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ABSTRACT
This paper studies neural network models of vehicle dynamics. We consider both
models with a generic layer architecture and models with specialized topologies
that hard-wire physics principles. Network pre-wiring is limited to universal laws;
hence it does not limit the network modelling abilities on one side but allows more
robust and interpretable models on the other side. Four different network types (with
and without pre-wired structure, recursive and non-recursive) are compared for the
longitudinal dynamics of a car with gears and two controls (brake and engine).
Results show that pre-wiring effectively improves the performance. Non-recursive
networks also look to be preferable for several reasons.
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1. Introduction

Traditional models of vehicle dynamics are engineered from physical principles by ex-
pert scientists. The art of making such models is the art of deciding which physical
phenomena are relevant for the intended use, and which may be neglected. Models cre-
ated in this way predominantly take the form of parametric differential equations (for
a continuous time dynamical system). The models are easily interpretable by designers
and the parameters – once a model is fitted onto a specific vehicle – also characterize
the vehicle itself. However, because of the trade-off between modeled and unmodeled
physical phenomena, analytical models do not work well if the assumptions about ne-
glected aspects are not met. So, to make one example, there are models for vehicle
lateral dynamics that assume horizontal roads. These models will not work correctly
for curves that have significant lateral elevation. Furthermore, if a parametric model
is fitted onto a situation for which the unmodeled phenomena are instead important,
the model will try to use its parameters to explain (to some extent and unsuccessfully)
the unmodeled phenomena and, hence, the model parameters will be altered and will
no longer have the intended meaning.

As another option, models based on machine learning – and for this paper neural
networks – may be conceived. Recurrent neural networks (with internal states) may
be used to model dynamical systems and fitted to observations of the real vehicle
dynamics. Alternatively, models can be made with non-recurrent networks: in this
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case the output of the network is calculated as a function of a sufficiently long past
history of the inputs.

Traditional neural networks topologies (both recurrent and non-recurrent ones) fore-
see the connection of input neurons to output neurons via generic hidden layers, with
no physically inspired design in the connection graph. This way, albeit a network can
be trained onto the input-output vehicle dynamics map, the individual weights and
connections have no physical meaning and do not clarify almost anything about the
genesis of the system dynamics. On the other hand, however, neural networks do not
suffer from the unmodeled phenomena issue. With sufficient neurons and training ex-
amples, neural networks may in principle learn any input-output function (hence, in
the above example a network modeling lateral dynamics can be further trained to
model the effects of lateral slope if data become available).

The contribution of this paper concerns an approach where neural network topolo-
gies are given some degree of physics inspired pre-wired structure. Pre-wiring is limited
to basic physical principles (such as that dynamics is of second-order type and forces
are additive). This way, neural networks with structured topology that do not limit
the modeling ability can be engineered. They are more robust than networks without
such structure on one side and they are far more interpretable on the other side, hence
combining the advantages of machine learning and analytic approaches.

The paper presents a comparison of four neural networks covering all the combi-
nations of recurrent/non-recurrent and structured/non-structured network types. The
case study of the longitudinal vehicle dynamics is used for demonstration, which is

R2.1
more challenging than lateral dynamics because the longitudinal controlwhich is chal-
lenging in terms of neural network structure because the longitudinal control is split
between two different commands (engine torque and brake) and because the system

R2.1
includes a discrete state (the gear). The networks are trained and validated with ex-
perimental data.

Application domains where learned models like these may be proficiently used are
finally discussed in the conclusions.

2. Related work

Physics based vehicle dynamics modeling is a well established discipline for which many
publications and textbooks are available, e.g., [1] to make just one example. Conversely,
the field of artificial neural networks (ANN) received an important propulsion very
recently, when algorithms for efficient network training became available and capable
of training the so-called deep networks. Since then, ANN have outperformed competing
machine learning approaches in an increasing number of applications [2,3].

