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Is ‘deny access’ a valid ‘fail-safe default’ principle
for building security in cyber-physical systems?

Fabio Massacci, Member, IEEE,

Abstract—A landmark paper by Saltzer & Schroeder lists some timeless principles secure systems design. One of them is “systems
should be fail safe” which security designers have always interpreted as ‘deny access is always the fail-safe, secure default’. I argue
that in the era of the Internet of Things, Cars, and Planes (and of recent plane crashes) such principles may no longer be sufficient.
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1 INTRODUCTION

In 1975 Saltzer and Schroeder (S&S) enucleated eight design
principles that shaped decades of security research and
development [1]. Some are listed as key design principles
for security protocols [2, §3.3], in software design method-
ologies such as Microsoft’s STRIDE [3], [4], or in the 2004
opening article of the ’Building Security in’ column by
McGraw on the IEEE Security & Privacy Magazine [5, p.82].

As the world has changed, it is worth asking whether
such principles (Reported in Table 1) are still sufficient for
designing secure systems today. As pointed by Needham
when rebutting the attacks against the protocol he co-
authored with Schroeder [6], design principles are based on
tacit assumptions that were true then but possibly false now.

If tacit assumptions fail to be true then principles based
on those assumption might not be enough to obtain a good
design. Unfortunately you’ll never find tacit assumptions in
a paper (they are tacit!). You’ll never find “Tacit Assump-
tion 0 ∼ XX Century: All free websites need 3rd parties
advertisements to survive”. A paper would go straight to
discuss Javascript injection. 50 years in the future (or 50 in
the past) researchers would wonder why people would do
such a weird thing as dynamically self-injecting code from
strangers in one’s own webpage (‘borrowing programs’ in
S&S’s terminology). Indeed S&S require such borrowing
be preceded by individual off-line agreements and other
measures that, if deployed today, would ‘break the Internet’.

2 FAIL-SAFE FOR INFORMATION USE

I would like to start the discussion with the most seemingly
obvious principle: fail-safe default: if no one has specified other-
wise, the default should be to deny access.

A recent revision of S&S principles in 2012 by Smith [9,
p. 24] casted this authentic interpretation by renaming the
’Fail-safe default’ principle as ‘Deny by default’ . This notion
of fail-safe has been used from classical security protocols
[2] to modern incentives for distributed computations [7]. It
is also well understood in access control [8] and software
design [4]. What can be wrong about such principle?

‘Fail-safe’ is of course a platitude security requirement:
who can ever require a system to fail unsafely? S&S’s point
was sensible because they had a specific notion of safe failure.
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Hypothesis 1: ‘denied access’ is a ‘safe state’.
Observation 2: if we base system access on positive permis-
sions, a user asks for a permission and fails to get it then we
are back to the ‘denied access’ state
Conclusion 3: by Hyp. 1 that’s a safe state so fail safely.

This was true (then) because there was a tacit goal:

Assumption 0: the goal of a system is to use information.

A couple of quotation from S&S would make this apparent:
Access = The ability to make use of information stored
in a computer system
[. . . ] applications involve both storing information
and simultaneous use by several individuals. The
key concern in this paper is multiple use. [. . . ]
The objective of a secure system is to prevent all
unauthorized use of information, a negative kind of
requirement. (From [1], my emphasis)

All examples but one in the ‘General Principles’ section
of S&S are about access to information (actually about
confidentiality). The only example of write permission is
about entering and modifying one’s own supplied data.

Since safety is defined as ‘something bad will never
happen’, the fail-safe definition in Hyp. 1 is consistent with
the safety definition when ‘use of information’ is the goal.
Suppose (1) the system is providing Alice some information,
(2) Alice would like to do something different, but (3) the
procedure does not grant her additional access rights (by
deliberate design or by unexpected failures). Whatever the
reason, the outcome is that the system permits Alice to use
the same information that she had before she made her
(failed) request but no more. This cannot obviously be bad.

Is the reasoning still valid? I would challenge this belief
because Assumption 0 may be false and increasingly so.

3 FAIL-SAFE FOR COMMAND AND CONTROL

We are now using software to control things from starting the
fridge to stopping the car. Access to information is one goal,
not the goal. Allowing humans to stop an autonomous car
seems unwise, as well as allowing them to disconnect and
reboot the heaters in during the Finnish winter. Overriding
the software piloting an airplane looks dangerous: several
sensors do provide the right information to the autopilot.



2

Except that sensors do malfunction, the control software
might not do the ‘right’ thing and failure to grant users more
control (as opposed to more access) can be bad.

In Lappeenranta, the internet connection of a heating
system was victim of a DDoS attack. The attack by itself
did not shut down the system, it only prevented heaters
to call ‘mummy’. To mange the error, the heaters rebooted
to try re-establishing a connection. As there was a DDoS
attack, there would still be no connection home after a
quick reboot. . . So, as the people living in the affected blocks
discovered to their dismay, the system went into an endless
reboot loop eventually shutting down the heating. Manual
disconnection and re-connection within a firewall was the
only choice after a freezing week [10].

What if the heater software decided that manual access
was not acceptable to start from a pristine state and you
really needed a access from home? Things may have been
worse, and you might have ended up on a deadly flight as
the unfortunate crews and passengers of the Boeing Max
planes of Lion Air and Ethiopian Airlines [11].

As the FT’s journalist Brooke Masters put: “The Lion
Air pilots’ desperate struggle with the anti-stall software
[to gain control over it] holds critical lessons for car mak-
ers experimenting with self-driving technologies” [12]. The
Ethiopian Airlines’ pilots tried to obtain administrative priv-
ileges over the stall control software at 05:43:11 of March 10,
2019. [13, p.12]. In IT terms they tried a ‘sudo pull up -f‘, but
the software thought otherwise: at 05:43:20 administrative
override was denied and, still mislead by faulty sensors, the
software made the EA airplane dive down into its demise.

