
UNIVERSITY OF TRENTO
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER

SCIENCE

International Doctorate School
in Information and Communication Technologies

PhD Dissertation

INFORMATION EXTRACTION FROM DATA

Paolo Sottovia

Advisor:

Prof. Yannis Velegrakis

University of Trento

academic year 2018-2019

HTTP://WWW.UNITN.IT
HTTP://DISI.UNITN.EU
HTTP://DISI.UNITN.EU


————

——————

*



Abstract

Data analysis is the process of inspecting, cleaning, extract, and modeling data

with the intention of extracting useful information in order to support users in

their decisions. With the advent of Big Data, data analysis was becoming more

complicated due to the volume and variety of data. This process begins with the

acquisition of the data and the selection of the data that is useful for the desiderata

analysis. With such amount of data, also expert users are not able to inspect the

data and understand if a dataset is suitable or not for their purposes.

In this dissertation, we focus on five problems in the broad data analysis process

to help users find insights from the data when they do not have enough knowledge

about its data. First, we analyze the data description problem, where the user is

looking for a description of the input dataset. We introduce data descriptions: a

compact, readable and insightful formula of boolean predicates that represents a

set of data records. Finding the best description for a dataset is computationally

expensive and task-specific; we, therefore, introduce a set of metrics and heuristics

for generating meaningful descriptions at an interactive performance. Secondly,

we look at the problem of order dependency discovery, which discovers another

kind of metadata that may help the user in the understanding of characteristics

of a dataset. Our approach leverages the observation that discovering order de-

pendencies can be guided by the discovery of a more specific form of dependencies

called order compatibility dependencies. Thirdly, textual data encodes much hid-

den information. To allow this data to reach its full potential, there has been an

increasing interest in extracting structural information from it. In this regard,

we propose a novel approach for extracting events that are based on temporal

co-reference among entities. We consider an event to be a set of entities that col-

lectively experience relationships between them in a specific period of time. We
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developed a distributed strategy that is able to scale with the largest on-line en-

cyclopedia available, Wikipedia. Then, we deal with the evolving nature of the

data by focusing on the problem of finding synonymous attributes in evolving

Wikipedia Infoboxes. Over time, several attributes have been used to indicate the

same characteristic of an entity. This provides several issues when we are trying

to analyze the content of different time periods. To solve it, we propose a clus-

tering strategy that combines two contrasting distance metrics. We developed an

approximate solution that we assess over 13 years of Wikipedia history by proving

its flexibility and accuracy. Finally, we tackle the problem of identifying move-

ments of attributes in evolving datasets. In an evolving environment, entities not

only change their characteristics, but they sometimes exchange them over time.

We proposed a strategy where we are able to discover those cases, and we also test

our strategy on real datasets.

We formally present the five problems that we validate both in terms of theoret-

ical results and experimental evaluation, and we demonstrate that the proposed

approaches efficiently scale with a large amount of data.
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Chapter 1

Introduction

We are living in the Big data era, in a very broad amount of fields data is being collected

at an unimaginable scale. Such a revolution had a significant impact on the whole flow

of the analysis of the data. Previously such analysis was made and based on the what

happened in the real world, now decisions could be taken on the data itself. The big

data analysis now control nearly every aspect of our lives, including mobile services,

advertisements, social network, financial market, and others.

Obviously, the major challenge is the size of the data. However, the volume is not

the only challenge involved in the data analysis; also the variety of data is a crucial

challenge [pr11]. Traditionally these challenges were part of the four V’s of Big Data:

Volume, Velocity, Veracity, and Variety. By Volume, they usually mean the scale of the

data, while by Velocity, they mean both the rate at which data arrive and the time in

which this data must be processed. By Variety, they usually mean heterogeneity of data

types, representation, and semantic interpretation. Finally, by Veracity, they mean its

accuracy.

The analysis of Big Data involves multiple distinct phases as shown in Figure 1.1, each

of which gives a fundamental contribution to the analysis of the data [LJ12]. The first

step is data acquisition, that is the process of ingesting data from the input sources. It

is followed by the information extraction and cleaning phase that aims to prepare the

needed information for further steps in the right format for the analysis. Given the het-

erogeneity of the data, it is not sufficient to record it and store it into the data repository

because in the majority of case data need to be integrated, aggregated and represented

1
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Data
Acquisition

Extraction and 
Cleaning

Integration 
Aggregation

Representation
InterpretationAnalysis 

Modeling

Figure 1.1: The Big Data Analysis pipeline.

correctly. Finally, different techniques could be applied on the cleaned and integrated

datasets in order to extract information from them. Only the ability to analyze the data

does not guarantee the user can interpret the results, hence interpretation of the results

by the user is a fundamental step.

Many people, unfortunately, focus just on the analysis or modeling phase. On the one

hand, this phase represents the most important step of the whole pipeline, on the other

hand, this is not effective without the contribution of the other steps.

When users start some analysis, the problems begin directly when they have to acquire

their data, since in many cases the considerable amount of data that is ingested required

the user to make decisions, typically done by ad hoc strategies, about what data to keep

or discard, and to store it with the right metadata.

1.1 Motivation

Consider, for example, a computer researcher that is performing some experiment over

some scientific datasets. In many cases, these “bunches of data sets” are dumps of

databases, raw data files, or document folders. Most often they do not include structural

information, documentation, structural or semantic constraints, or any other kind of

metadata. This problem is also related to companies, where datasets are accumulated

without any knowledge of their content, structure, and usefulness in repositories called

data lakes [DFA+17, AGNP18, LJ12].

This problem mainly affects the data acquisition phase that is one of the fundamental

steps in the data analysis. This phase aims at preparing data for the ingestion and

analytics and its purpose is to clean, shape, structure, integrate and maintain the data

through the entire data analysis process. The importance of this phase is also emphasized

by a recent article that reports that the data preparation task takes about 79% of a data

scientist’s time, and 78% of data scientists declare them to be the least enjoyable part

of data science [Pre16].
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Recently, since the phenomenon of Big Data is growing year after year a great body of

research has been devoted to the study of techniques to examine and generate metadata.

Metadata is a very broad concept that may be simple statistics, data types, frequent pat-

terns or important subsets of the input datasets, or its data values. Moreover, metadata

could be even dependencies among the different columns or rows of the data. Unfor-

tunately, existing approaches cover only a few characteristics of the datasets and they

are limited to an individual complex task and their results are pretty hard to interpret.

Moreover, the volume and the variety of the provide additional challenges in the extrac-

tion of such relevant information that is of paramount importance in the data analysis

phase.

Contributions. In this work we focus on the task of information extraction, mainly

focusing on different type of data and metadata, extracting from different types of data,

and we address the issue of enabling users to retrieve insights from those datasets.

This is a fundamental activity for expert and novice users, that gives them the ability to

understand the content or the relationships between rows and columns in their data. As a

result, we provide five different contributions that are initially introduced in this chapter,

and then extensively presented with data model formalization (definitions, theorems, and

proofs), algorithms, and experiments in the rest of the rest of this dissertation.

In particular, to enable experts and novel users to fully exploit the content of a dataset,

(1) we provide solutions for an effective explanation system that assist the user in the

dataset explanation process by proving a compact and readable data description (Sec-

tion 1.2 and Chapter 3). We study a novel techniques for extracting order dependencies

from datasets; this enhances the users in discovering complex ordering relationships be-

tween the datasets columns (Section 1.3 and Chapter 4). Then, we study a new event

extraction technique (3) that enables the extraction of historical events from document

collections and highlight passages that describe events (Section 1.4 and Chapter 5).

Consequently, we study the evolving nature of the data by providing two different con-

tributions. First, we study a new extraction technique (4) that enables the discovery

of synonymous attributes in evolving Wikipedia Infoboxes (Section 1.5 and Chapter 6).

Finally, we study how we can identify attributes that are moving across entities in an

evolving dataset such as Wikipedia (Section 1.6 and Chapter 7).
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1.2 Explaining Datasets

Industry and research communities have always had the prerogative to develop easy-

to-use and interactive mechanisms for data management and analysis. This problem is

nowadays exacerbated to accommodate the many emerging, and not always database-

savvy, professionals such as data scientist, data journalists, and data enthusiasts in gen-

eral, who perform data-related activities. There is, indeed, a large plethora of approaches

that facilitate data management such as data debuggers [DG15, IST+15, KBS12], data

explanation systems [ROS15, WM13], exploratory search systems [BMQ+15, RWD+08],

outlier detection systems [YZH+15] and so on.

This work aims to integrate and complement these approaches by introducing a mech-

anism for creating data descriptions (descriptions in short), a form of explanation

that aims at making, from a human perspective, a (large) set of data more under-

standable at a glance. A description is a compact, readable and insightful structure

formed by predicates that apply to the target dataset. Predicates are more informative

than single tuples and, for this reason, are used extensively within explanation sys-

tems [ROS15, WM13, YNM16]. Descriptions are useful in contexts where users need

some form of explanation.

While existing data explanation tools and techniques are used to gain knowledge on

specific tasks such as unexpected behaviors of systems [YNM16], experiments or query

answers [LBL16, ROS15, WM13], data descriptions are generic inasmuch as they are able

to concisely represents any arbitrary set of data tuples. While generating a description

per se is relatively easy, the problem of generating all descriptions is exponential whereby

searching for the “best description” becomes an important and challenging task.

The first challenge is to understand whether a description is relevant to a user: we

solve this challenge by introducing a series of metrics for assessing the qualitative

aspects of descriptions. Interestingly, these aspects are somehow in contrast with

each other, e.g., a short description is understandable at the expenses of losing a

significant chunk of information. We, therefore, introduce a comprehensive relevance

function that balances all metrics and allows users to specify their preferences. The

second challenge is related to the large number of descriptions we can choose from:

since users tend to use descriptions for exploring a dataset, we have to generate good
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descriptions at interactive speed. Clearly, a naive solution that exhaustively evaluates

all possible descriptions compromises the usability of the approach. We use a set of

heuristic rules to generate a subset of relevant descriptions only, in concert with a

mechanism for ranking the top-k descriptions based on statistics and user specifications.

The third and final challenge is the objective evaluation of the quality of generated

descriptions. In our experiments we assess the approach both in a quantitative and in

a qualitative way, taking into account both standard metrics and the user feedbacks.

In Chapter 3, we propose an approach that drives the user in the creation of descriptions.

List of publications. The problem of data descriptions, where we provide an insightful

and efficient description of a dataset is presented in an article that has been submitted for

publication to a journal [PSM+19a]. We also developed a system prototype that shows

the performance and effectiveness of our solution, this has appeared in [PSM+19b].

1.3 Order Dependency Discovery

In the big data era, the volume and complexity of available datasets has grown so much

that data engineers are having a hard time interpreting the information contained in

them. In such a reality, the ability to discover hidden dependencies in some automatic

way is fundamental. Dependencies across different parts of the data play a significant

role in query optimization, since redundant information may be ignored making the

query evaluation faster. Furthermore, parts of the data may be replaced with others

that are easier to manipulate, without affecting the final result. Data profiling may help

with data quality since it highlights constraints that may exist in the data but are not

fully satisfied and have not been enforced when designing the database. Dependency

discovery is not a new challenge. Functional and inclusion dependencies are the most

common type of dependencies and have extensively been studied [LLLC12]. A functional

dependency states that if two different data elements sharing a common structure have

the same part A, then some other part B should also have the same value. An inclusion

dependency states that the values of the data elements in some part A must be a subset

of the values in a subpart B of some other portion of the dataset.
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The knowledge encoded by order dependencies can be applied to various tasks during the

entire data life-cycle [ALNZ13]: in the design phase, order dependencies can be exploited

to assist schema design [SGG12b] or for selecting indexes [DH82]; if data are extracted

from unstructured sources, order dependencies can aid knowledge discovery, to find

hidden properties of the data; in the context of data profiling [LN16], data integration

and cleansing [CIP13], order dependencies can be used to describe a dataset; for data

quality [FG12], order dependencies can be used as requirements or constraints [AGN15].

The concept of order dependency in the context of database systems first appeared under

the name of point-wise order [GH81, GH83, GH86]. A point-wise ordering specifies that

a set of columns orders another set of columns.

A new definition for order dependency was later introduced [SGG12b] to represent an

order-preserving mapping between lists of attributes. In contrast to point-wise ordering,

the new definition was distinguishing tuples with attributes in different order, thus

having lists of attributes instead of sets.

Dependencies are typically derived from design specifications, from the context of queries

or from other known dependencies using inference rules. Discovering dependencies by

analyzing the data is a process known as dependency discovery [LLLC12]. It conceptu-

ally requires to check for all potential dependencies if they hold in the database instance

under examination, which may be time consuming. Thus, there is interest in develop-

ing strategies that limit the number of combinations to be checked. The task becomes

even more challenging in the case of order dependencies, where the order of attributes

matters, leading to a search space much larger than that of functional dependencies.

In this dissertation, we study ways for efficiently discovering order dependencies. We

follow a bottom-up approach in which we start by checking short lists of columns and

progressively check longer and longer lists. In this process, once an order dependency

between two lists of attributes is found not to hold, we prune the search space by

ignoring larger lists that include them. In this way, many of the combinations that

would have normally been checked are avoided. We advocate that this whole process

can be significantly improved by framing the discovery of order dependencies in the

context of order compatibility dependencies. This is based on a recently introduced

theorem [SGG12b] that established that an order dependency holds if and only if a

functional and an order compatibility dependency hold between the two attribute lists of
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the order dependency. We illustrate in details how the order compatibility dependencies

can be exploited to find order dependencies and propose a new algorithm for finding

them.

Recently, two algorithms to automatically detect order dependencies in relational data

have been proposed: order, proposed by Langer and Naumann [LN16], and fastod

proposed by Szlichta et al. [SGG+17]. order explores a lattice of order dependency

candidates, in a level-wise fashion reminiscent of the tane algorithm [HKPT99]. After

building a dependency candidates, order checks its validity against the data and then it

applies pruning rules to reduce the search space over the lattice. order has been shown

to be incomplete [SGG+17], i.e. it does not find the complete set of order dependencies.

In particular, this approach is unable to discover dependencies with repeated attributes.

Dependencies of this form, however, may not be inferred from other dependencies and

are useful in the case of queries that involve ordering with multi-column indexes.

fastod [SGG+17] is based on a different axiomatization of order dependencies that

allows to map dependencies between lists of attributes to dependencies between sets

of attributes written in a canonical form. In this way, several order dependencies are

mapped to same set-based canonical form. fastod explores the space of order depen-

dencies of this set-based canonical form, still retaining the ability to find a complete set

of dependencies. While we have reproduced the results presented in the original work,

we have found that an implementation error of the original work produces wrong results

over simple datasets, this vitiates the validity of their results and the comparison with

our approach.

The approach we present in this dissertation is able to provide a complete set of depen-

dencies that is based on the idea that whole process of order dependency discovery could

be done with the discovery of order compatibility dependencies. While our approach

has a higher complexity worst-case complexity than fastod, it outperforms the other

state of the art approaches [LN16, SGG+17] when tested over real and synthetic datasets.

List of publications. The efficient discovery of order dependency has appeared

in [CSMV19].
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1.4 Event Extraction

Most of the world’s knowledge is currently found in text documents. The textual form

is hard to understand, query, manage and in general exploit. Thus, for the contained

knowledge to reach its full potential, it is of paramount importance to be able to identify,

extract, and convert it into some structured form.

One of the largest textual resources is Wikipedia, that encodes the collective knowledge

of millions of users, and the increasing interest in extracting its contained knowledge

into some structured knowledge base comes with no surprise. YAGO [MBS15] and

DBpedia [ABK+07a] are the two most popular knowledge bases that have been created

in this way.

In turning Wikipedia text into structured knowledge a fundamental first task is entity

extraction, i.e., the recognition of references to real-world entities [EIV07], and the

extraction from the text of information about them, such as characteristic properties

and relationships [WM08, SKAZ15]. Another useful information that can be extracted

from the text is about events. Event identification [SG16, SJY11, HL12] deals with the

discovery of “unique things that happened at some point in time” [ACD+98], but so far

has not received the deserved attention.

There are different approaches to event identification. One is to decide the structure

or type of an event in advance and then analyze the text for finding descriptions that

match that predefined structure [AB15, SG16, KW12]. This of course means that the

structure of an event is known in advance and that any description in the text complies

with that structure, which is not always the case. To overcome this limitation, other

approaches have looked for irregular changes in some monitored quantity, to identify

that an event is occurring. For instance, search engines may be monitoring for irregular

popularity’s (like peaks) of a set of terms and use this as an indication that an event

characterized by these terms has occurred [LLL+12]. This online monitoring is effective

for events that are occurring in the present, i.e., during the monitoring time, but cannot

be used to discover historical events for which there was no monitoring operation in

place.

Wikipedia is a set of pages, each about some real-world entity. Although each page

contains some structured information (referred to as infobox), most of the information
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is actually contained in its textual part. The latter may contain references to other

pages when the entity represented is mentioned in the text.

We introduce a novel approach to identify historical and contemporary events from

Wikipedia content, based on their co-reference relationships in specific time periods. In

Wikipedia, every page is about a specific entity, with the text of the page describing

properties and characteristics about that entity. When an entity is associated to another,

its text contains a reference (link) to the respective page of that other entity. Associations

may be mutual. If an entity references another, the latter may also reference the first. We

refer to this case as a co-reference. Associations have a temporal validity. In Wikipedia,

this temporal validity is often stated in the text. For instance, a part of Barack Obama’s

page states that “. . . In June 1989, Obama met Michelle Robinson . . . ” meaning that

the association “met” of Michelle Robinson to Barack Obama has the temporal validity

of June 1989. Note that the temporal validity of an association is the one of the real

world, and not the time that the link was actually introduced in the text of the page.

Our position is that an event can be considered the situation in which a set of entities

in a specific period of time have a dense set of established associations between them.

This offers us the flexibility to detect events independently of the kind of events that

they are.

Identifying events in the Wikipedia content through co-reference, poses a number of

challenges. First, a set of entities with a number of temporally restricted co-references

among them may not always correspond to some real-world event. For this, it is impor-

tant to increase the likelihood that such a set constitutes an event. Second, there may

be multiple co-references among certain pairs of entities, and it is important to decide

which of them to consider. Last but not least, it is important to be able to scale to

the level of co-references across the millions of pages of which the current Wikipedia

consists.

To cope with these challenges we devise a technique that employs the context of the

co-references as an additional criterion for improving the precision of our results and

avoids combining unrelated co-references.

List of publications. This novel technique that extracts events from a document

collections, helping in the discovery of essential passages from a document collection is

under submission [SGNV19].
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1.5 Finding Synonymous Attributes in Evolving

Wikipedia Infoboxes

Wikipedia, with its more than 5.8 million entries1 is one of the largest human curated

sources of knowledge. A Wikipedia entry provides information about some real world

entity, of a specific type, like an event, a person, an organization, a product, etc. It

consists of two parts: the unstructured part, which is free text, and the structured part,

that is known as the infobox and is a set of attribute-value pairs. These pairs describe

the main characteristics of the entity that the entry describes. The importance of the

Infoboxes is significant. They may contain information that is also found in the text

of the of Wikipedia entry, yet, they are highly more structured. This means that the

semantics of the information they contain is much easier to interpret, queried, analyzed,

combined and explored in general. The attributes (i.e., the names of the attributes) to

be present in an Infobox of an entity depend on the type of the entity and are dictated

by the Wikipedia policies.

The Wikipedia entries are highly dynamic data. Real world entities evolve over time, and

so does the knowledge that we have about them. This real world evolution is reflected

into the Wikipedia entries. Users are continuously updating the Wikipedia entries in

order to always contain in the best possible way the knowledge we have about an entity.

This means that by studying the evolution of the Wikipedia pages, it is possible to

understand the evolution of the entities through time. To do so, a fundamental task is

to be able to identify and link, across different versions in time of the same Wikipedia

page, the parts that model the same kind of information. This is typically done using

the schema information, i.e., the attribute names.

Unfortunately, the evolution of the Wikipedia entries is not only on the content but

also on the attribute names, making the required linking a challenging task. Attribute

names are often changed to more accurately or completely represent the semantics of the

attribute values in the Infobox. As a result, different attribute names in different versions

of the same Wikipedia entry may be used to represent the same semantic information,

and the same attribute name in two different versions may be used to model semantically

different pieces of information.

1https://en.wikipedia.org/wiki/Wikipedia:Statistics updated on 24 March 2019

https://en.wikipedia.org/wiki/Wikipedia:Statistics
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We deal with the problem of attribute name alignment in Wikipedia pages across time.

We want to analyse and identify sets of attribute names that, across the evolution

history of the pages of a specific type in Wikipedia, have been used to represent the

same semantic concept. At the same time, we want to identify cases in which the same

name has been used in attributes that model semantically different information.

Attribute alignment is a well-known problem that has been studied extensively in the

past, mainly in the case of schema matching and in ontology alignment. The straight-

forward approach would be to look for synonym words in attribute names. This is the

approach that has been followed in the area of Natural Language Processing. The tech-

niques that have been developed there can be classified in two main categories. The first

are those that exploit dictionaries, i.e., being based on the semantics of the attribute

names. They are however, limited.

Their limitation lies mainly in the number of synonyms that can be encoded in a knowl-

edge base. Furthermore, they are context-independence, i.e., are not able to differentiate

synonyms according to the context in which they are used. Another approach that has

been studied in the context of identifying correspondences in Web form schema match-

ing [HCCT16] is one that exploits correlations. The idea behind these techniques is that

the search for synonyms is implemented by discovering attributes that correlate nega-

tively or that do not co-occur. Unfortunately, this concept cannot be directly applied in

the context of the Wikipedia Infobox attributes. This, because the Wikipedia content

is so rich that using only co-occurrence information results in high false positives and

also false negatives.

