maximal vertical or

horizontal edge intervals. An integer value function α : V (P) → Z is called admissible, if

for I ∈ I one has ∑
v∈I

α(v) = 0.

Example 2.3.4 In Figure 2.13, an admissible labeling of P is shown.
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1

-1

-5

3

2

-1

-1

-1-1

3

-1 1

-1

1-10 0 0

0

Figure 2.13: An admissible labeling.

Given an admissible labeling α, define the binomial

fα =
∏

v∈V (P)
α(v)>0

xα(v)
v −

∏
v∈V (P)
α(v)<0

xα(v)
v .

It is immediate to see that IP ⊂ (fα | α is an admissible labeling). A polyomino P

is said balanced if, for any admissible labeling α, the binomial fα ∈ IP , that is IP = (fα |

α is an admissible labeling).

Let P ⊆ [(1, 1), (m,n)] be a polyomino. Let

B = {eij : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}

be the canonical basis of Zm×n and let C = {C1, . . . , Cr}, where r = rank P , be the set of

all cells of P . Define ck = eij + ei+1j+1 − ei+1j − eij+1, where (i, j) is the lower left corner

of Ck ∈ C.

Let Λ be the lattice spanned by {ck}k=1,...,r. It is known from [20] that an ideal

generated by any set of adjacent 2-minors of a m× n-matrix is a lattice ideal and that its

corresponding lattice is saturated. Hence, the lattice Λ is a saturated lattice of rank equal

to rank P , and IΛ is a prime ideal.

Proposition 2.3.5. [34, Proposition 2.2, Corollary 2.3] Let P be a balanced polyomino.

Then IP = IΛ. In particular, IP is a prime ideal of height rank P.

In [34], the primitive binomials of IP are identified (see [34, Theorem 3.1]). From this

result, the authors deduce that for a balanced polyomino P the ideal IP has a squarefree
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initial ideal for any monomial order. Therefore, the residue class of IP is a normal Cohen-

Macaulay domain.

In [34], it was conjectured that a polyomino is balanced if and only if it is simple. In

[33], the conjecture is positively solved. The main consequence of this result is to state

that all simple polyominoes have prime polyomino ideal.

Theorem 2.3.6. [33, Theorem 2.1] A polyomino is simple if and only if it is balanced.

Corollary 2.3.7. [33, Corollary 2.2] Let P be a simple polyomino. Then K[P ] is a Co-

hen–Macaulay normal domain.

2.3.2 Multiply connected polyominoes and prime ideals

In [37], a class of prime multiply connected polyominoes is presented. It is shown that

the polyomino ideal of the polyomino which is obtained by removing a convex polyomino

from its ambient rectangle is prime. This is proved by using a localization argument. In

[64], the author gives a toric representation of the quotient rings of the polyomino ideals

of this class of multiply connected polyominoes. In this section, we recall definitions and

result, mostly following [64].

Let I ⊆ N2 be an interval of N2 and Q a convex polyomino which is a subpolyomino

of PI . Let P = PI \ Q and suppose that P is a polyomino. Moreover, we may assume

that P is not simple, indeed, when P is a simple polyomino, its toric representation is well

studied in [57]. Let e = (ie, je) be the left lower corner of Q.

Define the following subset of V (P)

F = {(i, j) ∈ V (P) | i ≤ ie and j ≤ je}.

Let {Vi}i∈I be the set of all the maximal vertical edge intervals of P , and {Hj}j∈J be the

set of all the maximal horizontal edge intervals of P . Let {vi}i∈I , {hj}j∈J , and {w} be the

three sets of variables associated to {Vi}i∈I , {Hj}j∈J , and F , respectively. We consider the

map

α : V (P) −→ K[{hi, vj, w} | i ∈ I, j ∈ J ]

a 7−→
∏

a∈Hi∩Vj

hivj
∏
a∈F

w.
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The toric ring TP associated to P is defined as

TP = K[α(a)|a ∈ V (P)] ⊂ K[{hi, vj, w} | i ∈ I, j ∈ J ].

The homomorphism

ϕ : S −→ TP

xa 7−→ α(a)

is surjective and the toric ideal JP is the kernel of ϕ.

In Section 4.1, we will generalize the construction of TP for any multiply connected

polyomino P , proving that the toric ideal JP contains the polyomino ideal IP (see Propo-

sition 4.1.1).

Theorem 2.3.8. [37, Theorem 2.1], [64, Theorem 2.3] Let I ⊆ N2 be an interval of N2

and Q a convex polyomino which is a subpolyomino of PI. Let P = PI \ Q and suppose

that P is a polyomino. Then IP = JP . In particular, the polyomino ideal IP is a prime

ideal.
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Chapter 3

ALGEBRAIC INVARIANTS OF SOME CLASSES OF BINOMIAL EDGE

IDEALS

This chapter is devoted to collect all the original results of this thesis regarding bino-

mial edge ideals. In particular, first we focus on binomial edge ideals of block graphs. We

give a lower bound for the Castelnuovo-Mumford regularity of binomial edge ideals of block

graphs, and we present a linear time algorithm to compute the Castelnuovo-Mumford regu-

larity and Krull dimension of binomial edge ideals of block graphs. Second, we study some

classes of Cohen-Macaulay binomial edge ideals, investigating the extremal Betti numbers,

regularity and CM-type.

All the results here discussed can be found in [48] and [49].

3.1 BINOMIAL EDGE IDEALS OF BLOCK GRAPHS

In this section, we present some algebraic properties of binomial edge ideals of a class

of graphs: block graphs. We present an algorithm (Theorem 3.1.7), that is linear in time

and space, to compute the Krull dimension. The idea is to find a minimal prime ideal of

minimum height since it induces the Krull dimension of S/JG. We have implemented the

algorithm using CoCoA ([9]), when G is a tree and it is downloadable on [47].

It is still an open problem to determine an explicit formula for the regularity of bino-

mial edge ideals for block graphs in terms of the combinatorics of the graph. Inspired by

the results in [35], we define a new class of graphs, namely the flower graphs (see Definition

3.1.11 and Figure 3.2), for which we compute the superextremal Betti numbers (see The-

orem 3.1.13) and the regularity (see Corollary 3.1.14). As a consequence we obtain new

lower bounds in Theorem 3.1.15 and Corollary 3.1.17 for the regularity of any block graph.

Finally, we state our main result on the regularity, Theorem 3.1.20, that provides

an efficient method to compute the Castelnuovo-Mumford regularity of any binomial edge

ideal of block graphs, exploiting the notion of end-flowers (see Definition 3.1.19) and by

means of an unique block graph traversal.
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3.1.1 On the height of minimal prime ideals of JG and decomposability of block

graphs

We denote by M(G) the minimal prime ideals of JG, by Minh(G) ⊆ M(G) the

minimal prime ideals PT (G) of minimum height and by Maxh(G) ⊆ M(G) the minimal

prime ideals PT (G) of maximum height.

The next proposition collects the results showed in [35] and [58] concerning Krull

dimension of S/JG and height of the ideals PT (G), when G is decomposable.

Proposition 3.1.1. Let G be a graph decomposable into G1 and G2, with V (G1)∩V (G2) =

{v}. Then

1. dimS/JG = dimS1/JG1 + dimS2/JG2 − 2, where Si = K[xj, yj]j∈V (Gi) for i = 1, 2;

2. height PT (G) = height PT1(G1) + height PT2(G2), with T ∈ C(G), T1 ∈ C(G1), and

T2 ∈ C(G2) and either T = T1 ∪ T2 or T = T1 ∪ T2 ∪ {v};

For a block graph G, being decomposable can be read from the primary decomposition

of JG, in particular from the ideals inMaxh(G).

Proposition 3.1.2. Let G be a block graph. The following are equivalent:

1. G is indecomposable;

2. if v ∈ V (G), then cdeg(v) 6= 2;

3. Maxh(G) = {P∅(G)}.

Proof.

(1) ⇔ (2) It is trivial.

(2) ⇒ (3) Without loss of generality, let G be connected. Since height P∅(G) = n − 1,

we want to prove that for any T 6= ∅, height PT (G) < n − 1 . Let T ∈ C(G),

with height PT (G) ≥ n − 1, that is c(T ) − |T | ≤ 1. If T = {v}, then c(T ) ≤ 2

or equivalently cdeg(v) ≤ 2. Since v is a cutpoint, it is not a free vertex, and then

cdeg(v) = 2, which is in contradiction to the hypothesis. Let T = {v1, . . . , vr}, with

r ≥ 2, such that height PT (G) ≥ n− 1 and suppose it is minimal with respect to this

property. In a block graph, T1 = T \{vr} is a cutset, too. By definition, c(T1) < c(T )

and |T1| = |T | − 1, then c(T1)− |T1| < 2. It follows that height PT1(G) ≥ n− 1, but

it is in contradiction to the hypothesis on the minimality of T .
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(3) ⇒ (2) Assume that there exists a vertex v ∈ V (G) such that cdeg(v) = 2. Let

T = {v}, then height PT (G) = height P∅(G) = n − 1. Hence, PT (G) ∈ Maxh(G),

too. The latter is in contradiction to the hypothesis.

We observe that for a generic graph G, is not true that if G is indecomposable then

cdeg(v) 6= 2 for any v ∈ V (G). It is sufficient to consider G = C4, with V (G) = {1, . . . , 4}

and E(G) = {{i, i + 1}|i = 1, . . . , 3} ∪ {1, 4}. All its vertices have clique degree equal to

2, but G is indecomposable. Moreover, for a generic graph G being indecomposable is not

equivalent to the fact that P∅(G) is the prime ideal of the maximum height in the primary

decomposition of JG. In fact, consider again G = C4. The subset T = {1, 3} is a cutset for

G and height PT (G) = 4, whereas height P∅(G) = 3.

3.1.2 Krull dimension of binomial edge ideals of block graphs

For some classes of graphs, there exists an immediate way to compute the Krull

dimension. For example, if G is a complete graph or a graph obtained by gluing free

vertices of complete graphs and such that any vertex v ∈ V (G) is either a free vertex or has

cdeg(v) = 2, then dimS/JG = n + 1. For a generic block graph G, we show an algorithm

to compute the Krull dimension of S/JG in linear time.

From now on, we consider only connected block graphs, since the Krull dimension of

S/JG, where G is a graph with c connected components, G1, . . . , Gc, is given by the sum

of the Krull dimension of Si/JGi
, with i = 1, . . . , c and Si = K[{xj, yj}j∈V (Gi)]. Before

showing the aforementioned algorithm, we need some auxiliary results.

Lemma 3.1.3. Let G be a block graph, PT (G) ∈Minh(G), and v ∈ V (G). If v belongs to

1. exactly two endblocks, then PT∪{v}(G) ∈Minh(G);

2. at least three endblocks, then v ∈ T .

Proof. Let PT (G) ∈Minh(G) and let v belong to r endblocks, B1, . . . , Br, with r ≥ 2, and

let G1, . . . , Gc be the connected components of G[n]\T , then heightPT (G) = n − c + |T |.

Suppose that v 6∈ T . Without loss of generality, we can suppose v ∈ G1. The connected

components induced by T ∪ {v} are B′1, . . . , B′r, G′1, G2, . . . , Gc, where B′i = Bi \ {v} for

56



i = 1, . . . , r and G′1 = G1 \ {B1, . . . , Br}. If r = 2 and G′1 = ∅, then heightPT∪{v}(G) =

heightPT (G), and then also PT∪{v}(G) ∈ Minh(G). If r ≥ 3 or r = 2 and G′1 6= ∅, the

number of connected components induced by T ∪{v} is at least r+c and hence it is greater

than or equal to c + 2. Thus, heightPT∪{v}(G) ≤ n − (c + 2) + (|T | + 1) < heightPT (G),

which is in contradiction to the minimality of PT (G).

Remark 3.1.4 Let G be a block graph and T ∈ C(G) such that PT (G) ∈ Minh(G).

If {v1, . . . , vr} ⊆ T is the set of all the vertices in T with clique degree equal to 2, by

Proposition 3.1.1.(2), PT\{v1,...,vr}(G) ∈Minh(G).

Lemma 3.1.5. Let G be a block graph and v ∈ V (G) be a cutpoint. If

1. v belongs to at least 2 endblocks of an indecomposable component of G,

2. PT ′(H) ∈ Minh(H), where T ′ ∈ C(H) and H is the graph obtained from G by

removing v and the endblocks to which v belongs

then PT ′∪{v}(G) ∈Minh(G).

