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ABSTRACT

Objective: An intense physical activity cause inflammation and produces oxidizing mol-
ecules that physiologically “train” the body to restoring the homeostatic balance. It’s 
alteration can lead to a sub-clinical pro-inflammatory state known as “oxinflammation.” 
The aim of this study was to measure some inflammation and redox biomarkers in a 
team of soccer players during a competitive season to identify relationships between 
oxinflammation, nutrition, workloads, and athletic performances.
Methods: Thirty four players were evaluated every 2 months from pre- until end-season 
(visits V0–V4). At each time, a panel of oxinflammatory biomarkers were measured: 
interleukin-6, high-sensitivity C-reactive protein (hsCRP), total peroxides (derivates of 
Reactive Oxigen Metabolites), total antioxidant barrier (biological antioxidant potential ), 
total (GSSG + GSH) and reduced (GSH) glutathione, vitamins A and E, beta carotene, lyco-
pene, coenzyme Q10, 3-nitrotyrosine (3-NT) and 8-hydroxy-deoxyguanosine. The nutri-
tional program was customized for each athlete to ensure adequate supply of micro- and 
macro-nutrients. Starting from V2, following the replacement of the coach, the training 
program was suddenly changed, and the high intensity work was significantly increased.
Results: Until V2, the oxinflammation balance remained still in equilibrium, and total 
and reduced glutathione were favorably increased (+19% and +16% vs. V1, respectively,  
p < 0.001). After the change of workloads, the inflammation had worsened decreasing GSH 
and sharply increasing 3-NT, marker of irreversible nitration (+ 1274% at V4, p < 0.001). 
Conclusion: Above a threshold, the eccentric exercise has altered the oxinflammatory 
balance. The nutritional intervention was partially able to counteract the alteration but, 
the worsening of balance at the end of season, showed that probably, it was much more 
conditioned by the physical overload. A customized balancing between training, rest 
period, and nutrition is, therefore, crucial, and the measurement of some oxinflamma-
tion markers, as hsCRP, GSH, and 3-NT, may be helpful to evaluate the state of fitness and 
recognize early the approaching of the over-training threshold.
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Introduction

Intense physical activity causes inflammation and 
produces oxygen (ROS) and nitrogen (RNS) reactive 

species, that physiologically “train” the body to a 
counter-regulatory response aimed at restoring 
the homeostatic equilibrium [1–5]. This feedback 
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results from a complex network of redox reactions, 
second messengers, and epigenetic modulators 
whose altered function can lead the stabilization of 
a chronic inflammatory state [6–12]. This condition 
is followed by the establishment of vicious circles 
in which a persistent pro-oxidant environment trig-
gers a systemic sub-clinical pro-inflammatory state 
named “oxinflammation” [13–16]. 

In sports, the oxinflammation has been associ-
ated with the over-training, a condition implicated, 
in the short term, in the impairment of athletic per-
formances and, in the medium to long term, in the 
triggering of metabolic disorders and other dys-
functions [17–22].

The aim of our study was to measure the bio-
chemical modifications of the oxinflammatory bal-
ance in a team of soccer players who, by profession, 
are subjected to high loads of muscular activity 
and, therefore, of pro-oxidant stimulation. During a 
competitive season, we have, therefore, measured a 
panel of inflammation and redox-balance biomark-
ers that had already been shown significant in sport 
[23,24]. 

Since physical activity and nutrition affect directly 
the homeostasis, the first because potentially 
involved in the activation of ox-inflammatory pro-
cess [25,26], and the second for its incidence on the 
composition and efficacy of the antioxidant barrier 
[27–33], the muscular workloads and the nutritional 
intakes of the athletes were also measured. While the 
training loads were defined independently by coach 
and his staff, as often unfortunately happens even in 
professional teams, our nutritionists followed the 
athletes in order to define appropriate nutritional 
supplies. We wanted in this way evaluate whether 
a careful nutritional control, customized for each 
athlete on the basis of biochemical and physio-met-
abolic data, could allow, on its own, to maintain the 
oxinflammatory balance and to correct or, if possible, 
prevent dangerous imbalance conditions.

Methods

Thirty four professional players of a soccer team 
playing in the Italian A series championship were 
monitored during the competitive season 2017–18; 
their age was 24.9 ± 5.2 (mean ± SD). Each player 
was evaluated at the end of the pre-season period 
(V0) and after every 2 months (V1–V4 visits) until 
the end of the championship, according to the tim-
ing suggested by the Italian Football Federation 
(FIGC). Many tests performed were those recom-
mended by the FIGC protocols for medical monitor-
ing of football players. Before each visit, the athletes 

subscribed the informed consent for personal data 
treatment in accordance with the General Data 
Protection Regulation.