In an effort to overcome the limitations of the co-occurrence approach we have developed

an extension of it that exploits the attribute values. In particular, the occurrence of same

values between two different attributes in Infoboxes of different versions of the same type

is treated as a positive indication that the two attribute names model the same real world

concept. Furthermore, we treat co-occurrences as a negative indication. In particular,

high degree of correlation (co-occurrence) in Infoboxes between two different attributes

is an indication that these two attribute are referring to different concepts, thus, the high

correlation is a negative indication. We turn the above two indicators into two different

metrics, and create a network of attribute names where the values of the different metrics

are used as a distance function. Then we apply clustering [DEFI06] to identify those
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sets that form mutually close names. Such sets are those we consider as semantically

related.

List of publications. This novel technique that extracts synonymous attributes in

evolving Wikipedia Infoboxes is appeared in [SPGV19a].

1.6 Finding Movement of Values in Evolving Wikipedia

Infoboxes

Nowadays, the amount of data recorded is growing enormously. This data changes all

the time, reflecting what happens in the real world. To capture real-world happening

datasets are organized with entities. One of the main examples is Wikipedia, that is

one of the largest sources of knowledge that is freely available in the World Wide Web.

Wikipedia provides information about real-world entities such as singer, companies,

and other types of entities. The information related to these entities are stored in the

Infoboxes. These infoboxes represent entities, and they are composed by attributes that

model their characteristics.

Entity models actors of the real-world, and their action, and changes also affects what

the data. Entities are the conceptual models that represent real-world objects, and

they are composed by some characteristics called attributes such as name = ”John”,

surname = ”Doe”, or location = ”Rome”. Attributes are composed by attribute name

(e.g., name ) and value (e.g., ”John”). Both of them can change over time. These

attributes represent the characteristics of the entities. We advocate that entities are

not monolithic containers of information, but they are interconnected, entities can share

common attributes as characteristics, or they can have more complex interactions over

time. The evolving nature of the real-world entities is translated into changes in the data

that reveals rich insights that cannot be derived from static data. In this scenario, we

focus our attention on the discovery of a particular kind of interaction between entities

that we call movements.

A movement takes place when a value disappears from an entity and then appears in

another one. Obviously, not all the values that disappears or appear would generate

a movement. The challenge is to identify changes that are generating a move. More
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specifically, we are interested in finding a characteristic of an entity that is moved from

one entity into another one. A movement represents an event that may have differ-

ent meanings. For example, an entity that represents a person that disappears from

one company and appears in a different one may represent a job change, or an entity

that represent the company as a property of another is transfer in a different one may

represent an acquisition.

Many recent works have been proposed in order to analyze and explore evolving datasets.

An entire line of research has been recently introduced to extract insights from changes

in the data. Their limitations lie mainly in the fact that they consider changes inde-

pendently without reasoning about possible interactions and exchange of values between

them [BBK+19, BBJ+18, BBK+18].

To identify movements in evolving Wikipedia Infoboxes, we proposed a two-step ap-

proach, where we first filter values that are less probable to generate a move, and then

we score them in order to select the most probable movements. Since movements are

generated from changes, we identify two types of changes of values that are not responsi-

ble for the movements. These two types of changes are systematic changes and changes

that are happened in a close domain attribute. The first type of change identifies changes

that are imposed from the outside, i.e., change of denomination of a characteristic or

new conventions, while the second identifies values that are always used in the same

domain, e.g., the type of a company (private, public or subsidiary). After the exclusion

of values that are involved in this type of changes, we generate generate from the re-

maining values all candidate movements. We score them and finally filter out the ones

that are not greater than a certain threshold.

The identification of moving values in evolving dataset create opportunities for the

creation of different types of exploratory applications. For example:

• We can measure the similarity of entities base on the exchanges of values that they

had during their lifespan.

• We can classify values that move with a similar pattern between the entities and

cluster values or entities with similar behavior.

• Extract frequent movement patterns.



14

• Reconstruct values history: the values could also be entities, and in this case,

moves of entity e across other entities in the database D describes the history of

that entity. For example consider a person that takes a leading position in different

companies during her/him lifespan, looking at the movements of that specific value

(e.g., person) we are able to reconstruct all the job history of this person.

1.7 Other contributions

This Ph.D. was instrumental in studying other topics, which are not included in this

dissertation. In particular, I was involved in a European project named: ”Re-Search

Alps” that aims to gather, consolidate, harmonize and make available to different target

groups (public and private bodies) data about laboratories and research and innovation

centers active in the seven countries that constitute the Alpine Area. In the context of

this project, we realize several contributions:

• An innovative rule based framework for entity matching [SPGV19b];

• We develop a prototype system that is able to fine-tune entity matching

rules [PSGV19];

• We proposed a parallel and scalable method for the discovery of Full Disjunc-

tions [PBGS19];

1.8 Applications

Data Exploration. The first three and the last methods described in this dissertation

can be used in the context of data exploration techniques [IPC15, FAK+18]. Exploratory

data analysis aims at finding patterns, regularities or common properties that help users

in understating the if some information can be extracted from the analyzed data. For

example, consider the scenario of the so-called data lakes, a set of accumulated datasets

arrived in some organization. Experts need a basic understating of their context. In

this context, our techniques are suitable for this task. If a user needs an overview of

the content of a database our data explanation could be used to guide the user in the

discovery of common properties of the data or contrary in the discovery of outliers.
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Instead, our second contribution could be used to profile the input dataset, providing

a set of dependency. In the case of textual data, we may help the user exploring the

important events encoded.

Data Cleaning. The first two contributions could serve the aim of data cleaning.

Data cleaning aims at detecting potential records in the data that violate rules that

could be extracted from an error detection system or from other sources [GKS11]. In

this context, data explanation could really help the user in analyzing anomalies in the

data and detect possible mistakes in the data. Instead, the metadata provided by order

dependencies could provide other information regarding columns dependencies of the

database. Different strategies could be applied over the database in order to remove or

correct the violations [IC15].

Query optimization and Indexing Space. Our second contribution, order depen-

dency discovery could be used in the context of query optimization [SSM96]. Query

optimizers are gathering statistics and other metadata in order to optimize the selectivity

of the different operators and other optimization steps [KHM+06]. Order dependencies

could be used by a query optimizer in order to simplify ORDER BY clauses. Moreover,

order dependencies are extremely important resources to reduce indexing space, since in-

dexes over some columns may be reused for other columns if a dependency holds [DH82].

Search engines. The third contribution, the historical event discovery technique, could

find a natural application for search engines, where the extracted events could improve

the results of temporal queries by proposing documents related to the more connected

entities in a certain period of time. The event sets extracted from our techniques could

be used to propose a diversify view of documents with the aim of covering the entire

period of an entity or concept, i.e. with an application that is showing a timeline of

significant events of an entity [ADM+15a].
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1.9 Outline

This dissertation is organized as follows. Chapter 2 provides a complete overview of the

prior work in data explanation, dependency discovery, event discovery, schema matching

and evolving dataset analysis. Chapter 3 presents our framework for the data explana-

tion problem. We present a principled approach that provides a set of metrics that helps

the user in finding the more interesting data descriptions. We also introduce algorithmic

solution and some heuristics that we evaluate over qualitative and quantitative aspects,

and user satisfaction.

In Chapter 4, we present our study on order dependency discovery, introducing a new

solution to this problem by decomposing their discovery in the discovery of two other

types of dependencies: order compatibility and functional dependencies. We introduce

a new definition of minimality for this kind of dependencies, and we provide an ap-

proach that discovers the complete set of dependencies while outperforms the existing

techniques.

Chapter 5 presents our third contribution, a new method for historical event detection

that is able to extract important events from annotated document collections. We show

the effectiveness of our approach with the largest textual encyclopedia on the web,

Wikipedia. We provide an extensive experimental evaluation, where we evaluate our

work with existing approaches and events collections, and therefore we validate our

extraction method via user study.

In Chapters 6, we present our approach for finding synonymous attributes in evolving

that identify clusters of attribute names of Wikipedia Infoboxes that represents the

same characteristic of an entity. We present our data model and the methodology used

to extract clusters of synonymous attributes. We show the effectiveness of our approach

over a set of Infoboxes of the last decades.

Chapter 7 presents our last contribution: the identification of movement attributes

in evolving datasets. We provide a formal definition of a movement and we provide

an exhaustive description of the extraction method. We also provide an experimental

evaluation that shows the potential of our analysis.
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Chapter 8 concludes this dissertation by providing the main contributions and overview-

ing the most promising future directions that follow this dissertation.





Chapter 2

State of the art

In this chapter we provide an analysis of the different aspects that are related to work

on data explanation, order dependencies discovery, and event extraction. First, we

survey the current studies on explanation systems and techniques devoted to explaining

data and data transformation (Section 2.1). On the topic of order dependencies

discovery, we present a description of topic covering all the different aspects: from

the theoretical perspective, its applications and the existing approaches demanded

at the discovery of order dependencies (Section 2.2). Consequently, we present and

overview of methods that have been successfully employed in different task related

to event identification (Section 2.3). Finally, we survey an overview of methods

and applications related to evolving datasets, with particular attention to the identi-

fication of schema mapping and exploratory analysis over evolving datasets (Section 2.4).

With this survey, firstly we aim to motivate the importance of the study on information

extraction, with particular attention on the discovery of the explanation of data, depen-

dencies discovery and event discovery. Secondly, we identify the gaps in the literature

that pushed for the need for new techniques in these connected areas of the knowledge

and information discovery .
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2.1 Data Explanation

To better capture the differences with our approach, we split the discussion of our related

work into different families of systems devoted to the explanation of data. Explanation

systems are those that help users in gaining knowledge on unexpected behavior of sys-

tems, experiments or query answers [MRS14].

2.1.1 Provenance-based Explanation Systems

Data lineage, often called data provenance, is a mechanism that tries to explain how

query results are related to source data [CW03]. Authors in [BKT01] identifies a different

form of lineage – namely where, why and how – under the common term of data prove-

nance. While why-provenance specifies the input tuples sufficient (but not necessary) to

have a given target output tuple, how provenance is more informative in the sense that

it also encodes how data transformations combine input tuples to generate outputs. In

particular, why-provenance is usually modeled as tables containing input-output tuples

relationship, how -provenance can be modeled using annotations representable as semir-

ings of polynomials [GKT07]. Different database and workflow systems exist embracing

one type of provenance (why-provenance [IST+15, IPW11, LDY13, CLMR16]) instead of

another (how -provenance [ADD+11, DMT14, ABD+15, WDM15]). In general, we found

that both types of systems provide unreadable results is scaled over large datasets: the

former because of the size on input-output relationships can grow beyond the gigabyte

range; the latter because of its complexity. PROX [ABD+15] uses semiring homomor-

phisms to generate summaries of provenance annotations in favor of readability and

understandability rather than completeness.

Finally, there are many domain-specific systems that enrich their duties with explana-

tions for human users. To mention a few, Fabbri et al. produces explanation templates

over access logs to be used in auditing tasks (e.g., to answer questions like “why a record

was accessed?”) [FL11]. Bender et al. enriches security and monitoring systems over

a database with explanation for why an access was accepted or denied [BKG14]. This

helps the maintenance of security policies and the reformulation of denied queries.
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2.1.2 Intervention-based Explanation Systems

The traditional data lineage presents several limitations when it comes to explain outlier

results because users want to know which subsets of the lineage have a “bad” influence

on the outlier result. Meliou et al. pioneer this research area by studying causality, as

opposed to correlation, in the database area. They identify tuples, seen as potential

causes, that are responsible for answers and non-answers to queries [MGMS10]. To

pursue this task, they introduce the degree of responsibility to measure how responsible

these tuples are. In general, systems of this category delete candidate solutions, i.e.,

groups of tuples, from the database and evaluate whether the outlier has changed without

those tuples. This process is called intervention and it is iteratively repeated in order

to find the most influential groups of tuples, i.e. explanations [MGMS10, ROS15, RS14,

WM13].

Scorpion [WM13] explains a (possibly outlier) query result by individuating responsible

tuples in terms of influence on that result. They additionally introduce the use of predi-

cates for building explanations, which we were inspired of, because more informativeness

to users. The intervention over predicates is based on a partitioning and merging process

that uses decision trees and relies on certain properties of the aggregative operator and

on the influence metric.

Roy et al. mix intervention with causality to overcome the limitations of Scorpion in

generating explanations over a single table only [RS14]. Their intervention is propagated

on causal paths that connect tuples of different datasets via foreign key constraints. In

addition, they make use of data cube operations to support intervention. Generating

explanations with intervention is a computationally heavy task since the number of pred-

icates to process are exponential in the number of tuples. To efficient the explanation,

there have been extensions of former approaches that prepare offline the database for

the online generation of explanations [ROS15].

Analogously to previous approaches, Kanagal et al. produce explanations over proba-

bilistic databases out of the tuples that maximize the probability change of the result

when those tuples are set to zero [KLD11].

To overcome the high complexity, online explanations have been proposed [ROS15].

Interpretable decision sets have been proposed in the context of descriptive rules for
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decision tree [LBL16]. The final aim of these explanation systems differs from our.

While they focus on finding tuples that maximize the influence over a subset of one or

more query results (i.e., they do not have a validity constraint), we aim at representing

a dataset in a way that is more succinct, readable and understandable.

Recently, a smart drill-down has been proposed to select, interactively, the k most in-

teresting rules (according to a certain score function) that describe a portion of the

dataset [JGP16]. Unlike our approach, this strategy focuses only on broad (i.e., high

coverage) descriptions, and does not allow users identifying information with low cover-

age or with high entropy.

The final aim of these explanation systems differs from our. While they focus on finding

tuples that maximize the influence over a subset of one or more query results (i.e. they

do not have a validity constraint), we aim at representing a set of tuples in a way that

is more succinct, readable and understandable for human users.

We avoid any form of intervention by proposing a framework that is able to describe a

dataset with different granularity thresholds, i.e., from a general description to outlier

description, that uses two simple user-specified parameters, it is able to produce a simple

and complete description in an online fashion.

2.1.3 Debugging-oriented Explanation Systems

When creating the data processing pipeline for data analysis, not only the explanation

on the results is useful but the analyst benefits also from tools that help to under-

stand what has happened during the computation. These tools stand to data analysis

as debuggers stand to software engineering and DevOps [GR13, DG15, GIY+16, OR11,

DZS13, KBS12, YNM16]. PerfXplain [KBS12] and DBSherlock [YNM16] debug the

performances of query processing. PerfXplain explains the performance of MapReduce

jobs that take unexpectedly long in a shared-nothing cluster. DBSherlock combines out-

lier detection, causality and domain knowledge for explaining unexpected performance

behaviors. Finally, the works in [GR13] and [DG15] address the problem of debugging

SQL queries. BigDebug [GIY+16], Inspector Gadget [OR11] and Arthur [DZS13] explore

techniques and primitives for debugging data-parallel, distributed, workflows. All these

approaches are different with our but we found that we can integrate well on these kinds
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of debuggers so that the analyst can have the full set of explanations, at process level

and data-instance level.

2.1.4 Data Reduction and Compression

There are techniques to represent databases in more succinct ways, either lossless or

lossy.

Factorised Databases. Factorisation is a lossless representation, called

f-representation, for the physical implementation of in-memory relational

databases [BOZ12, OZ15]. Because they eliminate the inherent redundancy of

the relational model when more tuples share values on one or more attributes, certain

classes of query processing can expedite their execution over the factorised database

rather than on the traditional counterparts [BOZ12]. In a recent work, d-representations

are introduced to further compact f-representations and the size bounds are studied

for generating succinct factorized representations [OZ15]. Factorized databases, like us,

uses conjunctions and disjunctions to represent data but, since they have to be lossless,

their succinctness is focused on query execution and not on understandability.

Summarization and Histograms. Summarization is about creating lossily com-

pressed representations of database schemas or tables [YPS09, YPS11]. They are

normally used for user presentation, and query or data access optimization. Yang et

al. [YPS09, YPS11] create summaries about the type of information in the database,

the most important tables and most important join paths between the tables.

Another kind of summarization can be done with histograms [KM10, MDM+14]. They

keep track of the frequency of data values for the attributes and thus help the optimizer

in making the right decision. Histograms cannot be used to summarize a portion of the

database but it is actually in our future work to adopt them for improving the accuracy

of descriptions.

2.1.5 Exploratory and Visual Database Access

Considering that use cases of discovery of the database content with subsequent descrip-

tions, we consider as related work also the approaches that allow exploratory and visual
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interaction with the database [RWD+08, BMQ+15]. Faceted search provides an inter-

active way to refine query results, where the a priori knowledge of the database is not

necessary. They group underlying tuples of the database, choosing from both relevant

tuples and attributes. In doing so, they focus on the diversification of results and in the

mitigation of the information overload, that is to order attributes and values that have

to populate the facets. At the same time, they have to consider the minimization of the

costs of such groupings and selections in order to guarantee interactivity with the sys-

tems [RWD+08]. In a similar way, there is a branch of research that extends these visual

approaches to more analytical data manipulation scenarios [BMQ+15]. In the context of

data quality, Profilier [KPP+12] aims at discovery data quality issues such as missing,

erroneous and duplicate values. These quality issues cost a lot of effort in order to be

discovered and corrected. To this end, this framework applies data mining methods to

automatically flag problematic data and suggests coordinated summary visualizations

for assessing the data in context. This is done with the integration of statistical and

visual analysis that supports real-time interaction with huge amount of data. Instead,

in the context of data streams, VSOutlier [CWR14] support outlier detection strategies

with a large set of interactive interfaces in order to explore outliers in an online fashion.

These approaches solve a problem that is orthogonal to our, but in the future work we can

benefits from the diversification of descriptions or for employing a refining mechanism.

2.1.6 Feature Selection.

In literature, we have other approaches that focus on selecting a subset of attributes

among the available ones. In particular, Das et al. propose a search algorithm that is able

to select (and order) the attributes that the DBMS should select to visualize the results

to a query, when they are too many to be displayed altogether [DHKS06, KNPZ16].

Their selection is based on the maximization of the usefulness of the attributes to the

user, so that only the most useful are shown.

2.2 Order Dependencies Discovery

Dependencies play fundamental roles in different database areas: database design, data

quality management, and knowledge representation. In database design, dependencies
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are extracted from requirements, extracted dependencies are used in the database nor-

malization process and they are encoded in the database design process to ensure data

quality. Instead, in the context of knowledge discovery, dependencies are extracted from

data. This process is called knowledge discovery, and it aims to find from data all

dependencies satisfying the input requirements.

2.2.1 Functional Dependencies: Theory, Discovery and Applica-

tions

The literature on functional dependencies is vast [Arm74, LLLC12, PEM+15, HKPT99].

Applications of functional dependencies span several fields from query optimiza-

tion [DD89], to data cleaning [CIP13], to data quality management [FG12]. Given this

variety of applications, several algorithms for the discovery of functional dependencies

have been developed.

The first algorithm to be proposed was TANE [HKPT99], which has served as inspira-

tion for many subsequent efforts [PEM+15, LLLC12]. Research on better functional de-

pendency discovery algorithms is still ongoing [PBF+15]. Functional dependencies have

been extended in several ways: from conditional functional dependencies [BFG+07], to

approximate (or partial) functional dependencies [LLLC12].

2.2.2 Order Dependencies Theory and Applications

In the 1980’s, Ginsburg and Hull were the first to consider the idea of analyzing order-

ings between the attributes of a relation as a kind of dependency [GH81, GH83, GH86].

They introduced the concept of point-wise ordering [GH86], that is a relation where a

set of attributes orders another set of attributes. Recently, Szlichta et al. introduced the

concept of order dependency [SGG12b], which is the one used throughout this disserta-

tion. Order dependencies are defined over lists of attributes, and can be formalized in a

similar way to functional dependencies [SGG12b, SGGZ13a]. We focused our attention

on dependencies where the attributes are all ordered in the same direction, also called

”unidirectional” order dependencies; however order dependencies can be generalized to

”polarized” or ”bidirectional” ODs where a different direction of the ordering can be

specified for each attribute on either side of the dependency [SGG12a]. One of the main
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theoretical problems concerning dependencies in relational data is the problem of infer-

ence. For order dependencies, this problem is shown to be co-NP-complete [SGGZ13b].

2.2.3 Applications of Order Dependencies

Notwithstanding their recent theoretical formulation, order dependencies have been al-

ready used in several applications, such as query optimization.

Sorting is a fundamental database operation. Since the seminal works [GH83], research

has focused on developing optimization strategies for dealing with queries with an ORDER

BY clause [SSM96]. Order dependencies can be used for this purpose, as it has been shown

with an implementation of a query optimizer in IBM DB2. Optimizing queries with order

dependencies yields significant speedups in execution times over the well-known TPC-

DS benchmark and on queries obtain by real-world scenarios [SGG+14]. In this work,

the authors describe how order dependencies can be used for query optimization. For

example, consider the SQL statement “select name from TaxInfo order by bracket, tax,”

which queries the names of all people, sorted by bracket and – within equal brackets –

by tax. A database management system may initiate a sort operation on bracket and –

within equal brackets – on taxes. If, however, the order dependency “tax orders bracket

is known to the optimizer, it can rewrite the above order by statement to “order by

tax,” because the order dependency “tax orders bracket” implies that the ordering of

bracket is subsumed by the ordering of tax. By reducing the order by statement, it is,

for instance, more likely that the entire sorting operation can be satisfied with the help

of an index. Likewise, a query “. . . order by bracket” can be rewritten to “order by tax,”

which is beneficial if there is an index on tax, but not on bracket. In the context of

indexing, Dong and Hull show how order dependencies can be used to reduce indexing

space [DH82] in a DBMS.