Proof. Let T ∈ C(G) be such that PT (G) ∈ Minh(G) and v ∈ T . By Lemma 3.1.3, we

know that such T exists. Let T = T1∪{v}. Let r ≥ 2 be the number of endblocks to which

v belongs, then c(T ) = r+c(T1), where c(T1) denotes the number of connected components

of H induced by T1. It follows that

height PT (G) = n− (r + c(T1)) + (1 + |T1|)

= n− V (H)− r + 1 + [V (H)− c(T1) + |T1|]

= s+ height PT1(H)

where s = n − V (H) − r + 1. Observe that PT1(H) ∈ Minh(H): if there exists T2 ∈

C(G) such that height PT2(H) < height PT1(H), then height PT2∪{v}(G) is lower than

height PT (G), and this is in contradiction to the minimality of PT (G). Since, by hypothesis,

PT ′(H), PT1(H) have the same height, it follows height PT (G) = s + height PT ′(H) =

height PT ′∪{v}(G), and PT ′∪{v}(G) ∈Minh(G).

The following result is the core of the algorithm that allows to compute the Krull

dimension of S/JG.
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Theorem 3.1.6. Let G be a block graph and T = {v1, . . . , vt} ∈ C(G). We denote by H0

the graph G and by Hi the graph obtained from Hi−1 by removing vi and the endblocks to

which vi belongs, for all i = 1, . . . , t. If

1. vi belongs to at least 2 endblocks of an indecomposable component of Hi−1, for all

i = 1, . . . , t,

2. Ht is decomposable into blocks,

then PT (G) ∈Minh(G).

Proof. We use induction on t. Let t = 1. Consider T = {v1} ∈ C(G), with v1 ∈ V (G)

that belongs to at least 2 endblocks of an indecomposable component of G and H1 is

decomposable into blocks. By Lemma 3.1.3 and Remark 3.1.4, there exists a cutset T ′ that

contains v1 and no vertices of clique degree equal to 2 such that PT ′(G) ∈Minh(G). Since

H1 is decomposable into blocks, all the non-free vertices of H1 have clique degree equal to

2, then T ′ = {v1} = T and PT (G) ∈Minh(G).

Let t > 1. Consider T = {v1, . . . , vt} ∈ C(G). The vertex v1 belongs to at least 2 endblocks

of an indecomposable component of G and, by induction hypothesis, PT ′(H1) ∈Minh(H1),

where T ′ = {v2, . . . , vt}. By Lemma 3.1.5, PT ′∪{v1}(G) ∈Minh(G).

Theorem 3.1.7 (Algorithm: Krull Dimension of binomial edge ideals of block graphs).

• Input: A connected block graph G over [n].

• Output: Krull dimension of S/JG.

1. dim := n+ 1;

2. G := {G};

3. for every graph H ∈ G

4. G := G \ {H};

5. decompose H into its indecomposable subgraphs I = {G1, . . . , Gr};

6. remove from I the graphs which are blocks;

7. for every graph Gi ∈ I

8. take v ∈ V (Gi) such that v belongs to at least 2 endblocks;

9. dim := dim +cdeg(v)− 2;

10. G := G ∪ {Hv};
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where Hv denotes the graph obtained from Gi by removing v and the endblocks to which v

belongs.

Proof. The aim of the algorithm is to compute the Krull dimension by finding a cutset T

such that PT (G) ∈Minh(G). In particular, after a finite number of steps we obtain a cutset

T = {v1, . . . , vt} that fulfils the hypothesis of Theorem 3.1.6, and then PT (G) ∈Minh(G).

Now we explain in detail the algorithm.

Line 1. We set dim = n+1. This is the case when the graph G is a block or is decomposable

into blocks, that is T = ∅.

Line 2. We denote by G the set of graphs that are to consider still.

Lines 3-4. We consider each graph H ∈ G. The algorithm finishes when G is empty.

Lines 5-6. We decompose H into its indecomposable components G1, . . . , Gr. These sub-

graphs are the elements of the set I. This is equivalent to do away with the vertices of

clique degree 2 (see Remark 3.1.4). Now, by a branch and bound strategy we study each

indecomposable subgraphs of H. We discard the blocks since their vertices are free vertices

and then they do not belong to T .

Lines 7-8. For every subgraph Gi ∈ I, since Gi is indecomposable there exists a vertex v

that belongs to at least 2 endblocks. By Lemma 3.1.3, we assume v ∈ T .

Line 9. We update the Krull dimension: the number of connected components induced by

v in Gi is exactly its clique degree. One of these components has been already considered,

when we set dim = n+1 in the Line 1. Therefore, the contribute of v is equal to cdeg(v)−1

less the cardinality of the cutset, which is 1.

Line 10. We remove from Gi the vertex v and the endblocks which contain v, and we add

this new graph Hv in G, the set of graphs to consider still.

The wanted T consists of all the vertices v considered in Line 8. Observe that, by

construction, any v ∈ T satisfies the condition (1) of Theorem 3.1.6, and the condition

(2) holds at the end of the algorithm, when G = ∅. Moreover, the algorithm finishes after

a finite number of steps: in Line 4, we remove a graph H from G but we add some new

graphs Hv in G in Line 10. For any of these Hv, it holds |V (Hv)| < |V (H)|, hence after a

finite number of iterations the new graphs in Line 10 will be either blocks, and then they
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will be discarded in Line 6, or empty graphs.

We highlight that the above algorithm works also for disconnected graphs: it is suf-

ficient to set dim := n + c in Line 1, where c is the number of connected components of

G.

We are going to show that the Krull dimension of S/JG can be computed with a

unique visit of G by a recursive function, named IsInT(v,G, cT ). The cost of traversing

a graph G is O(|V (G)| + |E(G)|) (see [11, Section 22]). This implies that the algorithm

presented in Theorem 3.1.7 can be implemented through a procedure which is linear with

respect to the number of vertices and edges of G, without any decomposition. The function

IsInT(v,G, cT ) constructs a T ∈ C(G) that fulfils the conditions (1) and (2) of Theorem

3.1.6, and then PT (G) ∈ Minh(G). For the sake of simplicity, in the following let G be a

tree.

1. IsInT(v,G, cT )

2. if v is a leaf then

3. return 0

4. else

5. degree := cdeg(v);

6. childrenInT := 0;

7. for every children w of v

8. childrenInT := childrenInT + IsInT(w,G, cT );

9. degree := degree - chidrenInT;

10. if degree > 2 then

11. cT := cT + degree - 2;

12. return 1

13. else

14. return 0

Even if the algorithm works for any undirected tree, we assign an orientation given by

the visit of the tree itself: the children of a given vertex are its adjacent vertices that have

not been visited yet. The purpose of IsInT(v,G, cT ) is twofold: on one side, starting from
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any vertex v ∈ V (G), it checks if v belongs to T and in this case it returns 1, otherwise 0,

on the other side it computes c(T ) − |T |, which is saved in cT . For a vertex v being in T

depends on its children that are in T , and on its degree. The latter is given by the initial

degree less the number of children of v that are in T (Line 9). In particular, v ∈ T if at

least 2 of its children are not in T and its degree is greater than 2 (Line 10).

To compute the Krull dimension of S/JG, it is sufficient to call the function

IsInT(v,G, cT ), where v is any vertex of G and cT is a global variable set to 1, and then

dimS/JG = n+ cT .

We have implemented this procedure for trees using CoCoA version 4.7 and it is freely

downloadable on [47].

3.1.3 Regularity bounds for binomial edge ideals of block graphs

The main result of this section is the lower bound for the Castelnuovo-Mumford reg-

ularity of binomial edge ideals of block graphs (Theorem 3.1.15).

In [35], the authors compute one of the distinguished Betti numbers of the binomial

edge ideal of a block graph, and classify all block graphs admitting precisely one extremal

Betti number.

Let G be a graph. We denote by i(G) the number of inner vertices of G and by f(G)

the number of free vertices of G.

Theorem 3.1.8. [35, Theorem 6] Let G be an indecomposable block graph on [n]. Further-

more, let < be the lexicographic order induced by x1 > x2 > · · · > xn > y1 > y2 > · · · > yn.

Then βn−1,n−1+i(G)+1(S/JG) and βn−1,n−1+i(G)+1(S/in<(JG)) are extremal Betti numbers of

S/JG and S/in<(JG), respectively. Moreover,

βn−1,n−1+i(G)+1(S/in<(JG)) = βn−1,n−1+i(G)+1(S/JG) = f(G)− 1.

Corollary 3.1.9. [35, Corollary 7] Let G be a block graph for which G = G1 ∪ · · · ∪ Gs

is the decomposition of G into indecomposable graphs. Then each Gi is a block graph,

βn−1,n−1+i(G)+s(S/JG) is an extremal Betti number, and

βn−1,n−1+i(G)+s(S/JG) =
s∏
i=1

(f(Gi)− 1).
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The following theorem classifies all block graphs which admit precisely one extremal

Betti number.

Theorem 3.1.10. [35, Theorem 8] Let G be an indecomposable block graph. Then

1. reg S/JG ≥ i(G) + 1;

2. the following are equivalent:

(a) S/JG admits precisely one extremal Betti number;

(b) G does not contain one of the induced subgraphs T0, T1, T2, T3 of Figure 3.1;

(c) let P = {v ∈ V (G) | deg(v) 6= 1}. Then, each cutpoint of G|P belongs to exactly

two maximal cliques.

T0 T1 T2 T3

Figure 3.1

Inspired by Theorem 3.1.10, we introduce a new class of block graph, called flower

graphs, and we compute their regularity and superextremal Betti numbers.

Definition 3.1.11 A flower graph Fh,k(v) is a connected block graph constructed by joining

h copies of the cycle graph C3 and k copies of the bipartite graph K1,3 with a common

vertex v, where v is one of the free vertices of C3 and of K1,3, and cdeg(v) ≥ 3.

We observe that any flower graph Fh,k(v) has 2h+3k+1 vertices and 3(h+k) edges. The

clique degree of v is given by h+ k, and the number of inner vertices is i(Fh,k(v)) = k + 1

and all of them are cutpoints for Fh,k(v). When it is unnecessary to make explicit the

parameters h and k, we refer to Fh,k(v) as F (v). Moreover, by applying the algorithm

in Theorem 3.1.7, one gets a precise formula for the Krull dimension, when G is a flower

graph, that is dimS/JG = n+ cdeg(v)− 1.

Before stating the distinguished extremal Betti numbers of the binomial edge ideal of

a flower graph, we need the following remark.
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Figure 3.2: A flower graph Fh,k(v)

Remark 3.1.12 Let G be a disconnected block graph with G1, . . . , Gr its connected com-

ponents. If all the Gj have precisely one extremal Betti number, βnj−1,nj+i(Gj)(Sj/JGj
), for

any j = 1, . . . , r, with Sj = K[xi, yi]i∈V (Gj) and nj = |V (Gj)|, then S/JG has precisely one

extremal Betti number and it is given by

βn−r,n+i(G)(S/JG) =
r∏
j=1

βnj−1,nj+i(Gj)(Sj/JGj
).

Theorem 3.1.13. Let G be a flower graph F (v). The following are extremal Betti numbers

of S/JG:

1. βn−1,n+i(G)(S/JG) = f(G)− 1;

2. βn−cdeg(v)+1,n+i(G)(S/JG) = 1.

In particular, they are the only nonzero superextremal Betti numbers.

Proof. The fact (1) is an immediate consequence of Theorem 3.1.8. As regards (2), we

focus on the cutpoint v of G. Consider the short exact sequence (2.4), with u = v, where

G′, G′′, and H are as in Set-up 2.2.13. We observe that G′ and H are block graphs sat-

isfying equivalent conditions in Theorem 3.1.10, with i(G′) = i(H) = i(G) − 1, and then

reg S/JG′ = reg S/((xv, yv)+JH) = i(G). The graph G′′ has cdeg(v) connected components

G1, . . . , Gcdeg(v): all of them are eitherK2 or paths of length 2, namely P2. The latter are de-

composable into two K2 and it holds reg S ′/JP2 = 2 = i(P2) + 1, with S ′ = K[xi, yi]i∈V (P2).

Then, by Theorem 3.1.10 and since the ring S/((xv, yv) + JG′′) is the tensor product of
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Sj/JGj
, with j = 1, . . . , cdeg(v) and Sj = K[xi, yi]i∈V (Gj), we have

reg S

(xv, yv) + JG′′
=

cdeg(v)∑
j=1

reg Sj
JGj

=
cdeg(v)∑
j=1

(i(Gj) + 1) = i(G)− 1 + cdeg(v).

We get the following bound on the regularity of S/JG

reg S/JG ≤ max{reg S

JG′
, reg S

(xv, yv) + JG′′
, reg S

(xv, yv) + JH
+ 1}

= max{i(G), i(G)− 1 + cdeg(v), i(G) + 1}

= i(G)− 1 + cdeg(v).

By Theorem 2.2.15, the depth of S/JG for any block graph G over [n] is equal

to n + c, where c is the number of connected components of G. Since we know the

depth of all quotient rings involved in (2.4) and by Auslander-Buchsbaum formula, we

get proj dim S/JG = proj dim S/JG′ = proj dim S/((xv, yv) + JH) − 1 = n − 1, and

proj dim S/((xv, yv) + JG′′) = n− cdeg(v) + 1.