Biological samples

Blood samples were collected at rest, 48 hours after 
the last match, in vacuum sealed tubes with ethylene-
diaminetetraacetic acid (EDTA), sodium citrate or 
without, as required by the analytical methods. After 
sampling, the tubes were immediately centrifuged at 
3,500 rpm for 10 at 4°C and plasma or serum samples 
were frozen at −80°C until analysis. First morning 
spot urine samples were also collected and frozen.

Lab tests

A large panel of blood routine tests was analyzed 
to evaluate the muscle damage, the hemopoi-
etic, hepatic, renal and thyroid functions, and the 
glucose, lipid, protein, and iron metabolisms. The 
anabolic index was measured as ratio between tes-
tosterone and morning cortisol (T/C), as previously 
reported [34]. All the routine tests were performed 
on Beckman Coulter analyzers. By gas chromatog-
raphy and mass spectrometry, the lipidomic pro-
files of the erythrocytes or red blood cells (RBC) 
membranes were determined to quantify the most 
relevant saturated (SFA), mono-unsatured (MUFA), 
and poly-unsatured fatty acids (PUFA) [35].

The oxinflammation state was evaluated with 
some plasmatic markers: interleukin-6 (IL-6), 
high-sensitivity C-reactive protein (hsCRP), total 
peroxides derivates of Reactive Oxigen Metabolites 
(dROMs), total antioxidant barrier [biological anti-
oxidant potential (BAP)], total (GSH+GSSG) and 
reduced (GSH) glutathione, and coenzyme Q10, as 
components of the antioxidant endogenous barrier, 
vitamins A, E, beta carotene, and lycopene, as com-
ponents of the antioxidant exogenous barrier, and 
3-nitrotyrosine (3-NT), marker of irreversible nitra-
tion. Total and reduced glutathione were analyzed in 
EDTA whole blood by high-performance liquid chro-
matography (HPLC) and fluorometric detection, 
using a kit from Eureka Lab Division (Chiaravalle, 
Italy); the measure of oxidized form (GSSG) was 
obtained by difference between total (GSSG + GSH) 
and reduced (GSH) glutathione. Coenzyme Q10, vita-
min A, vitamin E, beta-carotene, lycopene, and 3-NT 
were analyzed in plasma by HPLC and UV detection, 
always using Eureka commercial kits. The marker of 
oxidative damage on nucleobases, 8-hydroxy-deox-
yguanosine (8-OHdG), was measured in urines with 
a HPLC method and electrochemical detection, as 
previously reported [36]. 
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The Gilson HPLC system, controlled by Unipoint 
software, consisted of two pumps (models 306 and 
307), and a 234 autosampler; the columns and the 
mobile phases are those provided with the kits. The 
detections were performed with 875 UV photom-
eter and 1520 fluorometer Jasco and with electro-
chemical detector Coulochem II ESA, fitted with a 
model 5011 high-sensitivity cell.

The oxidizing capacity of plasma, understood as 
total content of peroxides (dROMs), and the BAP, 
understood as total content of antioxidant species, 
were determined with two colorimetric end-point 
assays from Diacron (Grosseto, Italy) and a micro-
plate ELX-800 spectrophotometer (Biohit). 

Hydratation status

Since its association with the redox balance [37,38], 
the total body water was estimated at rest, 48 hours 
after the match, using Bioelectrical Impedance 
Analysis (BIA), taking into account the sensitivity to 
osmolarity [39,40]. The whole body resistance and 
reactance were also measured with a 50 kHz sin-
gle frequency, phase-sensitive BIA-101 device (RJL/
Akern Systems, Florence, Italy) [41].

Nutritional intervention

The hydration and body weight data were measured 
principally in order to increase the athlete’s aware-
ness in fluid intake, in relation to own physiology 
and biochemistry that influence energy substrates 
consumption and sweat losses. The nutritionists 
suggested, therefore, to drink not less than 1.5–2 
l of water daily and a glass (200–250 ml) of fresh 
fruit and vegetable juices just before lunch [42].

After V0, nutrition was individually structured 
to ensure, at each athlete, an adequate supply of 
macronutrients, in relation to own eating habits 
and energy expenditure. The resting metabolic rate 
(RMR) was calculated as previously reported from 
Ravussin et al. [43], where the fat free mass was esti-
mated using BIA as reported from Lukaski et al. [44]. 
The approximate total energy expenditure (TEE) 
was calculated using the formula TEE = RMR × PAL, 
where the physical activity level (PAL), was set at 1.8 
as recently reported by Brinkmans et al. [45].