Furthermore, Szlichta et al. [SGG+14] show how from order dependencies declared by a

database administrator, new order dependencies can be inferred. They also show that

order dependencies may originate from the use of algebraic expressions or SQL functions

within a query: for example in case of dates, the order dependencies “date orders (date

+ 30 days)” always holds. This means that dates are ”ordered” by month, consequently

an order dependency holds for each month.
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2.2.4 Discovery Algorithms for Order Dependencies

These applications are driving the need for discovering order dependencies in exist-

ing datasets. The first work proposing an algorithm to solve this problem is the one

by Langer and Naumann [LN16]. Their approach, called order, follows the path of

tane, computing the potential order dependency candidates from the permutations of

attributes and traversing the lattice in a level-wise, bottom-up manner. Pruning rules

are applied to reduce the number of candidates to check, with the caveat of eliminating

only redundant relations that can be later inferred from the dependencies discovered

together with the axioms. However, as shown in this dissertation (Chapter 4), this

approach does not consider all the possible order dependency candidates, discarding

repeated attributes. While this gives a significant advantage in execution time, reduc-

ing the worst-case time complexity of the algorithm to O(∣r∣!), its major drawback is

the possibility of losing completeness. More recently Szlichta et al. [SGG+17] proposed

an algorithm called fastod that is complete and faster than order. This algorithm

exploits a novel polynomial mapping that transforms ODs with lists of attributes into

canonical forms of ODs that are established between sets of attributes. fastod has

exponential worst-case time complexity, O(2∣r∣), in the number of attributes. This last

work provides significant advances in the theoretical decomposition of the problem of

order dependency discovery. However, the results presented in their work present some

erroneous dependencies, and not precise results in their experiments. We tried to ana-

lyze where and why sometimes their approach fails in discovery the correct set of order

dependencies.

2.3 Event Discovery

Automated extraction of events from textual data plays an important role in knowledge

base construction [KW12], entity description [ADM+15b] and question answering tasks

[YBRW13]. To this end, several techniques have been proposed that do not only differ in

corpora and extraction processes, but also in their underlying representation of extracted

events.
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2.3.1 Event models

Many event models describe an event as “some unique thing that happens at some point

in time” [ACD+98].

This definition can be further extended by including locations [SG16], dynamic rela-

tionships [SJY11], a set of actors or entities [SG16, SJY11] or textual descriptions

[KVW14, HL12] into the extracted events. While these models are flexible towards

entity types and arity, in knowledge bases events are usually represented through strict

schemas which often requires triple notations and reification.

A slightly different notion of events is named events [KW12, KVW14] which are defined

as a concept similar to traditional entities. While this is applicable for well-defined events

like “FIFA World Cup 2014”, more fine-grained events like “Barack Obama received the

Nobel Peace Price“ cannot be represented. Other approaches are less restricted to given

schemas but do not allow for easy comparison of such events: they employ natural

language processing models [ZSW15] to extract very fine-grained relations between two

entities that are simply represented as triples consisting of subject, object and a textual

relation like “arrives in“. In contrast to the aforementioned knowledge base models,

these models lack additional information like the time dimension and do not put any

emphasis on events of major importance. Instead of using short expressions that connect

entities, [AB15, HL12] and [WNRR16] identify whole sentences representing events.

2.3.2 Real-time event detection

In the case of user-created content like Wikipedia or Twitter, events can be detected by

finding peaks in activity regarding single entities or sets of them [LLL+12]. Analogously,

[SJY11] locates time periods when an entity appears in more documents than usual

given a time-stamped document collection. Having mapped news documents covering

the same theme onto a time axis, it becomes possible to hierarchically arrange events,

e.g., by denoting sub-events [KVW14]. A different approach exploits a graph of entities

that is continuously updated with weights extracted from tweets, and dense subgraphs

are identified as events [AKSS12]. All approaches focus on the discovery of current

events and need extra streams of information for extracting interactions between the

entities to finally detect events.
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2.3.3 Historical event extraction

In contrast to real-time event detection, which focuses on limited time spans in the

present time, historical event detection aims at retrieving events happened before the

emergence of the Web. Moreover, temporal perception of events correlates with the

actual happening, which is not always guaranteed, e.g., in cases of belated death reports.

To overcome these issues, corpora with historical or encyclopedia texts are used to

extract their entities, time and textual descriptions: for example, contains pages with

lists of historical events that can be extracted [HL12]. The same approach has been

applied to the Wikipedia current events portal [TA14], covering events of the current

century.

When not relying on a corpus with predefined events and time spans, automated extrac-

tion of time expressions in the text becomes necessary which can be done by using tools

like SUTime [CM12]. This approach, combined with an appropriate disambiguation of

entity mentions in the text, was used to group together sentences representing the same

event [AB15]. Another approach automatically induced textual patterns like “⟨entity⟩

was inaugurated as ⟨entity⟩ on ⟨date⟩” within Wikipedia articles in order to extract

event triples that are inserted into the YAGO knowledge base [KW12].

Compared to purely text-based approaches using NLP techniques to extract event men-

tions [ST17], our approach does not rely on explicit mentions of an event within a

brief text fragment. Instead, events can be found based on the assumption of tempo-

ral co-reference and constructed even from mentions in several sentences from different

documents. All these methods suffer limitations based on their event representation

since they focus on predefined relations and fixed constraints on the kind of the entities

involved in the event.

2.3.4 Temporal relationship mining

Temporal relations between entities and the resulting entity networks play an important

role in event extraction. A well-known measure for semantic relatedness between two

entities uses a graph extracted from Wikipedia that relies on link counts [WM08]. Other

approaches use external tools like search engines [SKAZ15] in order to find textual pat-

terns (relations) between entity pairs. To detect temporal relations, this approach was
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extended [SZK+16] by the use of the Internet Archive which supports relation extraction

since 1996. A temporal entity relationship graph was built from Wikipedia by combining

terms, locations, organizations, actors and dates [SG16]. This joint graph can be queried

for relationships between specific types of entities at specific time points. However, all

approaches focus their attention on the relationships between entities and they do not

lead to the extraction of well-defined events.

2.4 Finding Synonymous Attributes and Movements in

Evolving Wikipedia Infoboxes

2.4.1 Importance and usage of Wikipedia infoboxes

Wikipedia infoboxes have been used in a large number of research projects. The most

significant works include techniques for building structured knowledge bases [SKW08,

ABK+07b], for analyzing the evolution of specific kinds of entities [HSBW13] and for

applying structured queries on the Wikipedia content [AS17]. Although several works

support the formulation of structured queries, no previous effort has considered the evo-

lutionary nature of Wikipedia. All previous approaches consider only a static snapshot

of the infoboxes as input.

2.4.2 Schema matching

Schema matching is one of the most studied topics in the database community.

Books [BBR11, ES07] and surveys [RB01, BMR11] introduce the existing approaches in

the literature. According to the categorization proposed by [RB01], schema matching

approaches can be classified into schema-only matchers and instance-based matchers.

Our proposal follows a hybrid approach since we incorporate holistic correspondence

refinement that belongs to the category of collective matching approaches [BMR11].

Our approach implements a strategy similar to the one proposed by He et al. [HCCT16]

that consider as negative evidence the co-occurence of attribute names in the same

schema. Their approach focus on the discovery of synonyms supporting a web search

engine and is based on the combined use of web tables and query logs. The intuition is
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that users who are looking for the same results provide different synonyms as query terms

on a search engine. This is used as positive evidence for attribute synonymy. Instead,

attributes within the same web tables are not likely to be synonyms, thus providing a

negative evidence. Our approach adapts that idea to work with Wikipedia infoboxes

by extracting positive and negative evidence of synonymy analyzing co-occurrences of

attributes and values.

2.4.3 Schema matching and alignment over infoboxes

Schema matching techniques have been applied against Wikipedia infoboxes in the

context of finding correspondence between schemas in different languages. Adar et

al. [ASW09] propose a framework called Ziggurat that creates a supervised classifier

based on features that are learned from a set of positive and negative examples ex-

tracted from data with heuristics. Bouma et al. [BDI09] match attributes based on

the equality of their values. Two values are equal if they have the same cross-language

link or exactly the same literals. A different approach [RLN13] exploits value similarity

over infobox templates, where first an entity matching process is done, then templates

are matched to obtain inter-language mappings between templates and finally attribute

matching is done by means of similarity metrics. These approaches rely on similarity

metrics that are sensitive to the syntax of the underline languages: they work well if the

compared languages have the same root. To overcome this limitation [NMN+11] exploits

different evidences for similarity and combines them in a systematic manner.

2.4.4 Exploration of schema and value changes

In the context of data exploration, a new line of research focuses on the exploration of

changes over time. The first work [BBJ+18] is a vision paper that introduces innovative

concepts related to understanding changes that happen in the data over time. This

paper introduces the change cube that models the changes in a dataset. The four di-

mensions represented are Time, Entity, Property, and Value. Then a change is formally

defined as a quadruple in the form ⟨timestamp, id,property,value⟩. This work was fur-

ther expanded in [BBK+19] and [BBJ+18]. These papers further explore the concept of

change cube by introducing a set of exploration primitives that exploit the change cube
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to find insights in evolving datasets. In this context also a clustering algorithm based

on time series has been proposed [BBK+18].



Chapter 3

Explaining Datasets with Descriptions

We now focus on the data explanation problem and, more specifically, on the study of

a generic and easy to use method for generating data descriptions. Descriptions are

useful in contexts where users need some form of explanation. While existing data

explanation tools and techniques are used to gain knowledge on specific tasks such as

unexpected behaviors of systems, experiments or query answers, data descriptions are

generic inasmuch as they are able to concisely represents any arbitrary set of data tuples.

In this chapter, we present a principled framework for the data description problem,

that is able to satisfy many user’s preferences. We demonstrate that the problem of

finding dataset descriptions is hard and we proposed an approximation based on some

heuristics that are able to produce high quality descriptions in a very short time. We

also include experimental results and a user study that demonstrate the quality results

of our framework.

3.1 Contributions

The main contributions in this chapter can be summarized as follows.

• We introduce data descriptions as a new form of explanation targeted to help users

in understanding the datasets at hand.

33
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• We show that the problem of generating descriptions is NP-hard, we provide a

complete proof based on reduction to the weighted set cover problem, that is a

well known NP problem.

• We define a principled approach for generating descriptions over sets of data

records, we discuss the different aspects that constitute a description. We dis-

cuss the principles that guide our work in the construction of our framework.

• We propose quality metrics for data descriptions on the basis of their understand-

ability and expressiveness, these metrics are used by the user to guide the expla-

nation system in the generation of data descriptions.

• We develop a set of heuristics that allow the efficient generation of descriptions

while maintaining high quality. These heuristic impact in a very efficient way in

the fast creation of descriptions, searching for the most top-k descriptions over the

whole possibles.

• We conduct extensive experiments over real datasets to evaluate the efficiency and

the effectiveness of the approach. We analyze both qualitative and quantitative

aspects in description evaluation. We measure the impact of our heuristic with

respect to the time needed to produce the description. We also compare our work

with some baselines and we also conduct a user study in order to measure the

satisfaction of description with respect to user desires.

3.2 Outline

The chapter is organized as follows. In Section 3.3 we present a motivating example

used through the rest of the chapter. Section 3.4 formally defines data descriptions;

Section 3.5 introduces the principles that drive our approach and the quality aspects for

evaluating descriptions. Section 3.6 defines the framework and heuristics devised to find

the top-k descriptions. Finally, Section 3.7 contains the experimental evaluation.
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Time SensorID Voltage Humidity Temp.
t1 11AM 1 2.6 0.4 34
t2 11AM 2 2.6 0.5 35
t3 11AM 3 2.6 0.4 35
t4 12AM 1 2.7 0.3 35
t5 12AM 2 2.7 0.5 35
t6 12AM 3 2.3 0.4 100
t7 1PM 1 2.7 0.3 35
t8 1PM 2 2.7 0.5 35
t9 1PM 3 2.3 0.5 35

Table 3.1: The sensor dataset.

3.3 Motivating Example

Consider the sensor dataset of Table 3.1 containing sensor measurements, and taken

from [WM13]. Each measurement is a tuple, detected at a certain Time from a sensor

device identified with a SensorID, which consists of Voltage, Humidity and Temperature

measures. For the sake of brevity, we associate the short labels Ti, S, V, H and Te to the

attributes following the order of appearance in Table 3.1. Assume now a user who wants

to analyze sensor and need a supporting tool for initiating the task. A description is a

suitable support for such type of users. Consider the example in Table 3.1: a framework

for data descriptions should be able to choose among the descriptions in Fig. 3.1 as well

as every other possible description in order to output the most relevant.

Example 3.1. A naive description D0 of sensor consists of the set of tuples themselves.

Each tuple in D0 is a set of attribute-value pairs. For instance, a description for t1 is

{Ti = 11AM,S = 1,V = 2.6,H = 0.4,Te = 34}, whereby D0 includes such description

and all the analogously formed descriptions for the remaining tuples t2, . . . , t9.

D0 is verbose and arguably does not help the analyst in understanding the content of

sensor. Desirably, when a user asks for a description, she wants an outline of the

dataset that is both easier to read and understandable despite the loss of information

that results from summarizing data.

Example 3.2. D1 of Fig. 3.1 is a description conjoining a list of predicates, each

characterizing an attribute of the dataset with the related set of domain values. D1 is

more concise than D0 because it removes value duplicates but it introduces a loss of

information since we cannot reconstruct the original tuples from it.
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D1 : Ti ∈ {11AM,12AM,1PM} ⋀ S ∈ {1,2,3} ⋀
V ∈ {2.3,2.6,2.7} ⋀ H ∈ {0.3,0.4,0.5}⋀ Te ∈ {34,35,100}

D2 : {11AM ≤ Ti ≤ 1PM} ⋀ {2.3 ≤ V ≤ 2.7} ⋀
{0.3 ≤ H ≤ 0.5} ⋀ {35 ≤ Te ≤ 100} ⋀ {1 ≤ S ≤ 3}

D3 : {11AM ≤ Ti ≤ 1PM} ⋀ {0.3 ≤ H ≤ 0.5} ⋀ {1 ≤ S ≤ 3}

D4 : (S = 1 ⋀ H ∈ {0.3,0.4}) ⋁ (S = 2 ⋀ H ∈ {0.5})⋁ (S = 3 ⋀ H ∈ {0.4,0.5})

D5 : (H = 0.3 ⋀Te = 35)⋁ (H = 0.4 ⋀ Te ∈ {34,35,100})⋁ (H = 0.5 ⋀ Te = 35)

D6 : (H = 0.4 ⋀ Te ∈ {34,100})⋁ (Te = 35 ⋀ V ∈ {2.3,2.6,2.7})

Figure 3.1: A subset of the possible descriptions for sensor.

When we have complex schemas and instances, a description like D1 is too long and still

difficult to read. A shorter description is preferable. In this case, the selection of the

features and of the domain values for the predicates is a crucial task.

Example 3.3. D1 can be compacted by using other forms of predicates. For instance,

D2 of Fig. 3.1 increases the readability of continuous attributes by using range predicates.

D2 can be additionally shortened by limiting the set of attributes being employed in the

predicates composing the descriptions. For instance, D3 uses Ti, H and S attributes only.

In other scenarios, users are interested in understanding the values assumed by specified

attributes and how they vary with respect to the rest of the dataset. In this case, the

attributes of interest constitute the pivotal elements of the descriptions.

Example 3.4. D4 and D5 show examples of descriptions partitioned over pivotal ele-

ments. D4 shows the values assumed by the attribute H for each sensor. In D5, the user

is interested in the values of Te registered by the sensors when H changes.

3.4 Data Descriptions

Let us consider a dataset I composed of a set of tuples over a set of attributes A =

{a1, a2, . . . , an}, where each attribute ai has associated a domain of atomic values. A

tuple t is in the form t = ⟨v1, v2, . . . , vn⟩ where each value vi is contained in the respective

domain. Finally, given a set of tuples I, in the following we will use adomI(ai) to denote

the active domain of attribute ai for I.
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Descriptions use predicates defined as follows.

Definition 1 (Predicate). Given a dataset I over A, a predicate p is an atomic formula

over A in one of the following forms:

• Set Predicate p ∶ ai ∈ {v1, v2, . . . , vm}, where ai ∈ A and each vi ∈ adomI(ai).

• Range Predicate p ∶ (vl ≤ ai ≤ vu), where ai ∈ A and both vl, vu ∈ adomI(ai).

When a set predicate has only one value we will refer to it as atomic and use the notation

p ∶ (a = v) e.g., S = 1 of D4 in Figure 3.1.

Definition 2 (d-formula). Given a non-empty set of tuples I over A, a d-formula d for

I is a conjunction of predicates over A, such that:

1. an attribute in A occurs in d at most once;

2. each predicate p ∈ d is true in I according to the classic interpretation of atomic

formulas in first order logic;

3. (full coverage) ∀ti ∈ I, d is true for ti.

Descriptions are usually computed over (horizontal) partitions of a dataset I. A partition

is a non-empty set of tuples Ji such that I = ⋃i Ji and ∀i, j, Ji ∩ Jj = ∅;

Definition 3 (Description). Let I be a non-empty dataset over a set of attributes A,

and organized into ρ partitions, such that for each partition i ∈ 1...ρ a d-formula di

over A exists. A description D for I is a non-empty disjunctive-normal formula of ρ

d-formulas {d1, . . . , dρ}.

The approach we propose is agnostic to the mechanism adopted for partitioning. Nev-

ertheless, in this work we employ two different ways to determine partitions as we will

show in the following sections.

Example 3.5. Consider Figure 3.1: D7 is a description based on partitions P1 =

{t1, t6} and P2 = {t2, t3, t4, t5, t7, t8, t9}, while D5 is over the partitions P1 = {t4, t7},

P2 = {t1, t3, t6}, and P3 = {t2, t5, t8, t9}.
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Finally, given an input dataset I, the goal of our approach is to generate the best descrip-

tions representing I. The quality of a description is supported by a scoring function.

Definition 4 (Scoring function). Given a set of descriptions {D1, . . . ,Dn}, a scoring

function Cost is such that ∀i, Cost(Di) ≥ 0, and for each pair Di,Dj , if Cost(Di) ≤

Cost(Dj) then Di is more relevant than Dj .

In practice, the function Cost may take into consideration several factors, such as user

preferences, and can be personalized depending on the domain. We will define the full

list of user preferences in Section 3.5 and the implementation of our scoring function in

Section 3.6.3. Now we show that the general problem of generating the best description

for a dataset I is NP-Hard.

Problem 1 (Finding the best description). Given a dataset I organized into ρ partitions,

and a PTIME-computable scoring function Cost, let D = {D1,D2, ...,Dm} be the set of

all possible descriptions over I. The computation of the most relevant description in D

aims at returning the description Di ∈ D such that Cost(Di) ≤Cost(Dj),∀Dj ∈ D.

Theorem 5. Problem 1 is NP-Hard.

Proof. We show that there exists a polynomial-time reduction from the Weighted Set

Cover (WSC) Problem to Problem 1. The WSC Problem, that we recall next, is a

well-known NP-Hard problem [CLRS09].

Problem 2 (Weighted set cover problem). Given a universe of n elements U =

{e1, . . . , en}, a set of m non-empty subsets of U , S = {s1, . . . , sm}, and a PTIME cost

function c ∶ S → R+. The goal is to find the minimum cost subset x ⊆ S such that:

1. all elements are covered by x (i.e. ∀ei ∈ U , ei ∈ ⋃
sj∈x

sj), and

2. the sum of the costs of the elements in x is minimized.

Given an instance (U ,S, c) of Problem 2, let us define a mapping reduction r that creates

a dataset I = {t1, t2, . . . , tn} over a set of attributes A = {a1, a2, . . . , am}:

• using a bijective function g ∶ U → I that associates each element ei of the universe

to a tuple ti of I;
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• using a bijective function f ∶ S → A that associates each sj to an attribute aj ;

• each value vi,j for the i-th tuple and j-th attribute is such that:

vi,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⊺, if g−1(ti) ∈ f
−1(aj)

�, otherwise.

It follows that each possible description Dk ∈ D over I is constructed out of boolean

predicates in the form p ∶ (ai = ⊺) or p ∶ (ai = �). Additionally, r introduces a scoring

function Cost′ that sums over the costs of each predicate pi in a description Dk, i.e.,

Cost′(Dk) = ∑pi∈DkCost-p(pi), where:

Cost-p(pi ∶ (ai = v)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c(f−1(ai)), if v = ⊺

∞, otherwise.

Finally, let us also introduce a function h that transforms a d-formula with boolean

predicates computed over an instance created by r into a candidate solution to Prob-

lem 2:

h(Dk) = {sk ∶ sk = f
−1(aj),∀(aj = ⊺) ∈Dk}.

It is straightforward to see that with r and h we have that Cost′(Dk) = c(h(Dk)) ∀Dk ∈

D, where D is the set of all possible descriptions over I.

We can now solve Problem 1 over dataset I considering all the tuples grouped into the

same partition1 (i.e., ρ = 1). The solution is a description D formed by one d-formula

d. By construction all predicates in d are in the form p ∶ (ai = ⊺) and d (D) is true

for each tuple ti ∈ I (full coverage). We want to show that if the solution D has a

finite cost, then X = h(D) is the optimal solution for Problem 2. Otherwise, there is no

solution for Problem 2. This can be proved by considering the two clauses of Problem 2

separately. If a finite solution to Problem 1 exists, then the first clause is true since (1)

all the predicates in d are positive (i.e. ai = ⊺), and (2) ∄ti ∈ I such that D is false for

ti. Consequently, all the tuples have at least one value that is true and it is captured by

the description D. By construction of r, it follows that ∄ei = g
−1(ti) such that ei ∈X.

1Note that this is just a simplification: similar arguments hold for the cases where ρ > 1.
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We now need to show the clause of minimality. Let us assume, by contradiction, that

another solution X ′ is optimal for the instance (U ,S, c) of Problem 2 (i.e. c(X ′) < c(X)).

This means that there must exist a description D′ over I such that X ′ = h(D′) and

Cost′(D′) < Cost′(D). Unfortunately, this is impossible because we assumed that D is

the minimal solution to Problem 1. Hence X must be minimal. Since (1) Problem 2 is

NP-Hard, (2) the reduction r is polynomial (i.e., O(∣U ∣ × ∣S ∣)), (3) Cost′ is in PTIME,

and (4) the transformation h for generating D from X has linear time-complexity (i.e.,

O(∣S ∣)), we can conclude that generating the best description D is also NP-Hard.

