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Abstract— This paper proposes the usage of a bio-inspired
action selection mechanism, known as multi-hypothesis sequen-
tial probability ratio test (MSPRT), as a decision making tool
in the field of autonomous driving. The focus is to investigate
the capability of the MSPRT algorithm to effectively select the
optimal action whenever the autonomous agent is required to
drive the vehicle or, to infer the human driver intention when
the agent is acting as an intention prediction mechanism. After
a brief introduction to the agent, we present numerical simu-
lations to demonstrate how simple action selection mechanisms
may fail to deal with noisy measurements while the MSPRT
provides the robustness needed for the agent implementation
on the real vehicle.

I. INTRODUCTION

Autonomous vehicles (AVs) require effective algorithms to
perform robust decision making in the shortest time frame
possible. Indeed, in a dynamic environment such as the one
faced by the AVs, the capability of reacting promptly is a
major factor in potentially avoiding collisions wand saving
lives. The inherent complexity of the process is worsened
by the presence of sensors’ noise and uncertainties which
affect the way the behavioural level selects the proper action.
In the early days of autonomous driving, tactical/behavioral
level planning typically relied on manually engineered state
machines, this approach has been adopted by many com-
petitors of the 2007 DARPA Grand Challenge (a.k.a. ur-
ban challenge) [1], [2]. Despite some participants actually
managed to succeed, state machines inherently lack the
capability of safely generalizing to unmodeled scenarios.
More recent autonomous driving softwares are built on top of
probabilistic approaches including Markov Decision Process
[3] or machine learning-based techniques such as behaviour
networks [4] or support vector machines [5]. A promising
method is the adoption of reinforcement learning (RL) as a
high level biasing mechanism for learning an optimal action
selection policy [6] or oppositely, the exploitation of the
inverse reinforcement learning (IRL) framework to learn the
reward function from human data [7].

Conversely, the problem of action selection is not a
peculiar feature of AVs, instead any agent (both artificial and
biological) dealing with complex dynamical environments
where multiple mutually exclusive behaviours are possible,
shares similar dilemmas. Indeed there exists a huge amount
of ethology literature investigating “behaviour switching”
and “decision making” [8], the common jargon among cog-
nitive scientists to refer to the action selection problem in
robotics.
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Several theories have been proposed in literature on how
animals perform effective decision making [9]. For instance,
in [10] the affordance competition concept underlines a
parallel processing of multiple actions competing against
each other until the selection of the winning behavior. Such
a modeling framework is based on the definition of criteria
for assessing the worthiness of the action and the selection
process itself.

We exploit this concept of parallel competing actions
in the context of the European Projects SafeStrip1 and
Dreams4Cars2. In particular, in SafeStrip we take advantage
of the mirroring mechanism introduced in [11] to infer the
human driver intended action in several dangerous scenarios,
like in the proximity of a pedestrian crossing, in a road
work zone or in an intersection. In the latter case a more
complex mirroring is performed, taking into account the
right of way rules and mirroring other vehicles. This is
made through vehicle to vehicle and vehicle to infrastructure
communication [12].

Such an inference process boils down to the selection
among a set of longitudinal maneuvers, called motor prim-
itives, of the one matching the driver intended action in
terms of instantaneous jerk j0. Each motor primitive has
an optimality-based formulation characterized by an initial
jerk associated with. By defining the jerk space as a one 1-
dimensional grid we can explore a set of possible actions
taking also into account infrastructure-based information.

In Dreams4Cars we utilize a similar optimality-based mo-
tor primitives approach for the synthesis of an autonomous
driving agent called Co-driver [13]. In addition to the longitu-
dinal manoeuvres, we also generate set of lateral manoeuvres
by defining a 1-dimensional grid on instantaneous lateral jerk
r0. By combining the two grids we devise a 2-dimensional
matrix where each entry is a pair of (j0, r0) which encodes
a latent action. Each pair is then assign a merit via the
definition of a scenario dependent salience.

Common to both the project there is the need to select
the best action after the computations of the grids. The rest
of this paper is devoted to demonstrate how we can perform
such a task taking advantage of a biologically inspired action
selection mechanism.