The intake of fruit and vegetables was also cus-
tomized, in order to prevent deficiencies of micro-
nutrients and exogenous antioxidants, according to 
the recommendations of Italian Society of Human 
Nutrition. To increase the compliance, the nutri-
tionists have personally coordinated the catering 
service and attended almost all the breakfasts and 
lunches consumed by the athletes. At the occurrence 

of sub-optimal conditions, highlighted by the bio-
chemical and lipidomic profiles, the feeding was 
integrated with micronutrients (vitamins, miner-
als, and coenzyme Q10 in nutritional doses) and 
specific PUFAs (flax seeds oil, borage oil, and doco-
sahexaenoic acid, DHA) in attempt to correct the 
imbalances and improve SFA/MUFA and omega-3/
omega-6 ratios.

Starting from V3, during each training session, 
athletes began to drink at least 0.5 l of water with 
added carbohydrates (a 5% solution of maltodex-
trins), in order to promote recovery of muscle gly-
cogen stores during post-exercise period [46]. 

Training load

For all the championship, coaches and their staff 
have established the workloads in a completely 
autonomous way. During the outdoor training ses-
sions, a player tracking technology (18-Hz, GPEXE 
LT, Exelio, Udine, Italy) was used to quantify the mus-
cular activity, with particular attention to the num-
ber of accelerations above 3 m·s−2 as an estimation 
of high intensity work [47]. These data were after 
evaluated with retrospective analysis in order to cal-
culate the averages of weekly runs distances (speed 
≥ 8 km·h−1) and accelerations number, expressed as 
percentage respect to the data of a typical Italian 
official match, as reported from Osgnach et al. [48]. 

Statistical analysis and calculations

The data were processed to obtain means, stan-
dard deviation (SD), and graphical summaries. The 
measurements at the beginning of the competitive 
season (V1) were considered as baselines: with 
respect to them, the percentage variations of each 
biomarker were calculated for visits from V2 to V4 
and plots of the relative deviations from baseline 
were reported. To compare the visits in pairs, the 
data were corrected for non-sphericity and elabo-
rated with Tukey’s honestly significant difference 
test. The processing was performed with STATA 
program (version 13.1) and the significant level 
was fixed at 5% (p-value <0.05). 

The deviations of biomarkers from baseline 
were also evaluated by comparison with the respec-
tive critical delta values (CDVs), calculated for each 
marker from biological and analytical variabilities 
measured at visits V0 and V1, according to Fraser 
and Harris [49–51].

The redox potential of the pair GSH-GSSG (EnLev) 
and the estimated activity of glutathione reductase 
(Gred Index) were calculated with the Nernst equa-
tion [52,53].
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Results

Few days before V2, due to unexpected choices of 
the sports club, the team coach has been replaced by 
a second, who has drastically modified the training 
program followed during the first in-season period, 
with a remarkable increase of the high-intensity 
work. The averages of weekly run distances and the 
number of accelerations with the first coach were, 
respectively, 140% and 173% respect to a typical 
Italian official match; with the second coach, the 
run distances remained almost unchanged (146%) 
but the accelerations were much increased (246%). 

The pre-season analysis of RBC membrane fatty 
acids showed an altered omega-3 index, mainly due 
to a deficit of DHA and an excess of arachidonic acid 
(ARA). Indeed, 16 out of 34 athletes showed DHA’s 
values lower, and 23 showed ARA’s values higher 
than the optimal ranges. The nutritional intake of 
omega-3 was consequently modified starting from 
V1 with a weekly increase in fish consumption and 
food supplements, particularly flaxseed oil and 
DHA. At the follow-up in V2, this resulted in a mild 
increase of DHA and, even if to a lesser degree, in a 
decrease of arachidonic acid (data not shown). The 
dehydration levels during the championship have 
remained almost unchanged, exceeding of 1% body 
weight in three athletes only. 