Let j > i(G), then

Tm,m+j(S/JG′) = Tm,m+j(S/((xv, yv) + JH)) = 0 for any m,

and

Tm,m+j(S/((xv, yv) + JG′′)) = 0 for any m > n− cdeg(v) + 1,

Of course, all the above Tor modules Tm,m+j(−) are zero when j > i(G)− 1 + cdeg(v).

Therefore, for m = n− cdeg(v) + 1 and j = i(G)−1 + cdeg(v) we obtain the following

long exact sequence

· · · → Tm+1,m+1+(j−1)(S/((xv, yv) + JH))→ Tm,m+j(S/JG)→

Tm,m+j(S/JG′)⊕ Tm,m+j(S/((xv, yv) + JG′′))→

Tm,m+j(S/((xv, yv) + JH))→ · · ·

In view of the above, all the functors on the left of Tm,m+j(S/JG) in the long exact sequence

are zero, and Tm,m+j(S/JG′) = Tm,m+j(S/((xv, yv) + JH)) = 0 too. It follows

Tm,m+j(S/JG) ∼= Tm,m+j(S/((xv, yv) + JG′′)).
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It means that

βn−cdeg(v)+1,n+i(G)(S/JG) = βn−cdeg(v)+1,n+i(G)(S/((xv, yv) + JG′′)).

We observe that

T Sm,m+j(S/((xv, yv) + JG′′)) ∼= T S
′′

m−2,m−2+j(S ′′/JG′′)

where S ′′ = S/(xv, yv). Since all the connected components G1, . . . , Gcdeg(v) of G′′ are

either a K2 or a path of length 2, the quotient rings Sj/JGj
have an unique extremal Betti

number βnj−1,nj+i(Gj)(Sj/JGj
), for j = 1, . . . , cdeg(v) and nj = |V (Gj)|, which is equal to

1. Therefore, by Remark 3.1.12, we have

βm−2,m−2+j(S ′′/JG′′) =
cdeg(v)∏
j=1

βnj−1,nj+i(Gj)(Sj/JGj
) = 1.

Observe that form = n−cdeg(v)+1 and j = i(G)−1+cdeg(v) we get thatm+j = n+i(G)

is the maximal integer such that βi,m+j(S/JG) 6= 0 for some i. We want to prove that

βi,n+i(G) 6= 0, only for i = n − cdeg(v) + 1 and i = n − 1. Let i be an integer such that

βi,n+i(G) 6= 0. Since proj dim S/JG = n− 1 and reg S/JG ≤ i(G) + cdeg(v)− 1, we have to

examine n− cdeg(v) + 1 ≤ i ≤ n− 1. Consider the following long exact sequence

· · · → Ti+1,n+i(G)

(
S

(xv, yv) + JH

)
→ Ti,n+i(G)

(
S

JG

)
→

Ti,n+i(G)

(
S

JG′

)
⊕ Ti,n+i(G)

(
S

(xv, yv) + JG′′

)
→

Ti,n+i(G)

(
S

(xv, yv) + JH

)
→ · · ·

If n − cdeg(v) + 1 < i < n − 1, since i > proj dim S/((xv, yv) + JG′′) and n + i(G) − i >

reg S/JG′ , reg S/((xv, yv) + JH), it holds Tori,n+i(G)(M) = 0, for M ∈ {S/JG′ , S/((xv, yv) +

JG′′), S/((xv, yv) + JH)}, and then we can conclude that also Tori,n+i(G)(S/JG) = 0.

An immediate consequence of the proof of the Theorem 3.1.13 is the regularity of any

flower graphs F (v), that depends only on the clique degree of v and the number of inner

vertices of F (v).
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Corollary 3.1.14. Let F (v) be a flower graph, then

reg S/JF (v) = i(F (v)) + cdeg(v)− 1.

If F (v) is an induced subgraph of a block graph G, we denote by cdegF (v) the clique

degree of v in F (v). Note that if F (v) is the maximal flower induced subgraph of G

and all the blocks of G containing v are C3 or K1,3, then cdegF (v) = cdeg(v), otherwise

cdegF (v) < cdeg(v).

Theorem 3.1.15. Let G be an indecomposable block graph and let F (v) be an induced

subgraph of G. Then

reg S/JG ≥ i(G) + cdegF (v)− 1.

Proof. We use induction on the number of blocks ofG that are not in F (v). IfG = F (v), the

statement follows from Corollary 3.1.14. Suppose now G contains properly F (v) as induced

subgraph. Since G is connected, there exists an endblock B of G and a subgraph G′ of G

such that G = G′∪B, G′ contains F (v) as induced subgraph, V (G′)∩V (B) = {w}, and all

the blocks containing w are endblocks, except for the one that is in G′. Since G is assumed

to be indecomposable, cdeg(w) ≥ 3. If cdeg(w) = 3, then G′ is decomposable into G1∪G2,

and reg S/JG′ = reg S/JG1 + reg S/JG2 . We may suppose that G1 contains F (v), and then

i(G1) = i(G)−1, but cdegF (v) is still the same. Whereas, G2 is a block and reg S/JG2 = 1.

Then by using induction, we may assume that reg S/JG1 ≥ i(G)+cdegF (v)−2. Therefore,

reg S/JG′ = reg S/JG1 + reg S/JG2 ≥ i(G) + cdegF (v)− 1.

If cdeg(w) > 3, then i(G′) = i(G) and cdegF (v) is still the same. Then, by using induction

on the number of blocks of G, we may assume reg S/JG′ ≥ i(G) + cdegF (v) − 1. By

Corollary 2.2.18, one has that

reg S/JG ≥ reg S/JG′ .

and then reg S/JG ≥ i(G) + cdegF (v)− 1, as desired.

Definition 3.1.16 Let G be a block graph. If G has no flower graphs as induced subgraphs

then G is called flower-free.
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We are ready to state the following bound for the regularity for any binomial edge

ideal of block graphs.

Corollary 3.1.17. Let G be a connected block graph which is not an isolated vertex.

1. If G is a flower-free graph, then reg S/JG = i(G) + 1.

2. If G contains r ≥ 1 flower graphs F1(v1), . . . , Fr(vr) as induced subgraphs, then

reg S/JG ≥ i(G) + max
i=1,...,r

{cdegFi
(vi)} − 1.

Proof. (1) If G is indecomposable, by Theorem 3.1.10, the result follows. Otherwise, sup-

pose G is decomposable into indecomposable graphs G1, . . . , Gr. Observe that if v is an

inner vertex in G then either {v} = Gi ∩Gj for some i 6= j and it is a free vertex in Gi and

Gj, or it belongs to an unique Gi and it is an inner vertex of Gi. The former are exactly

r − 1. In fact, if we consider the graph T , with vertices V (T ) = {G1, . . . , Gr} and edges

E(T ) = {{Gi, Gj} : Gi ∩Gj 6= ∅} we observe that T is a tree and |E(T )| = r − 1. Hence

i(G) = r − 1 +
r∑
i=1

i(Gi).

By Proposition 3.1.1 and Theorem 3.1.10, we get

reg S/JG =
r∑
i=1

reg S/JGi
=

r∑
i=1

(i(Gi) + 1) = i(G) + 1.

(2) It is an immediate consequence of Corollary 2.2.18 and Theorem 3.1.15.

Example 3.1.18 Let G be the graph in Figure 3.3. It contains 2 flower graphs as induced

subgraphs: F2,1(v1) and F3,1(v2). By Corollary 3.1.17, we have reg S/JG ≥ 2+max{3, 4}−

1 = 5, whereas the length of the longest induced path in G is 3 and the number of maximal

cliques of G is 6. Also using the upper bound proved in [43], we get reg S/JG ≤ 6. By

means of a computation in CoCoA, reg S/JG = 5, it means the lower bound given in

Corollary 3.1.17 is sharp. We observe that G is the graph with the minimum number of

vertices such that S/JG has 3 nonzero superextremal Betti numbers.

Example 3.1.18 encourages us to follow up with an algorithm to compute the regularity

of binomial edge ideal of block graphs, and it will be the content of the Section 3.1.4.
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Figure 3.3: A graph G such that reg S/JG = i(G) + max
i=1,2
{cdegFi

(vi)} − 1.

The bound exhibited in Corollary 3.1.17 can be improved for block graphs with several

flowers Fi(vi) with the vertices vi far enough from each other. In particular, let H be an

induced subgraph of G and suppose H is decomposable into H1, . . . , Hr such that any Hi

contains a flower graph Fi(vi) as an induced subgraph for i = 1, . . . , r. Then reg JG ≥

reg JH = ∑r
i=1 reg JHi

, which could be better than the one provided in Corollary 3.1.17.

3.1.4 How to compute the Castelnuovo-Mumford regularity of block graphs

In this section we provide an efficient method to compute the Castelnuovo-Mumford

regularity for S/JG when G is a block graph.

Definition 3.1.19 Let G be a block graph and F (v) be a flower graph that is an induced

subgraph of G. F (v) is called an end-flower of G if G = G1 ∪ . . . ∪Gc, where c = cdeg(v),

and such that Gi ∩Gj = {v}, for all 1 ≤ i < j ≤ c, and G2, . . . Gc are flower-free graphs.

Theorem 3.1.20. Let G be a block graph, v1, . . . , vr ∈ V (G),

Hj = G \ {v1, . . . , vj}

for j = 1, . . . , r, and H0 = G. If

1. F (vj) is an end-flower for Hj−1, for all j = 1, . . . , r,

2. Hr is flower-free,

then

reg S/JG = reg S/JHr = c+ i(Hr)

where c is the number of connected components of Hr which are not isolated vertices.
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Proof. First of all, observe that the equality reg S/JHr = c+ i(Hr) in the statement is an

immediate consequence of Corollary 3.1.17 (1).

To prove reg S/JG = reg S/JHr , we make induction on

f = |{v ∈ V (G)|F (v) is an induced subgraph of G}|.

If f = 0, that is G is a flower-free graph, then the assertion follows by Corollary 3.1.17

(1). Let f = 1 and v be such that F (v) is an induced subgraph of G. Consider the exact

sequence

0 −→ S/JG −→ S/JG′ ⊕ S/((xv, yv) + JG′′) −→ S/((xv, yv) + JH) −→ 0 (3.1)

where G′, G′′, and H are as in Set-up 2.2.13, with u = v. We observe that G′, G′′, and H

are flower-free. Hence

reg S/JG′ = reg S/JH = i(G′) + 1 = i(G)− 1 + 1 = i(G).

Moreover, removing the vertex v from G we obtain G′′ and reg S/JG′′ is

c∑
j=1

reg S/JGj
=

c∑
j=1

(i(Gj) + 1) =
cdegF (v)∑
j=1

(i(Gj) + 1) +
c′∑
k=1

(i(Gk) + 1)

where G1, . . . , Gc are the connected components of G′′, and {v, wk} are maximal cliques

in G with wk a free vertex of Gk, and |V (Gk)| ≥ 2, for k = 1, . . . , c′. Observe that, for

j = 1, . . . , cdegF (v), all the inner vertices of G that belong to Gj are inner vertices also in

G′′. Whereas, for k = 1, . . . , c′, the wk are inner vertices in G but not in G′′, and all the

other inner vertices of G that belong to Gk are inner vertices also in G′′. Hence, removing

v from G, we have c′+ 1 less inner vertices in G′′ with respect to G, that are all the wk and

v, but this is compensated by the formula ∑c′

k=1(i(Gk) + 1) = c′ +∑c′

k=1 i(Gk). Hence

reg S/JG′′ = i(G) + cdegF (v)− 1.

Since cdegF (v) ≥ 3,

reg S/JG′ , reg S/((xv, yv) + JH) < reg S/((xv, yv) + JG′′)

and then reg S/JG = reg S/((xv, yv) + JG′′).
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Let f > 1. Let v1, . . . , vr ∈ V (G) be a sequence that fulfills (1) and (2). Consider the

exact sequence (3.1), with v = v1. Observe that the sequence v2, . . . , vr satisfies (1) and (2)

for G′, G′′, and H and, since they have less than f flower graphs as induced subgraphs, by

induction hypothesis their regularity is given by the sum of the regularity of the connected

components induced by v2, . . . , vr.

Let G1, . . . , Gm be the connected components induced by v2, . . . , vr in G. One of

them contains v1, suppose G1, and then it is not flower-free, whereas the others are flower-

free. The connected components induced by v2, . . . , vr in G′ and H are G′1, G2, . . . , Gm

and G′1 \ {v1}, G2, . . . , Gm, respectively, where G′1 denotes the graph obtained from G1 by

connecting all the vertices adjacent to v1. We get

reg S/JG′ = reg S/JH = reg S/JG′1 +
m∑
i=2

reg S/JGi
.

Whereas, the connected components induced by v2, . . . , vr in G′′ are the connected compo-

nents of G1 \ {v1} and G2, . . . , Gm, and then

reg S/JG′′ = reg S/JG1\{v1} +
m∑
i=2

reg S/JGi
.