II. THE MOTOR CORTEX CONCEPT

In order to better clarify how the affordances competition
process takes place, let us inspect an example simulation

1https://www.safestrip.eu
2https://www.dreams4cars.eu
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scenario as in Fig. 1. In the proposed situation the ego car,
driven by the Co-driver agent, is travelling at high speed on
a straight road when a slower vehicle is detected (Fig. 1a).
This scenario translates into the control space representation
shown in Fig. 1b. Physical space to control space transforma-
tion is performed via the analytical solution of a linearized
vehicle kinematic plant optimal control similarly to [14],
[13]. The green portion of the control space representation
expresses the feasible control actions, i.e. the set of pairs
(j0, r0) which allow the ego car to stay within the solid
lane markings. On the other side, the orange/yellow portion
conveys the control inhibition caused by the presence of a
slower leading vehicle. The solid orange region is associated
to controls that lead to a collision while the yellow area
encodes the potential danger in staying too close to the
obstacle. Eventually the white region expresses the speed
limit exceedance.
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Fig. 1: Example simulation scenario bird-eye view (a) and
corresponding control space representation (b).

The motor cortex corresponding to the action space in
Fig. 1b can be computed by introducing some merit criterion.
For the considered example scenario we model the merit
as the maximum time at which, given the pair (j0, r0), the
vehicle will leave the road or collide with other road users. In
other words we are trying to find which are the controls that
allow the vehicle to navigate the longest without any further
intervention during the execution. This idea is also known
as minimum intervention principle [15]. Given the biological
inspiration of the procedure, we refer to such a time as the
salience of the action. By establishing the criterion above, we

can compute an artificial motor cortex as in Fig. 2, where
the salience is displayed along the z-axis of the 3D plot.
It can be noticed how lateral controls close to zero have
high merit values as, clearly, steering abruptly will drive the
vehicle out of the road sooner than steering mildly while the
orange region in Fig. 1b has a close to zero salience due to
the inherent risk of collide in a short time frame.

Fig. 2: Minimum intervention principle based motor cortex
for the scenario in Fig. 1.

The motor cortex in Fig. 2 encodes the affordance con-
cepts previously mentioned. Each of the action is in fact
associated to a merit value and compete against the others
for winning the selection process. The outcome of the
“competition” is the optimal pair (j∗0 , r∗0) that will eventually
guide the car for the next time-step.

In the inference-via-mirroring application, the merit as-
signment procedure is slightly modified to account for both
the potential maneuvers and the one currently performed
by the driver. After the computation of the scenario-based
merit for each initial control, a bias function measuring the
proximity of the driver maneuver to each action is applied
to the motor cortex as shown in [16] for the longitudinal
control only.

III. ACTION SELECTION

A. WTA algorithm

The most trivial approach to model the affordances con-
tetition would be to simply choose the pair having the
highest instantaneous salience. This selection mechanism is
known as winner takes all (WTA) [9] and has proven to
be fairly efficient in the simulation environment where there
is no signal noise. On the other side, this action selection
procedure is likely to choose sub-optimal action in the
presence of noise such as when the agent is driving a real
car. Furthermore, even in the simulation environment, this
mechanism may give rise to hysteresis when two competing
actions share similar salience values which can cause loss of
vehicle control.



B. MSPRT algorithm

In order to overcome the problematics of the WTA
procedure we propose here the introduction of the multi-
hypotheses sequential probability ratio test (MSPRT) [17]
decision making algorithm.

The key idea of the MSPRT algorithm is to accumulate
evidence for each channel and then pick an action only when
the integral reaches a predefined threshold level. This mech-
anism should guarantee more robustness to noisy decisions
by trading off some responsiveness.

The MSPRT has been shown to be asymptotically time-
optimal in a multi alternatives process [18]. More recently a
link between the action selection process happening in the
basal ganglia of the human brain and the MSPRT algorithm
has been drawn [19].

The overall procedure for action-selection using the
MSPRT algorithm is reported in Algorithm 1. First we
append the set of observations at time-step Mt to the
list of observations Mlist which contains observations from
t− ws up to t where ws is the dimension of the averaging
window. Then we compute the mean of observation along the
time dimension in order to get an average of each channel
evidence for the considered window. Next we compute the
likelihood of each channel according to

L(t) = y(t)− log

N∑
k=1

exp (yk(t)), (1)

where y(t) represents the vector of evidence at time-step t
obtained via flattening the motor cortex. Then we compute
the max(exp (L)) to investigate whether some of the chan-
nels reached a predefined threshold value. In the positive case
we reset the moving average list by taking only a percentage
λ of the current average value. Otherwise we continue to
follow the previous action until eventually a new action will
win the affordance race.