In vehicular applications neural networks count a number of examples related to
perception (in particular artificial vision by means of deep learning). Applications to
vehicle dynamics and control, on the other hand, are a relatively less explored area. One
notable example is a network for lane keeping that was demonstrated by NVIDIA [4]
which implements end-to-end control (from camera to steering angle). The EU H2020
”Dreams4Cars” Research and Innovation Action [5] (which originated the work of the
present paper) is another example where neural networks are used for the complete
sensor-motor loop. In particular models of the vehicle dynamics are learned and used
for vehicle control and state estimation at run-time; and they are also used offline to
instantiate so called ”embodied” simulations (that vaguely resemble human dreams)
to synthesize motor strategies [6].
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Concerning the ability of neural networks to model dynamical systems, there is a
theoretical background [7] which proves that an autonomous dynamical system can
be approximated by a recurrent neural network to any degree of accuracy, while in
[8] this conclusion is extended to non-autonomous systems, i.e. subjected to an input.
A comparison between three different types of vehicle longitudinal dynamics model,
respectively a parametric analytic model, a generic state-space model and a neural
network, has been recently provided in [9] indicating progressive improvements from
analytic to neural network models.

3. Types of physical and non-physical models (for neural networks
implementations)

In general, physical models of a dynamical system assume that it behaves as a causal
entity which, according to a repeatable logic, converts a set of inputs into a set of
outputs. In white-box models, the mathematical description of such a logic may rely on
physical principles and the relevant model parameters have a physical interpretation.
Conversely, black-box models are built independently of any physical consideration,
and a direct interpretation of their parameters is not always possible. Intermediate
situations – that are the topic of this paper – can be conceived, where a pre-defined
structure is assigned to an otherwise black-box model, orienting the space of its possible
outputs towards a physically interpretable system.

3.1. Causal systems

Causal systems are systems whose output depends on past and current inputs. Let us
consider discrete time models (which are compatible with artificial neural networks
implementations), where all the quantities are known at given time samples identified
by the subscript k. If uk is the set of applied inputs to the system at time tk and
yk is the output at the same time (assumed scalar), for a causal dynamical system a
function f exists such that:

yk = f(uk,uk−1,uk−2, ...uk−n, tk) (1)

where n is the number of time steps at which the past time history of the inputs
affects the outputs of less than the instrument noise, i.e. some multiple of the larger
time constant of the system, if linear. If we apply this approach to the longitudinal
dynamics of a vehicle, we can make the hypothesis that, at least in the timescale of
application of the model here formulated, it is time-invariant, therefore we can discard
the direct dependence of the function f on the variable tk.

If nothing were known about f , eq. (1) would constitute a black-box model. On the
other hand, if f were given analytically, eq. (1) would constitute a white-box model.

3.1.1. Gray-box models oriented to neural network implementations

Dealing with a vehicle longitudinal dynamics, we focus on its longitudinal acceleration,
which is ruled by the projection of Newton’s law along the longitudinal direction
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(curvilinear coordinate s):

s̈ =
1

M

m∑
i=1

Fi (2)

where M is the mass of the vehicle, Fi the longitudinal forces and m is the number of
them.

Taking the vehicle longitudinal acceleration s̈(tk) as the output yk of the plant,
equation (1) can be rewritten according to the structure of equation (2):

yk =f1(u1,k, u1,k−1, . . . , u1,k−n)+

f2(u2,k, u2,k−1, . . . , u2,k−n) + ...

fm(um,k, um,k−1, . . . , um,k−n)

(3)

and the subscript of f refers to the force being accounted for.
The usefulness of such structuring lies in the fact that i-th force, called fi, usually is

a function of only a subset ui,j of the inputs ui (the time step being j). For example,
the engine propulsive force does not depend on the brake command if the brake and
engine systems are independent. So, with little insight into the physical system, one
can tell which forces act and which is the input for each of the force modeling functions
fi. That is far less information than providing a precise analytical expression for f in
eq. (1). If functions fi are still not given analytically (apart from the specification of
which inputs apply to each), the model is white at the level of eq. (3) and somehow gray
at the level of the individual components fi. The latter is gray, and not completely
black, because each fi carries in the argument list the information of which inputs
affect and do not affect the force.