Among the analytes of the routine biochemical 
pattern, some were almost always decreased in vis-
its V2-V4 compared to V1 (Table 1): uric acid, adre-
nocorticotropin (ACTH), hemoglobin, RBC, ferritin, 
iron, phosphates, calcium, leukocytes, and platelets. 
Other parameters were instead almost increased: 
alkaline phosphatase (ALP), alanine aminotransfer-
ase (ALT), aspartate aminotransferase (AST), insu-
lin, glucose, cholesterol, sodium. Starting from V2, 
changes were shown for other parameters: increases 
for creatine kinase (CPK), lactate dehydrogenase 
(LDH), folates, magnesium, reticolocytes, sex-hor-
mone binding globulin, thyreotropin (TSH) and 
decreases for transferrin (TRF), total and saturated, 
transferrin soluble receptor (srTRF), and thyroid 
hormones (T3 and T4 free). Because the statistical 
analysis has demonstrated significative trends for 
many of these parameters (data not shown), a depth 
evaluation will be the topic of a next publication.

Variations in the course of season have been 
highlighted in almost all the markers of the ox-in-
flammatory pattern (Fig. 1). While with a simple 
analysis of variance test almost all the variables 
showed differences between times (the only really 
not significant was 8-OHdG), the comparison with 

Tukey’s test between V2 and V4, each visit in pairs 
with V1, provided significance for some parameters 
only (Table 2).

Two months after V1, dROMs were decreased 
(−7%) while BAP was increased (+12%), both in 
a not significant way; instead, statistically signif-
icant were the increases of total and reduced glu-
tathione (+ 19% and + 16%, respectively), while 
the reduced/total ratio was only slightly decreased 
(−3%). Among the other elements of the antioxidant 
barrier, coenzyme Q10, vitamin A and beta carotene 
were decreased (−15%, −12%, and −16%), while 
vitamin E and lycopene were increased (+ 9% and 
+10%), not all with statistical significance.

Between the sixth and the eighth month, dROMs 
increased slightly when compared to V1 (+2% at V3 
and + 8% at V4) while decreases were observed for 
total glutathione, reduced and reduced/total ratio, 
these latter with statistical significance; further-
more, between V3 and V4, the 3-NT has increased 
exponentially respect to the baseline (+1274% at 
V4); instead, little changes without significance 
were observed for the urinary levels of 8-OHdG. 
The hsCRP, that had almost doubled already in V2 
(+92%), remained high and only weakly decreased 
at V3 (+45%) and V4 (+29%); on the contrary, 
at the same times, IL-6 was unchanged or only 
slightly increased.

The anabolic balance T/C, almost unchanged 
between V1 and V2 (+2%), increased but not signif-
icatively at V3 (+21%) and returned to initial values 
at V4 (+1%).

The Tukey’s test showed significant changes at 
V3 for BAP, vitamin A, lycopene, GSH, and for the 
GSH ratio. The increase of 3-NT, already evident in 
the average values in V3, has become significant 
in V4, exceeding also the CDV values calculated at 
baseline (Fig. 2).

The estimated activity of glutathione reductase 
(Gred Index) showed always significantly decreases 
for all the visits after V1. Instead, EnLev was sig-
nificantly decreased in V3 only and then improved 
partially towards the end of the regular season. By 
plotting EnLev as function of the Gred Index it was 
obtained a map that clearly highlights the varia-
tions for the redox pair GSH-GSSG between V2 and 
V3 (Fig. 3).

Discussion

Physical activity requires energy, consumes nutri-
ents, and causes inflammation, which is an import-
ant source of ROS and RNS. It is well known that, 
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Table 1.  Descriptive statistics for the routine blood tests performed on the soccer players every two months, from the pre-sea-
son visit (V0) to the end of championship (V4). For each analyte, mean ± standard deviation and relative units are showed.

Units V0 V1 V2 V3 V4

ACTH ng/l 44.9 ± 17.7 28.4 ± 10.1 28.5 ± 7.9 35.2 ± 12.9 -

Albumin % 64.7 ± 2.9 64.2 ± 2.0 65.3 ± 2.3 65.3 ± 2.5 64.6 ± 2.5

Alpha1 globulins % 3.7 ± 0.7 3.5 ± 0.4 3.5 ± 0.6 3.3 ± 0.4 3.4 ± 0.5

Alpha2 globulins % 8.1 ± 1.5 8.2 ± 1.3 7.9 ± 1.1 7.9 ± 0.9 8.2 ± 1.0

ALP U/l 70 ± 18 78 ± 21 73 ± 18 75 ± 19 71 ± 19

ALT U/l 21 ± 4 20 ± 5 23 ± 8 26 ± 7 23 ± 8

AST U/l 29 ± 8 25 ± 5 33 ± 13 33 ± 11 28 ± 9

Beta1 globulins % 5.4 ± 0.5 5.4 ± 0.5 5.6 ± 0.4 5.4 ± 0.4 5.3 ± 0.4

Beta2 globulins % 4.3 ± 0.6 4.3 ± 0.6 3.9 ± 0.6 4.0 ± 0.7 4.3 ± 0.6

Bilirubin, total mg/dl 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.1 0.7 ± 0.3