3.5 Generating Descriptions: A principled approach

Attributes of a dataset carry different degrees of relevance for users interested in gleaning

insights from data. Some attributes have intrinsic value because, for example, they can

identify entities in a domain (e.g., the attribute SensorID in the sensor dataset). Some-

times, the relevant attributes are indicated by the users due to their domain knowledge

or to a specific interest. For example, a user may be interested in understanding when

a specific attribute, e.g., the Temperature, assumes certain values in a sensor. For this

reason, it is more convenient to see the dataset sensor partitioned by SensorID instead

of a monolithic entity. The first driving principle states that it is more explicative to

think of a dataset as the composition of different groups of related tuples. We follow this

principle by letting the user specifying how the dataset has to be partitioned, and we

associate a d-formula to describe each partition in the dataset. The set of d-formulas is

the final description for the dataset.

Data explanation is conducted for different purposes. In some cases, users want an

accurate and complete, yet readable, representation of the whole dataset. In other cases,

a general profile of the dataset is just enough for the user. The description represents,

in these latter cases, an overview that ignores infrequent values. Often, instead, there

are users that are interested in finding outliers. The second driving principle is that we

can accommodate the multi-faceted goals of data explanation by relaxing the concept of

full coverage in the descriptions (cf Definition 2) 2. By allowing users to interactively

change the coverage of the expected descriptions (intended as the percentage of the total

2Note that this relaxation does not invalidate our formalization of Section 2.
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number of tuples that are true for the description) they are now capable of extracting

proper insights from data. For example, let us imagine a user that wants to separately

analyze each sensor in the sensor dataset. Initially, she sets a high coverage to get a

better picture and she gets that Humidity varies between 0.3 and 0.4 for SensorID 1, it

is 0.5 in SensorID 2 and varies between 0.4 and 0.5 for SensorID 3. She then decides to

dig deeper by lowering the coverage, and she finds that sensor 3 has Temperature equal

to 100, which is an outlier.

We realize that is clearly not possible to define a single and global way to assess how

good a description is since the quality is influenced by the subjectivity of the end users.

Just as an example, a prolix description can be suitable for an user but, at the same time,

be poor for another one. The third driving principle is to consider user preferences for

qualifying descriptions. We follow this principle by: (1) defining a series of dimensions

that characterize the descriptions, (2) we let the users indicate their preferential value

for these dimensions, and (3) we take into account the user’s preferences in the scoring

and ranking of the final descriptions (Section 3.6.3).

Specifically, we have identified three dimensions for characterizing the quality of a de-

scription D from a user perspective: coverage, degree, and diversity.

Definition 6 (Coverage). Given a subset X of the dataset I for which a d-formula is

true, the coverage of a d-formula is the fraction
∣X ∣

∣Iρ∣
(i.e., the percentage of I over the

partition ρ for which the d-formula is true). Given a description D, the coverage of D,

i.e. cov(D), is the mean of the coverage of the d-formulas therein.

Basically, broad dataset descriptions have a high coverage; descriptions of datasets’

peculiarities (e.g., outliers) have a low coverage. We will use this definition of coverage

in our system to validate descriptions instead of the (more strict) one of Definition 2.

Definition 7 (Degree). Given a description D over a dataset I with A attributes and

composed by ρ partitions, let Adi ⊆ A be the set of attributes in a d-formula di of D. The

degree of a description is the average number of attributes in its constituting d-formulas:

deg(D) = 1
ρ ∑di∈D

∣Adi ∣

∣A∣
.

Intuitively, too many attributes makes a long and hard to read description. Conversely,

a description is more compact when the number of attributes therein is small.
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Definition 8 (Diversity). Given a description D, let ∣∣D∣∣ be the overall number of

predicates in D and AD ⊆ A be the set of attributes that appear in the predicates of D

at least once. The diversity is measured as: div(D) =
∣AD ∣

∣∣D∣∣
.

The diversity measures how often attributes are shared across d-formulas. While repeti-

tions of a set of attributes in different partitions increase readability, they could reduce

the fine-grained representation of partitions.

Example 3.6. With reference to the descriptions reported in Figure 3.1, deg(D1) = 1,

div(D1) = 1; deg(D3) = 3/5, div(D3) = 1; deg(D5) = 6/15, and div(D5) = 2/6. All

these descriptions have the maximal coverage (cov(D1) = cov(D3) = cov(D5) = 1) .

We identified these three dimensions as the minimal set of parameters that allows us to

both (1) extract enough information from users for enabling task-specific explorations,

and (2) allow the system to return high-quality descriptions. We identified these set of

dimensions through experimental evaluation and by reviewing similar approaches (e.g.,

[JGP16, LBL16]).

3.6 The Approach

The description generation process is interactive: users can specify their preference

parameters repeatedly until the explanation need is fulfilled. The preference parameters

are in Table 3.2 and include, among the others, the dimensions previously defined.

Parameter Meaning

cov The desired coverage. It is a float value between 0.0
and 1.0.

deg The desired degree. It is a float value between 0.0 and
1.0, where 1.0 stands for high-degree descriptions.

div The desired diversity. It is a float value between 0.0
and 1.0, where 1.0 stands for high-diverse descriptions.

Ax In the user-driven mode, the attributes of interest for
the user, and ∣Ax∣ the size of the description.

ρ In the data-driven mode, the number of clusters to be
generated.

k The maximum number of descriptions to be returned.

Table 3.2: Users’ preferences used as input to the framework.
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Users interact with the system in two different modes. The user-driven mode is useful

when the task is to profile data over some feature of interest; this can be obtained

by pinpointing the set of pivotal attributes Ax. For example, D5 of Figure 3.1 is a

user-driven description on attribute Humidity, and therefore it determines the partitions

P1 = {t4, t7}, P2 = {t1, t3, t6}, and P3 = {t2, t5, t8, t9}. The data-driven mode is instead

more suited for cases where a user has little knowledge of the dataset, and the partitions

are created in a fully-automated fashion via a clustering algorithm. D7 in Figure 3.1 is a

data-driven description based on partitions P1 = {t1, t6} and P2 = {t2, t3, t4, t5, t7, t8, t9}.

The generation of the descriptions is performed over 3 phases, as shown in Algorithm 1.

In the first phase (line 1) the input dataset is partitioned. Recall that a partition is

a set of tuples to be described together by the same d-formula. Data partitioning is

detailed in Section 3.6.1. The generation of the d-formulas happens during the second

phase (line 2) 3. For each partition, the number of possible d-formulas is exponential

over the number of attributes’ values. Generating all possible d-formulas is, therefore,

prohibitively expensive. As explained in Section 3.6.2, we adopt a heuristic procedure

that allows us to prune d-formulas that are less relevant for the task at hand.

In the last phase (line 3), the actual descriptions are computed by combining d-formulas

of different partitions. Intuitively, we assemble the top-k descriptions that maximize

the scoring function from the generated d-formulas. This problem can be solved with a

dynamic programming approach: in Section 3.6.3 we will employ a variant of the Viterbi

Algorithm called LVA [SS94] (a.k.a. List Viterbi), although any other algorithm in this

class can be used.

Algorithm 1 Generation of Descriptions

Input: The dataset I, Ax, cov, deg, div, k, ρ and conc.
Output: The top-k descriptions Dk.

1: P ← CreatePartitions(I,Ax, ρ)
2: DF ← GetDFormulas(P,cov,deg)
3: Dk ← V iterbiTopK(DF,deg,div, k)
4: return Dk

3Note that when numerical attributes exists in a dataset, a discretization algorithm is applied during
the second phase to extract categorical features from numerical attributes (e.g., [GLS+13]). An inverse
process is applied to the descriptions before returning them to the user. Descriptions with d-formulas
based on categorical attributes generated by discretization, in a post-process phase are transformed by
interpolation over range predicates (Definition 1).
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3.6.1 Building partitions

The first phase of our technique splits the input dataset into partitions. Since partitions

will be described separately, it is desirable to create them such that similar tuples are

grouped together. In user-driven mode, we create a partition for every distinct value of

the projection of I over a non-empty set of user provided attributes Ax ⊆ A. In this case,

the building procedure applies a SQL’s group-by operator over the pivotal attributes

specified by the Ax parameter.

Example 3.7. Looking at Figure 3.1, D4 is a user-driven description in which the user

pinpointed SensorID; D5 is another user-driven description but built around Humidity.

In data-driven mode, the partitioning logic ensues from the application of a clustering

algorithm. In our implementation, we used k-means and we therefore let the user specify

the number of clusters (i.e. the ρ parameter). However, any clustering algorithm can be

used for the task.

Example 3.8. In Figure 3.1 D7 is a data-driven description composed of two partitions.

3.6.2 Building d-formulas

In the second phase, we build all feasible and relevant d-formulas for each partition. The

number of candidate predicates depends on the size of the active domain of the attributes

in the partition. Therefore, the complexity of this phase is O( ∏
a∈A

(2∣adomI(a)∣)), where

A is the set of the attributes and ∣adomI(a)∣ is the aforementioned size. Given the

large complexity for generating all possible d-formulas, we follow a heuristic process

that generates the most relevant candidate d-formulas only. Currently, we adopt two

heuristics, one for pruning prolix d-formulas, and one for pruning selective d-formulas

and predicates.

Heuristic 1 - pruning prolix d-formulas

Descriptions are consumed by human users. A description with a large number of pred-

icates is somehow hard to read. Intuitively, when a user asks for descriptions with low

degree she is declaring that a d-formula with a small number of predicates is preferable.
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Conversely, high degree values are specified by users that prefers descriptions with wide

d-formulas. We can therefore push the degree intent of the users into the process of

building d-formulas so that we can early-prune d-formulas that do not meet deg re-

quirements. This limits the number of predicates evaluated and therefore improves the

efficiency of the approach.

We implement Heuristic 1 through the notion of conciseness (parameterized with conc):

i.e., a threshold specifying the maximum number of possible atomic predicates allowed

in a d-formula. More precisely, conc and deg are connected as follow:

conc = eλ ∗ deg. (3.1)

The exponential function models the perception of the user according to which small

variations in the number of predicates of a low-degree description have a significant

impact on the legibility of the description. In the following we fix λ = 6 to limit the

number of atomic predicates in a d-formula to 400 when deg assumes the maximum

level.

Heuristic 2 - pruning selective d-formulas and predicates

The desired coverage cov imposes the percentage of tuples the d-formulas should reach

to be part of a description. Heuristic 2 transforms the cov discrete value into an interval

of admissible values whose width is dependent on the coverage itself. This reflects the

needs of users who selecting a small coverage are looking for outliers, thus aiming to

retrieve descriptions in a small coverage interval width centered on cov. Conversely,

high cov generates a large interval width, since in this case a user is looking for a broad

descriptions of a dataset. Heuristics 2 captures this behavior: the width of the interval

of admissible coverage for d-formulas is proportional to the coverage itself:

offset(cov) = α ∗ cov2 (3.2)

We have experimentally determined that α = 0.14 is the value that maximizes the quality

metrics (see Section 3.7). The offset of Equation 3.2 determines the interval [covl,covu]

of desirable coverage, whereby covl = cov− offset(cov) and covu = cov+ offset(cov).
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In our approach we generalize the above intuition over predicates so that we can early

prune predicates (before they compose into d-formulas) if they do not meet the expected

coverage. A naive way to early identify admissible predicates is to check if their cover-

age is within the interval [0,cov]. While this condition has the ability to keep relevant

predicates only, it might still not be very effective as pruning filter. It would generate

d-formulas composed of predicates with largely different coverage levels, that, for this

reason, could not to be interesting for the users. For example, if a user wants descrip-

tions with coverage equal to 0.8, a d-formula composed of a large coverage predicate

(e.g., it applies to 79% of tuples) and a number of small coverage predicates is not really

meaningful (altough correct). A first idea to solve this issue could be to use the same in-

terval [covl,covu] adopted for filtering d-formulas. Nevertheless, discarding predicates

with coverage out of this interval limits the d-formulas computed to the combinations

of those predicates with coverage close to the cov value only. This appears to be too

selective and some data distributions can generate a low number of d-formulas (or even

no d-formula). We therefore enlarge the interval width by using covp =
cov−offset(cov)

conc

instead of covl as left bound. This makes the coverage level depending on the con-

ciseness, so that when conc is high (wider descriptions are required), the interval width

increases.

Algorithm 2 GetDFormulas

Input: A list of partitions P , the dataset attributes A, cov and conc.
Output: The d-formulas d.

1: d← ∅

2: conc = eλ ∗deg

3: covl ← cov − offset(cov)
4: covu ← cov + offset(cov)
5: covp ←

covl
conc

6: for each p ∈ P do
7: Θ← ∅

8: for each a ∈ A do
9: for each v ∈ dom(a) do

10: if
∣σa=v(p)∣

∣p∣ ∈ [covp,covu] then

11: Θ← Θ ∪ {a = v}
12: end if
13: end for
14: end for
15: d← d ∪ ValidDFormulas(Θ,conc,covl,covu, p)
16: end for
17: return d

Algorithm 2 shows the routine for generating all possible and relevant d-formulas. It
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takes in input the list of partitions (P ), the list of dataset attributes (A), the coverage

(cov) and the degree (deg). We initialize the set d that will contain the resulting d-

formulas (line 1), the conciseness (line 2) as suggested by Heuristic 1 and the desirable

coverage intervals (lines 3-5) derived using Equation 3.2 introduced by Heuristic 2. The

d-formulas of each partition (i.e. Θ) are computed separately (lines 6-11). We generate

the “atomic predicates” (i.e. (a = v)) for each distinct value v of a in the partition p

(line 11). Atomic predicates are generated only if they are within the expected coverage

(i.e., [covp,covu]) as defined by Heuristic 2 (line 10). Atomic predicates are combined

together to generate conjunctions of predicates (line 12). The resulting d-formulas, for

each partition, are then returned as output (line 13).

The ValidDFormulas procedure of Algorithm 3 combines together predicates and re-

turns only those combinations (i.e., d-formulas) that are valid. The combination of the

input predicates Θ is organized in a lattice. The main loop of lines 2-12 dynamically

generates the lattice. In each iteration, we generate one level of the lattice (the n-th) by

combining pairs of the previously generated predicates (lines 4-10). One predicate might

get combined with another predicate many times. For this reason, we use the function

GetDistinctPredicates that efficiently select a combinable predicate only once (line 5).

Pairs of predicates are combined with the operator ⊕ (line 7). The combination is a d-

formula that is either: (1) a new predicate created from the union of two predicates on the

same attribute (e.g., {a = 4}⊕{a = 5} = {a ∈ {4,5}}), or (2) a conjunction of predicates on

different attributes (e.g., {a ∈ {4,5}}⊕ {b ∈ {5,6}} = {a ∈ {4,5} ∧ b ∈ {5,6}}). We keep

only combinations of predicates in the desired interval of coverage values [covl,covu].

σd(p) are the tuples covered by the d-formula d in partition p. Only combinations of

predicates whose coverage is within the interval (line 8) are kept for the next level of the

lattice (line 9 and line 11) and in the list of final results Θ∗ (line 10). The generation of

the lattice ends when the threshold, as per Heuristic 1, is reached (n = conc) or when

it is no longer possible to generate predicates (∣Θ∣ = 0).

3.6.3 Building top-k descriptions

Selecting the best d-formulas in isolation does not necessarily lead to the best descrip-

tions. We need to search for the optimal set of d-formulas across partitions that all

together minimize the cost. Given the complexity of the problem, we use dynamic
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programming. Our current implementation is based on LVA [SS94], which is a general-

ization of Viterbi Algorithm [For73] for top-k solutions. The complexity of List Viterbi

is O(ρ× k × d2), where ρ is the number of partitions, k is the number of top elements to

retrieve and d is the number of d-formulas. Viterbi Algorithm and its variants require

to model the search space as a trellis. We construct the trellis in the following way. We

build a vertical slice for each partition. The nodes in the slice are the d-formulas we

have found in the previous phase. Nodes of a slice are connected to all the nodes of the

next slice via weighted directed edges. In this way, a node has an incoming path from

each node of the previous slice. A path represents a list of d-formulas, with at most

one d-formula for partition. An example of our trellis is in Figure 3.2. The algorithm is

used to find the best full path, that is a path that starts in the first slice and terminates

in the last slice of the trellis. Note that, for the final results, the order of the slices is

irrelevant since all nodes of a slice are connected to all the nodes of the next slice.

Algorithm 3 ValidDFormulas

Input: A set of predicates Θ, conc, covl, covu, and a partition p.
Output: The d-formulas with coverage between covl and covu for partition p.

1: Θ∗ ← Θ
2: n← 0
3: repeat
4: Θ′ ← ∅

5: for each θi ∈ Θ do
6: Θi ← GetDistinctPredicates(θi,Θ)

7: for each θj ∈ Θi do
8: d← θi ⊕ θj

9: if
∣σd(p)∣

∣p∣ ∈ [covl,covu] then

10: Θ′ ← Θ′ ∪ d
11: Θ∗ ← Θ∗ ∪ d
12: end if
13: end for
14: end for
15: Θ← Θ′

16:

17: until ∣Θ∣ = 0 or n = conc
18: return Θ∗

Viterbi needs an objective function w to score a path, which intuitively represents the

score of the (intermediate) descriptions we are computing. Given a trellis composed of

N nodes and S slices, the score of a path terminating in a node j of a slice s of the

trellis (i.e. wj(s)) can be recursively computed. Therefore, the best description D∗ is

the one maximizing the score of the node in the final slice S:
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Cost(D∗) = max
1≤i≤N

[wi(S)] (3.3)

The description D∗ is constructed by backtracking the computation of Equation 3.3,

which determines the nodes in the corresponding path. LVA generalizes Equation 3.3

to compute the top-k solutions. We devise the function w used to (recursively) score a

path as:

wj(s)=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

max
1≤i≤N

[wi(s − 1) ∗Lij ∗∆div(i, j)] ∗∆deg(j) ∗ (1 −H(j)),if s>1

∆deg(j) ∗ (1 −H(j)), if s=1

(3.4)

L is the adjacency matrix of the trellis, where Lij = 1 if there is an edge between node

i and node j, otherwise Lij = 0. ∆div and ∆deg score diversity and degree in terms of

adherence to the preferences of the user div and deg, respectively. More specifically,

∆deg is defined as ∆deg(d) = h(deg(d)), where h is the Normal Distribution function

centered on deg and with variance equal to 0.2. The variance is chosen experimentally.

In this way, we give a boost to descriptions whose degree is close to deg. Instead, ∆div

considers a pair of d-formulas di and dj , out of which we compute the partial description

D′ that includes both of them. Then, analogously to the degree factor, the diversity

factor is defined as ∆div(di, dj) = g(div(D
′)), where g is the Normal Distribution function

centered on div with variance equal to 0.2. H(j) is a measure of entropy for evaluating

how discriminative attributes are. It is computed as the normalized Shannon entropy

value4 of the attributes used by the d-formula associated to node j.

Intuitively, the scoring function measures (1) the adherence between the features of

the description and the expectation of the user, and (2) the ability of the attributes to

describe a particular partition. Note that while deg is required in Equation 3.4 because

only indirectly enforced by conc in Heuristic 1 we can omit cov from Equation 3.4

because Heuristic 2 makes sure that only descriptions with the proper coverage are

computed.

Example 3.9. Let us consider the dataset sensor described in Table 3.1 and a user in-

terested in descriptions explaining the behavior of each sensor (i.e., Ax = {SensorID}).

4We use the standard definition of normalized Shannon entropy for a probabilistic variable X in a

finite domain {xi}, that is H(X) = −∑N
i=1 P (xi)∗log2 P (xi)

log2N
.
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d1d1 d4d4

d2d2

d7d7

d5d5 d8d8

d9d9d6d6d3d3

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

1 ⇤ 10�41 ⇤ 10�4

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

5.05 ⇤ 10�145.05 ⇤ 10�14

1 ⇤ 10�41 ⇤ 10�4

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

6.08 ⇤ 10�86.08 ⇤ 10�8

5.05 ⇤ 10�145.05 ⇤ 10�14

5.05 ⇤ 10�145.05 ⇤ 10�14
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Figure 3.2: The Viterbi Algorithm applied to sensor.

According to our partitioning mechanism (see Section 3.6.1), the dataset is divided into

three partitions, one for each sensor. The application of the techniques described in

Section 3.6.2 generates a large number of d-formulas. Some of them are shown in Ta-

ble 3.3 along with their ∆deg and entropy values that are used by LVA for computing

the descriptions. Figure 3.2 shows the application of the Viterbi to the d-formulas in

Table 3.3. The trellis is divided into three vertical slices corresponding, from the left-side

to the right-side of the figure, to the partitions for SensorID = 1, SensorID = 2 and

SensorID = 3. Each node represents one of the d-formulas. The weights assigned to the

nodes have been computed according to Equation 3.4. Note that nodes in the first slice

are computed following the formula of the initialization weight; while for each node in

the other slices, only one incoming edge (the one maximizing the weight) is kept. ∆deg

values (shown in Table 3.3) and ∆div values (shown in Figure 3.2 on the edges) have

been computed taking into account the users’ preferences, that is for high coverage, low

degree and low diversity. Once the trellis is completed, the last slice is analyzed and the

top-k nodes maximizing the weight are selected. The highest ranked path is d2 → d6 → d8

with a score of 1.51E − 17. This description corresponds to the fourth row of Table 3.4.