Since

reg S/JG′1 = i(G1) < i(G1) + cdegF (v1)− 1 = reg S/JG1\{v1},

where the last equality follows from the same arguments of above and cdegF (v1) denotes

the clique degree of v1 in F (v1), with F (v1) seen as induced subgraph of G1. Since F (v1) is

an end-flower and cdegF (v1) ≥ 3 in G, it follows cdegF (v1) ≥ 2 in G1. Observe that, when

cdegF (v1) = 2 in G1, G1 is flower-free and it is easy to see that the equality reg S/JG1\{v1} =

i(G1) + cdegF (v1)− 1 is still true. Then

reg S/JG′ , reg S/((xv, yv) + JH) < reg S/((xv, yv) + JG′′)

and the assertion is proved.

The Theorem 3.1.20 suggests a recursive way to compute the regularity of S/JG when

G is a block graph.

1. ComputeRegularity(G)
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2. if G is flower-free and is not an isolated vertex

3. return i(G) + 1

4. else

5. reg := 0;

6. pinpoint an end-flower F (v) of G;

7. remove v from G;

8. for every connected component Gi induced by v in G

9. reg := reg + ComputeRegularity(Gi);

10. return reg

By means of an unique block graph traversal, that is linear with respect to the num-

ber of vertices and edges of G (see [11, Section 22]), one gets the regularity of S/JG. This

allows to compute the regularity of S/JG also for those block graphs with a large number

of vertices, and then for those binomial edge ideals with a large number of variables, for

which the algebraic softwares, as CoCoA [9] and Macaulay2 [27], fail.

3.2 BETTI NUMBERS AND COHEN-MACAULAY TYPE OF SOME

CLASSES OF COHEN-MACAULAY BINOMIAL EDGE IDEALS

In this section, we show the extremal Betti numbers for binomial edge ideals of some

classes of Cohen-Macaualy graphs: cones, bipartite and fan graphs. The former were intro-

duced and investigated in [58]. As showed in Subsection 2.2.3, connecting all the vertices

of two disjoint Cohen-Macaulay graphs to a new vertex, the resulting graph is Cohen-

Macaulay. For these graphs, we compute the regularity and also the Cohen-Macaulay type

(see Subsection 3.2.2). The latter two has been deeply studied in [4]. As showed in Subsec-

tion 2.2.4, the authors give a complete classification of the bipartite graphs whose binomial

edge ideal is Cohen-Macaulay: if G is connected and bipartite, then JG is Cohen-Macaulay

if and only if G can be obtained recursively by gluing a finite number of graphs of the form

Fm via two operations. In the same article, they describe the fan graphs, a new family

of Cohen-Macaulay binomial edge ideals associated with non-bipartite graphs. For both
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these families, in [41], Jayanthan and Kumar compute a precise expression for the regular-

ity. Here, we provide the unique extremal Betti number of the binomial edge ideal of these

graphs. In addition, we exploit the unique extremal Betti number of S/JFm to describe

completely its Hilbert-Poincaré series.

3.2.1 Betti numbers of binomial edge ideals of disjoint graphs

In this subsection, we introduce some preliminary lemmas that we will be relevant in

the next subsections.

Proposition 3.2.1. [32, Corollary 4.3] For any simple graph G, it holds

βi,i+1(S/JG) = ifi(∆(G))

where ∆(G) is the clique complex of G and fi(∆(G)) is the number of faces of ∆(G) of

dimension i.

Lemma 3.2.2. Let G be a connected graph on [n]. Suppose JG be Cohen-Macaulay, and

let p = proj dim S/JG. Then

(i) βp,p+1(S/JG) 6= 0 if and only if G is a complete graph on [n].

(ii) If G = H1 t H2, where H1 and H2 are graphs on disjoint vertex sets, then

βp,p+2(S/JG) 6= 0 if and only if H1 and H2 are complete graphs.

Proof. (i) Since JG is Cohen-Macaulay, it holds p = n−1, and the statement is an immediate

consequence of Proposition 3.2.1, with i = p.

(ii) Since JG is generated by homogeneous binomials of degree 2, β1,1(S/JG) = 0. This

implies that βi,i(S/JG) = 0 for all i ≥ 1. For all j ≥ 1, we have

βp,p+j(S/JG) =
∑

1≤j1,j2≤r
j1+j2=j

βp1,p1+j1(S1/JH1)βp2,p2+j2(S2/JH2),

where Si = K[{xj, yj}j∈V (Hi)] and pi = proj dim Si/JHi
, for i = 1, 2. For j = 2, we get

βp,p+2(S/JG) = βp1,p1+1(S1/JH1)βp2,p2+1(S2/JH2). (3.2)

By part (i), both the Betti numbers on the right are nonzero if and only if H1 and H2 are

complete graphs, and the thesis follows.
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Let G be a simple connected graph on [n]. We recall that if JG is Cohen-Macaulay,

then p = proj dim S/JG = n − 1, and it admits a unique extremal Betti number, that

is βp,p+r(S/JG), where r = reg S/JG. Hereafter, when S/JG has a unique extremal Betti

number, we denote it by β̂(S/JG).

Lemma 3.2.3. Let H1 and H2 be connected graphs on disjoint vertex sets and G = H1tH2.

Suppose JH1 and JH2 be Cohen-Macaulay binomial edge ideals. Let Si = K[{xj, yj}j∈V (Hi)]

for i = 1, 2. Then

(i) CM-type(S/JG) = CM-type(S1/JH1)CM-type(S2/JH2).

(ii) β̂(S/JG) = β̂(S1/JH1)β̂(S2/JH2).

Proof. (i) The equality JG = JH1 + JH2 implies that the minimal graded free resolution of

S/JG is the tensor product of the minimal graded free resolutions of S1/JH1 and S2/JH2 ,

where Si = K[{xj, yj}j∈V (Hi)] for i = 1, 2. Then

βt(S/JG) =
t∑

k=0
βk(S1/JH1)βt−k(S2/JH2).

Let p = proj dim S/JG, that is p = p1 + p2, where pi = proj dim Si/JHi
for i = 1, 2. Since

βk(S1/JH1) = 0 for all k > p1 and βp−k(S2/JH2) = 0 for all k < p1, it follows

βp(S/JG) = βp1(S1/JH1)βp2(S2/JH2).

(ii) Let r = reg S/JG. Consider

βp,p+r(S/JG) =
∑

1≤j1,j2≤r
j1+j2=r

βp1,p1+j1(S1/JH1)βp2,p2+j2(S2/JH2).

Since βpi,pi+ji(Si/JHi
) = 0 for all ji > ri, where ri = reg Si/JHi

for i = 1, 2, and r = r1 +r2,

it follows

βp,p+r(S/JG) = βp1,p1+r1(S1/JH1)βp2,p2+r2(S2/JH2).
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3.2.2 Regularity and Cohen-Macaulay type of cones

Lemma 3.2.4. Let G = cone(v,H1 t · · · tHs), with s ≥ 2. Then

reg S/JG = max
{

s∑
i=1

reg S/JHi
, 2
}
.

Proof. Consider the short exact sequence (2.4), with G = cone(v,H1t · · ·tHs) and u = v,

then G′ = Kn, the complete graph on [n], G′′ = H1 t · · · tHs, and H = Kn−1, where n =

|V (G)|. Since G′ and H are complete graphs, the regularity of S/JG′ and S/((xu, yu) +JH)

is 1. Whereas the regularity of S/((xu, yu) + JG′′) is given by reg S/JH1 + · · ·+ reg S/JHs .

We get the following bound on the regularity of S/JG

reg S/JG ≤ max
{

reg S

JG′
, reg S

((xu, yu) + JG′′)
, reg S

((xu, yu) + JH) + 1
}

= max
{

1,
s∑
i=1

reg S/JHi
, 2
}
.

Suppose ∑s
i=1 reg S/JHi

≥ 2, hence reg S/JG ≤
∑s
i=1 reg S/JHi

. Since H1 t · · · tHs is an

induced subgraph of G, by [52, Corollary 2.2] of Matsuda and Murai we have

reg S/JG ≥ reg S/JH1t···tHs =
s∑
i=1

reg S/JHi
.

Suppose now ∑s
i=1 reg S/JHi

< 2, hence reg S/JG ≤ 2. Since G is not a complete graph,

reg S/JG ≥ 2, and the statement follows.

Observe that it happens reg S/JG = 2, for G = cone(v,H1 t · · · t Hs), with s ≥ 2,

if and only if all the Hi are isolated vertices except for at most two which are complete

graphs.

We are going to give a description of the Cohen-Macaulay type and some Betti numbers

of S/JG when S/JG is Cohen-Macaulay, and G is a cone, namely G = cone(v,H). By

Lemma 2.2.25, Lemma 2.2.26, and Theorem 2.2.27, it is necessary for G being Cohen-

Macaulay that H has exactly two connected components and both are Cohen-Macaulay.
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Proposition 3.2.5. Let G = cone(v,H1 tH2) on [n], with JH1 and JH2 Cohen-Macaulay

binomial edge ideals. Then

CM-type(S/JG) = n− 2 + CM-type(S/JH1)CM-type(S/JH2).

In particular, the unique extremal Betti number of S/JG is given by

β̂(S/JG) =


β̂(S1/JH1)β̂(S2/JH2) if r > 2

n− 2 + β̂(S1/JH1)β̂(S2/JH2) if r = 2

where r = reg S/JG and Si = K[{xj, yj}j∈V (Hi)] for i = 1, 2. In addition, if r > 2, it holds

βp,p+2(S/JG) = n− 2.

Proof. Consider the short exact sequence (2.4), with u = v, then we have G′ = Kn,

G′′ = H1 tH2, and H = Kn−1. It holds

r = reg S/JG = max{reg S/JH1 + reg S/JH2 , 2},

reg S/((xu, yu) + JG′′) = reg S/JH1 + reg S/JH2 ,

reg S/JG′ = reg S/((xu, yu) + JH) = 1, (3.3)

and

p = proj dim S/JG = proj dim S/JG′ = proj dim S/((xu, yu) + JG′′) = n− 1,

proj dim S/((xu, yu) + JH) = n.

Consider the long exact sequence (2.5) with i = p. By (3.3), we have

βp,p+j(S/JG′) = βp,p+j(S/((xu, yu) + JH)) = 0 for all j ≥ 2

and

βp+1,p+1+(j−1)(S/((xu, yu) + JH)) 6= 0 only for j = 2.

By Lemma 3.2.2 and Lemma 3.2.3 (i), it follows that

CM-type(S/JG) =
r∑
j=0

βp,p+j(S/JG) =
r∑
j=2

βp,p+j(S/JG)

= βp−1,p−2+2(S/JH) +
r∑
j=2

βp−2,p−2+j(S/JG′′)

= n− 2 + CM-type(S/JG′′)

= n− 2 + CM-type(S/JH1)CM-type(S/JH2).
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If r = 2,

CM-type(S/JG) = βp,p+2(S/JG)

= βp−1,p−2+2(S/JH) + βp−2,p−2+2(S/JG′′)

= n− 2 + β̂(S1/JH1)β̂(S2/JH2),

where the last equality follows from Equation (3.2).

If r > 2, it means that H1 and H2 are not both complete graphs, and then, by

Lemma 3.2.2 (ii), βp−2,p−2+2(S/JG′′) = 0, then βp,p+2(S/JG) = n − 2, and β̂(S/JG) =

β̂(S1/JH1)β̂(S2/JH2).

3.2.3 Extremal Betti numbers of some classes of Cohen-Macaulay binomial

edge ideals

In this subsection, we exhibit the extremal Betti numbers of Cohen-Macaulay binomial

edge ideals of bipartite graphs and fan graphs. We conclude providing the Hilbert-Poincaré

series of S/JG, when G = Fm.

Exploiting Proposition 3.2.5, we get hold a formula for the CM-type of any G = FW
m

pure fan graph.

Proposition 3.2.6. Let m ≥ 2, and G = FW
m a pure fan graph, with |W | ≥ 1. Then

CM-type(S/JG) = β̂(S/JG) = (m− 1)|W |. (3.4)

Proof. We use induction on n = m + |W |, the number of vertices of G. If n = 3, that is

m = 2 and |W | = 1, G is decomposable into two K2’s and it is straightforward to check

that (3.4) holds. Let n > 3 and suppose the thesis true for all the pure graphs with at

most n− 1 vertices. We have G = cone(v1, H1 tH2), where W = {v1, . . . , vs}, H1 = FW ′
m−1

is the pure graph of Km−1 on W ′, with W ′ = W \ {v1}, w is the leaf of G, {w, v1} ∈ E(G),

and H2 = {w}. By induction hypothesis CM-type(S/JH1) = (m − 2)(|W | − 1), and

CM-type(S/JH2) = 1, then using Proposition 3.2.5, it follows

CM-type(S/JG) = |V (G)| − 2 + CM-type(S/JH1)CM-type(S/JH2)

= (m+ |W | − 2) + (m− 2)(|W | − 1) = (m− 1)|W |.
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Since |W | ≥ 1, the graph FW
m is not a complete graph, then βp,p+1(S/JG) = 0, where

p = proj dim S/JG. Due to reg S/JG = 2, the CM-type(S/JG) coincides with the unique

extremal Betti number of S/JG, that is βp,p+2.