Calcium mg/dl 9.2 ± 0.3 9.4 ± 0.4 9.2 ± 0.3 8.8 ± 0.4 9.2 ± 0.3

Chloride mEq/l 101 ± 2 101 ± 2 101 ± 1 101 ± 1 102 ± 1

Cholesterol, total mg/dl 180 ± 39 182 ± 28 182 ± 32 198 ± 31 186 ± 28

Cholesterol HDL mg/dl 56 ± 12 54 ± 7 59 ± 12 59 ± 12 56 ± 11

Cholesterol LDL mg/dl 112 ± 30 113 ± 29 112 ± 27 125 ± 25 116 ± 26

CPK U/l 433 ± 220 316 ± 126 427 ± 187 512 ± 292 381 ± 180

Creatinine mg/dl 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1

Hemoglobin g/l 15.0 ± 0.8 15.2 ± 1.0 14.8 ± 0.7 14.9 ± 0.9 15.0 ± 1.0

Eritrocytes 10^12/l 5.1 ± 0.3 5.2 ± 0.4 5.0 ± 0.2 5.1 ± 0.4 5.1 ± 0.4

Ferritin ug/l 64.8 ± 37.7 50.5 ± 25.8 63.6 ± 36.8 56.0 ± 29.0 61.1 ± 33.9

Iron ug/dl 99 ± 27 92 ± 30 99 ± 38 97 ± 36 81 ± 22

Folates ug/l 6.6 ± 1.9 5.4 ± 1.8 5.7 ± 1.8 6.3 ± 2.3 7.5 ± 2.9

Gamma globulins % 13.9 ± 2.3 14.5 ± 2.3 13.8 ± 2.7 14.1 ± 2.6 14.1 ± 2.5

GGT U/l 22 ± 4 22 ± 6 21 ± 5 23 ± 7 20 ± 5

Glucose mg/dl 80 ± 5 82 ± 9 82 ± 9 85 ± 5 83 ± 6

Insulin mU/l 4.3 ± 1.5 5.3 ± 3.8 4.5 ± 1.6 5.1 ± 1.4 5.3 ± 2.2

LDH U/l 341 ± 64 325 ± 36 335 ± 56 358 ± 57 333 ± 44

Leukocytes 10^9/l 5.4 ± 1.2 5.8 ± 1.6 5.2 ± 0.9 5.3 ± 1.0 5.1 ± 0.8

Magnesium mg/dl 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.2 2.2 ± 0.2 2.1 ± 0.2