Table 3.4 shows some descriptions generated by varying users’ preferences. The first

three descriptions describe low coverage settings. In the first case, the attribute Voltage
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SensorID =1 SensorID =2 SensorID =3

d1 = Te ∈ {35} ∧ H ∈

{0.3}
d4 = H ∈ {0.5} d7 = H ∈ {0.4}

∆deg = 0.0091 ∆deg = 0.89 ∆deg = 0.89
H = 0.92 H = 0.1 H = 0.92

d2 = Te ∈ {35} d5 = Te ∈ {35} ∧ H ∈

{0.5}
d8 = Te ∈ {35}

∆deg = 0.89 ∆deg = 0.0091 ∆deg = 0.89
H = 0.92 H = 0.1 H = 0.92

d3 = Te ∈ {34,35} ∧

H ∈ {0.3,0.4}
d6 = Te ∈ {35} d9 = Te ∈ {35, 100}

∆deg = 0.0091 ∆deg = 0.89 ∆deg = 0.89
H = 0.92 H = 0.1 H = 0.95

Table 3.3: A subset of the d-formulas generated from sensor.

cov deg div Description

0.2 0.1 0.1 ({S = 1 ∧ V ∈ {2.6} (33.33%)}) ∨
(LOW) (LOW) (LOW) ({S = 2 ∧ V ∈ {2.6} (33.33%)}) ∨

({S = 3 ∧ V ∈ {2.6} (33.33%)})

0.2 0.1 0.9 ({S = 1 ∧ H ∈ {0.4} (33.33%)}) ∨
(LOW) (LOW) (HIGH) ({S = 2 ∧ V ∈ {2.6} (33.33%)}) ∨

({S = 3 ∧ Te ∈ {100} (33.33%)})

0.2 0.9 0.1/0.9 ({S = 1 ∧ Te ∈ {34} ∧ Ti ∈ {11} ∧ V ∈ {2.6} ∧
H ∈ {0.4} (33.33%)}) ∨

(LOW) (HIGH) (LOW/ ({S = 2 ∧ Ti ∈ {11} ∧ V ∈ {2.6} (33.33%)}) ∨
HIGH) ({S = 3 ∧ Te ∈ {100} ∧ Ti ∈ {12} (33.33%)})

0.8 0.1 0.1 ({S = 1 ∧ Te ∈ {35} (66.67%)}) ∨
(HIGH) (LOW) (LOW) ({S = 2 ∧ Te ∈ {35} (100.0%)}) ∨

({S = 3 ∧ Te ∈ {35} (66.67%)})

0.8 0.9 0.1/0.9 ({S = 1 ∧ H ∈ {0.3} ∧ Ti ∈ {1, 12} ∧ V ∈ {2.7}
∧ Te ∈ {35} (66.67%)}) ∨

(HIGH) (HIGH) (LOW/ ({S = 2 ∧ H ∈ {0.5} ∧ Ti ∈ {1, 12} ∧ V ∈ {2.7}
∧ Te ∈{35} (66.67%)}) ∨

HIGH) ({S = 3 ∧ H ∈ {0.5,0.4} ∧ Ti ∈ {1} ∧ V ∈ {2.3,
2.6} ∧ Te ∈ {35} (66.67%)})

0.8 0.1 0.9 ({S = 1 ∧ V ∈ {2.7} (66.67%)}) ∨
(HIGH) (LOW) (HIGH) ({S = 2 ∧ H ∈ {0.5} (100.0%)}) ∨

({S = 3 ∧ Te ∈ {35.0} (66.67%)})

Table 3.4: Descriptions with different users’ preferences.

has been used for all the d-formulas since the desired diversity level is low. In the second

case, three different attributes are used for describing the sensors. In the third example,

a description with a high degree is shown. Due to the low number of attributes in the

dataset, we obtain the same description when the user selects low and high diversity.

The other descriptions have high coverage and different levels of degree and diversity.

The actual coverage of the d-formulas in the corresponding partition is enclosed between
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Sensor Crime Mushroom SensorRandom

Max Gini Index 0.86 0.86 0.63 0.85

Min Gini Index 0.75 0 0.62 0.83

Avg Gini Index 0.79 0.65 0.63 0.85

Std of Gini Indexes 0.025 0.159 0.001 0.005

Table 3.5: Dataset heterogeneity.

parentheses. The low cardinality of the example dataset (9 tuples) makes it necessary to

map the cov into a large interval.

3.7 Experimental evaluation

In this section we evaluate our approach over efficiency (Section 3.7.1), objective effec-

tiveness using a list of quantitative measures (Section 3.7.2), and subjective effectiveness

using the judgment of the human-in-the-loop (Section 3.7.3). All the experiments are

performed on a machine running Ubuntu 12.04 with 16 processors, 128 GB of RAM

and a 1 TB of storage. We implemented all algorithms using multi-threading in Python

version 3.6.

Datasets. In the experiments we use three datasets with complementary character-

istics. By default, we transform numeric attributes into categorical via data binning

with 100 equal width bins. Section 3.7.1 illustrates how the number of bins impacts on

performance. The Sensor dataset 5 has 2.3 million data points collected from 54 sensors

deployed within the Intel Berkeley Research lab. Each point is a set of measurements

(light, humidity, temperature and voltage) registered at an epoch and it is also

stored with a timestamp formed by year, month, day, hour. The Crime dataset con-

tains information about the crimes committed during the first quarter of 2018 in Chicago.

It consists of 76k records and 9 attributes (Month, Day, Hour, Block – categorical at-

tribute having 19800 distinct values, Description – categorical attribute having 266

distinct values, Location Description – having 119 distinct values, Arrest – boolean,

Domestic – bolean, and Primary Type – categorical with 30 distinct values) taken from

the Chicago Police Department’s CLEAR database 6. Finally, the Mushroom dataset 7

5http://db.csail.mit.edu/labdata/labdata.html
6https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
7http://archive.ics.uci.edu/ml/datasets/Mushroom

http://db.csail.mit.edu/labdata/labdata.html
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://archive.ics.uci.edu/ml/datasets/Mushroom
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contains data related to different species of mushrooms. It has 8k records with 23 cat-

egorical attributes representing morphological features of the mushrooms (cap-shape,

gill-attachment, veil-color, etc).

Scenarios. We defined four test scenarios to highlight the behaviour of our approach

in different and complementary use cases.

Scenario 1 – Sensor. This scenario evaluates the explanation for a large dataset (i.e.

Sensor) with a small number of (numeric) features partitioned on a large number of

equi-sized classes. The dataset has 24 equi-sized partitions over hour.

Scenario 2 – Crime. This scenario has the goal of evaluating the explanations in a large

dataset (i.e. Crime) with few features (both numeric and categorical) partitioned on

a large number of unbalanced classes. Crime has been partitioned on Primary Type,

resulting in partitions of different size (the avg size is 2458, standard deviation is 4225).

Scenario 3 – Mushroom. This scenario aims at evaluating the ability of our approach

to cope with a large number of features. We partitioned Mushroom in two equi-sized

classes representing edible and poisonous mushrooms.

Scenario 4 – SensorRandom. This scenario evaluates the robustness of the approach

in a data-driven mode with a bad partitioning. A synthetic attribute Category has

been added to the Sensor dataset and used to generate 24 random partitions, thus to

simulates a “bad” partitioning.

To understand whether our approach is robust in presence of data with high dispersion,

we computed the Gini Index on each attribute of the datasets with respect to the class

used in the partitioning. The index is 1 with maximum dispersion and 0 with no dis-

persion. Table 3.5 shows the maximum, the minimum, the average and the standard

deviation for the Gini Index values across the attributes of the datasets used in our

four scenarios. Mushroom and Crime scenarios contain the most homogeneous data

distributions. Conversely, SensorRandom has the most skewed distribution since the

dataset has been randomly partitioned.
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Figure 3.3: Runtime performance of the different scenarios.

3.7.1 Efficiency

In this section we evaluate the efficiency of generating d-formulas and combining them

into descriptions.

Coverage Crime Mushroom Sensor Sensor
(α = 0.14) α/2 3/4 × α α B10 B100 B1000 random

0.1 ± 0.0014 854 0 1 1 27958 29681 29899 29912

0.2 ± 0.0056 3500 2 4 5 939 982 3880 1569

0.3 ± 0.0126 446 7 10 12 50 52 194 24

0.4 ± 0.0224 45 12 15 20 45 94 34 70

0.5 ± 0.035 87 6 6 15 31 56 28 46

0.6 ± 0.0504 31 9 14 26 10 66 18 72

0.7 ± 0.0686 54 9 18 32 4 74 35 52

0.8 ± 0.0896 59 15 21 78 42 96 17 120

0.9 ± 0.1134 309 15 83 1439 359 90 72 72

Table 3.6: Number of d-formulas w.r.t. coverage.

We start with reporting in Table 3.6 the number of generated d-formulas with respect

to the input coverage. All experiments are executed with a default of α = 0.14 and with

deg = 0.25, which limits d-formulas to maximum 5 predicates. In Mushroom we also

test the sensitivity on different α-settings (half and three fourths of the default value).

The number of generated d-formulas is higher when the coverage is low for Sensor,

SensorRandom and Crime, and with high coverage for Mushroom. This is due to
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the fact that the frequency distribution of Crime and Sensor datasets’ attributes follow

the Zipf’s rule: the majority of values appear only few times. This results in many

low-coverage descriptions. In the Mushroom dataset we have attributes with few values

that repeat many times. Therefore, most of d-formulas are generated with these values

at high coverage. In the results of the Mushroom scenario we can also see that the

parameter α is useful to play around the user’s preference for coverage but does not

affect the efficiency much.

On Sensor we show that the number of bins does not vary the number of generated d-

formulas much. The large number of d-formulas generated for the coverage equal to 0.9

and 10 bins is motivated by the distribution of values that follow the pattern previously

described for Mushroom.

In Figure 3.3, we show the time required to generate d-formulas and to compute the final

descriptions at different coverage settings. The final execution time is the sum of the

two components. In general we notice that descriptions are produced at interactive time

(few seconds) in most of the cases. The harder cases to process are with low coverage

because the system has to sift throw several thousands of descriptions. We can also see

that the time for computing the descriptions is quadratic with the number of d-formulas,

thus confirming the theoretical complexity of LVA.

The efficiency of the heuristics, taken in isolation or together, compared against the

exhaustive case (i.e., No Heuristic) is in Figure 3.4 (for Mushroom scenario). For

Heuristic 2, we consider different degree values and we report the conciseness (from 2

to 400) derived from the degree variations from 0.1 to 1. We observe that the approach

requires up to 30k seconds, whereas the combined use of the heuristics makes the ap-

proach usable in interactive applications. The runtime performance are supported by

the number of generated d-formulas in Table 3.7. The separate application of the heuris-

tics is able to reduce the number of d-formulas up to 3 orders of magnitude, while the

combined application reduces the number of d-formulas up to 5 orders of magnitude.

3.7.2 Quantitative evaluation of effectiveness

To assess the effectiveness of the descriptions generated by our approach, we evaluate

them using a set of quality metrics along three perspectives: (1) structural quality, i.e.,
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Figure 3.4: Efficiency of heuristics (mushroom scenario).

characteristics of the descriptions independently of the use case; (2) understandability,

i.e., “how easy it is to understand a description?”; and (3) expressiveness, i.e., “how

many details are captured by a description?”.

Structural metrics. We use overlapping and precision metrics for the structural qual-

ity. Overlapping measures the percentage of tuples in the dataset for which more than

one d-formula hold:

overlap(D) =
2

ρ ∗ (ρ − 1)
∗ ∑
di,dj∈D
i≤j

∣I(di) ∩ I(dj)∣

∣I ∣

where I(di) represents the set of tuples of the dataset I that are true for di. This mea-

sures how discriminative the d-formulas are when taken in isolation. Generic descriptions

have high percentage of overlap, whereas peculiar description have small overlapping.

Orthogonally to overlap, we consider the precision. The higher the number of values

used in d-formula predicates, the higher the probability that a d-formula describes com-

binations of values that are not existing in the actual data. For instance, the d-formula

(a ∈ {α,β, γ} ∧ b ∈ {1,2}) describes three possible values for a and two for b. This is six

combinations in total: (a = α ∧ b = 1), (a = α ∧ b = 2), etc. The precision checks how
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many combinations correspond to tuples that actually exist in the dataset. For instance,

let us suppose that no tuple is true for (a ∈ {α}∧ b ∈ {1}). The precision highlights that

one out of six unfolded formulas is extra. This is measured with:

prec(D) =
1

ρ
∗ ∑
d∈D

∑u∈C×(d) eval(u, d)

∣C×(d)∣

where: C×(d) returns all the combinations by computing the cartesian product between

the values of the atomic predicates in d; and eval(u, d) is a boolean function that returns

true if u holds on d, and false otherwise.

Understandability metric. A description is understandable when its predicates are

discriminative. The purity quantifies the understandability by measuring the dispersion

of the values of the attributes across the d-formulas. We rely on the complement of the

Shannon Entropy H to compute the purity. The purity gets better (i.e. it tends to 1)

when we select the most appropriate attributes to describe a set of tuples. The purity of

a description is the complement of the weighted average of the entropy of its d-formulas:

purity(D) = 1 − [
1

ρ
∗ ∑
d∈D

(
1

∣Ad∣
∗ ∑
a∈Ad

Ha(d)) ∗
∣I(d)∣

∣I ∣
]

with Ha(d) being the Shannon entropy of the values of attribute a in the set of tuples

described by the d-formula d.

Expressiveness metrics. We evaluate the expressiveness of descriptions with aver-

age number of predicates per d-formula and with the number of distinct attributes per

description. The average number of predicates provides a measure of the complexity of

d-formulas: in fact, d-formulas composed of many attributes are clearly hard to read.

This difficulty can be mitigated by using the same attributes across d-formulas. In fact, a

low number of distinct attributes per description is preferable in terms of expressiveness.

3.7.2.1 Benchmark Experiments

For each scenario, we set the coverage at pre-determined intervals, and we sweep over the

degree and diversity (with steps of 0.1 points). For each combination, we compute the

top-25 descriptions. In this way we simulate a wide range of possible inputs provided by
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scenario cov purity precision overlap # pred
d-formula

distinct
attrs

Crime
(30 part.)

0.10 0.21 (0.01) 1.00 0.01 (0.01) 1.00 3.333 (0.47)
0.30 0.32 (0.09) 1.00 0.03 (0.01) 1.00 5.000
0.50 0.38 (0.08) 1.00 0.05 (0.01) 1.09 (0.08) 4.000
0.70 0.39 (0.04) 1.00 0.06 (0.02) 1.07 (0.07) 3.803 (0.79)
0.90 0.59 (0.24) 1.00 0.26 (0.07) 1.91 (0.70) 4.384 (1.62)

Mushroom
(2 part.)

0.10 0.03 1.00 0.01 (0.01) 1.00 1.833 (0.37)
0.30 0.16 (0.17) 1.00 0.06 (0.05) 1.00 1.822 (0.38)
0.50 0.17 (0.19) 1.00 0.24 (0.08) 1.00 1.844 (0.36)
0.70 0.42 (0.26) 0.94 (0.07) 0.34 (0.17) 1.40 (0.40) 2.299 (0.87)
0.90 0.28 (0.27) 0.53 (0.35) 0.57 (0.20) 6.23 (3.06) 6.990 (3.12)

Sensor
(24 part.)

0.10 0.10 (0.04) 1.00 0.04 (0.01) 1.00 4.000
0.30 0.26 (0.02) 1.00 0.09 (0.01) 1.00 3.000
0.50 0.29 (0.04) 1.00 0.22 (0.01) 1.00 2.444 (0.50)
0.70 0.37 1.00 0.44 (0.06) 1.07 (0.07) 2.333 (0.47)
0.90 0.58 (0.17) 0.98 (0.02) 0.72 (0.03) 1.78 (0.62) 2.679 (0.47)

SensorRandom
(24 part.)

0.10 0.01 1.00 0.04 (0.01) 1.00 1.00
0.30 0.02 1.00 0.31 (0.01) 1.00 1.00
0.50 0.19 1.00 0.47 (0.01) 1.00 1.00
0.70 0.24 1.00 0.63 (0.02) 1.00 1.836 (0.37)
0.90 0.38 (0.21) 1.00 0.83 (0.03) 1.00 2.378 (0.58)

Table 3.8: Effectiveness of the different scenarios.

rules/
part.

coverage degree diversity purity overlap
# pred

d-formula
distinct

attrs

Crime 161.97 99.95% 0.77 0.25 0.26 0.00 23.05 6.00

Mushroom 6.5 100% 0.2 0.93 0.19 0.00 5.00 9.00

Sensor 2635.13 48.84% 0.70 0.25 0.13 0.00 20.32 6.00

SensorRandom 6944.46 16.62% 0.79 0.24 0.07 0.00 26.46 6.00

Table 3.9: Comparison with Decision Trees. Coverage in this case is the final accuracy
of the generated model.

the users. The result is the computation of 3025 descriptions per coverage level, which

are evaluated according to the aforementioned metrics. Table 3.8 shows the average

values (and the standard deviations between parentheses when it differs from zero) of

the descriptions of each series, grouped by coverage.

Analyzing the results, we first observe that when then coverage increases, the purity

increases as well. This is due to Heuristic 2 that avoids the combination of predicates

with different coverage levels. In fact, the data distributions in the scenarios follow the

Zipf’s law, i.e., there is a small number of values frequently repeated. The typical d-

formula for a low level coverage is instead composed of predicates with rather infrequent

values, thus delivering a lower purity. Furthermore, we can notice that the number of



60

#
rules

cov degree diversity purity overlap
# pred

d-formula
distinct

attrs
Decision sets

[LBL16] 14 1 0.1 0.9 0.77 0.88 2.43 5.00

Our approach 2 1

0.1 0.9 0.75 0.77 2.00 4.00
0.1 0.1 0.77 0.77 2.50 4.00
0.9 0.1 0.38 0.61 3.50 5.00
0.9 0.9 0.51 0.61 2.50 5.00

Table 3.10: Comparison with Decision Sets over Mushroom. The other scenarios
timed-out before generating any description.
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Figure 3.5: Impact of the deg and div parameters on crime’s descriptions.
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Figure 3.6: Impact of the deg and div parameters on mushroom’s descriptions.

distinct attributes per description is typically low. This means that the descriptions are

usually easy to read and are composed of d-formulas that can be compared with each

other (because attributes are largely shared). The number of predicates, overlap and

precision also show a common trend. The overlap typically increases with the number

of predicates while the precision decreases. The motivation is that with more predicates
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Figure 3.7: Impact of the deg and div parameters on sensor’s descriptions.
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Figure 3.8: Impact of the deg and div parameters on crime’s descriptions.

we increase the possibility to describe combinations of values that do not exist in the

dataset. The partitions in the SensorRandom scenario have been randomly generated,

and contain data that is poorly related. This results in descriptions with high overlap

and low purity w.r.t. the Sensor scenario where the data was partitioned over hour.

Indeed this latter result shows that the approach is quite robust against random or

“bad” partitioning.

3.7.2.2 Comparison with Other Approaches

In this section we compare our approach against a Decision Tree Classifier (DTC) and

Decision Sets (DS) [LBL16].
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Figure 3.9: Impact of the deg and div parameters on mushroom’s descriptions.
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Figure 3.10: Impact of the deg and div parameters on sensor’s descriptions.

DTC. For each scenario we trained a tree over all data and against the partitioning

attribute. The rules obtained are translated into d-formulas composing a description.

We used the DTC provided by the Scikit-learn platform 8 with different parameters to

find a configuration minimizing the number of rules, and using the entropy H (the same

used by LVA) as optimization metric for the construction of the tree.

We can observe from Table 3.9 that a decision tree is not a flexible choice since users

cannot easily customize any parameter analogously to degree, diversity, and coverage.

Moreover, by using the classifier we cannot constraint the generation of a single d-formula

per partition. Only for Mushroom the number of rules is reasonable. In other scenarios,

DTCs generate thousand of rules, thus making impossible for a human to get insights

8https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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from them. Note that when the partitions of the dataset are randomly generated, the

number of rules explodes, and the coverage of the result is very low.

DS. Decision sets are set of independent if-then rules. Because each rule can be applied

independently, decision sets are considered as simple, concise, and easily interpretable.

[LBL16] proposes a classification algorithm based on decision sets obtained by selecting

from a set of rules generated with the A-PRIORI algorithm [AIS93] the ones maximizing

accuracy and interpretability.

We run an experiment using the DS implementation provided by the authors 9 on the

Mushroom scenario. The A-PRIORI algorithm returned 46 rules and the optimization

process took more than 85 hours to return the best 14 rules that we considered a de-

scription for the dataset 10. Then, we computed the coverage, degree and diversity of

that description as shown in in Table 3.10. Additionally, we customize our approach to

generate a description with similar values. The description takes a couple of minutes to

be computed. The second line of Table 3.10 shows that our description is simpler and

more interpretable than the one generated by decision sets since it is composed of two

rules only (our approach generates one rule per partition), and has less overlap while

keeping a similar purity level. The rest of the Table 3.10 shows that the best description

is obtained setting high degree and low diversity values.

3.7.2.3 Degree/Diversity Impact on Descriptions

We finally evaluate the effect of user-selected deg and div on the generated descriptions.

In particular, we run combinations of degree and diversity levels (deg and div varying

from 0.0 to 1.0 with an offset equal to 0.1) and we evaluate the total number of attributes

and distinct attributes of the top-1 computed description. Figures 3.5 - 3.10 show the

results of this evaluation. For each scenario, only one plot for low and high coverage levels

is reported; the other settings show a similar trend. We see that the user’s preferences

drive the generation of descriptions with the desired features, as expressed by the input

9https://github.com/lvhimabindu/interpretable decision sets
10The small number of rules generated by the A-PRIORI algorithm is due to the high support selected

(0.8). Reducing the support we obtained more candidate rules to be selected by the optimization process.
With the existing implementation, the optimization process does not converge when more rules are
evaluated (we set a 300 hours timeout). Note that the optimization algorithm uses sampling techniques
and therefore is not deterministic in time and results.
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parameters. When the deg increases, the number of attributes increases too. Low levels

of div correspond to a low number of distinct attributes.

3.7.3 Qualitative evaluation of effectiveness

We finally asses the effectiveness of our approach qualitatively using the by submitting

the questionnaire shown in Figure 3.11 to a selected number of users (21 PhD Students).