In the following result we provide the unique extremal Betti number of any k-pure fan

graph.

Proposition 3.2.7. Let G = FW,k
m be a k-pure fan graph, where m ≥ 2 and W = W1 t

· · · tWk ⊆ [m] is a non-trivial partition of W . Then

β̂(S/JG) = (m− 1)
k∏
i=1
|Wi|. (3.5)

Proof. Let |Wi| = `i, for i = 1, . . . k. First of all, we observe that if `i = 1 for all i = 1, . . . , k,

that is Wi = {vi}, then G is decomposable into G1 ∪ · · · ∪Gk+1, where G1 = Km, Gj = K2

and G1 ∩Gj = {vj}, for all j = 2, . . . , k + 1. This implies

β̂(S/JG) =
k+1∏
j=1

β̂(S/JGj
) = m− 1

where the last equality is due to the fact β̂(S/JKm) = m − 1 for any complete graph Km,

with m ≥ 2. Without loss of generality, we suppose `1 ≥ 2.

We are ready to prove the statement on induction on n, the number of vertices of G = FW,k
m ,

that is n = m+∑k
i=1 `i. Let n = 4, then G is a pure fan graph FW

2 , with |W | = 2, satisfying

Proposition 3.2.6 and it holds (3.4). Let n > 4. Pick v ∈ W1 such that {v, w} ∈ E(G),

with w a leaf of G. Consider the short exact sequence (2.4), with u = v, G′ = FW ′,k−1
m+`1 the

(k − 1)-pure fan graph of Km+`1 on W ′ = W2 t · · · tWk, G′′ = FW ′′,k
m−1 t {w} the disjoint

union of the isolated vertex w and the k-pure fan graph of Km−1 on W ′′ = W \ {v}, and

H = FW ′,k−1
m+`1−1. For the quotient rings involved in (2.4), from Proposition 2.2.34, we have

r =reg S/JG = reg S/((xu, yu) + JG′′) = 1 + k,

reg S/JG′ = reg S/((xu, yu) + JH) = k.

As regard the projective dimensions, we have

p = proj dim S/JG = proj dim S/JG′ = proj dim S/((xu, yu) + JG′′)

= proj dim S/((xu, yu) + JH)− 1 = m+
k∑
i=1

`i − 1.
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Fix i = p and j = r in the long exact sequence (2.5). The Tor modules

Tp+1,p+1+(r−1)(S/((xu, yu) + JH)) and Tp,p+r(S/((xu, yu) + JG′′)) are the only nonzeroes.

It follows

βp,p+r(S/JG) = βp−1,p+r−2(S/JH) + βp−2,p+r−2(S/JG′′)

= β̂(S/JH) + β̂(S/J
FW ′′,k

m−1
).

Both FW ′′,k
m−1 andH fulfil the hypothesis of the proposition and they have less than n vertices,

then by induction hypothesis

β̂(S/JH) = (m+ `1 − 2)
k∏
s=2

`s,

β̂(S/J
FW ′′,k

m−1
) = (m− 2)(`1 − 1)

k∏
s=2

`s.

Adding these extremal Betti numbers, the thesis is proved.

Proposition 3.2.8. Let m ≥ 2. The unique extremal Betti number of the bipartite graph

Fm is given by

β̂(S/JFm) =
m−1∑
k=1

k2.

Proof. We use induction on m. If m = 2, then F2 = K2 and it is well known that

β̂(S/JFm) = 1. Suppose m > 2. Consider the short exact sequence (2.4), with G = Fm

and u = 2m − 1, with respect to the labelling introduced at the begin of this section.

The graphs involved in (2.4) are G′ = FW
m+1, that is the pure fan graph of Km+1, with

V (Km+1) = {u}∪{2i|i = 1, . . . ,m}, on W = {2i−1|i = 1, . . . ,m−1}, G′′ = Fm−1t{2m},

and the pure fan graph H = FW
m . By Proposition 2.2.34 and Proposition 2.2.35, we have

r =reg S/JG = reg S/((xu, yu) + JG′′) = 3

reg S/JG′ = reg S/((xu, yu) + JH) = 2.

As regards the projective dimension of the quotient rings involved in (2.4), it is equal to

p = 2m−1 for all, except for S/((xu, yu)+JH) whose projective dimension is 2m. Consider

the long exact sequence (2.5), with i = p and j = r. In view of the above, Tp,p+r(S/JG′),
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Tp,p+r(S/((xu, yu)+JH)), and all the Tor modules on the left of Tp+1,p+1+(r−1)(S/((xu, yu)+

JH)) in (2.5) are zero. It follows that

Tp,p+r(S/JG) ∼= Tp+1,p+1+(r−1)(S/((xu, yu) + JH))⊕ Tp,p+r(S/((xu, yu) + JG′′)).

Then, using Proposition 3.2.7 and induction hypothesis, we obtain

βp,p+r(S/JG) = βp−1,p+r−2(S/JH) + βp−2,p+r−2(S/JG′′)

= β̂(S/JH) + β̂(S/JG′′)

= (m− 1)2 +
m−2∑
k=1

k2 =
m−1∑
k=1

k2.

Question 3.2.9 Based on explicit calculations we believe that S/JG is a level ring when

either G = Fm or G = FW,k
m for m ≥ 2, that is βp,p+j(S/JG) = 0 and βp,p+r(S/JG) =

CM-type(S/JG) for all j = 0, . . . , r − 1, and p = proj dim S/JG and r = reg S/JG.

Let G = G1 ∗ · · · ∗Gt, for t ≥ 1. Observe that G is decomposable into G1 ∪ · · · ∪Gt,

with Gi ∩ Gi+1 = {fi}, for i = 1, . . . , t − 1, where fi is the leaf of Gi and Gi+1 which has

been identified in Gi ∗Gi+1 and Gi ∩Gj = ∅, for 1 ≤ i < j ≤ t.

Lemma 3.2.10. [35, Corollary 1.4] Let G be decomposable into G1, . . . , Gt and suppose

S/JG and S/JGi
, with i = 1, . . . , t, admit only one extremal Betti number. Then,

β̂(S/JG) =
t∏
i=1

β̂(S/JGi
).

In light of the above, we will focus on graphs of the form G = Fm1 ◦ · · · ◦ Fmt , with

mi ≥ 3, i = 1, . . . , t.

Lemma 3.2.11. Let m1,m2 ≥ 3 and G = Fm1 ◦ F , where F is either Fm2 or a k-pure fan

graph FW,k
m2 , with W = W1 t · · · tWk and |Wi| ≥ 2 for some i. Let {v} = V (Fm1) ∩ V (F )

and suppose v ∈ Wi. Let G′′ be as in Set-up 2.2.13, with u = v. Then the unique extremal

Betti number of S/JG is given by

β̂(S/JG) = β̂(S/JG′′).
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In particular,

β̂(S/JG) =


β̂(S/JFm1−1)β̂(S/JFm2−1) if F = Fm2

β̂(S/JFm1−1)β̂(S/J
FW ′,k

m2−1
) if F = FW,k

m2

where W ′ = W \ {v}.

Proof. Consider the short exact sequence (2.4), with G = Fm1 ◦ F and u = v.

If F = Fm2 , then the graphs involved in (2.4) are: G′ = FW,2
m , G′′ = Fm1−1 t Fm2−1, and

H = FW,2
m−1, where m = m1 +m2− 1, W = W1 tW2 with |Wi| = mi− 1 for i = 1, 2, and G′

and H are 2-pure fan graphs. By Proposition 2.2.34 and Proposition 2.2.35, we have the

following values for the regularity

r =reg S/JG = reg S/((xu, yu) + JG′′) = 6

reg S/JG′ = reg S/((xu, yu) + JH) = 3.

In the matter of projective dimension, it is equal to p = n − 1 for all the quotient rings

involved in (2.4), except for S/((xu, yu) +JH), for which it is n. Considering the long exact

sequence (2.5) with i = p and j = r, it holds

βp,p+r(S/JG) = βp,p+r(S/((xu, yu) + JG′′))

and by Lemma 3.2.3 (ii) the second part of thesis follows.

The case F = FW,k
m2 follows by similar arguments. Indeed, suppose |W1| ≥ 2 and v ∈ W1.

The graphs involved in (2.4) are: G′ = FW ′,k
m , G′′ = Fm1−1 tFW ′′,k

m2−1, and H = FW ′,k
m−1 , where

m = m1 + m2 + |W1| − 2, all the fan graphs are k-pure, W ′ = W ′
1 tW2 t · · · tWk, with

|W ′
1| = m1−1, whereasW ′′ = W\{v}. Fixing r = reg S/JG = reg S/((xu, yu)+JG′′) = k+4,

since reg S/JG′ = reg S/((xu, yu) + JH) = k + 1, and the projective dimension of all the

quotient rings involved in (2.4) is p = n− 1, except for S/((xu, yu) + JH), for which it is n,

it follows

βp,p+r(S/JG) = βp,p+r(S/((xu, yu) + JG′′))

and by Lemma 3.2.3 (ii) the second part of the thesis follows.
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Theorem 3.2.12. Let t ≥ 2, m ≥ 3, and mi ≥ 3 for all i = 1, . . . , t. Let G = Fm1 ◦ · · · ◦

Fmt ◦ F , where F denotes either Fm or a k-pure fan graph FW,k
m with W = W1 t · · · tWk.

Let {v} = V (Fm1 ◦ · · · ◦ Fmt) ∩ V (F ) and, if F = FW,k
m , assume |W1| ≥ 2 and v ∈ W1. Let

G′′ and H be as in Set-up 2.2.13, with u = v. Then the unique extremal Betti number of

S/JG is given by

β̂(S/JG) = β̂(S/JG′′) +


β̂(S/JH) if mt = 3

0 if mt > 3

In particular, if F = Fm, it is given by

β̂(S/JG) = β̂(S/JFm1◦···◦Fmt−1)β̂(S/JFm−1) +


β̂(S/JH) if mt = 3

0 if mt > 3

where H = Fm1 ◦ · · · ◦Fmt−1 ◦F
W ′,2
m+mt−2, and FW ′,2

m+mt−2 is a 2-pure fan graph of Km+mt−2 on

W ′ = W ′
1 tW ′

2, with |W ′
1| = mt − 1 and |W ′

2| = m− 1.

If F = FW,k
m , it is given by

β̂(S/JG) = β̂(S/JFm1◦···◦Fmt−1)β̂(S/J
FW ′′,k

m−1
) +


β̂(S/JH) if mt = 3

0 if mt > 3

where W ′′ = W \ {v}, H = Fm1 ◦ · · · ◦ Fmt−1 ◦ F
W ′′′,k
m′ , with m′ = m + mt + |W1| − 2,

W ′′′ = W ′′
1 tW2 t · · · tWk, and |W ′′

1 | = mt − 1.

Proof. If F = Fm, we have G′ = Fm1 ◦ · · · ◦Fmt−1 ◦F
W ′,2
m+mt−1, G′′ = Fm1 ◦ · · · ◦Fmt−1tFm−1,

and H = Fm1 ◦ · · · ◦ Fmt−1 ◦ F
W ′,2
m+mt−2, where W ′ = W ′

1 t W ′
2, with |W ′

1| = mt − 1 and

|W ′
2| = m− 1. As regard the regularity of these quotient rings, we have

r = reg S/JG = reg S/((xu, yu) + JG′′)

= reg S/JFm1−1 + reg S/JFm2−2 + · · ·+ reg S/JFmt−2 + reg S/JFm−1

and both reg S/JG′ and reg S/((xu, yu) + JH) are equal to

reg S/JFm1−1 + reg S/JFm2−2 + · · ·+ reg S/JFmt−1−2 + reg S/J
FW ′,2

m+mt−1
.
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Since reg S/JFm−1 = reg S/J
FW ′,2

m+mt−1
= 3, whereas if mt = 3, reg S/JFmt−2 = 1, otherwise

reg S/JFmt−2 = 3, it follows that

reg S/JG′ = reg S/((xu, yu) + JH) =


r − 1 if mt = 3

r − 3 if mt > 3

For the projective dimensions, we have

p = proj dim S/JG = proj dim S/((xu, yu) + JG′′)

= proj dim S/JG′ = proj dim S/((xu, yu) + JH)− 1 = n− 1.

Passing through the long exact sequence (2.5) of Tor modules, we obtain, if mt = 3

βp,p+r(S/JG) = βp,p+r(S/((xu, yu) + JG′′)) + βp+1,(p+1)+(r−1)(S/((xu, yu) + JH))

and, if mt > 3

βp,p+r(S/JG) = βp,p+r(S/((xu, yu) + JG′′)).