If eq. (3) is implemented with neural networks it retains the ability to learn (via the
fi) but within a framework that is generally more effective and robust than eq. (1).
The structure given by (3) may be further developed, e.g. to model hybrid dynamical
systems such as the case of different engaged gears. In this case we can imagine that
the propulsive force is modeled by as many fi as the number of gears, only one of
which being active at any given time.

3.2. State space models

As an alternative to eq. (1), time-invariant dynamical system may be given the well
known state space representation, such as:

xk+1 = g(xk,uk)

yk = h(xk,uk)
(4)

where xk is the system state at time step k, which keeps the memory of the effects of
past inputs.

State space representations may be implemented with recurrent neural networks,
where xk are the network recurrent states. Again, the functions g and h can be assigned
a structure, reflecting some physical properties of the modeled system, or can be left
generic, with no restriction to the generated set of solution manifolds.
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3.3. Linear models/submodels

Very often, physical systems are operated within domains where they behave (approx-
imately) as linear systems.

If the i-th dynamic subsystem in eq. (3) may be considered linear, the corresponding
fi is linear, and may be computed as the convolution of the function inputs with the
impulse response of the subsystem itself, generically as:

yi = φi ∗ ui (5)

where φi is the vector of the impulse response coefficients of subsystem i, ui is the
vector of the past subsystem inputs and ∗ is the convolution operator.

In artificial neural networks, linear subsystems may be effectively implemented with
linear layers and, remarkably, the layer weights may be interpreted as the impulse re-
sponse coefficients of the subsystem, hence turning the sub-models fi to be completely
white boxes. Furthermore, at the time of network training, the linearity hypothesis is
implicitly checked, because any non-linearity (where linearity was assumed) appears
as training residuals.

Similarly, state space models of linear (sub)systems have the form of linear equations
such as, e.g.:

xk+1 = Axk + Buk

yk = Cxk + Duk
(6)

where A, B, C, D are constant matrices. When linear state space models are imple-
mented in neural networks with basic (linear) recurrent layers, the network weights
can also be interpreted.

4. Vehicle longitudinal dynamics case of study

Four different types of neural networks are studied here1:

(i) a generalized convolutional network without structure, like eq. (1);
(ii) a generalized convolutional network with structure, like eq. (3);

(iii) a recurrent neural network without structure, like eqs. (4);
(iv) a recurrent neural network with structure (like eqs. (4); but where g and h are

structured like f was in eq. (3)).

This way, all combinations of recursive versus non-recursive (generalized convolu-
tion) and black versus gray/white boxes approaches are compared2. The neural net-
works are evaluated for their capability of predicting the longitudinal acceleration. All
the networks are trained with the same hyperparameters: batch size 1000, L2-norm
weights regularization coefficient 0.0001, number of epochs 1000. The optimization
procedure is performed with Adam’s method.

1The networks were built, trained and verified in Wolfram Mathematica, which was also used for the signal
pre-processing phase and the evaluation of the results.
2Comparisons with analytic models is carried out in [9]
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4.1. Experimental data and signal pre-processing

In an experiment, a medium-sized car (Lancia Delta) was driven along an extra-urban
course characterized by a combination of straights, curves, hills and intersections for
a total test time of approximately 1 hour50 minutes (55.7 km). The driving situations

R2.2
experienced in such a test are assumed to be reasonably rich and complete in terms
of vehicle dynamics involved. The car was driven by an ordinary driver in ordinary

R2.4
conditions on a dry road. No exceptional events (hard brakes, slippages or interventions
of the traction control and electronic stability program) occurred either in the training
or the validation datasets.

The training set was extracted from the whole records by taking about half an
hour (36.0 km) in the first part of the trip. The validation set was extracted from the

R2.2
second part of the trip by taking about 15 minutes (19.7 km). These two sections were

R2.2
chosen to exclude parts of the records where the car was standing still very frequently.
The test and validation sets are related to completely different parts of the test track
and with different traffic situations, thus avoiding as much as possible correlation
between trained and verified maneuvers.The validation set is related to completely
different parts of the test track and with different traffic situations, thus avoiding any
correlation between trained and verified maneuvers. In Appendeix, figure A1 shows

R1.1
the whole data set divided in training set and validation set.