Algorithm 1: MSPRT algorithm
Result: Action log-likelihood
Mlist ← Mt;
M̄ ← mean {Mlist};
compute likelihood L as in (1);
if max(exp (L)) > threshold then

take action;
Mlist = λ M̄

else
follow previous action;

end

Overall the behaviour of the MSPRT algorithm can be
shaped by adjusting the hyper-parameters in Table I.

IV. SIMULATION COMPARISON

We compare the performances of the MSPRT against the
WTA on simulated logged data. Firstly we let the agent
drove on a simulated scenario with no noise affecting the

TABLE I: Parameters of the MSPRT algorithm.

name symbol value effect
threshold th 0.0005 slows down the switch to

a new channel
windows size ws 8 average out noise, brings

in more robustness
forgetting factor λ 0.9 introduces a memory

effect after the switching
to a new channel

measurements. According to this set-up we can perform
optimal decision making using a simple WTA algorithm.
We then select a 9-seconds long critical double lane change
maneuver where the responsiveness of the action selection
plays a fundamental role. Next, we re-execute the simulation
offline, i.e. we take the logged motor cortex history, we
apply some random noise on the channels and we re-
execute the decision making algorithm only on the corrupted
motor cortex. We then analyze again the performances of
the WTA against MSPRT with respect to the ground-truth
case obtained previously. The exact parameters used in the
simulation above are reported in Table I.

Fig. 3 reports the results of assessment as a function of the
adimensional noise variance σ injected into the motor cortex.
In case of limited noise figures, the WTA still outperforms
MSPRT due to the worse transient performance of the latter.
As soon as we introduce noise in the simulation, however,
the advantages of the MSPRT start to be evident. In this
case we chose a fairly conservative tuning for the MSPRT
that will make it behave correctly even in the presence of
high noise while the performance of the WTA drops in a
more significant manner. Indeed by shrinking the threshold
value and setting the λ to zero MSPRT will perform exactly
like WTA.
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Fig. 3: MSPRT vs. WTA channels selection errors. Parame-
ters of the simulation as in Table I.

Another valuable performance index is the number of
switches, the lower the number of switches the more stable
the behaviour of the agent. Fig. 4 shows the switching logic
for the MSPRT and WTA for a selection of the data-set.



It is evident how the MSPRT not only picks the best action
more effectively than WTA but also tends to stick with a sub-
optimal action rather than continuously changing the channel
which could lead to vehicle instability.
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Fig. 4: MSPRT vs. WTA channels switching for σ = 0.5.
Parameters of the simulation as in Table I.

V. CONCLUSIONS

We have shown that bio-inspired cognitive models can
play a substantial role in the process of decision making in
automated driving. In particular we demonstrated how the bi-
ologically inspired MSPRT algorithm can be adapted to both
the inference and the action selection process given a suitable
lower-lever architecture for the agent. The advantages of
the proposed formulation lie in an improved robustness to
noisy observations (Fig. 3) and a greater stability of the
chosen action (Fig. 4) with respect to traditional action
selection. Indeed the effectiveness of the MSPRT depends
on the tuning of application dependent hyperparameters. The
activation threshold shapes the sensitivity to the process
noise: the lower the threshold the more responsive will be
the action picking, the higher the threshold the more robust
the selection. Similar considerations apply for the tuning of
the forgetting factor λ. However, we proved via simulation
that it is possible to find an effective trade off adjustment
for the MSPRT such that the algorithm outperforms other
techniques. In particular for the considered data-set and
σ = 0.5 the MSPRT guarantees an error rate up to 40%
inferior to the WTA algorithm. Further work will be devoted
to the set-up of a “layered” action selection process where a
lower layer will be in charge of merging the contribution
of channels encoding the same action to make sure that
the affordance competition takes place among statistically
independent channels only in order to run the MSPRT more
efficiently.
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