Phosphates mg/dl 4.0 ± 0.6 3.7 ± 0.7 3.7 ± 0.5 3.6 ± 0.5 3.8 ± 0.6

Platelets 10^9/l 220 ± 43 211 ± 43 215 ± 43 216 ± 43 217 ± 39

Potassium mEq/l 4.3 ± 0.4 4.3 ± 0.3 4.3 ± 0.3 4.1 ± 0.2 4.4 ± 0.2

Proteins, total g/dl 7.1 ± 0.3 7.2 ± 0.3 7.3 ± 0.4 6.7 ± 0.4 7.2 ± 0.4

srTRF mg/l 1.2 ± 0.3 1.2 ± 0.3 1.3 ± 0.3 1.5 ± 0.4 1.1 ± 0.3

Reticulocytes % 1.2 ± 0.3 1.2 ± 0.4 1.2 ± 0.4 1.4 ± 0.4 -

S.H.B.G. nmol/l 36.2 ± 8.6 36.8 ± 11.9 35.1 ± 10.3 38.9 ± 13.2 -

Sodium mEq/l 134 ± 3 137 ± 3 141 ± 3 134 ± 2 140 ± 2

T3 free pmol/l 5.3 ± 0.5 5.3 ± 0.3 5.5 ± 0.6 5.4 ± 0.5 5.1 ± 0.5

T4 free pmol/l 10.0 ± 1.7 10.8 ± 1.1 11.3 ± 1.1 10.5 ± 1.2 10.1 ± 1.1

Transferrin mg/dl 257 ± 36 253 ± 34 257 ± 30 265 ± 29 237 ± 27

Transferrin saturated mg/dl 74 ± 19 74 ± 24 78 ± 30 80 ± 29 63 ± 16

Triglycerides mg/dl 62 ± 20 77 ± 23 58 ± 21 72 ± 32 71 ± 30

TSH mUI/l 2.1 ± 0.7 1.8 ± 0.7 1.8 ± 0.6 2.4 ± 1.1 2.2 ± 0.7

Urea mg/dl 40 ± 8 38 ± 6 38 ± 7 42 ± 7 38 ± 6

Uric acid mg/dl 5.9 ± 1.0 5.3 ± 1.1 5.3 ± 0.8 5.2 ± 0.7 5.2 ± 0.8

Vitamin B12 ng/l 391 ± 151 435 ± 137 407 ± 99 387 ± 126 386 ± 115

Vitamin B6 ug/l 35.0 ± 18.8 22.3 ± 11.5 24.6 ± 16.8 31.0 ± 20.6 -

Vitamin D ug/l 42.6 ± 14.8 40.3 ± 12.5 36.6 ± 5.6 38.3 ± 8.7 30.2 ± 5.6
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Figure 1. Trends of the oxinflammation biomarkers from V1 to V4: each parameter is reported as relative concentra-
tion (mean ± SD). Since the pathophysiological significance is different for each analyte, in the graphs A and B the black 
line represents the lower limit (LLRR), and C the upper limit of each reference range (ULRR).
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these so-called “free radicals,” play a key physiologi-
cal role through the regulation of enzymes involved 
in the signaling and epigenetic pathways [54,55]. 
However, the “redox signaling machinery” is an 
extremely delicate and easily corruptible balance 
between harms (i.e., inflammation and biological 
damage) and benefits (i.e., redox signaling and epi-
genetic control). A long-term sustained production 
of free radicals could indeed evolve in an oxidative 
stress which helps to generate permanent losses of 
the physiological adaptive response, and to stabi-
lizing and reinforcing a chronic pro-inflammatory 
status. 

The combined analysis of some oxidative stress 
and inflammatory biomarker may aid in monitoring 
the consistency of the redox balance during muscle 
exercise and to prevent its alteration.

Particularly, the measurement of dROMs, BAP, 
and glutathione allowed to evaluate how effective 
the radicals produced by intense physical exer-
cise, were counterbalanced by the physiological 
antioxidant barrier. Both GSH ratio and GSH blood 
concentrations have been already demonstrated 
associated with oxidative stress in sport [56]. If 
the acute exercise consumes GSH, increase GSSG 
and decrease the GSH ratio, a correct chronic 
exercise may promote both the synthesis and the 
GSH restoring, enhancing the antioxidant power. 
However, when the muscle produces radicals above 

the physiological adaptive capacity, both GSH and 
its redox potential decreases for greater consump-
tion, and the homeostatic balance becomes altered. 
Plotting in graph the redox potential (EnLev) and 
the glutathione reductase activity (Gred), this last 
estimated from GSSG and GSH concentrations  
(Fig. 3), it was possible to improve the evidence of 
these alterations and better understand the events 
that occurred in vivo. As more negative were the 
EnLev values and greater was Gred, more the athlete 
was in homeostatic ox-inflammatory balance and 
more could be associated to good performances in 
terms of wins. Instead, as more positive was EnLev 
and lower Gred, more the athlete was in ox-inflam-
matory stress and more could be associated to an 
elevated number of consecutive losses. So, the En 
Level/Gred Index map could be a tool better than 
the GSH concentrations only, to evaluate if training 
load and nutritional support were able to keep or 
not the athletes in fitness condition.

Regarding the exogenous fraction of the anti-
oxidant barrier, is well known that it depends 
strictly from the food intakes and supplementa-
tions of some micronutrients, such the vitamins 
A, E, lycopene and beta-carotene, whose concen-
trations in blood were firstly useful to evaluate its 
consistency. Furthermore, these measures were 
necessary because too higher concentrations of 
antioxidants could excessively extinguish the ROS 

Table 2.  Descriptive statistics for oxinflammatory biomarkers measured from visit V1 to V4. For each marker, 
mean ± standard deviations and relative units are reported; the values that were significantly changed ver-
sus V1 (Tukey’s test, p < 0.001) are marked with asterisk (*).