The longitudinal acceleration was measured by an accelerometer, while the relevant
inputs for the longitudinal dynamics are identified in the forward velocity (used only
for the modeling of the air drag), engine torque, brake plant pressure, altitude and
gear, which are sensed by various devices. Additional signals that were also available
were longitude and latitude; but these were not used to develop the forward dynamics
models. All the signals (except the GPS) were sampled at 100 Hz; however since the
significant dynamics is expected to be concentrated in a much more limited bandwidth,
down-sampling at 20 Hz and proper digital filtering were performed to reduce noise
effects.

Since the quality of the acceleration signal directly affects the training process of
the neural networks and, in turn, their predictive performance, for the purpose of
comparisons it was convenient to pre-process the data, maximizing the acceleration
signal to noise ratio (which constitutes the training signal for the model output).
Thanks to the availability of a set of redundant speed information from the odometers,
a Kalman filter was hence used to improve both the velocity (that is not important
here) and the acceleration signal. Details of a Kalman filter very similar to the present
one and used on the same car are given in [10], which also describes the data and
course slightly more in depth.

5. Generalized convolutional approaches

This section deals with networks of type (i) and (ii), which are non recursive networks
that respectively implement the schemes eq. (1) and eq. (3). For linear systems the
schemes reduce to convolutions of past inputs with the (learned) system impulse re-
sponse. For nonlinear systems the schemes are nonlinear (learned) functions of the
same past input history, which we can regard as a generalization of convolutions. The
structured network (ii) is intentionally realized with a much smaller (less than 1/3rd)
number of neurons, to appreciate the advantages and role of the network structure in
modeling and prediction performances.
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Figure 1. Unstructured convolutional network (i).

5.1. (i) Unstructured convolution-like neural network

The unstructured neural network (i) is shown in fig. 1. It is realized with a shallow
architecture: one hidden layer (layer 3) of 10 fully connected neurons, followed by a
ramp activation function (ReLu), feeds the second neural layer, composed of just 1
neuron (layer 5). The number of learn-able parameters (weights and biases) for this
network is 821 (810 for layer 3 plus 11 for layer 5).

As for the network input, each neuron of the first layer receives a short time history
of the input signals: n=25 past brake pressures (up to the current time), n=25 past
engine torque values, 21 height values3, the current velocity and the current gear. The
latter is encoded by a unit vector layer (layer 1) which returns a vector of length 8
(number of gears counting the neutral gear) with all elements set at zero except the
element corresponding to the active gear which is set at 1. This vector is concatenated
with the other inputs on layer 2 (hence layer 3 receives 8 signaling neurons that specify
which is the currently active gear). Note that only the instantaneous velocity is given
in the inputs: the network can thus use this information to model air drag, but has no
cue to derive acceleration form differentiation of the velocity.

Given this structure, the length of the time history of each input had to be defined
with care. Extending to excessively old samples increases the number of learn-able
parameters, with the risk of over-fitting. Conversely, too short an history makes the
network unable to grasp the system dynamics that occurs in larger timescales. Note
that the longest windows, extending back to 25 samples, means 1.25 seconds, which
is a time interval sufficient for most of the longitudinal dynamics time scales.

Figure 3 gives an example of the network performance. In the excerpted record
both acceleration and deceleration maneuvers are present with related gear shifts.
The network captures the main longitudinal dynamics phenomena (including drive-
line vibrations), as shown by the typical oscillations of the acceleration that follow
gear shifts, especially at low gears.

5.2. (ii) Structured convolution-like neural network

In the structured network (ii) the neurons are organized as shown in fig. 2 in order
to process the input signals according to the physics inspired logic eq. (3). Here,
the various converging network branches model different fi in eq. (3). On top the
instantaneous velocity is squared and enters a layer which learns the air drag coefficient
and the rolling resistance (gain and bias of the single neuron constituting the layer).