The case F = FW,k
m follows by similar arguments. Indeed, the involved graphs are: G′ =

Fm1 ◦ · · ·◦Fmt−1 ◦F
W ′′′,k
m′ , G′′ = Fm1 ◦ · · ·◦Fmt−1tFW ′′,k

m−1 , and H = Fm1 ◦ · · ·◦Fmt−1 ◦F
W ′′′,k
m′−1 ,

where all the fan graphs are k-pure, W ′′ = W \ {v}, m′ = m+mt + |W1| − 1, W ′′′ = W ′′
1 t

W2t · · · tWk, and |W ′′
1 | = mt− 1. Fixing r = reg S/JG, we get reg S/((xu, yu) +JG′′) = r,

whereas

reg S/JG′ = reg S/((xu, yu) + JH) =


r − 1 if mt = 3

r − 3 if mt > 3

The projective dimension of all the quotient rings involved is p = n − 1, except for

S/((xu, yu) + JH), for which it is n. Passing through the long exact sequence (2.5) of

Tor modules, the thesis follows.

Corollary 3.2.13. Let t ≥ 2, m,m1 ≥ 3, and mi ≥ 4 for all i = 2, . . . , t. Let G = Fm1 ◦

· · ·◦Fmt◦F , where F denotes either Fm or a k-pure fan graph FW,k
m with W = W1t· · ·tWk.

Let {v} = V (Fm1 ◦ · · · ◦ Fmt) ∩ V (F ) and, when F = FW,k
m , assume |W1| ≥ 2 and v ∈ W1.

Then the unique extremal Betti number of S/JG is given by

β̂(S/JG) =


β̂(S/JFm1−1)∏t

i=2 β̂(S/JFmi−2)β̂(S/JFm−1) if F = Fm

β̂(S/JFm1−1)∏t
i=2 β̂(S/JFmi−2)β̂(S/J

FW ′,k
m−1

) if F = FW,k
m
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where W ′ = W \ {v}.

Proof. By Theorem 3.2.12 and by hypothesis on the mi’s, we get

β̂(S/JG) = β̂(S/JFm1
◦ · · · ◦ Fmt−1)β̂(S/JFm−1).

Repeating the same argument for computing the extremal Betti number of S/JFm1◦···◦Fmt−1 ,

and by Lemma 3.2.11, we have done.

Remark 3.2.14 Contrary to what we believe for bipartite graphs Fm and k-pure fan

graphs FW,k
m (see Question 3.2.9), in general for a Cohen-Macaulay bipartite graph

G = Fm1 ◦ · · · ◦ Fmt , with t ≥ 2, the unique extremal Betti number of S/JG does not

coincide with the Cohen-Macaulay type of S/JG, for example for G = F4 ◦ F3, we have

5 = β̂(S/JG) 6= CM-type(S/JG) = 29.

In the last part of this section, we completely describe the Hilbert-Poincaré series HS

of S/JG, when G is a bipartite graph Fm. In particular, we are interested in computing the

h-vector of S/JG.

For any graph G on [n], let

HSS/JG
(t) = p(t)

(1− t)2n = h(t)
(1− t)d

be the Hilbert-Poincaré series of S/JG, where p(t), h(t) ∈ Z[t] and d = dimS/JG. Recall

that the polynomial p(t) is related to the graded Betti numbers of S/JG in the following

way

p(t) =
∑
i,j

(−1)iβi,j(S/JG)tj. (3.6)

Lemma 3.2.15. Let G be a graph on [n], and suppose S/JG has a unique extremal

Betti number, then the last nonnegative entry in the h-vector is (−1)p+dβp,p+r, where

p = proj dim S/JG and r = reg S/JG.
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Proof. The unique extremal Betti number of S/JG is βp,p+r(S/JG). Since p(t) = h(t)(1 −

t)2n−d, then lc(p(t)) = (−1)dlc(h(t)), where lc denotes the leading coefficient of a polyno-

mial. By Equation (3.6), the leading coefficient of p(t) is the coefficient of tj for j = p+ r.

Since βi,p+r = 0 for all i < p, lc(p(t)) = (−1)pβp,p+r, and the thesis follows.

Let ∆ be a simplicial complex with vertex set V = {v1, . . . , vn}. In the polynomial

ring K[v1, . . . , vn], one can associate to ∆ the following monomial ideal

I∆ = (vi1 · · · vir | {vi1 , . . . , vir} 6∈ ∆).

I∆ is called the Stanley-Reisner ideal of ∆.

Proposition 3.2.16. Let G = Fm, with m ≥ 2, then the Hilbert-Poincaré series of S/JG
is given by

HSS/JG
(t) = h0 + h1t+ h2t

2 + h3t
3

(1− t)2m+1

where

h0 = 1, h1 = 2m− 1, h2 = 3m2 − 3m
2 , and h3 =

m−1∑
k=1

k2.

Proof. By Proposition 2.2.35, deg h(t) = reg S/JG = 3. Let in(JG) = I∆, for some sim-

plicial complex ∆. Let fi be the number of faces of ∆ of dimension i with the convention

that f−1 = 1. Then

hk =
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1. (3.7)

Exploiting the Equation (3.7) we get

h1 = f0 − d = 4m− (2m+ 1) = 2m− 1

To obtain h2 we need first to compute f1, that is the number of edges in ∆: they are all

the possible edges, except for those that appear in (I∆)2, which are the number of edges in

G. So

f1 =
(

4m
2

)
− m(m+ 1)

2 = 15m2 − 5m
2 .

And then we have

h2 =
(

2m+ 1
2

)
f−1 −

(
2m
1

)
f0 +

(
2m− 1

0

)
f1 = 3m2 − 3m

2 .
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By Lemma 3.2.15, and since p = 2m− 1 and d = 2m+ 1,

h3 = (−1)4mβp,p+r(S/JG) =
m−1∑
k=1

k2

where the last equality follows from Proposition 3.2.8.
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Chapter 4

ON THE PRIMALITY OF SOME POLYOMINO IDEALS

The polyomino ideals have been introduced, in this dissertation, in Section 2.3. From

now on, a polyomino is briefly called prime if its polyomino ideal is prime. In Subsection

2.3.1 and Subsection 2.3.2, we have discussed the known results concerning the primality

of polyomino ideals, showing that simple polyominoes and a particular family of multiply

connected polyominoes are prime.

Aim of this section is mostly to investigate primality of any multiply connected poly-

ominoes. Consider the polyominoes in Figure 4.1. They look alike except for one cell.

Anyway, there exists a great difference: P1 is prime, but P2 is not.

(a) P1 (b) P2

Figure 4.1: Prime and non-prime polyominoes

Motivated by this simple but relevant example, we have followed up on the geometric

representation of the polyominoes, until we have found a necessary condition for the pri-

mality of the polyomino ideal. This condition is related to a sequence of inner intervals

contained in the polyomino, called a zig-zag walk (see Definition 4.1.2), whose existence

determines the non-primality of the polyomino ideal (see Proposition 4.1.5 and Corollary

4.1.6).

We have implemented an algorithm, described in [50], to compute all the polyominoes,

and their ideal, with rank less than or equal to 14. We get that if P is a polyomino with
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rank (P) ≤ 14, then P is prime if and only if P contains no zig-zag walk (see Theorem

4.1.9). Finally, in Subsection 4.2, we define a new infinite family of polyominoes, called

grid polyominoes, that are obtained by removing inner intervals from a given rectangle in

a way that avoids the existence of zig-zag walks. By using a Gröbner basis technique and

lattice ideals, we prove that grid polyominoes are prime.

Therefore, the natural conjecture arises:

Conjecture 4.0.1 Let P be a polyomino. The following conditions are equivalent:

(i) the polyomino ideal IP is prime;

(ii) P contains no zig-zag walk.

All the results presented in this section are contained in [51].

4.1 THE TORIC RING OF POLYOMINOES AND ZIG-ZAG WALKS

In this section, we first present a toric ideal associated to a polyomino, generalizing

Shikama’s construction (see Subsection 2.3.2). We will prove that this toric ideal contains

the polyomino ideal. Secondly, we define the zig-zag walks, a sequence of inner intervals

that are the key idea to give the necessary condition for having prime ideals. Moreover, we

state that if the polyomino contains a zig-zag walk, the binomial associated to the zig-zag

walk belongs to the toric ideal and, therefore, the above inclusion is strict.

Let P be a polyomino. Let S = K[xv|v ∈ V (P)] and IP ⊂ S the polyomino ideal

associated to P . Let H1, . . . ,Hr be holes of P . For k = 1, . . . , r, we denote by ek = (ik, jk)

the lower left corner of Hk. For k ∈ K = {1, . . . , r}, we define the following subset of V (P)

Fk = {(i, j) ∈ V (P) | i ≤ ik and j ≤ jk}.

Let {Vi}i∈I be the set of all the maximal vertical edge intervals of P , and {Hj}j∈J be the

set of all the maximal horizontal edge intervals of P . Let {vi}i∈I , {hj}j∈J , and {wk}w∈K
be three sets of variables associated to {Vi}i∈I , {Hj}j∈J , and {Fk}k∈K , respectively. We
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consider the map

α : V (P) −→ K[{hi, vj, wk} | i ∈ I, j ∈ J, k ∈ K]

a 7−→
∏

a∈Hi∩Vj

hivj
∏
a∈Fk

wk

The toric ring TP associated to P is defined as TP = K[α(a)|a ∈ V (P)] ⊂ K[{hi, vj, wk} |

i ∈ I, j ∈ J, k ∈ K]. The homomorphism

ϕ : S −→ TP

xa 7−→ α(a)

is surjective and the toric ideal JP is the kernel of ϕ.

Proposition 4.1.1. Let P be a polyomino and (JP)2 the homogeneous part of degree 2 of

JP . Then IP = (JP)2.

Proof. First of all we show that IP ⊆ (JP)2. Let f ∈M, with f = xaxb− xcxd. Since [a, b]

is an inner interval of P , the corners a and d (resp. b and c) lie on the same horizontal

edge interval Hi (resp. Hj). In the same way, it holds that a and c (resp. b and d) lie on

the same vertical edge interval V` (resp. Vm). Therefore,

ϕ(xaxb) = hihjv`vm
∏

k=1,...,r
wpk
k (4.1)

and

ϕ(xcxd) = hihjv`vm
∏

k=1,...,r
wnk
k (4.2)

for some pk, nk ∈ {0, 1, 2}. We have to show that for any k ∈ {1, . . . , r} pk = nk. If P

has not holes, then nk = pk = 0 and ϕ(xaxb) = ϕ(xcxd), that is f ∈ JP . Suppose that

H1, . . . ,Hr are holes of P and consider Hk for k = 1, . . . , r. Observe that the left lower

corner ek of Hk satisfies one of the following

(I) ek < a;

(II) a ≤ ek ≤ d;

(III) d < ek,
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a d

c b

ek

(I)

a d

c b

ek

(II)

a d

c b

(III-A)

ek

a d

c b

ek

(III-B)

Figure 4.2: Some positions of ek. The circled vertices v induce the variable wk in the image

φ(xv).

where < stands for <1.

Case (I). wk does not divide neither φ(xaxb) nor φ(xcxd) (see Figure 4.2(I)).

Case (II). wk divides either both ϕ(xa) and ϕ(xc) (see Figure 4.2(II)) or it does not divide

neither ϕ(xaxb) nor ϕ(xcxd).

Case (III). wk divides either ϕ(xa) and ϕ(xd) (see Figure 4.2(III-A)) or all

ϕ(xa), ϕ(xb), ϕ(xc) and ϕ(xd) (see Figure 4.2(III-B)) or wk does not divide neither ϕ(xaxb)

nor ϕ(xcxd).

Therefore nk = pk, and it holds for any k = 1, . . . , r. It follows ϕ(xaxb) = ϕ(xcxd), and

f ∈ kerϕ = JP . Since all generators of IP belong to JP , the inclusion IP ⊆ (JP)2 is proved.

We are going to prove the other inclusion, namely (JP)2 ⊆ IP . Let f ∈ JP , f =

xaxb − xcxd. We start observing that if a = b or a ∈ {c, d} we obtain that f is null.

Hence we assume without loss of generality a < b and c < d. Since ϕ(xaxb) = ϕ(xcxd),

by (4.1) and (4.2) the vertices a and d (resp. b and c) lie on the same horizontal edge

interval of P , and a and c (resp. b and d) lie on the same vertical edge interval of P , and

all the vertices of these edge intervals belong to P . Therefore, the vertices a, b, c, and d

are the corners of the interval [a, b]. By contradiction, we assume that [a, b] is not an inner

interval of P , namely exists a set C of cells of [a, b] that do not belong to P . Since [a, d],

[a, c], [b, c] and [b, d] are edge intervals in P , C is a set of holes of P which are properly

contained in [a, b]. Let H1 be a hole of P in [a, b] with lower left corner e = (i, j). Let

F1 = {(m,n) ∈ V (P) | m ≤ i and n ≤ j}, then a is the unique vertex in {a, b, c, d} such

that a ∈ F1, namely w1|ϕ(xaxb) but w1 - ϕ(xcxd), and f /∈ JP . The assertion follows.
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Describing completely the elements of JP \IP is not an easy task. However, if the poly-

omino has a particular collection of inner intervals, then we have some partial information

on the elements of JP \ IP .