Units V1 V2 V3 V4

GSH+GSSG umol/l 838 ± 138 1,000 ± 112* 870 ± 176 947 ± 137*

GSH umol/l 647 ± 108 752 ± 90* 546 ± 134* 656 ± 111

GSH ratio % 77 ± 5 75 ± 6 63 ± 9* 69 ± 8*

BAP uEq/l 2239 ± 291 2,505 ± 770 2,770 ± 307* 2,406 ± 239

dROMs Ucarr 307 ± 41 287 ± 52 312 ± 44 331 ± 51

Q10 ug/l 345 ± 89 292 ± 73* 351 ± 54 368 ± 76

Vitamin A ug/l 470 ± 230 410 ± 130 610 ± 170* 460 ± 240

Vitamin E ug/dl 1320 ± 310 1,440 ± 370 1,370 ± 270 1,240 ± 200*

beta Carotene ug/l 587 ± 413 490 ± 247* 522 ± 244 514 ± 238

Lycopene ug/l 319 ± 124 351 ± 124 384 ± 108* 311 ± 113

3-NT ug/l 21 ± 21 24 ± 24 47 ± 49 292 ± 132*

8OHdG ug/g creat 3 ± 1 8 ± 18 15 ± 6 16 ± 7

T/C*10^3 Ratio 28 ± 8 27 ± 12 34 ± 8 28 ± 7

hsCRP ug/dl 72 ± 103 137 ± 88* 104 ± 102 93 ± 49

IL-6 ng/l 2.2 ± 0.6 2.2 ± 0.5 2.5 ± 1.0 2.2 ± 0.9

Gred Index Score 7.2 ± 3.0 6.3 ± 1.5* 3.6 ± 1.4* 4.6 ± 1.3*

EnLevel Score −130 ± 23 −146 ± 22 −98 ± 27* −124 ± 24
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Figure 2. Trends of the redox balance (A), exogenous antioxidant barrier (B), inflammation and oxidative damage 
biomarkers (C) from visit V2 to V4; the variations for each parameter are reported as percentage of the means vs. V1. 
The black line represents the critical delta value (CDV) calculated for each parameter in the pre-season visits.
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and RNS actions, compromising their physiolog-
ical role. Indeed, excessive supplementations, 
instead of restoring barrier, risks to alter the redox 
balance and, in long term, to weaken the physio-
logical capacity of antioxidant response [57–60]. 
The same was also true for coenzyme Q10 which, 
although physiologically synthesized, is frequently 
administered in athletes as dietary supplement: 
both excess and defective Q10 values could be 
counterproductive.

Together with the exogenous antioxidant bar-
rier, the pre-season evaluations of the hydration 
state, biochemical metabolic profile and lipidomic 
of RBC membrane, allowed a careful assessment of 
the nutritional status of the athletes. 

The success of the customization of the diet 
according to each athlete nutritional status was 
demonstrated from the invariance of the hydration 
conditions of athletes and improvements of the 
lipidomic profiles of RBC membranes. Particularly 
regarding lipidomics, it is interesting to highlight 
that, while the pre-season DHA deficiencies were 
previously already reported, the excess of arachi-
donic acid had not been yet emphasized [61,62].

Whit the nutritional program defined after V0, the 
ox-inflammatory pattern appeared in substantial 

equilibrium until V2. Interestingly, between V1 and 
V2, increases of total antioxidant barrier and of 
both total and reduced glutathione, and decreases 
of dROMs were observed although not all with sta-
tistical significance. This was an ideal picture of the 
effects that a correct training and nutrition may 
have on redox homeostasis. Whit balanced activity 
and food intake, in fact, the inflammatory insult can 
be silenced by an already effective antioxidant bar-
rier that can be further enhanced in its endogenous 
component due to pro-inflammatory and pro-oxi-
dant stimulations induced by training.

Too much activity, however, can lead to condi-
tions in which ROS and RNS consume more anti-
oxidant barrier than they are able to enhance. 
Once again, a nutritional intervention can help to 
increase the intake of some nutrients. Whit some 
feeding integrations, we have so stabilized in V2 
the blood concentrations of lycopene and vitamin 
E: since vitamin A, Q10, and beta carotene were 
decreasing at this time, the consumption of vita-
min A naturally rich foods was improved and a sup-
plementation of Q10 in nutritional doses has been 
introduced. These interventions have proved effec-
tive at the next V3 monitoring with improvements 
in both these markers (Fig. 2).

Figure 3. The En Level/Gred Index map: at visit V2, in conditions of equilibrium, the val-
ues of the pair GSH-GSSG energy level (EnLev) and of the estimated activity of glutathione 
reductase (Gred Index) were close to the origin of axes (green circles); instead, in redox 
imbalance conditions (visit V3), the values moved in the opposite direction (red circles).
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However, after V2 the equilibrium conditions 
were progressively compromised reasonably for 
the increase in high intensity training load, which 
led to the onset of inflammatory conditions. This 
was well highlighted by the peak of the hsCRP when 
referred to its CDV (Figs. 1 and 2); the contempo-
rary invariance of IL-6 levels could have depended 
from the dual role of this cytokine, both pro- and 
anti-inflammatory, but it cannot be excluded that it 
could have depended from the poor sensitivity of 
the analysis method employed.