The questionnaire is composed of 12 questions related to 8 descriptions representing the

Mushroom dataset (4 describing a low coverage setting, 4 a high coverage). In the

first part of the questionnaire, we evaluate the user’s preferences in terms of degree and

diversity. 6 questions ask the users to select between two descriptions, the one they

would have selected for solving a specific explanation task (i.e. a task that would have

required either a broad description or an outlier detection). The proposed descriptions

is conceived to force the users to select between a high and a low diversity description or

between a high and a low degree description. The result of the experiment is that users

prefer low diversity descriptions (61.90%). High diversity descriptions are preferred by

19.05% of the users and the remaining 19.05% of the participants did not express any

real preference selecting for similar tasks different kinds of descriptions. The users’ pref-

erences in terms of degree are less marked: 42.86% of the users preferred high degree

descriptions, 23.80% low degree, and 33.34% did not express any real preference. In the

second part, we evaluate the ability of the users to get insighta from a dataset via de-

scriptions. 6 assertions have been proposed to the users who, analyzing the descriptions,

had to confirm their insightfulness. Users were able to select the assertions generated by

the given descriptions in 68.25% of the cases. Finally, we asked the users to rate their

overall experience in analyzing a dataset via a set of rules. The average of the evaluation

achieved by a rule-based system as the one proposed was 4.1/5.

To assess the reliability of agreement of the users involved, we computed the Fleiss’ kappa

measure of the evaluations collected. The result is 0.607 that is typically considered as

a substantial agreement among the users.
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The Mushroom Data Set 
This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each                        
species is identified as definitely edible, and  poisonous. The dataset is composed of 8124 instances. It is available at https://archive.ics.uci.edu/ml/datasets/mushroom 

   POISONOUS EDIBLE 

D1 

 
 

({class = poisonous AND cap-color ∈ {'cinnamon'}}) ({class = edible  AND cap-color ∈ {'purple'} }) } 

D2 ({class = poisonous AND ring-number ∈ {'none'} })  ({class = edible AND ring-type ∈ {'flaring'} }) } 

D3 ({class = poisonous AND cap-color ∈ {''cinnamon' '} AND ring-number 
∈ {'none '} AND population ∈ {'clustered'} AND odor  ∈ {'musty'} AND 
ring-type ∈ {'none'}})  

({class = edible AND cap-color∈ {'purple '} AND spore-print-color ∈ {'chocolate'} 
AND ring-type ∈ {'flaring'}}) 

D4 ({class = poisonous AND cap-color ∈ {''cinnamon'} AND ring-number 
∈ {'none '} AND population ∈ {'clustered'} AND odor  ∈ {'musty'}})  

({class = edible AND spore-print-color ∈ {'chocolate'} AND ring-type ∈ {'flaring'} 
}) 

D5 

 

{class = p AND spore-print-color ∈ {'chocolate', 'white'} })  ({class = e AND spore-print-color ∈ {'brown', 'black'} )}) 

D6 ({class = poisonous AND bruises ∈ {'no'} })  ({class = edible AND odor  ∈ {'none'} }) 

D7 ({class = poisonous  AND spore-print-color ∈ {'chocolate', 'white'} AND 
ring-number ∈ {'one'}})  OR  

({class = edible  AND spore-print-color ∈ {'brown', 'black'} AND cap-surface ∈ 
{'scaly', 'smooth', 'fibrous'} AND ring-number ∈ {'one'}}) } 

D8 ({class = poisonous AND ring-number ∈ {'one '} AND bruises ∈ {'no'} 
})  OR  

({class = edible AND spore-print-color ∈ {'brown', 'black'} AND cap-surface ∈ 
{'scaly', ''smooth', 'fibrous'} AND bruises ∈ {'no', 'yes'} AND ring-number ∈ {'one'} 
}) 

 

Let us suppose that you want to know some anomalies about the dataset.  
1. Do you prefer D1 or D5?  
2. Do you prefer D1 or D2?  
3. Do you prefer D1 or D3?  
4. Is there any real difference between the knowledge of the dataset 

content you obtain from  D3 and D4? YES / NO 
 Let us suppose that you want  to have a broad, generic description about 

the dataset.  
1. Do you prefer D5 or D6?  
2. Do you prefer D5 or D7?  

Would you eat  
1. a mushroom with a cap-color purple? YES / NO 
2. a mushroom with a cap-color cinnamon? YES / NO 
3. a mushroom with 1 ring? YES / NO 
4. a mushroom with 1 ring and no bruises? YES / NO 

Is it true that  
1. an edible mushroom has no odor? YES / NO 
2. an edible mushroom has spore-print-color brown or black? YES / 

NO 

Figure 3.11: Questionnaire administered to the users.

3.8 Summary

In this chapter, we introduce the problem of generating data descriptions: a compact and

insightful set of predicates allowing data enthusiasts to inspect datasets at a glance. We

propose a set of metrics and heuristics to drive the generation of data descriptions in a

computationally efficient manner while returning high-quality results. We run extensive

experiments over real-world dataset to assess the performance of our approach both

quantitatively and qualitatively. We think that data descriptions are a first step towards

the goal of helping users inspecting a set of records.





Chapter 4

Discovering Order Dependencies

through Order Compatibility

In the previous chapter, we have studied the data description problem, in which a user

retrieves the top-k descriptions of datasets in order to its content. In this chapter,

instead, we study a problem related to dependency discovery, i.e., relationships between

columns of a dataset.

In this context, we study the problem of order dependency discovery, we provide a

new solution to this problem that could be easily parallelized and outperform existing

approaches. This chapter describes our findings and solutions for this problem. We con-

clude with a thorough experimental assessment on several real and synthetic relational

databases.

4.1 Contributions

In particular, our contributions are as follows:

• We introduce a definition of minimality for a set of order compatibility dependen-

cies that we show being complete in the sense that it can recover all valid order

compatibility dependencies that hold over a given instance of relational data;

• We propose a novel algorithm for finding order dependencies that is complete and

it performs the detection of order dependencies in parallel.

67
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• We perform an exhaustive experimental evaluation that shows the performance of

our algorithm in comparison with existing works, including a study of its scalability

over big datasets and multiple threads.

• We discuss possible solutions for the discovery of the most important order de-

pendencies in the case of datasets that could not be managed (higher number of

columns) in a reasonable amount of time.

4.2 Outline

This chapter is structured as follows. First, Section 4.3 presents an illustrative exam-

ple. Then in Section 4.4, we review the relevant definitions and theorems that formalize

the connection between order dependencies and order compatibility dependencies. In

Section 4.6 we prove that order dependency discovery can be guided by order compat-

ibility dependencies without losing completeness. Our novel algorithm is presented in

Section 4.7, while Section 4.8 contains the discussion of our experimental evaluation.

4.3 Motivating Example

An example of functional dependency can be seen in Table 4.1, that shows a relational

table with data regarding yearly incomes, savings and taxes. Assume that the tax

system is a progressive one that categorizes the different incomes into brackets, each

of them characterized by a tax percentage. Thus, there is a functional dependency

from the income amount to the tax brackets, i.e., income → bracket. Since for every

income range the percentage is fixed, there are two other functional dependencies from

the income to the tax amount and vice-versa, i.e., income → tax and tax → income.

Using the transitive property of functional dependencies a new one can be inferred, i.e.,

tax→ bracket.

A closer look at Table 4.1 can illustrate another, stronger, form of dependency: as the

income is increasing, bracket and tax amount are increasing as well. In other words, if

we were to order the table based on the income column, each one of the bracket and the

tax amount columns will also end up being ordered. This form of dependency is known
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as an order dependency and is typically noted with the ↦ symbol, i.e., income ↦ tax,

which is read as: income orders tax.

The most important application of order dependencies is their use in the optimization of

queries; in particular, they can be used to rewrite the ORDER BY clauses in SQL queries

in ways similar to that of functional dependencies for the GROUP BY statements [SSM96,

SGG+14]. Consider the following query:

SELECT income, bracket, tax

FROM TaxInfo

ORDER BY income, bracket, tax

Given that the order dependencies income↦ tax and income↦ bracket hold, the query

optimizer can infer that sorting by income makes the ordering on the other two columns

redundant, so the ORDER BY clause can be simplified to ORDER BY income.

In the example of Table 4.1, the point-wise order dependency income,tax ↝ bracket

holds because if both of the tuples (income,tax) and (tax,income) are lexicographically

ordered, then the column bracket is ordered in the same way.

There are cases where two lists of attributes order each other when taken together. This

property is known as order compatibility and is denoted with the symbol ∼. In Table 4.1,

e.g., it holds that

(income,savings)↦ (savings,income) and

(savings,income)↦ (income,savings)

TaxInfo

name income savings bracket tax

T. Green 35,000 3,000 1 5,250

J. Smith 40,000 4,000 1 6,000

J. Doe 40,000 3,800 1 6,000

S. Black 55,000 6,500 2 8,500

W. White 60,000 6,500 2 9,500

M. Darrel 80,000 10,000 3 14,000

Table 4.1: A relational table with financial information.
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and thus income ∼ savings. Another way to see an order compatibility dependency

between two columns is that their values are both monotonically non-decreasing when

they are considered pairwise.

4.4 Background

To provide the background of our problem, we first review the definition of order de-

pendency and its axiomatization, then we describe the formal relation between order

dependencies (ODs), functional dependencies (FDs) and order compatibility dependen-

cies (OCDs).

4.4.1 Notational Conventions and Definitions

We adopt the notational conventions summarized in Table 4.2, consistently with the

literature [SGG12b]. Let R be a relation over the set of attributes U and r be a table

instance of R, i.e. a set of tuples under R’s schema. A tuple p can be projected

over a single attribute A, over a set of attributes X and over a list of attributes X by

subscripting the tuple as follows: pA, pX , pX.

We assume that a total ordering is defined over each of the attributes, denoted ≤A; in the

following, however, we will drop the attribute specification and use ≤, as the attribute

will be always clear from the context. Order dependencies are defined based on the

operator ≼, which is equivalent to a lexicographical ordering over a list of attributes,

and is defined by:

Definition 1 (operator ≼). Given a list of attributes X ∶= [A∣T] and two tuples p, q ∈ r,

the operator ≼ (and its associated operator ≺) are defined as follows:

pX ≼ qX ⇔ (pA < qA) ∨

((pA = qA) ∧ (T = [⋅] ∨ pT ≼ qT))

pX ≺ qX ⇔ pX ≼ qX ∧ pX ≠ qX

(4.1)

The ≼ operator reproduces the ordering clause ORDER BY ASC in SQL [SGG12b].
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Based on the comparison operator of Definition 1, we can introduce the concept of order

dependency [SGG12b].

Definition 2 (Order dependency (OD)). Given a relation R and two lists X and Y,

X ↦ Y is an order dependency if, for any instance r of R and for every pair of tuples

p, q ∈ r, the following implication holds:

pX ≼ qX ⇒ pY ≼ qY (4.2)

If both X ↦ Y and Y ↦ X hold, we say that X and Y are order equivalent and we

write X ↔ Y. If XY ↔ YX we say that X and Y are order compatible and we write

X ∼ Y. We will discuss the latter relation in Section 4.4.2.

Order dependencies satisfy the set of axioms JOD, introduced by Szlichta et

al. [SGG12b], that are reported in Table 4.3. These axioms are analogous to the Arm-

strong axioms for functional dependencies [Arm74].

4.4.2 Decomposing Order Dependencies

We show how an order dependency can be decomposed in a pair composed of one

functional dependency and one order compatibility dependency.

Relations:
▸ R, written as a capital letter in bold italics, is a relation over a set of attributes
U ;

▸ r, written as a lowercase letter in bold italics, is a table instance over R, i.e. a
set of tuples;

▸ Single attributes are represented with capital letters: A, B, and C;
▸ Tuples are represented with lowercase letters: p, q, s, and t.

Lists:
▸ Bold capital letters are lists of attributes: X,Y, and Z. they can represent the

empty list [⋅];
▸ A list is denoted with square brackets [A,B,C]. A list [A∣T] is composed by

a head A and a tail T;
▸ XY is a shorthand for X ○ Y, XA and AX are shorthands for X ○ [A] and

[A] ○X respectively, AB denotes [A,B].

Table 4.2: Notational conventions
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AX1: Reflexivity

XY ↦X

AX2: Prefix

X↦Y
ZX↦ ZY

AX3: Normalization

WXYXV↔WXYV

AX4: Transitivity

X↦Y

Y ↦ Z

X↦ Z

AX5: Suffix

X↦Y
X↔YX

AX6: Chain

X ∼ Y1

∀i∈[1,n−1]Yi ∼ Yi+1

Yn ∼ Z

∀i∈[1,n]YiX ∼ YiZ

X ∼ Z

Table 4.3: The set of axioms JOD for order dependencies

Functional dependencies. Functional dependencies encode the fact that, in a rela-

tion, one attribute determines completely another attribute.

Definition 3 (Functional dependency (FD)). Given a relation R and two sets of at-

tributes X and Y, X → Y is a functional dependency if, for any instance r of R and for

every pair of tuples p, q ∈ r, the following implication holds:

pX = qX ⇒ pY = qY (4.3)

Order Compatibility Dependencies. Order compatibility dependencies encode the

fact that in a relation two lists of attributes show the same monotonicity. If we order

either combination of the lists in non-decreasing order, they end up both ordered such

their values are both monotonically non-decreasing.

Definition 4 (order compatibility dep. (OCD)). Given a relation R and two lists of

attributes X and Y in R, X ∼ Y is a order compatibility dependency if, for any instance

r of R and for every pair of tuples p, q ∈ r, the following implications hold:

pXY ≼ qXY ⇔ pYX ≼ qYX (4.4)

Order dependencies are a stricter relation between two attributes with respect to func-

tional and order compatibility dependencies; furthermore, when an order dependency
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between two lists of attributes X and Y holds, an order compatibility dependency be-

tween X and Y holds as well. In this sense, order dependencies combine the fact that

an attribute functionally determines and have the same monotonicity of another when

ordered together.

We present previous results [SGG12b] that formally highlight the nature of the relation-

ship between these dependencies, showing that when an order dependency does not hold

there are only two possible scenarios called split and swap. Although the proofs of the

theorems are not our own contribution, we have included it for ease of reference in the

Section 4.5. When X does not order Y, i.e. when the order dependency between X and

Y does not hold, we write X(Y.

Split. A split indicates the case where there exists a pair of tuples that have the

same values when projected over the attributes X, but have different values over the

attributes Y. Formally:

Definition 5 (split). Two tuples s, t ∈ r form a split over two lists of attributes X, Y

iff sX = tX but sY ≠ tY, or equivalently:

∃s, t ∈ r ∶ sX = tX ∧ sY ≻ tY

When an OD between two attributes list is valid, then a FD is valid as well (Theorem

15, [SGG12b])

Theorem 6 (ODs subsume FDs). For every instance r of relation R, if the OD X↦Y

holds, then the FD X → Y holds.

Whereas if there is a split between two lists of attributes X and Y, there is no guarantee

that ordering data will result in ordered tuples over Y and XY; in other words, both

the ODs X↦Y and X↦XY do not hold. Furthermore, a split falsifies the functional

dependency X → Y as well.

The relationship between order and functional dependencies is formalized as follows

(Theorem 13, [SGG12b]):

Theorem 7 (FD and OD correspondence). For every instance r of a relation R, the

functional dependency X → Y holds iff X ↦ XY holds for all lists X that order the

attributes of X and all lists Y that order the attributes of Y.
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t1
t2
t3
t4
t5

A B

1 4

2 5

3 6

3 7

4 1

Table 4.4: A relational table containing both a split and a swap between the two
attributes A and B.

In Table 4.4, tuples t3 and t4 form a split for the attributes A and B, thus A ( B and

A( AB. The functional dependency A→ B is not valid, as well.

Swap. A swap indicates the case where there exists a pair of tuples whose values pro-

jected over two lists of attributes X and Y are swapped, i.e. they are sorted differently

when they are ordered with respect to X or Y. Formally:

Definition 8 (Swap). Two tuples s, t ∈R form a swap over two list of attributes X and

Y, iff sX ≺ tX but tY ≺ sY, or equivalently:

∃s, t ∈ r ∶ sX ≺ tX ∧ sY ≻ tY

Swaps between X and Y falsify the ODs of the form X↦ Y, Y ↦X, and XY↔YX.

For example, tuples t1 and t5 in Table 4.4 form a swap for attributes A and B, thus

A( B, AB ( B, and AB ( BA.

Splits and swaps establish a correspondence between order dependencies, functional de-

pendencies and order compatibility dependencies, as in the following theorem (Theorem

15, [SGG12b]):

Theorem 9 (OD = FD + OCD). X ↦ Y holds iff X → Y ( X ↦ XY) and X ∼ Y

( XY↔YX).

In summary, when an order dependency between two lists of attributes X and Y holds:

• a functional dependency X → Y holds, which implies the absence of split condi-

tions;

• an order compatibility dependency between X and Y holds, which implies the

absence of swap conditions.
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We exploit this relation to guide our discovery algorithm as established in Section 4.7.2.

4.5 Proofs of fundamental theorems of OD

In this section, we first introduce the definition of functional and order compatibility

dependencies and then we show how an order dependency can be decomposed in a pair

of one FD and one OCD.

Theorem 10 (ODs subsume FDs). For every instance r of relation R, if the OD X↦Y

holds then the FD X → Y holds.

Proof. Let s, t ∈ r, such that sX = tX. Therefore sX ≼ tX and tX ≼ sX. By the definition

of OD, sY ≼ tY and tY ≼ sY. We can then conclude that sY = tY and thus sY = tY .

The following theorem establishes a more refined relationship between order and func-

tional dependencies (Theorem 13, [SGG12b]).

Theorem 11 (FD and OD correspondence). For every instance r of relation R, the

FD X → Y holds iff X↦XY holds for all lists X that order the attributes of X and all

lists Y that order the attributes of Y.

Proof.

⇒ If X ↦ XY holds, by Theorem 6 X → XY. By the Reflexivity axiom on

FDs [Arm74], XY → Y is also true. By Transitivity on FDs [Arm74], we can

prove that X → Y is true.

⇐ If, by contradiction, there are two lists of attributes X,Y such that X↦XY does

not hold, there exists s, t ∈ r such that sX ≼ tX but sXY ⋠ tXY. This implies that

sX = tX and sY ≻ tY. Therefore sY ≠ tY and X → Y is not true.

Theorem 12 (OD = FD + OCD). X↦Y holds iff X↦XY and X ∼ Y (XY↔YX).

Proof. Now we can prove the original theorem:
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⇒ This part can be separated in two claims:

– (X ↦ Y ⇒ X ↦ XY): By applying the Union Theorem (Theorem

2, [SGG12b]) to X↦Y and the trivial OD X↦X, we obtain X↦XY.

– (X ↦ Y ⇒ XY ↔ YX): If X ↦ Y holds, then by Suffix (AX5) X ↔ YX

holds as well. By Reflexivity (AX1) XY ↦ X and by Transitivity (AX4)

XY ↦ YX. Finally, from the previous point, X ↦ Y implies X ↦ XY and

thus, then by Transitivity (AX4) YX↦XY, thus proving that XY↔YX.

⇐ If X ↦ XY and XY ↔ YX, by Transitivity (AX4) X ↦ YX. By Reflexivity

(AX1) YX↦Y and by Transitivity (AX4) again X↦Y.

4.6 Order Dependency Through Order Compatibility

This section introduces the concepts that lay the foundations to our approach.

4.6.1 Minimality of Discovered Dependencies

Similarly to what has been done for functional dependencies, we introduce the notion of

minimality of a set of order compatibility dependencies. In principle, minimality is the

property for which a set of dependencies equipped with inference rules can recover all

the dependencies that are valid in a given instance of relational data. Axioms AX1-AX6

presented in Table 4.3 provide inference rules for order dependencies.

The concept of minimality for order dependencies, as for other types of dependencies,

have several uses. First of all, it allows reasoning about the validity of pruning rules,

e.g. to show that they do not lead to loss of information about valid dependencies in

the relation.

Minimality serves also the purpose of compressing information to a manageable size: in

fact, if we take a relation with n attributes, in the worst case where each of which is

order equivalent to every other, the minimal set of ODs would contain n−1 dependencies

(A ↔ B,A ↔ C, etc.), while the set of all valid dependencies would contain O((n!)2)
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elements: all the possible combinations of attributes on the left-hand and right-hand

sides, a prohibitively large number.

Finally, real applications may not need the whole list of dependencies: for example,

in knowledge discovery, redundant dependencies do not add value to the properties

discovered and too many dependencies can cause the most important ones to be missed;

in query optimization, the only useful dependencies are those that can be applied to the

queries to be performed.

Any pruning rule applied by a dependency discovery algorithm needs to respect mini-

mality, in the sense that it should allow the recovery of the full set. A complete algorithm

must find at least all minimal order dependencies over an instance r of a relation R.

To introduce the concept of minimality for ODs, we start by presenting the concepts of

closure and equivalence of sets of order dependencies.

Definition 13 (closure). The closure of the set of ODs M denoted M+, is the set of

ODs that are logically implied from M by the axioms JOD = {AX1 − AX6} defined in

Table 4.3.

M+ = {X↦Y ∣M ⊢JOD
X↦Y}

Definition 14 (equivalence of sets of ODs). Two setsM1 andM2 of order dependencies

are equivalent if and only if they have the same closure M+
1 =M

+
2 .

The closure of a set of minimal dependencies is the set of all the dependencies that

are valid over r. We build this definition first showing which lists of attributes are in

minimal form and then when an OCD is minimal. Finally, we prove that our definition

of minimality is complete.

Order compatibility dependencies employ attribute lists instead of attribute sets, thus

we introduce the concepts of minimal attribute list. An attribute list is minimal if in it

has no embedded order dependency, i.e. the list of attributes is the shortest possible.

Definition 15 (minimal attribute list). An attribute list X is minimal if there is no

other list X′ such that:

• X′ is smaller than X, and

• X and X′ are order equivalent.
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For example, the attribute list ABA is never minimal, in fact by the Normalization

axiom (AX3) we know that ABA ↔ AB and AB is a shorter list than ABA. Instead,

AB is a minimal attribute list, unless A ↔ B.