In cyber-physical systems users asks permission to con-
trol objects (typically to override existing behavior). If the
permission granting process fails, the object ends in a ‘per-
fectly fine’ state (from the software’s view point) that is also
a ‘out of control’ state (from the user’s perspective).

Pilots would clearly need a lot of access when the sys-
tems under their control are misbehaving. In the simplest of
cases, the pilot in command could always take control. As
vehicles get driverless, design problems will become harder.
For example, we can imagine a future where there is an
experienced airline (or manufacturer) pilot will be on duty
somewhere 24/7 who can take over the control of an aircraft
in trouble by an always available satellite link and fly it to
safety. Yet, we also like to avoid that the control is not taken
over towards a terrorist-driven crash.

4 CONCLUSIONS

Let’s revise the reasoning behind positive permissions:

Assumption 0 ∼ XXI Century: The goal of a cyber system
can be either to use information or to control physical objects.
Observation 4: if we base system access on positive per-
missions and fail to actively grant a permission then we fall
back to a ‘deny access’ and ‘deny control’ state.
Question 5: Are we sure that ‘deny control’ is a ‘safe state’?

Deny access by default might not be so safe after all.
Indeed, the DHS catalogue of security measures [14] in-
deed requires that “The organization selects an appropriate
failure mode (e.g., fail open or fail close)” but doesn’t say
how to select it. Software design methodologies for IoT

and autonomous vehicles have not yet a design guidance
on what should make ‘Deny by default’ a safe or unsafe
decision (See [15] for a review). Specific studies on cyber-
physical systems, e.g. [16, §2.1], refer back to NIST standards
which go in length on the principle of restricting access (e.g.
four out of six major security objectives are about restricting
access [17, p. 11]) but cursorily address fail- safe procedures,
except to tell us that they should exist [?, p. 78]. How such
mystic fail-safe procedures should interact with detailed
instructions on restricting access is left to the reader. . .

The S&S principals were designed for information sys-
tems and do not by themselves generate a fail-safe system
in the command and control sense. To build secure software
for cyber-physical system, i.e. the systems in our future, we
might need to extend them. Let us know what you think.
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TABLE 1
Saltzer and Schroeder Design Principles. Extract from [1]

Principle Description
Economy of
mechanism

Keep the design as simple and small as possible. [. . . ] design and implementation errors that result in unwanted access paths
will not be noticed during normal use (since normal use usually does not include attempts to exercise improper access paths).
As a result, techniques such as line-by-be inspection of software and physical examination of hardware that implements
protection mechanisms are necessary. For such techniques to be successful, a small and simple design is essential.

Fail-safe de-
faults

Base access decisions on permission rather than exclusion [by E. Glaser in 1965]. [. . . ] The default situation is lack of access,
and the protection scheme identifies conditions under which access is permitted. [. . . ] A design or implementation mistake
in a mechanism that gives explicit permission tends to fail by refusing permission, a safe situation, since it will be quickly
detected. On the other hand, a design or implementation mistake in a mechanism that explicitly excludes access tends to
fail by allowing access, a failure which may go unnoticed in normal use.

Complete me-
diation

Every access to every object must be checked for authority. [. . . ] [This principle] forces a system-wide view of access
control, which in addition to normal operation includes initialization, recovery, shutdown, and maintenance. It implies
that a foolproof method of identifying the source of every request must be devised. It also requires that proposals to gain
performance by remembering the result of an authority check be examined skeptically. If a change in authority occurs, such
remembered results must be systematically updated.

Open design: The design should not be secret [by P. Baran in 1964]. The mechanisms should not depend on the ignorance of potential
attackers, but rather on the possession of specific, more easily protected, keys or passwords. This decoupling of protection
mechanisms from protection keys permits the mechanisms to be examined by many reviewers without concern that the
review may itself compromise the safeguards. [. . . ] Finally, it is simply not realistic to attempt to maintain secrecy for any
system which receives wide distribution.

Separation of
privilege:

Where feasible, a protection mechanism that requires two keys to unlock it is more robust and flexible than one that allows
access to the presenter of only a single key. [by R. Needham in 1973]. The reason is that, once the mechanism is locked, the
two keys can be physically separated and distinct programs, organizations, or individuals made responsible for them. From
then on, no single accident, deception, or breach of trust is sufficient to compromise the protected information.

Least
privilege

Every program and every user of the system should operate using the least set of privileges necessary to complete the job.
Primarily, this principle limits the damage that can result from an accident or error. It also reduces the number of potential
interactions among privileged programs to the minimum for correct operation, so that unintentional, unwanted, or improper
uses of privilege are less likely to occur. [. . . ] The military security rule of need-to-know is an example of this principle.

Least
common
mechanism

Minimize the amount of mechanism common to more than one user and depended on by all users [by G. Popek in 1974]
Every shared mechanism (especially one involving shared variables) represents a potential information path between users
and must be designed with great care to be sure it does not unintentionally compromise security. Further, any mechanism
serving all users must be certified to the satisfaction of every user, a job presumably harder than satisfying only one or a
few users. For example, given the choice of implementing a new function as a supervisor procedure shared by all users or
as a library procedure that can be handled as though it were the users own, choose the latter course.

Psychological
acceptability

It is essential that the human interface be designed for ease of use, so that users routinely and automatically apply the
protection mechanisms correctly. Also, to the extent that the users mental image of his protection goals matches the
mechanisms he must use, mistakes will be minimized. If he must translate his image of his protection needs into a radically
different specification language, he will make errors.
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