The consequent homeostatic unbalance has been 
showed at V3, in which dROMs increased and GSH 
decreased for greater consumption; hsCRP was ele-
vated while BAP remained still well represented, 
probably because supported by the antioxidant 
dietary intake.

When the balance is altered and the oxinflamma-
tion triggered, the vicious circle between produc-
tions of inflammatory cytokines and free radicals 
feeds itself, with oxidations that cause inflamma-
tions and consumptions of antioxidant barrier, until 
appearance of irreversible oxidative alterations on 
macromolecules at different cellular levels. In these 
conditions, the measurement of redox damage bio-
markers, such as 3-NT and 8-OHdG, becomes neces-
sary [63,64]. 

In our study, the 3-NT levels, which remained 
under the upper limit of reference range (ULRR) 
up to V2 [65], were much increased in V3 and V4, 
showing that the impairment of redox equilibrium 
had caused, by now, irreversible nitrations on the 
protein compartment. 

To enhance the glutathione synthesis and thus 
support the endogenous antioxidant barrier, the 
administration of hypotonic solutions of maltodex-
trin during training sessions starting from V3 has 
proved effective in V4, with weak improvements in 
total and reduced glutathione concentrations (Fig. 2). 
Also, hsCRP had appeared slightly lower in V4 than 
in previous visits, while dROMs were in further slight 
increase and the exogenous antioxidant barrier in 
decrease; compared to V3, plasma concentrations 
of vitamins A, E and lycopene in V4 were lowering 
(−33%, −10%, and −23%, respectively). To confirm 
the redox balance impairment, 3-NT has increased 
in V4 more than ten times versus V3, well beyond its 
CDV. Instead 8OHdG, despite the apparent variations 
between V1 and V4, never exceeded the ULRR, and 
therefore did not allow demonstrate the presence of 
oxidative damage on nucleobases [65].

The alteration of redox balance consequent to 
the increase in high-intensity training starting from 

V2 [66–68], highlighted that the amount of eccen-
tric component of activity must be always taken into 
serious account in the programming [69,70], even 
considering the little improvement of the anabolic 
ratio (T/C) obtained. Moreover, in the past the use-
fulness of the T/C index had been already criticized, 
because influenced by study design and time of sam-
pling [71,72]. The ineffectiveness of this parameter 
seemed to emerge even from our data in which, 
despite of a sharp oxinflammatory imbalance, weak 
increases were seen in T/C between V2 and V3 only 
(+21%), and returns at pre-season values in V4. 

However, because it has already been shown that 
the effects of training on the match-performances 
and T/C ratio were related to the position of soc-
cer players in the field [73], further studies will be 
undertaken to verify if this is true also for the oxy-
inflammation biomarkers. For the moment, we can 
only observe that the worsening of the redox state 
has overlapped, with a certain coincidence of time, 
to a sharp deterioration in match-performances of 
the team in the second half of season. 

Conclusions

The control of nutrition and training of athletes can 
ensure the maintenance of balanced conditions in 
which pro-inflammatory and pro-oxidative stimu-
lations only transiently alters the oxinflammatory 
homeostasis and trigger the enhancement of count-
er-regulatory response.

High-intensity work increases the nutritional 
demand, and may induce muscle damage, inflam-
mation and oxidative stress. Moreover, above a 
certain threshold, the eccentric exercise does not 
improve the anabolic ratio and alters the oxinflam-
matory balance.

The nutritional intervention may act on the 
strengthening of the antioxidant barrier and allows 
to partially counteract the alterations. Nevertheless, 
the worsening of the homeostasis and of the perfor-
mances of team at the end of season showed that the 
oxinflammatory balance is probably conditioned in 
a more relevant way by the training overload. 

A more closed collaboration between physicians, 
nutritionists, and athletic trainers is of crucial 
importance in order to identify for each athlete, the 
exact balance between training, rest and nutrition, 
in order to optimize his athletic performance.

It is suggestive to think that, alongside the neces-
sary customization of interventions for each player, 
the measurement of some biochemical markers of 
oxinflammation, such as hsCRP, glutathione, and 
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3-NT, can be a useful tool to identify conditions 
of overstrain and to prevent the approach of the 
over-training threshold. 
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