Definition 4.1.2 Let P be a polyomino. A sequence of distinct inner intervals W :

I1, . . . , I` of P such that vi, zi are diagonal (resp. anti-diagonal) corners and ui, vi+1

the anti-diagonal (resp. diagonal) corners of Ii, for i = 1, . . . , `, is a zig-zag walk of P , if

(Z1) |I1 ∩ I`| = {v1 = v`+1} and Ii ∩ Ii+1 = {vi+1}, for i = 1, . . . , `− 1,

(Z2) vi and vi+1 are on a same edge interval of P , for i = 1, . . . , `,

(Z3) for any i, j ∈ {1, . . . , `}, with i 6= j, does not exist an inner interval J of P such that

zi, zj ∈ J .

Remark 4.1.3 Let W : I1 . . . , I` be a zig-zag walk of P . Then

(i) if vi is a diagonal vertex of Ii then vi+1 is an anti-diagonal vertex of Ii+1;

(ii) ` is even.

Proof. (1) Assume that vk, with k ∈ {1, . . . , `−1} is a diagonal corner of Ik. From condition

(Z2), vk+1 lies on the same edge interval of vk, say E, and is an anti-diagonal corner of

Ik. The line containing E divides N2 in two semi-planes. From condition (Z1), we have

Ik ∩ Ik+1 = {vk+1}, hence Ik and Ik+1 do not lie on the same semi-plane. Therefore, vk+1 is

anti-diagonal corner of Ik+1, as well. Observe that the latter justifies the name “zig-zag”.

(2) Assume that the starting point v1 is a diagonal corner of I1. From (1) it follows that

the vertex vk is a diagonal corner of Ik if and only if k is odd (resp. anti-diagonal corner if

and only if k is even). Since v`+1 = v1, `+ 1 is odd.

Remark 4.1.4 Let P be a polyomino and IP ⊂ S the polyomino ideal associated to P . If

f ∈ IP , then

f =
∑

fIj
hj =

∑
xaj

xbj
hj −

∑
xcj
xdj

hj

where fIj
= xaj

xbj
−xcj

xdj
∈M, hence for every m, monomial of f , there are two variables

in m that are (anti-)diagonal corners of an inner interval of P .

Proposition 4.1.5. Let P be a polyomino and IP the polyomino ideal associated to P. If
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there exists a zig-zag walk W : I1, . . . , I` in P then

xv1 , . . . , xv`
and fW =

∏
k=1,...,`

xzk
−

∏
j=1,...,`

xuj

are zero divisors of K[P ] with xvi
fW ∈ IP for i = 1, . . . , `.

Proof. For any vertex vj in v1, . . . , v`, after relabelling, we may assume j = 1 and, without

loss of generality, that v1 is a diagonal corner of I1. Let fIi
∈M be associated to the inner

interval Ii.

We define the following polynomial

f̃ = ω1fI1 + · · ·+ (−1)i+1ωifIi
+ · · ·+ (−1)`+1ω`fI`

,

where, for i = 1, . . . , `,

ωi =
∏
j<i

xuj

∏
k>i

xzk
.

Let i = 1, . . . , `−1. Suppose that vi is a diagonal corner of Ii, hence vi+1 is an anti-diagonal

corner of Ii+1. It holds

ωifIi
− ωi+1fIi+1 (4.3)

is

ωi(xvi
xzi
− xvi+1xui

)− ωi+1(xvi+2xui+1 − xvi+1xzi+1),

where

ωixui
= ωi+1xzi+1 for all i. (4.4)

That is (4.3) becomes

(ωixzi
)xvi
− (ωi+1xui+1)xvi+2 .

Due to the alternation of the signs in f̃ , Remark 4.1.3, Equation (4.4) and since v1 = v`+1,

it follows that

f̃ =
 ∏
k=1,...,`

xzk

xv1 −

 ∏
j=1,...,`

xuj

xv`+1 = xv1fW .

Since f̃ is sum of polynomials in IP , then f̃ ∈ IP . Observe that, by hypothesis, for

i 6= j, zi, zj do not belong to the same inner interval of P , and the same fact holds for ui
and uj, with i 6= j. Due to this fact and by Remark 4.1.4, fW 6∈ IP . Therefore, xv1 and fW
are zero divisors of K[P ].
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Corollary 4.1.6. Let P be a polyomino and IP the polyomino ideal associated to P. If

there exists a zig-zag walk in P, then IP is not prime.

Remark 4.1.7 Let W : I1, . . . , I` be a zig-zag walk of P and let fW = ∏
k=1,...,` xzk

−∏
j=1,...,` xuj

be its associated binomial. The ideal JP contains the binomials associated to

zig-zag walks. Indeed, by Proposition 4.1.5, it arises that

xv1fW ∈ IP ⊆ JP

and, due to primality of JP , it follows fW ∈ JP .

We give some examples to better understand the structure of JP .

Example 4.1.8 We consider the polyomino P ⊂ [(1, 1), (8, 4)] in Figure 4.3.

Figure 4.3

By using Macaulay2 [27], we computed the ideal JP associated to P . JP has 50

generators, 46 having degree 2, corresponding to the inner 2-minors of P , and 4 having

degree 4 that do not belong to IP . The latter are:

f1 = x(1,3)x(3,1)x(7,4)x(8,2) − x(1,2)x(3,4)x(7,1)x(8,3),

f2 = x(1,3)x(2,1)x(7,4)x(8,2) − x(1,2)x(2,4)x(7,1)x(8,3),

f3 = x(1,3)x(3,1)x(6,4)x(8,2) − x(1,2)x(3,4)x(6,1)x(8,3),

f4 = x(1,3)x(2,1)x(6,4)x(8,2) − x(1,2)x(2,4)x(6,1)x(8,3).

The four binomials above correspond to the four zig-zag walks drawn in Figure 4.4.
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Figure 4.4: The zig-zag walks related to f1, . . . , f4.

Figure 4.5

In this case, the generators of JP in JP \ IP are all related to zig-zag walks. However,

we computed JP for the polyomino P ⊂ [(1, 1), (8, 6)] in Figure 4.5, and we found that

there are generators of degree 6 that are not related to zig-zag walks, for example

g = x(1,4)x(3,1)x(4,6)x(5,1)x(6,6)x(8,3) − x(1,3)x(3,6)x(4,1)x(5,6)x(6,1)x(8,4).

In Figure 4.6(A), we highlight the intervals related to g. On the other hand, there are two

zig-zag walks that arises from g, as in Figure 4.6(B).

Verifying that the non-existence of zig-zag walks is a sufficient condition for the pri-

mality of IP , for any multiply connected polyomino P of rank ≤ 14, is not an easy task.

In fact, the cardinality of the set of polyominoes grows exponentially with respect to the

rank. In Table 4.1, we show the numbers of distinct free multiply connected polyominoes,

the ones there are not a translation, rotation, reflection or glide reflection of another poly-
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(A) g is not related to a zig-zag walk... (B) ...but there are two zig-zag walks.

Figure 4.6

omino, of rank ≤ 14, obtained by the implementation in [50] (see also [25, Chapter 6]).

Rank 7 8 9 10 11 12 13 14

Free multiply connected polyominoes 1 6 37 195 979 4663 21474 96496

Table 4.1: Numbers of distinct free multiply connected polyominoes.

Theorem 4.1.9. Let P be a polyomino with rank (P) ≤ 14. The following conditions are

equivalent:

1. the polyomino ideal IP is prime;

2. P contains no zig-zag walk.

Proof. (1)⇒ (2) It is an immediate consequence of Corollary 4.1.6.

(2) ⇒ (1) By Corollary 4.1.6, simple polyominoes have no zig-zag walk, since they are

prime. Therefore, we have to consider only multiply connected polyominoes. We prove

that if P is a non-prime multiply connected polyomino with rank (P) ≤ 14, then P has a

zig-zag walk. To this aim, we implemented a computer program that performs the following

3 steps:

(S1) Compute the set of all multiply connected polyominoes with rank ≤ 14, namely P .

(S2) Compute the set of polyominoes NP ⊂ P whose polyomino ideal is not prime. We

used a routine developed in Macaulay2 [27].

(S3) Verify that all polyominoes in NP have at least one zig-zag walk.
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We refer to [50] for a complete description of the algorithm that we used.

4.2 GRID POLYOMINOES

From a view point of finding a new class of prime polyomino ideals, due to Corollary

4.1.6, it is reasonable to consider multiply connected polyominoes without zig-zag walks.

In this section, we consider polyominoes obtained by subtracting some inner intervals by

a given interval of N2, similarly as done in [37] and [64]. However, if the cells are removed

without a specific pattern, one can easily obtain a zig-zag walk in this case, too (see Figure

4.7(B)). Hence we define an infinite family of polyominoes with no zig-zag walks by their

intrinsic shape: the grid polyominoes. We prove that their polyomino ideal is prime by

using Gröbner basis technique and lattice ideals. To this aim, we define the following

monomial orders.

The total orders <1 and <2 on the vertices of P induce in a natural way the following

monomial orders on S = K[xv|v ∈ V (P)], respectively:

1. xa <1
lex xb if a <1 b;

2. xa <2
lex xb if a <2 b.

In [56], the author provides a necessary and sufficient condition for the setM of inner

2-minors to be a reduced Gröbner basis of IP , where P is a collection of cells of N2. In the

following, we state the result when P is a polyomino.

Proposition 4.2.1. Let P be a polyomino. M forms a reduced Gröbner basis of IP with

respect to <1
lex if and only if for any two intervals [a, b] and [b, e] of P, at least one between

[a, f ] and [a, g] is an inner interval of P, where f and g are the anti-diagonal corners of

[b, e]. Similarly, M forms a reduced Gröbner basis of IP with respect to <2
lex if and only

if for any two inner intervals [a, b] and [e, f ] of P, with d anti-diagonal corner of both the

inner intervals, either a, e or b, f are anti-diagonal corners of an inner interval of P.

Let V (P) = {v1, . . . , vn}. Given a monomial order < such that

xv1 < xv2 < · · · < xvn ,
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we define <v, with v = vk ∈ V (P), as the following monomial order:

xvk
< xvk+1 < · · · < xvn < xv1 < xv2 < · · · < xvk−1 .

From now on, we will respectively denote (<1
lex)v and (<2

lex)v by <1
v and <2

v.

Definition 4.2.2 Let P ⊆ I := [(1, 1), (m,n)] be a polyomino such that

P = I \ {Hij : i ∈ {1, . . . , r}, j ∈ {1, . . . , s}},

whereHij = [aij, bij], with aij = ((aij)1, (aij)2), bij = ((bij)1, (bij)2), 1 < (aij)1 < (bij)1 < m,

1 < (aij)2 < (bij)2 < n, and

(i) for any 1 ≤ i ≤ r and 1 ≤ `, k ≤ s, (ai`)1 = (aik)1 and (bi`)1 = (bik)1;

(ii) for any 1 ≤ j ≤ s and 1 ≤ `, k ≤ r, (a`j)2 = (akj)2 and (b`j)2 = (bkj)2;

(iii) for any 1 ≤ i ≤ r− 1 and 1 ≤ j ≤ s− 1, (ai+1j)1 = (bij)1 + 1 and (aij+1)2 = (bij)2 + 1.

We call P a grid polyomino.

Example 4.2.3 In Figure 4.7, two polyominoes are displayed: the one on the left (A) is a

grid polyomino, while the one on the right (B) is not.

(A) A grid polyomino. (B) A non-grid polyomino.

Figure 4.7

Definition 4.2.4 Let P be a polyomino and let v ∈ V (P). We say that v satisfies the

condition (Π) if it fulfils at least one of the following:
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(I) there exist two inner intervals I = [a, b] and K = [b, e] of P , with c upper left corner

of I, d lower right corner of I, v upper left corner of K, and g lower right corner of

K, such that J = [c, v] is inner interval of P , whereas L = [d, g] is not (see Figure 4.8

Case (I)).

(II) There exist two inner intervals J = [a, b] and L = [e, f ] of P , with d lower right corner

of J and upper left corner of L, such that the interval K = [d, v] having a and e as

anti-diagonal corners is inner interval of P , whereas the interval I having a and e as

anti-diagonal corners is not (see Figure 4.8 Case (II)).

J K

LI

v

J K

LI

v

Case (I) Case (II)

Figure 4.8: Condition (Π)

Proposition 4.2.5. Let P be a grid polyomino. For all v ∈ V (P), M forms a reduced

Gröbner basis of IP with respect to either <1
v or <2

v.