An OCD is minimal if both sides are given as minimal attribute lists and there are no

repeated attributes:

Definition 16 (minimal OCD). An OCD X ∼ Y is minimal if:

• X and Y are minimal attribute lists;

• X ∩Y = ∅.

We show in the following theorem that OCDs with repeated attributes can be derived

from OCDs without repeated attributes:

Theorem 17 (Completeness of minimal OCD). Order compatibility dependencies with

repeated attributes can be derived from OCD without repeated attributes.

Proof. The proof of this theorem is split in three cases:

1. OCDs of the form XY ∼ XZ can be derived from Y ∼ Z;

2. OCDs of the form XY ∼ MY can be derived from XY ∼ M and X ∼ MY;

3. OCDs of the form XY ∼ MYN can be derived from X ∼ M, XY ∼ M, X ∼ MY

and XY ∼ MN;

which are covered respectively by Theorems 22, 23 and 24 which are presented separat-

edly for clarity in Section 4.6.3.

The following result extends the Downward Closure theorem (Theorem 12, [SGG12b]):

Theorem 18. Downward closure for OCD

XY ∼ ZV
X ∼ Z

Theorems 17 and 18 provide the justification to the structure of the search tree used in

our approach as explained in Section 4.7.2. In particular we derive the following pruning

rule:
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Theorem 19 (Pruning rule for OCD).

X ≁ Z
XY ≁ ZV

Proof. This theorem is the contronominal preposition of Theorem 18.

Theorem 17 justifies the reduction of the search space that we highlight in the following

section.

4.6.2 Dimension of the Search Space

The number of valid ODs over a relation R is vast: in fact if R has n attributes, then

all permutations of length k of n elements must be considered both for the left-hand

side and the right-hand side of the OD. We address a limitation of the previous work by

Langer and Naumann [LN16] and we show that some order dependencies with repeated

attributes can not be derived from other dependencies without repeated attributes.

For example, in Table 4.5 (a) we have that AB ( B, instead in Table 4.5 (b) we have

AB ↦ B and A ∼ B. For both tables the dependencies A ( B and B ( A do not hold,

thus the validity of AB ↦ B and A ∼ B in this case can not be inferred from shorter

ODs.

t1
t2
t3
t4
t5

A B

1 4

2 5

3 6

3 7

4 1

A B

1 4

2 5

3 6

3 7

4 7

Table 4.5: Two relations where the ODs A( B and B ( A do not hold; furthermore
in (a) AB ( B while in (b) AB ↦ B and A ∼ B.

Finding all valid order dependencies thus requires, in principle, the need for checking

all combinations X↦Y where both X and Y can be permutations of length k of the n

attributes in R with 1 ≤ k ≤ n. If we denote with S(n) the number of k-permutations of

n elements we have:

S(n) = ⌊e ⋅ n!⌋ − 1
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The number k-permutations of n elements is given by:

kPn =
k

∏
i=0

(n − k) (4.5)

We can also write kPn = (k − 1)Pn ⋅ (n − k + 1) with 0Pn = 1. We want to calculate the

following sum:

S(n) =
n

∑
k=0

kPn =
n

∑
k=0

k

∏
i=0

(n − k)

= 1 + n + n ⋅ (n − 1) + ⋅ ⋅ ⋅ + n!

(4.6)

We also note that the S(n) can be obtained from the recursive expression:

S(n) = 1 + n + n ⋅ (n − 1) + ⋅ ⋅ ⋅ + n!

= 1 + n ⋅ (1 + (n − 1) + (n − 1) ⋅ (n − 2) + ⋅ ⋅ ⋅ + (n − 1)!

= 1 + nS(n − 1)

(4.7)

The series in 4.6 can be written as:

S(n) = n! ⋅ (
1

0!
+

1

1!
+ ⋅ ⋅ ⋅ +

1

n!
) (4.8)

Recalling the definition of the Napier constant e ∶= ∑∞
i=0

1
i! we can write:

S(n) = n! ⋅ e − (
1

(n + 1)
+

1

(n + 1)(n + 2)
+ . . .) (4.9)

We can denote the expression in parenthesis with r(n) = 1
(n+1) +

1
(n+1)(n+2) + . . . . The

following inequality holds:

r(n) ≤
1

n
+

1

n2
+

1

n3
+ ⋅ ⋅ ⋅ =

∞

∑
k=0

(
1

n
)
k

− 1 =
1

n − 1
(4.10)

For n > 2 then r(n) < 1 and therefore:

e ⋅ n! − 1 < S(n) < e ⋅ n! (4.11)

Since S(n) must be integer we have:

S(n) = ⌊e ⋅ n!⌋ (4.12)
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Excluding trivial ODs of the form X ↦ X, the number of candidates that needs to be

checked would be:

C(n) = (S(n) − 1) ⋅ (S(n) − 1) − (S(n) − 1)∝ O((n!)2) (4.13)

With n = 10, there are more than 97 ⋅ 1012 candidates ODs.

In contrast to general order dependencies, OCDs candidates with repeated attributes,

i.e. X→Y or X ∼ Y where X ∩Y ≠ ∅, are redundant in the sense that their validity can

be inferred from the validity of other dependencies of the same type without repeated

attributes and with shorter attribute lists.

Theorem 20. X ∼ Y iff XY ↦Y

Proof. We prove the implication in each direction:

⇒ By definition X ∼ Y implies that both the order dependencies XY ↦ YX and

YX ↦ XY are valid. By Reflexivity (AX1) YX ↦ Y and thus by Transitivity

(AX4) the order dependency XY ↦Y is valid.

⇐ Conversely, if XY ↦ Y, by Suffix (AX5) XY ↦ YXY and Normalization (AX3)

XY ↦YX.

This means that ODs of the form XY ↦Y and OCDs of the form X ∼ Y are equivalent.

We are thus enabled to solve the problem by considering only OCDs without repeated

attributes, and thus the dimension of the search space is reduced to O(n!).

As shown in Theorem 9, if X ↦ Y then X ∼ Y is valid; we can thus derive the fol-

lowing theorem, which will provide the foundation for the pruning rules detailed in

Section 4.7.2.1.

Theorem 21.
X↦Y
XZ ∼ Y (4.14)

Proof. By the Augmentation theorem [SGG12b], X ↦ Y implies XZ ↦ Y. By Theo-

rem 9 of Section 4.4.2, XZ↦Y implies XZ ∼ Y.
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4.6.3 Completeness of Minimal OCD

We divide the proof of the completeness of our definition of minimality for OCDs in

three parts: first, in the following theorem we prove that attributes list with repeated

attributes at the beginning are redundant:

Theorem 22 (Completeness of minimal OCD - 1).

Y ∼ Z

XY ∼ XZ

Proof. By the Shift theorem [SGG12b] and the fact that X↔X by Reflexivity (AX1):

YZ↦ ZY

X↔X

XYZ↦XZY

by Normalization (AX3) and Replace [SGG12b] XYXZ↦XZXY. Analogously by the

Shift theorem [SGG12b] starting from ZY ↦ YZ we obtain XZXY ↦ XYXZ. Thus

XYXZ↔XZXY, i.e. XY ∼ XZ

The following theorem proves that attributes list with repeated attributes at the end

are also redundant:

Theorem 23 (Completeness of minimal OCD - 2).

X ∼ Y

XZ ∼ Y

X ∼ YZ

XZ ∼ YZ

Proof. 1. using XY ↔ YX and XZY ↔ YXZ, by Normalization (AX3) XZY ↔

XZYZ and by Replace [SGG12b] YXZ↔XZYZ;

2. using XY ↔ YX and XYZ ↔ YZX, by Normalization (AX3) YZX ↔ YZXZ,

by Replace [SGG12b] YXZ↔YZX and by Transitivity (AX4) YXZ↔YZXZ;
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By Transitivity (AX4) YXZ ↔ XZYZ and YXZ ↔ YZXZ imply XZYZ ↔ YZXZ,

i.e. XZ ∼ YZ.

Finally, the following theorem proves that attributes list with repeated attributes in the

middle are redundant:

Theorem 24 (Completeness of minimal OCD - 3).

X ∼M

XY ∼M

X ∼MY

XY ∼MN

XY ∼MYN

Proof. 1. from XY ∼ MN, by Normalization (AX3) XYMYN↔MNXY;

2. from XY ∼ M and X ∼ MY, using X ∼ M and Replace [SGG12b] we get MYX↔

XYM and MXY↔MYX↔XYM;

3. from (2), by the Shift theorem [SGG12b] with MY ↔ MY and MNXY ↔

XYMMYN we get MYMNXY↔MYXYMMYN;

4. by Normalization (AX3) MYMNXY↔MYNXY;

5. from MYXYMMYN, using MYX ↔ XYM and Normalization (AX3) we get

XYMYMYN and finally XYMYN;

From points (3), (4) and (5) we finally get MYNXY ↔ XYMYN, i.e. XY ∼ MYN.

4.7 The OCDdiscover Algorithm

We present now the details of our algorithm, called ocddiscover, by first examin-

ing its search strategy to cover all the possible combinations and then presenting an

implementation in pseudo-code.
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4.7.1 Column Reduction

Given that the search space grows with the number of columns, we start our discovery

algorithm focusing on the columns showing special properties and we perform two oper-

ations: (a) removal of constant columns; (b) reduction of order-equivalent columns. The

dependencies provided by these operations are an integral part of the results provided

by our algorithm.

Removal of constant columns. Constant columns generate a huge amount of ODs;

in fact, over an instance r a constant column C is ordered by any other attribute list X.1

Thus, we remove all constant columns and we collect the corresponding dependencies.

Reduction of order-equivalent columns. Order-equivalent columns as A ↔ B

describe a relation in which both the directions of the order dependency hold. By the

Replace theorem (Theorem 6, [SGG12b]), we can replace any order dependency where

A appears with another dependency with any instance of A replaced with B, that is:

XAY↦MAN⇔XBY↦MBN

We check any combination of order-equivalent dependencies, i.e. for all A,B ∈ U we

verify the validity of A↦ B and B ↦ A, and we build the equivalence classes of columns

using the Tarjan algorithm [Tar72].

From each of these equivalence classes we choose a representative and we remove all

other columns. We store this information to later recover the redundant dependencies.

4.7.2 Search Tree

We use a breadth-first search strategy for identifying OCD relations in r ; in this way,

shorter minimal dependencies are discovered before longer ones. At the first level, we

consider the set of all pairs of single attributes. Given that OCDs are commutative, we

build this set by enumerating all the attributes with A1,A2, . . . ,An and taking all the

pairs (Ai,Aj) such that {(Ai,Aj) ∣ Ai,Aj ∈ U , i < j}.

1If C is constant column, the following property holds for any tuple p, q in any instance r of R:
pX ≤ qX ⇒ pC = qC , where the second part of the implication is always true by definition of constant
column.
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AA BB CC

A ⇠ CA ⇠ CA ⇠ BA ⇠ B B ⇠ CB ⇠ C

B ⇠ CAB ⇠ CABA ⇠ CBA ⇠ CA ⇠ CBA ⇠ CBAB ⇠ CAB ⇠ CA ⇠ BCA ⇠ BCAC ⇠ BAC ⇠ B

` = 2` = 2

` = 0` = 0

` = 1` = 1

` = 3` = 3

Figure 4.1: Permutation tree for a table with n = 3 attributes.

Figure 4.1 shows the tree T of generated candidates for a relation r with attributes

U = {A,B,C} where all possible candidates are generated.

Each OCD candidate X ∼ Y is checked for order compatibility; we are then confronted

with two possibilities:

• if the candidate is not order compatible, we do not generate any other candidate

starting from it, as stated by Theorem 19 in Section 4.6.1;

• if the candidate is order compatible, we generate new OCD candidates in the

following way: for each attribute not already present in the OCD, for each A ∈

U / {X ∪Y}, we add it to the right of each attribute list, i.e. XA ∼ Y and X ∼ YA,

then we apply further pruning rules as explained in Section 4.7.2.1.

4.7.2.1 Pruning Rules

When we find a new OCD X ∼ Y, we further check the validity of the OD X ↦ Y and

Y ↦X.

From Theorem 21 we derive the following pruning rules:
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• if X↦Y we do not generate the candidates of the form XZ
?
∼ Y, i.e. the left-hand

children candidates of X ∼ Y are pruned;

• if Y ↦ X, we do not generate the candidates of the form X
?
∼ YZ, i.e. the

right-hand children candidates of X ∼ Y are pruned;

If both dependencies are valid we prune all the subtree from the given OCD candidate.

With reference to Figure 4.1, if the order compatible dependency A ∼ B is valid:

• if A↦ B, the children candidate AC
?
∼ B is pruned;

• if B ↦ A, the children candidate A
?
∼ BC is pruned.

4.7.2.2 Parallelizability

ocddiscover explores the tree of candidates breadth-first. Each branch of the tree

can be visited independently, since each OCD candidate is independent from the others,

furthermore, for each level a candidate is generated only if its father in the tree was

a valid order dependency. We exploit this structure to parallelize the execution of

ocddiscover by assigning candidates from different branches to different queues, each

queue is then processed by a different thread. With reference to Algorithm 4, if we have

K cores available, we can have K independent subtrees T 1
` ,T

2
` , . . . ,T

K
` (lines 7 — 12)

each one containing the OCD candidates belonging to a different branch of the tree.

The number of queues used by the algorithm can be chosen as a run-time parameter

provided by the user.

4.7.3 Order Checking

One of the most important steps in our approach is the check of order compatibility

candidates.

Single check. Given an OCD candidate in the form X
?
∼ Y, we need to verify if it

holds. The general definition of order compatibility states that X ∼ Y ≡ XY ↔ YX,

i.e. X and Y are order compatible if XY ↦ YX and YX ↦ XY; however, with the
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following theorem, we can reduce the problem of checking the validity of an OCD to a

single check.

Theorem 25. XY ↦YX is valid iff X ∼ Y.

Proof.

⇒ we have to prove that XY ↦YX⇒YX↦XY. If, by contradiction, YX(XY,

then:

∃ p, q ∣ pYX ≤ qYX ⇒ pXY > qXY (4.15)

thus since pXY > qXY we can distinguish two cases:

– if pX > qX, we can conclude that:

qXY < pXY ⇒ qYX > pYX

thus XY (YX;

– if pX = qX ∧ pY > qY, we always obtain a contradiction with the condition

expressed in Eq. 4.15;

thus both XY ↦YX and YX↦XY are valid and X ∼ Y;

⇐ by definition if X ∼ Y then both YX↦XY and XY ↦YX are valid;

Checking with Indexes. To compute if an order dependency candidate holds, we

sort the relation by the left hand-side attributes of the candidate. We build an in index

that contains only the position of each tuple in the order in which it appears. Then,

we iterate over the tuples following this index and we check if the attributes on the

right-hand side violate the ordering, specifically if we detected a pair of tuples forming

a swap. We break the detection loop as soon as we find a violation and return true

otherwise. In the worst case the number of comparison to be made is O(m +m logm)

where m is the total number of tuples in the relation.
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4.7.3.1 NULL Values

In real-world datasets, and in many of the test cases that will be analyzed in Section 4.8,

data contains NULL values, which destroy the total ordering assumption because they

can not be compared with the other values. We use the standard SQL semantics given

by set ansi nulls ON, i.e. NULL equals NULL, and NULLS FIRST for sorting.

However, NULL values destroy the total ordering over an attribute, because they can not

be compared with the other attributes.

Furthermore, NULL values can be interpreted following different semantics that we ex-

emplify here using data in Table 4.6.

t1
t2
t3

A B C

1 4 8

2 5 ?

3 6 10

A B C

1 4 8

4 4 ?

3 6 10

Table 4.6: These two tables produce different results when testing the OCD candidate

A
?
∼ BC and using different

NULL is equal to NULL. NULL values can be considered equal to themselves and

they are order before any other value, this is equivalent to the SQL settings given by

set ansi nulls ON and NULLS FIRST. With reference to the example, in Table 4.6 (a)

the order dependencies A↦ B and B ↦ A are valid; while in Table 4.6(b) the only valid

order dependency is C ↦ B, in this case the following relations are true:

- t2,C ∶= ? ≤ t1,C ∶= 8 ≤ t3,C ∶= 10

- t2,B ∶= 4 ≤ t1,B ∶= 4 ≤ t3,B ∶= 6

This is the standard semantic assumed by the previous work on order dependen-

cies [LN16, SGG+17]. We adopt the same for our experimental evaluation in Section 4.8.

Ignoring NULL values. NULL values are considered as unknown values. Under this

semantic if a comparison involves a NULL value the tuple will be ignored. Also in this

case, in Table 4.6 (a) the order dependencies A↦ B and B ↦ A are valid. Furthermore

several other dependencies are valid: A ↦ C, A ↦ C (and the corresponding ones with

A ↦ B). In fact, in this case any comparison involving t2,C is skipped. Unfortunately,
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this semantics violates the Transitivity axiom (AX4), in fact, in Table 4.6 (b), in checking

the order depencies B ↦ C and C ↦ A, t2 is ignored because of the NULL value and both

dependencies hold. However, since B ↦ A by Transitivity (AX4) the B ↦ A would be

valid, which is false. Using this sematics for order dependency detection would require

a more in-depth study on the consequences of breaking the Transitivity axiom.

4.7.4 Description of the Algorithm

Algorithm 4 is the main algorithm implementing our approach. The input is given by

the instance of relational data r and its set of attributes U .

Algorithm 4 ocddiscover

Input: r: a relational instance
Input: U : the set of attributes associated with r

1: function ocddiscover(r,U)
2: `← 2
3: U ′ ← columnsReduction(U)
4: T1 ← {(A,B) ∣ A,B ∈ U ′,B ≻ A}

5: while T` ≠ ∅ do ▷ Main loop
6: T`+1 ← ∅

7: for each (X,Y) ∈ T` do
8: if checkCandidate(XY,YX,r) then
9: emit X ∼ Y

10: T`+1 ← T`+1 ∪ generateNextLevel(X,Y,U ′)
11: end if
12: end for
13: `← ` + 1
14: end while
15: end function

In Line 3, function columnReduction() (not shown here) is called to apply the oper-

ations described in Section 4.7.1: the removal of constant attributes and the reduction

of order-equivalent columns. This function prints a list of order-equivalence relations

and a list of constant attributes and returns a reduced set of attributes U ′ where (a) the

constant columns are removed; and (b) for each class of order-equivalent attributes one

representative is chosen.

The initial tree of OCD candidates is built in Line 4; by the commutativity of OCDs,

only half of the combinations are added. Figure 4.1 shows that the second level of the

tree (` = 2) contains only the initial candidates A
?
∼ B, A

?
∼ C and B

?
∼ C.
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Then, the algorithm continues with the main loop where each OCD candidate X
?
∼ Y

is tested against the data in r in the form of an OD candidate XY
?
↦ YX using the

function checkCandidate(), which is described in Algorithm 5.

The function checkCandidate() iterates over the index built on the left-hand side of

the candidate with generateIndex() and checks that the values over the attributes in

the right-hand side are in the same order. The loop is terminated early if a violation is

detected.

Algorithm 5 checkCandidate

Input: X,Y: an OD candidate
Input: r: the instance of relational data
Output: true if X↦Y, false otherwise.

1: function checkCandidate(X,Y,r)
2: lr ← len(r)
3: index ← generateIndex(X,Y,r)
4: for i← 1 to lr − 1 do
5: for each A ∈ Y do
6: if r[index [i],A] > r[index [i + 1],A] then
7: return false
8: else if r[index [i],A] < r[index [i + 1],A] then
9: return true

10: end if
11: end for
12: end for
13: return true
14: end function

If the candidate is a valid OCD, we emit it as a result and generate the new candidates

through generateNextLevel(), which is described in Algorithm 6.

The function generateNextLevel() builds a set containing all the OCD candidates

of the form XA ∼ Y and X ∼ YA, where A is an attribute that does not already belong

to the lists X and Y, this corresponds to creating a new level of the tree presented in

Section 4.7.2 using the pruning rules of Section 4.7.2.1. The function further checks if

the ODs X
?
↦ Y or Y

?
↦ X hold. If so, it applies the pruning rules and returns the

remaining candidates. We emit the valid ODs found in Lines 9 and 16 of Algorithm 6.

The new candidates are added to the queue of candidates to check for the next level in

line 10 of Algorithm 4. The loop terminates when there are no candidates left.
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Algorithm 6 generateNextLevel

Input: X,Y: an OCD candidate
Input: U ′: the set of reduced attributes of relation R
Output: C: the candidate OCD generated from X ∼ Y

1: function generateNextLevel(X,Y,U ′)
2: C ← ∅

3: A+ ← U ′ − set(X) − set(Y)

4: if ¬checkCandidate(X,Y,r) then ▷ X(Y
5: for each A ∈ A+ do
6: C.add((XA,Y))

7: end for
8: else ▷ X↦Y
9: emit X↦Y

10: end if
11: if ¬checkCandidate(Y,X,r) then ▷ Y (X
12: for each A ∈ A+ do
13: C.add((X,YA))

14: end for
15: else ▷ Y ↦X
16: emit Y ↦X
17: end if
18: return C
19: end function
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Figure 4.2: Normalized execution times for row scalability.

4.8 Experimental Evaluation

In this section we evaluate the results of our approach, with particular emphasis on its

scalability in the number of rows and columns, and we compare it with previous work on

order dependency detection. We analyze the results of ocddiscover over 6 real-world
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Figure 4.3: Execution times for column scalability for HEPATITIS.
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Figure 4.4: Execution times for column scalability for HORSE.

datasets and 5 synthetic datasets.

Our algorithm is implemented in Java 1.7 and is designed to work on the Metanome

data profiling framework [PBF+15] as a multi-threaded program.

All experiments were run on a i686 Intel Xeon E52440 2.40 GHz machine with 12 cores

in hyper-threading and 128 GB RAM, over a Linux kernel v4.15.0. The execution

environment is a 64-bit Oracle JDK version 1.8.0 171, with the JVM heap space limited

to 110 GB.
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Figure 4.5: Execution times for column scalability for FLIGHT 1K.