3Heights are extracted from a digital map sampled at 2nh+1 regular distances from the vehicle position

(nh=10 with a total of 21 points); the network is left with the estimation of the slope from the noisy heights.
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Figure 3. Example of measured signals and convolutional networks prediction. Accelerations are rescaled
with respect to the maximum measured acceleration (3.1ms−2).

On the second row, the brake pressure history – same 25 values than in network (ii)
– enters a neural layer which learns the acceleration effect of the brake, which was
supposed linear (and the hypotheses was then verified in the training). The following
ReLu (Rectified activation unit) was included to enforce the fact that brake forces
can only cause decelerations (which helps the training convergence). The third row
estimates the acceleration caused by road slope. Finally the bottom row estimates the
tractive force and acceleration. Here the 25 past engine torque values enter a neural
layer with 8 output neurons. Each neuron learns the propulsive acceleration that would
be caused by one gear. Only the neuron corresponding to the active gear is then passed
downstream. The total number of learn-able parameters in this network is 248 of which
200 are in the engine layer which learns the effects of the drive-line for the 8 different
gears in parallel.

5.3. Comparison between unstructured and structured convolutional
networks

In fig. 3 the predicted acceleration by the unstructured and structured networks are
compared with the measured acceleration. It can be seen that the structured network,
despite the reduced number of parameters, provides a better fit.

The networks performances are evaluated by examining the power spectral density
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Figure 4. Power spectral density of acceleration measurement noise, convolutional neural networks fit resid-

uals and measured acceleration signals (training set).

[11] of: a) the acceleration signal, b) the fit residuals of network (ii), c) the fit residuals
of network (i) and d) the measurement noise (fig. 4). The latter is estimated by ex-
tracting the parts of the acceleration signal (after Kalman filtering) where the vehicle
is running with constant velocity. This stretch of data, of only about 50 s in total,
is de-trended, windowed (Hamming type) and its power spectral density is calculated
with the periodogram method [12] as a reference level (the pink line in the chart). The
limited time span of the extracted acceleration noise does not allow the calculation of
the noise spectral density as the mean of many estimates, resulting in a significantly
greater scatter of the plotted line (compared to the other curves). Conversely, spectral
densities of the signal and residuals are the average of about 10 estimates.

We make the assumption that the system is of output-error type, which sees the noise
superimposed to the system output without being subjected to the system dynamics.
This allows for a direct comparison between fit residuals and measurement noise,
which constitutes its theoretical bottom limit. Residuals spectral densities lower than
the measurement noise indicate an over-fitting behavior of the network. This is also
revealed during training by the validation loss.

Figure 4 shows that the acceleration signal (black line) is significantly stronger than
the noise (pink line) up to 2-3 Hz, where an evident cutoff is present and the signal-to-
noise ratio drops to zero dB. In the 2-3 Hz bandwidth, the noise is fairly constant.In

R2.5
this band the longitudinal vibration modes due to the driveline/chassis/suspensions,
which are not causally linked to the input, are superimposed to the acceleration caused
by the longitudinal control. The vehicle controlled dynamics is mainly concentrated
in the low frequency band, with an initial plateau (up to about 0.1 Hz) and then
following 1/f decrease.

The unstructured network (light green line) in the relevant bandwidth produces fit
residuals significantly larger than the noise, revealing imperfect capability to describe
the vehicle dynamics especially at the low-frequency end. Conversely, the residuals
produced by the structured network (dark green line) lie closer to the noise level,
showing that this network model performs fairly similarly to the measured dynamics.
The structured network performs better than the unstructured one also at the high-
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Figure 5. Power spectral density of the fit residuals of the training and validation sets for unstructured and
structured convolutional networks.

frequency end (up to 10 Hz), where it is basically consistent with the noise. The larger
bandwidth of the structured network can be appreciated also in the time domain
(fig. 3), where it is able to produce sharper acceleration peaks/valleys and follow
quick signal changes with no relevant error (e.g. first peak at about 2 s).