Proof. Let P be a grid polyomino. We observe thatM forms a Gröbner basis of IP with

respect to <1
lex or <2

lex, since P satisfies the conditions of Proposition 4.2.1. Let f, g ∈M,

where f = xaxb − xcxd is associated to the inner interval [a, b] of P and g = xpxq − xrxs
is associated to the inner interval [p, q] of P . Let v ∈ V (P). We have to show that for

each pair of inner 2-minors, f and g, the corresponding S-polynomial reduces to 0 with

respect to a fixed monomial order <v ∈ {<1
v, <

2
v}. In the following, we denote by S the

S-polynomial between f and g, by in(h) the leading monomial of a polynomial h with

respect to <v, and by fm,n the inner 2-minor associated to the inner interval [m,n] of P .

We leave to the reader the trivial cases {a, b, c, d} ∩ {p, q, r, s} = ∅, and |{a, b, c, d} ∩

{p, q, r, s}| = 2 where S reduces to 0 since the polyomino ideal is generated by all inner

2-minors of P .
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Note that if for all vertices w ∈ {a, b, c, d, p, q, r, s} and a monomial order < ∈ {<1
lex

, <2
lex}, it holds xw <v xv or xv <v xw, then S reduces to 0 with respect to <v, since it

reduces by 0 with respect to <. Therefore, we consider the cases

u <1 v ≤1 w for u,w ∈ {a, b, c, d, p, q, r, s} with |{a, b, c, d} ∩ {p, q, r, s}| = 1.

If one of the inner intervals, namely [a, b], is contained in the second one, namely [p, q], S

reduces to 0 since the polyomino ideal is generated by all inner 2-minors of P . Without

loss of generality, let a ≤ p. The possible situations are:

a = p, b, d ∈ {p, q, r, s}, c ∈ {p, r}.

If v does not satisfy the condition (Π), we fix the monomial order <1
v. Otherwise, we fix

<2
v. Assume v does not satisfy (Π). In the following cases, denote by < the total order <1

on the vertices of P .

Let a = p, that is f = xaxb − xcxd and g = xaxq − xrxs, and assume a < r < c < d <

b < s < q as in Figure 4.9.

a

r

d s

e q

c b

Figure 4.9: Case a = p.

We start observing that if r < v ≤ q, then gcd(in(f), in(g)) = 1. If v ∈ {a, r}, then

S = xrxsxb − xcxdxq and in(S) = xqxcxd. Therefore,

S = −xc(xqxd − xexs) + xs(xbxr − xcxe),

that is S reduces to 0 with respect toM.

Let b = p, then a < c < d < b < r < s < q, as in Figure 4.10.
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a

c

d

r

b s

qe

t

Figure 4.10: Case b = p.

If either c < v ≤ b or r < v ≤ q, then gcd(in(f), in(g)) = 1. In the other cases, namely

a ≤ v ≤ c and b < v ≤ r, we have S = xaxrxs − xqxcxd. If v = a, then in(S) = xqxcxd. By

hypothesis, there exist the inner interval [c, q] or [d, q], with in(fc,q) = xcxq and in(fd,q) =

xdxq, and then

S = −xd(xcxq − xsxe) + xs(xaxr − xdxe)

or

S = −xc(xdxq − xrxt) + xr(xaxs − xcxt),

that is S reduces to 0 with respect to the inner 2-minors fc,q and fa,r or fd,q and fa,s. If

a < v ≤ c, then in(S) = xaxrxs. By hypothesis, there exists the inner interval [a, r] or

[a, s], with in(fa,r) = xaxr and in(fa,s) = xaxs. Similarly, one shows that S reduces to 0.

If b < v ≤ r, since v does not satisfy the condition (Π), [d, s] is an inner interval of P ,

whereas [c, v] is not. Therefore, [d, q] is an inner interval of P . Since in(S) = xqxcxd, and

S = xc(xdxq − xrxt)− xr(−xcxt + xaxs)

it follows that S reduces to 0.

Note that when b < v ≤ r, if there exists the inner interval [c, v] but [d, s] does not,

then v = r, since P is a grid polyomino. Therefore, v satisfies condition (Π) and S does

not reduce to 0 with respect to M and <1
v. In fact, in(S) = xqxcxd, but the monomials

xcxd, xcxq, and xdxq are not leading monomials of any inner 2-minors of P . This situation

justifies the hypothesis v not satisfying the condition (Π), and in particular the case (I) in

Definition 4.2.2.
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Let b = r. We have to distinguish two different situations: d < p (see Figure 4.11(A))

or p < d (see Figure 4.11(B)).

a

e

d

p s

c b q

(A) (B)

a

c

p

d e

b

s

q

Figure 4.11: Case b = r.

Assume d < p. If a ≤ v ≤ b, then gcd(in(f), in(g)) = 1. In the other cases, namely

b < v ≤ q, S = xaxpxq − xcxdxs. When b < v ≤ s, in(S) = xaxpxq, whereas, when

s < v ≤ q, that is v = q, in(S) = xcxdxs. We consider the inner intervals [e, q] and [a, p].

In both cases, in(fe,q) = xcxs and in(fa,p) = xaxp, and we have

S = xd(−xcxs + xqxe) + xq(xaxp − xexd),

that is S reduces to 0.

Assume p < d. If a ≤ v ≤ b, then gcd(in(f), in(g)) = 1. Otherwise, S = xaxpxq − xcxdxs.

Let b < v ≤ q. First of all, note that since P is a grid polyomino, and since v does not

satisfy (Π), by hypothesis, then the interval with anti-diagonal corners a and p is not an

inner interval of P and v 6= q. Therefore, let b < v < q, and, in particular, b < v ≤ e. In

this case, in(S) = xcxdxs. Since in(fp,e) = xdxs, we have

S = xc(xpxe − xdxs) + xp(xaxq − xcxe),

that S reduces to 0.

Note that v = q satisfies condition (Π) and S does not reduces to 0, since neither xcxd, nor

xcxs, nor xdxs are leading monomials of any inner 2-minor of P . This situation justifies

the hypothesis v not satisfying condition (Π), and in particular the case (II) in Definition

4.2.2.
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Let d = q, with a < c < p < r < s < d < b (see Figure 4.12). If either a ≤ v ≤ c or

r < v ≤ d, then gcd(in(f), in(g)) = 1. Otherwise, S = xaxbxp − xcxrxs. If c < v ≤ p, then

in(S) = xcxrxs.

e

a

p

r d

b

s

c

Figure 4.12: Case d = q.

Since in(fa,e) = xcxr, we have

S = xs(xaxe − xcxr) + xa(xpxb − xexs),

that is S reduces to 0. If p < v ≤ r, then in(S) = xaxbxp. Since in(fp,b) = xpxb, we have

S = xa(xpxb − xexs)− xs(xaxe − xcxr),

that is S reduces to 0. Let d < v ≤ b, that is v = b. Since b satisfies the condition (Π), we

do not consider this case.

Let c = r, with a < p < c < d < b < s < q (see Figure 4.13). If either a ≤ v ≤ c

or b < v ≤ q, then gcd(in(f), in(g)) = 1. Otherwise, namely c < v ≤ b, we have S =

xaxbxs − xdxpxq and in(S) = xdxpxq.

a

p

d

b

s

qc

e

Figure 4.13: Case c = r.

Due to v does not satisfy the condition (Π), v 6= b, that is c < v ≤ e. Since a < p < c, then
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in(fa,e) = xpxd, we have

S = xq(xaxe − xpxd)− xa(xexq − xbxs),

We leave to the reader to check, in a similar way, that if b ∈ {q, s}, d ∈ {p, r, s}, and c = p,

then all the S-polynomials reduce to 0, and no one of the corners in these cases satisfy the

condition (Π).

Note that the orders <1
lex and <2

lex are symmetric, i.e. if [a, b] is an inner interval of P

with anti-diagonal corners c and d, then in<1
lex

(fa,b) = xaxb and in<2
lex

(fa,b) = xcxd. This

property reflects naturally on the orders <1
v and <2

v. Hence, it is possible to verify that all

S-polynomials of inner 2-minors of P reduce to 0 with respect to M and <2
v, except for

these four cases:

A) when b = q and v = r (see Figure 4.14(A)), analogous to the case c = r and v = b

treated above;

B) when b = r and v = c (see Figure 4.14(B)) analogous to the case b = r and v = q

treated above;

C) when c = p and v = r (see Figure 4.14(C)) analogous to the case d = q and v = b

treated above;

D) when d = r and v = b, and the interval of P with anti-diagonal corners v, q is an

inner interval of P , but the one with anti-diagonal corners a and p is not (see Figure

4.14(D)), analogous to the case b = p and v = r treated above.

Since P is a grid polyomino, it does not happen simultaneously that v satisfies the condition

(Π) and one of the above situations A)–D). This implies that if v satisfies the condition

(Π) and we fix the monomial order <2
v, all S-polynomials reduce to 0 andM is a reduced

Gröbner basis of IP .

Let IΛ be the lattice ideal defined in Subsection 2.3.1.

Lemma 4.2.6. Let P be a collection of cells of N2, let S be the polynomial ring associated

to P. Then, there exists a monomial u ∈ S such that

IΛ = (IP : u).

102



sp

r

d

bc

a

a

p

d

b

s

qc

a

c

d

b s

qr

a d

p

b

q

s

c

(A) (B)

(C) (D)

Figure 4.14

Proof. ⊇). It holds for any monomial u ∈ S, since IP ⊆ IΛ and IΛ is a prime ideal.

⊆). Let fE = xE
+ − xE− be a generator of IΛ, with

E = E+ − E− =
r∑

k=1
λkck =

r∑
k=1

(
(λkck)+ − (λkck)−

)
∈ Λ,

where v+ denotes the vector obtained from v ∈ Zm×n by replacing all negative components

of v by zero, and v− = −(v − v+).

Let λ =
r∑

k=1
(λkck)+ − E+ =

r∑
k=1

(λkck)− − E−. We have that all the components of λ

are nonnegative, as for any k ∈ {1, . . . , r} one has (c+
k )ij ≥ (ck)ij, for all 1 ≤ i ≤ m and

1 ≤ j ≤ n. This implies that the monomial xλ ∈ S is such that

xλ(xE+ − xE−) =
∏
x(λkck)+ −

∏
x(λkck)− =

r∑
k=1

µk(xc
+
k − xc

−
k ) ∈ IP .

If we set u as the least common multiple of the elements xλ induced by all the generators

fE of IΛ the assertion follows.

103



An immediate consequence is the following

Corollary 4.2.7. Let P be a polyomino. Then IΛ ⊆ JP .

Proof. Since JP is a prime ideal and IP ⊆ JP , then for any monomial u ∈ S, we have

(IP : u) ⊆ JP .

From Lemma 4.2.6, the assertion follows.

We do not know anything about the inclusion JP ⊆ IΛ, that leads to the following

Question 4.2.8 Let P be a polyomino. IP is prime if and only if IP = JP?

We now prove the main theorem of this section.

Theorem 4.2.9. Let P be a grid polyomino. Then IP = IΛ.

Proof. By Proposition 4.2.5, for all v ∈ V (P), there exists a monomial order <v such that

xv is the smallest variable with respect to <v andM forms a reduced Gröbner basis of IP
with respect to <v. Fix v ∈ V (P). By [67, Lemma 12.1], the reduced Gröbner basis of

(IP : xv) with respect to <v is given by

{f ∈M | xv does not divide f} ∪ {f/xv | f ∈M and xv divides f}.

Since no f ∈M can be divided by xv, the reduced Gröbner basis of (IP : xv) with respect

to <v isM. Therefore (IP : xv) = IP , for all xv ∈ V (P). It follows that (IP : u) = IP for

any monomial u ∈ S. By Lemma 4.2.6, we have that there exists a monomial u ∈ S such

that IΛ = (IP : u). Then

IΛ = (IP : u) = IP .

Corollary 4.2.10. Let P be a grid polyomino. Then IP is prime.

From the main results of this chapter, namely Corollary 4.1.6, Theorem 4.1.9 and

Corollary 4.2.10, it arises naturally the following:
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Conjecture 4.2.11 Let P be a polyomino. The following conditions are equivalent:

(i) the polyomino ideal IP is prime;

(ii) P contains no zig-zag walk.
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CONCLUSION

In this thesis, we have studied two classes of ideal generated by 2-minors, the binomial

edge ideals and the polyomino ideals. As showed, many results on this topic have been

obtained. Nevertheless, there are several open problems which we have mentioned regarding

their algebraic and homological characterization, such as a precise formula for the regularity

of the binomial edge ideals or a complete classification of the Cohen-Macaulay ones, and a

complete classification of the polyominoes P such that K[P ] is a domain.

The study of ideals generated by a subset of k-minors of an m×n-matrix of indetermi-

nates is itself a fascinating area of research. A lot of works devoted to describe the graded

minimal free resolution and the relation with Eagon-Northcott resolution of some families

of such ideals have been produced. But, not all of these families have been investigated

yet. It could be interesting to research in this direction in further works.
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