In fig. 5 the power spectral density of the fit residuals of the training and validation
sets for both unstructured and structured networks are compared. Around 1 Hz, in
both unstructured and structured cases the network produces slightly larger residuals
in the validation set with respect to the training set. However, the difference between
training and validation is negligible elsewhere and if compared with the gap to the
signal. The plot confirms that the networks are correctly optimized and the dynamic
characteristics of the track are homogeneous.

6. Recurrent Neural Networks

As an alternative option, we consider recursive networks. Two networks, of type (iii)
and (iv) are used to implement the scheme eq. (4). According to this approach, the
interpretation of the network parameters (e.g., related to matrices A, B, C and D in
the linear case) is in principle possible. However, in the absence of a structure the
network parameters are allowed to converge to a configuration in which no physical
meaning can be given (for instance, mixing the effect of the different inputs at an
earlier stage than the final summation in Eq. 3). This issue is exacerbated if an over-
sized state (required to model nonlinearities) is chosen, which increases the possibility
of multiple locally optimal solutions of the network parameters. Both the structured
and unstructured recursive networks (iii) and (iv) are realized with a similar number
of neurons as their convolutional equivalent, for direct comparison.

6.1. (iii) Unstructured recurrent neural network

The unstructured recurrent neural network is shown in fig. 6. The input is made of
the instantaneous velocity vk, brake pressure pbk, altitude hk, engine torque Tgk and
the gear signalling vector (output of the UV layer). They are concatenated at layer C,
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Figure 6. Unstructured recurrent network (iii).

forming the instantaneous input vector uk, of dimension n=12, which enters a basic
recursive layer BR. Basic Recurrent layers implement the following state transition,
where sk are the neural network recurrent states at time step k.

sk+1 = Tanh(A sk + Buk + b) (7)

With adequately sized state s, basic recurrent layers can model non-linear dynam-
ics. However the states s are not directly interpretable. The predicted acceleration is
assumed to be a linear combination of these states, which are combined at the last
fully connected layer.

The learnable parameters are located in the matrices A, B and b of the BR layer
and in the weights and biases of the linear layer. The state dimension (m=23) is
chosen such that the number of learnable parameters (852) is very close to that of the
unstructured convolutive network.

The network is trained as stateless: a sequence of 25 input vectors – the same size
of the history of networks (i) and (ii) –, uk−24, ...,uk is taken, beginning with the
null state sk−24 = 0. The output of the recurrent layer is a sequence of 25 states
sk−24, ..., sk of which the first 24 are not considered to ignore the transient phase (it
was assumed and verified that the transient response lasts less than 25 steps). The last
state sk is considered (extracted via the Sequence Last (SL) layer) and transformed
into the estimated acceleration v̇k that is trained against the actual acceleration.

6.2. (iv) Structured recurrent neural network

Figure 7 shows the structured recurrent network (iv). In this case each individual
signal feeds a dedicated BR recursive layer, where overall the structure follows the (ii)
template (fig. 2). The individual BR layers are assigned a reduced state dimension
(m=6) in order to produce a total number of train-able parameters (262) similar to
that of the convolutive version (ii). The network is trained the same way as network
(iii).

6.3. Comparison between unstructured and structured recurrent networks

The analysis of the fit residuals of the unstructured and structured recurrent net-
works in the frequency domain shown in fig. 8 highlights that the performance of the
unstructured network looks slightly better in the bandwidth up to 2-3 Hz and both
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Figure 7. Structured recurrent network (iv). Dotted boxes correspond to (1) air drag, (2) braking force, (3)
slope effect and (4) engine torque respectively.

Figure 8. Power spectral density of acceleration measurement noise, recurrent neural networks fit residuals

and measured acceleration signals (training set).

consistent with the measurement noise. We notice however that in some frequency
bins the unstructured network may produce residuals with a smaller power spectral
density than the noise, i.e. overfitting the acceleration signal.

Figure 9 shows the power spectral density of the fit residuals for recurrent networks,
both with training and validation sets. The performance of the networks is more af-
fected by the dataset, with a larger increase of residuals’ spectral content from training
to validation if compared with the convolution case of fig.5, distributed on a larger
bandwidth. The unstructured recurrent network shows the worst performance in terms
of robustness to the choice of the dataset.

R.1.2
In fig. 10 the performances of the recurrent networks are compared in the same

sample interval that was used in fig. 3. At a first glance it seems that the recurrent
networks outperform the convolutive ones. However, a comparison in the validation
set, as will be shown in fig. 9 and fig. 12 reveals that the apparent better fit here has
to be interpreted as over-fitting (see discussion in section 7 and Table 1).
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Figure 9. Power spectral density of the fit residuals of the training and validation sets for unstructured and
structured recurrent networks.
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Figure 10. Example of measured signals and recurrent neural networks prediction. Accelerations are rescaled
with respect to the maximum measured acceleration (3.1 ms−2).

7. Comparison and performances

We first compare in Table 1 the performances of the four networks by analyzing a
simple scalar quantity expressing the overall power of the fit residuals, that is the root
mean square (RMS). The reference value is the acceleration noise RMS, 0.067 ms−2.

There are clear indications that the unstructured recurrent network is overfitting
the signal, because the RMS of the residuals of the training set is smaller than that
of the noise. This is confirmed by the quite large RMS increase of the residuals in the
validation set, which highlights a significant dependence of the network performance
on the data set.

From Table 1, and focusing on the validation sets, it is possible to conclude that

Convolutive Recurrent
Unstructured Structured Unstructured Structured Noise

Training 0.141 0.084 0.063 0.080
0.067

Validation 0.158 0.105 0.129 0.115

Table 1. Root mean square of the fit residuals (ms−2).
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the structured architectures, both convolutive and recurrent, albeit with far less pa-
rameters, yet provide a more robust description of the longitudinal dynamics without
loss of modelling capability and in the fairly wide and representative conditions of
extra-urban driving conditions of a medium-sized car that we used.

Concerning the spectral distribution, fig. 11 compares the frequency content of the
fit residuals focusing on the structured networks only. Both produce residuals fairly
consistent with the measurement noise up to the maximum frequency (10 Hz).

Of the many other scalar metrics that may be used to evaluate the quality of model
predictions (e.g. model fit, variance accounted for v.a.f., Akaike’s Final Prediction
Error FPE [13]), we calculate here the variance accounted for metric, which evalu-
ates the variance of the residuals with respect to the variance of the measured signal
(consistently with [14]):

v.a.f. = 1 − var(am − anet)

var(am)
(8)

Where am is the measured acceleration vector and anet is the network predicted
acceleration vector.

Table 2 lists the v.a.f. of the four networks for both training and validation sets.
The values confirm the overfitting situation for the unstructured recurrent network,
which produces a clear performance drop from the training to the validation set.

Considering the overall performance (both in terms of absolute values and their
robustness), the structured configurations provide the best description of the vehicle
dynamics, with a nearly equivalent performance. However, the convolutive network
has the following advantages.

1) It is more robust with respect to the data set. As shown in Table 1, the absolute
performance of the structured convolutive network in the validation set is better, with
a RMS increase from the training set of 25% against 44%. Also, Table 2 shows that the
drop of performance of the structured convolutive network from the training to the
validation sets is 0.008 whereas the structured recurrent scores 0.015 (about a factor
2 better).

2) Easier implementation, larger stability with respect to back-propagation, faster
convergence in training.

3) It can be given a direct interpretation in terms of impulse response of the system.

Convolutive Recurrent
Unstructured Structured Unstructured Structured

Training 0.938 0.978 0.987 0.980
Validation 0.935 0.970 0.956 0.965

Table 2. Variance accounted for metric for the tested networks.

Finally, fig. 12 compares the actual acceleration to the predictions of the 4 networks
in the time domain for an excerpted window of about 15 s, during a typical situation
experienced in the validation set involving both high-frequency and low-frequency
dynamics. Findings are confirmed, with the convolutive structured network performing
best.
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Figure 11. Power spectral density of acceleration measurement noise, convolutional and recurrent structured

neural networks fit residuals and measured acceleration signals (training set).

8. Conclusion

In this paper neural networks of different architectures are implemented as tools for
the modelisation of the longitudinal dynamics of a medium-sized vehicle. In particular,
models of different levels of structure and interpretability may be conceived, spanning
from white-box models, where physical principles are directly implemented and model
parameters have a physical interpretation, to black-box models, which are opaque to
any insight. Pre-wired structures of both convolutive and recurrent networks guarantee
that the trained network maintain some degree of interpretability, that is allow the
user to identify the effect of the different inputs (and related forces) to the vehicle
acceleration, still preserving the flexibility to adapt to unexpected dynamics. The
comparison of the modeling performances of convolutive and recurrent networks shows
that, with a similar number of trainable parameters, the convolutive architecture is
more accurate and robust.

As models for vehicle dynamics neural networks necessarily model one specific ve-
hicle, unlike analytically models that may be parametric. Their natural application
is fine-tuned learning of the dynamics of one vehicle for a) vehicle control, b) sensor
anticipation (to filter sensor data based on a dynamic model) and c) to learn vehi-
cle models that may be used for vehicle specific offline simulations for the synthesis of
tactical-level motor strategies (a process that is also known as ”embodied” simulations
when it refers to how human manipulate learned models of their body and manipu-
late objects). All these uses are actually implemented in the Dreams4Cars project [5].
Furthermore, just like human beings, the learning of several models in parallel, for ex-
ample reflecting the variable vehicle dynamics in varying environmental and operating
conditions, may be implemented to construct a library of vehicle models among which
to select for the actual control in one specific day (just like human beings do).
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tional and recurrent networks in the validation set.
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Appendix A. Training and validation datasets

R1.1 R2.3The signals collected in the experimental campaign are reported in fig. A1, evidencing
the training and validation subsets. Two sample intervals are highlighted in light
green: the first refers to fig. 3 (comparison between the convolutional networks) and
fig. 10 (comparison between the recurrent networks) while the second refers to fig. 12
(comparison among all the networks). In tables A1 and A2 the statistical parameters
of the signals are summarized for the training and validation sets respectively.

We can note that the validation set involves slightly wider ranges of acceleration
brake and slope.

Acceleration Velocity Engine Torque Brake Slope
(ms−2) (m/s) (Nm) (bar) (rad)

Quantile 0.0005 -2.60 0.00 -10.98 0.00 -0.027
Quantile 0.005 -1.96 0.00 -10.58 0.00 -0.025
Mean 0.03 18.02 13.03 0.68 0.000
Quantile 0.995 1.94 31.39 61.00 15.00 0.030
Quantile 0.9995 2.69 32.05 71.81 22.00 0.033

Table A1. Statistics of the training set.
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Acceleration Velocity Engine Torque Brake Slope
(ms−2) (m/s) (Nm) (bar) (rad)

Quantile 0.0005 -3.45 1.38 -11.29 0.00 -0.036
Quantile 0.005 -2.47 5.75 -10.82 0.00 -0.032
Mean 0.02 19.73 13.16 0.67 0.001
Quantile 0.995 1.97 30.76 62.01 19.20 0.044
Quantile 0.9995 3.15 30.95 73.70 29.60 0.052

Table A2. Statistics of the validation set.

17



-4

-2

0

2

4

A
�
�
�
��
�
�
��
�
�

m
/s
2
]

0

10

20

30

40

V
�
��
�
��
	

m
/s
]

-20

0

20

40

60

80

E
�


��
�
T
�
�
�
�
�

N
m
]

0

20

40

B
�
�


�
P
�
�
�
�
�
�
�

b
�
�

]

-0�0�

0

0�0�

S
��
�
�

�
�
r

]

0 500 1000 1500 2000 2500 3000

1

2

3

4

5

6

Time [s]

G
�
�
�

�������� ��� ���������� ���
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