A B C D

1 3 1 1

2 2 3 2

2 3 2 2

2 5 2 2

3 1 2 3

4 4 4 2

4 5 3 2

Table 4.8: NUMBERS dataset.

4.8.1 Datasets

We use the datasets provided by the Information Systems Group of Hasso-Plattner-

Institut.2 These datasets are the same used by the previous work on order dependency

discovery by Langer and Naumann [LN16]. We have also created three simple additional

synthetic datasets, called YES, NO, and SIMPLE created to highlight the differences of our

approach with previous works. In particular, YES and NO reproduce, respectively, the

examples in Tables 4.5 (a) and 4.5 (b), while SIMPLE is shown in Table 4.8.

Table 4.7 presents the datasets and their properties; for each dataset, the table reports:

the dataset name, the number of rows ∣r ∣, the number of attributes ∣U ∣, the number of

functional dependencies discovered by the fastfds algorithm [WGR01] ∣Fd∣, the number

of ODs discovered ∣Od∣ by order. For fastod we provide: (a) the number of FDs

discovered ∣Fd∣, (b) the number of ODs discovered ∣Od∣. For ocddiscover we provide:

(a) the number of OCDs discovered ∣Oc∣, which are missed by order [LN16], since they

2https://hpi.de/naumann/projects/repeatability/data-profiling/fd-algorithms.html

https://hpi.de/naumann/projects/repeatability/data-profiling/fd-algorithms.html
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are order dependencies with repeated attributes; (b) the number of ODs discovered ∣Od∣;

and (c) the total number of dependency candidates checked during the execution of the

algorithm.

Execution time is averaged across 5 independent runs and we set a time threshold at 5

hours. When the time limit is reached, for fastod we are unable to present the number

of dependencies discovered so far, while for ocddiscover we report the number of

dependencies discovered and the number of checks made until the limit.

4.8.2 Comparison with Previous Work

We discuss the results of the extensive comparison with the previous state-of-the-art

algorithms for detecting order dependencies. The code used for the comparison has

been provided by the respective authors.3

To compare our algorithm with order and fastod we need to transform OCDs back

to ODs. In fact, in a relation R over attributes A,B and C where A ↔ B, A ∼ C

and B ∼ C, the set of OCDs O = {A ∼ B, A ∼ C, B ∼ C} is minimal following

Definition 16. However, columnsReduction() would discover the order-equivalence

A↔ B and choose one attribute as a representative, e. g. A. Thus ocddiscover would

return as valid OCDs only O = {A ∼ C}. From this information we infer the remaining

dependency B ∼ C using the axioms JOD. We perform this expansion and compare the

results produced by ocddiscover, order and fastod. The function performing the

expansion is not shown in Algorithm 4, but the times reported in Table 4.7 include it.

This step did not impact the running time of ocddiscover.

4.8.2.1 Comparison with Langer and Naumann [LN16]

For order, dependencies are considered to be completely non-trivial, if their left- and

right-hand side attribute lists are disjoint. However, we argue that limiting the discovery

of order dependencies to candidates where the left-hand side and the right-hand side are

completely disjoint gives incomplete results. Our algorithm, instead, is complete.

3 the source code for order is available at: https://hpi.de/naumann/projects/repeatability/

data-profiling/fds.html#c168192 while the source of fastod has been provided to us by the authors
through direct communication.

https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html##c168192
https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html##c168192


96

Following Theorem 20 in Section 4.6.2, order dependencies of the form XY ↦ Y can

be inferred from order compatibility dependencies of the form X ∼ Y. Note that this

dependencies have repeated attributes between its left- and right-hand sides.

We show the difference between our apporach and previous work with the YES and

NO datasets. As reported in Table 4.7, the order algorithm does not find any order

dependency in either of the YES and NO datasets. ocddiscover, instead, finds correctly

the order compatibility dependency A ∼ B, i.e. the order equivalence AB ↔ BA, in YES.

Our approach detects all the dependencies found by order, and additional dependencies

on HEPATITIS, HORSE, and NCVOTER 1K. For FLIGHT 1K and NCVOTER ALLC we found

several dependencies but we were not able to compare the results with order because

the latter does not report the discovered dependencies when the time limit is reached.

Provided that the order compatibility dependencies found by ocddiscover are trans-

lated to the corresponding OD in the form XY ↦Y, ocddiscover effectively discovers

a minimal set of ODs even following the definition of minimality provided by Langer

and Naumann [LN16].

When a candidate dependency is found to be false, pruning rules are applied. For this

reason, notwithstanding the factorial dimension of the search space, datasets with several

columns, such as datasets HEPATITIS and HORSE, are successfully and completely tested.

When pruning cannot be applied, the generation of candidates grows – e.g., more than 7

million candidates are generated in FLIGHT 1K. For this dataset, ocddiscover detects

more than 32 million ODs. In this particular case, the number of checks is smaller than

the number of discovered dependencies because we also count the dependencies inferred

from constant and order-equivalent columns reported by the columnsReduction()

function.

Furthermore, Table 4.7 shows that using order compatibility dependencies does not

hinder the performance of the detection. In all dataset tested, the performance of our

algorithm with respect to the execution time is comparable to order and in some cases

we obtain significant speedups up to a factor of 75, as in the case of HORSE.
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4.8.2.2 Comparison with Szlichta et al. [SGG+17]

As shown in Table 4.7, ocddiscover and fastod compute a different number of order

dependencies. We claim that this difference, which also affects also the results published

in [SGG+17], is due to an implementation error in the code. Table 4.8 presents an in-

stance of a relational table where the implementation of fastod we received finds several

order dependencies that are not actually present in the data, e.g. [B] ↦ [AC]. Other

datasets were also affected by this issue, but, unfortunately, we were not able to isolate

and resolve the root cause of this incorrect behavior. In addition, fastod considers all

columns as if they contain data of type String, thus using a lexicographical ordering,

while order and ocddiscover perform type inference over the datasets provided, and

use the natural ordering for real and integer numbers. We have also implemented for

ocddiscover the possibility of forcing lexicographical ordering, but we do not report

these results since this change does not affect the execution time of our approach.

Furthermore, we would like to point out that for the experiments reported in [SGG+17],

for the scalability experiments a trimmed-down version of the datasets has been used, for

this reason we have both the DBTESMA and DBTESMA 1K datasets. For the row scalability

experiments, the work does not specify how the trimming of the dataset was performed,

but only states that for the scalability on the columns we were not able to reproduces

those results, with the exception of HEPATITIS, FLIGHT 1K, and NCVOTER 1K, which were

used in full.

We can compare the performance of ocddiscover and fastod over those datasets.

As shown in Table 4.7, ocddiscover gains significant speed-ups. This highlights the

fact that, while the worst-case complexity of ocddiscover is (O)(∣r∣!), which is greater

than that of fastod, O(2∣r∣), the execution time depends on the actual number of

dependencies contained in the dataset.

4.8.3 Performance

In the following, we analyze the scalability of our approach with respect to the number

of rows, the number of columns, and the number of parallel threads used.
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4.8.3.1 Scalability in the number of rows

We performed our analysis on the synthetic dataset LINEITEM with 6,001,215 rows and

16 columns. We also test the algorithm on the NCVOTER dataset. This dataset has

938,084 rows and 94 columns, but since our algorithm did not terminate on the full

datasets, we consider only a subset of 20 randomly chosen columns. Figure 4.2 shows

the results for the scalability experiment on LINEITEM and NCVOTER. Ten samples of the

original dataset have been created, ranging from 10% to 100% of the rows with a step

of 10%. Five repetitions have been performed for each of the samples and the average

is reported. Variance is very small and thus not shown.

The experiments show that the algorithm scales almost linearly with the number of rows,

and it is able to find a complete set of OCDs over datasets with millions of rows.

The execution time would be expected to grow log-linearly with respect to the number

of rows, due to the indexing phase; but an increasing number of rows may correspond

to a smaller number of dependencies; thus, the pruning phase could reduce the amount

of checks to be computed.

Previous work, instead, has shown the ability to scale linearly on the number of rows

performing the check of dependency candidates with sorted partitions computed from

the data. This method could be re-implemented in our approach as well, but it would

be out of the scope of this work.

4.8.3.2 Scalability in the number of columns

Scalability over columns is the key challenge in detecting dependencies in relational data

since in many cases the dimension of the search scales with the number of columns.

We choose the HORSE and HEPATITIS datasets, that are well-suited to evaluate the

influence of an increasing number of columns, given that their execution completes. We

also consider FLIGHT 1K that has a very high number of columns and does not terminate.

The evaluation approach is as follows: we start with two random columns from each

dataset, and we incrementally add more randomly-chosen columns, until the total num-

ber of columns in the dataset is reached.
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To avoid skewing the results, we generate 50 samples of each dataset with the process

described above and we run our algorithm over these samples. We average the execution

time of ocddiscover of each sample with c columns over all the 50 samples.

Figures 4.3 and 4.4 show the results of the column scalability experiment on the

HEPATITIS and HORSE datasets.

Figure 4.5 shows how the algorithm behaves when the number of dependencies discov-

ered in the data grows on a single run. Times on the y-axis are in logarithmic scale.

ocddiscover is very susceptible to columns that are quasi-constant, i.e. attributes with

very few distinct values, but not constant. In this case, ocddiscover cannot eliminate

these columns during the column-reduction phase. As argued in Section 4.7.1, constant

columns are ordered by any other attribute; quasi-constant columns are associated with

a large number of valid OCDs and consequently the size of the tree to be explored grows

enormously.

In fact the slowdown corresponding to the sample with 28 columns in Figure 4.5 is

caused by the addition of a column with 3 distinct values. This column appears on the

right-hand side of more than 94% of the dependencies found in that sample.

4.8.3.3 Scalability over parallel threads

As describe in Section 4.7.2.2, ocddiscover can be run over multiple threads.

Time (s) vs number of threads

Dataset 1 2 4 8

LETTER 5.7 4.6 3.6 3.4
LINEITEM 2,848.8 1,770.0 1,243.5 1,040.0
DBTESMA 2,228.9 1,240.0 686.0 414.0

Table 4.9: Execution time of ocddiscover versus number of threads.

Figure 4.6 shows the results of the multithreading scalability experiments on the LETTER,

LINEITEM, and DBTESMA datasets. On the y-axis times are normalized to the runtime over

a single thread, which is the maximum for each case. Table 4.9 reports the executions

times.

As it is shown in Figure 4.6, using multiple parallel threads shortens the execution

time of our dependency discovery algorithm. This breadth of this improvement varies
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Figure 4.6: Execution times for LETTER (red straight line), LINEITEM (green dotted
line), DBTESMA (blue dashed line), when executed over multiple threads, normalized over

the runtime over a single thread.

based on the characteristics of each datasets and in particular depends on the of OCD

candidates checked.

If we compare LETTER and LINEITEM, we see that while the number of checks performed

on each dataset is comparable (272 for LETTER versus 255 for LINEITEM), the number of

their rows differ by several orders of magnitude (∼ 20k lines for LETTER, versus ∼ 6M for

LINEITEM). This implies that checking the validity of an OCD candidate for LINEITEM

takes longer than checking a candidate for LETTER. Thus the relative gain when splitting

the work over multiple threads is greater for LINEITEM.

Instead, comparing LINEITEM and DBTESMA we can see that for the latter dataset the

number of checks performed is much higher, thus the workload of candidate checking

can be spread over multiple threads, leading to greater relative improvements.

4.8.4 Quasi-constant Columns

The quasi-constant column scenario is challenging for our algorithm. We further develop

the idea of measuring how varied the values in a column are by measuring its entropy.
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Definition 26 (Entropy). Given an attribute A ∈ U of an instance r of a relation R,

the entropy of A is defined as:

H(A) = −∑
[a]

p[a] log (p[a]) (4.16)

where [a] are the equivalence classes of distinct values in A and p[a] is the probability of

extracting an instance of class a, computed as the relative frequency of instances class

[a] over the total number of tuples in r:

p[a] =
∣{t ∈ r ∣ tA ∈ [a]}∣

∣r ∣

For constant columns there is only one equivalence class and p[a] = 1, thus H(A) = 0. If

all values are distinct, for each [a], ∣[a]∣ = 1 and p[a] = 1/∣r∣:

H(A) = −∑
[a]

1

∣r ∣
log (1/∣r ∣) = log (∣r ∣)

We test the idea that progressively less diverse columns cause the slowdown of ocddis-

cover by taking the FLIGHT 1K dataset and running it over multiple samples build with

the following criteria: we calculate the entropy of each column in FLIGHT 1K and then

we build samples of increasing size in the number of columns by adding progressively

the columns with decreasing entropy, i.e. we start with the columns with the greatest

number of distinct values and we progressively add columns with less distinct values.

Eventually, the constant columns are added.

The result of the execution on ocddiscover over this set of samples is reported in

Figure 4.7. With 50 columns the ocddiscover completes in 4 minutes, adding the 51st

column the execution time grows by an order of magnitude to over 1 hour. With the

addition of the 52nd column the algorithm reaches the time limit of 5 hours. The 50th,

51st and 52nd columns have respectively 4, 2 and 2 distinct values respectively.

With respect to applications, this insight could be exploited to develop algorithms that

return results for the most diverse columns, which can be the most interesting with

respect to other properties of the data such as unique column combinations (UCC).

Detection of unique column combinations is usually performed to find primary keys
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Figure 4.7: Execution times (red straight line) for the FLIGHT 1K when adding
columns of decreasing entropy (blue dotted line). On the y-axis, times (left-hand side)
are in logarithmic scale, entropy (right-hand side) is normalized with respect to the

maximum value over the dataset.

candidates that may be also interesting candidates from the point of view of ordering

and query optimization.

In summary, the column scalability experiments show that ocddiscover can find a

complete set of ODs over datasets with tens of columns. Furthermore, ocddiscover

can be easily adapted to perform the detection over a set of interesting columns, where

the interestingness of an attribute can be determined providing a function measuring

the properties chosen by the user.

4.9 Summary

In this chapter, we presented a novel method for discovering order dependencies (ODs).

We based our approach on the fact that an order dependency is valid if and only if both

a functional dependency (FD) and an order compatibility dependency (OCD) are valid.

Thus, we designed a novel and efficient algorithm – called ocddiscover – where the

search for ODs is guided by checking the validity of OCDs. Our approach outperforms

existing two state-of-the-art algorithms, order [LN16] and fastod [SGG+17] with re-

spect to order, we are complete, meaning that we detect order dependencies that are

ignored. We have shown that these dependencies cannot be inferred by other detected

dependencies. While the worst-case complexity of ocddiscover is greater than fas-

tod, the execution time on real datasets depends on the actual number of dependencies
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found, thus we are able to outperform fastod. Furthermore, we presented an extensive

set of experiments that illustrate that our approach can be executed in parallel over

multiple threads. We have also suggested that considering the entropy of attributes can

lead to further developments in discovery the most interesting order dependencies.





Chapter 5

Extracting Historical and Current Event

from Wikipedia

In previous chapters, we introduced two techniques oriented at the extraction of infor-

mation from relational data. In this chapter, we deal with the extraction of information

from unstructured data sources, focused our attention on the extraction of events from

text. We introduce a novel event extraction technique that is based on the idea that set

of entities that have a mutual connection within a similar period of time produce an indi-

cation for something happened between those entities. We propose a simple but effective

model that handle the discovery of historical events from textual sources. While this ap-

proach could be applied over several datasets, we focus our attention on Wikipedia, the

world largest encyclopedia available. This poses many challenges not only in terms of

efficiency and scalability but also of quality. We experimentally evaluate our approach

in terms of the quality of the extracted events. We propose an extensive evaluation,

where we compare our results against several existing event collections and knowledge

bases and additional we conduct a user study to validate our event sets.

5.1 Contributions

Our specific contributions are as follows:

• We propose a novel model for event extraction from Wikipedia that is based on

temporal co-reference connectivity. In contrast to online monitoring and specific

105
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type event detection techniques, our methods are able to extract a variety of highly

heterogeneous events encoded in the Wikipedia text.

• We formally define the problem, providing an event model that is flexible but also

expressive in terms of the whole existing representable events.

• We describe data structures and algorithms for the efficient and effective imple-

mentation of our event extraction algorithm that partition the co-reference graph

into smaller portions and apply the checks for possible events within them.

• We perform an extensive experimental evaluation on the quality of the results

and we show that our set of events is complementary to those in existing event

datasets, and also that 88% of the events we identify are indeed real world events

as confirmed by real users.

• We describe extensions and applications that our approach can find in exploring

the history of an entity over time.

5.2 Outline

The chapter is organized as follows. In Section 5.3 we present a motivating example used

through the rest of the chapter. Section 5.4 formally defines our data model and our

problem. Section 5.5 introduces the principles that guide our event extraction technique,

and Section 5.6 and Section 5.7 provide more details about event extraction technique.

Finally, Section 5.8 presents the experimental evaluation.

5.3 Motivating Example

To illustrate this novel definition of a real world event, consider the three Wikipedia

pages of DNA, James Watson and Francis Crick, a fraction of which are depicted in

Figure 5.1. In the DNA page, we see a reference to James Watson and one to Francis

Crick, both of them close to the indicated year 1953. In the James Watson page, we

have a reference to DNA and a reference to Francis Crick, with the year 1953 mentioned

again. Finally, in the Francis Crick page we find a reference to DNA and a reference to

James Watson, with the indication 1953. This mutual reference (co-reference) between
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each pair of these three entities with all of them around the year 1953 indicates that

something important has happened in 1953 that involved all three entities. Indeed, it

was in 1953 when J. Watson and F. Crick discovered the DNA molecular structure.

This event, alongside many others of this kind, is not explicitly declared as an event

in the Wikipedia content, neither it is identified by the existing information extraction

algorithms that populate the flagship knowledge bases of YAGO and DBpedia. Clearly,

such knowledge bases could benefit from such a mechanism that would allow them to

enrich their contents.

5.4 Problem Statement

Given an underlying corpus of documents annotated with temporal expressions and

entity mentions, our goal is to extract historical and contemporary events based on

temporal entity co-references. To this end, we first define general concepts such as the

time domain and an event and then formally define our problem.

Assuming an ordered set H of primitive temporal moments, a time domain is the set

T ={[ts, te] — ts∈H ∧ te∈H ∧ ts<te}. A textual characterization may often be used as a

shorthand for the two temporal moments of an element in T . For instance, we may say

Mar’91 to indicate the time [1991-03-01,1991-03-31].

We also assume the existence of an infinite set of entities E modeling real-world objects

like persons, organizations, locations, etc. Entities may relate to each other, and a

relationship has some temporal validity. Furthermore, there may be many different

reasons why two entities are related, and we can assume that a relationship has also

Entity An extract from the entity’s Wikipedia page

DNA s1 ∶ Its molecular structure was identified by James Watson and Francis
Crick in 1953, whose model-building efforts were guided by X-ray diffraction
data acquired by Rosalind Franklin. . . .

James Watson s2 ∶ James Dewey Watson (born April 6, 1928) is an American molecular
biologist, geneticist and zoologist, best known as one of the co-discoverers of
the structure of DNA in 1953 with Francis Crick. . . .

Francis Crick s3 ∶ Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was a British
molecular biologist, biophysicist, and neuroscientist, most noted for being a co-
discoverer of the structure of the DNA molecule in 1953 with James Watson.
. . .

Figure 5.1: The discovery of DNA in three Wikipedia pages.
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some form of context, that is from a context domain T. For generality, we can consider

the set of all possible strings as the set of contexts, however, any other set of contexts

can be considered.

Definition 1. A relationship between two entities e1,e2∈E is a tuple ⟨e1, e2, τ , t⟩, where

t∈T is the validity time of the relationship and τ∈T its context.

Previous work has built upon many different theories and definitions, on what constitutes

an event. We consider an event to be the concentration of individuals at a specific period

in order to engage to some activity. Thus, an event can be defined as a set of entities

associated to some time period, together with some context.

Definition 2. An event is a tuple ⟨E, τ , t⟩, where t∈T , τ∈T, E is finite and E⊂E .

In this notation, our DNA example event depicted in Figure 5.1 is denoted as ⟨{DNA,

James Watson, Francis Crick}, {s1, s2, s3}, 1953⟩, where the first set represents the

entities involved in the event, the context is given by the set of sentences, and 1953 is

the time the event takes place.

Wikipedia is a collection of documents providing information about real-world entities.

A document is a sequence of terms that may be referring to real-world entities, to

temporal periods, or have other meanings. Assuming the existence of an infinite set W

of words, we introduce the set of tokens to be the set O=E∪T ∪W and define a document

to be a finite sequence of tokens, divided into a set of sentences. We denote by D the

set of all possible documents.

Wikipedia is a collection of web pages, with each page being about a specific real-world

entity and providing information about that entity in the form of text.

Definition 3. A page is a pair ⟨e,D⟩, where e∈E is the entity of the page and D∈D its

document. The set P denotes the set of all possible pages. A set of Wikipedia pages is

a finite set P⊂P such that ∀⟨e1,D1⟩,⟨e2,D2⟩∈P : if e1=e2, then D1=D2.

Problem Statement We will use Wikipedia in order to identify and extract events

that have happened in the real world. Thus, our problem definition on an abstract level

becomes: Given a set P of Wikipedia pages, return a set R of events described in these

pages.
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5.5 Relationship Identification

To extract events from Wikipedia, a first step is to identify sets of entities constituting an

event. Our approach is first to use co-reference to identify important binary relationships

between entities and then look for sets of entities for which the identified co-reference

binary relationships are collectively both strong and meaningful.

Consider the document of the Wikipedia page of an entity e containing a reference to an

entity e′. The existence of this reference is a strong indication that e has some form of

relationship to e′. The best source describing this relationship is most likely the sentence

itself in which the reference appears.

If the sentence contains some time reference, we assume that it is the time associated to

the relationship with the entity e′. If the sentence contains more than one time reference,

then the one closest to e′ is most likely to be the one with this role.

Based on these assumptions, for every appearance of an entity e′ in a sentence se′ of a

document of the Wikipedia page of the entity e, we can create a relationship l = ⟨e, e′,

se′ , tse′ ,e′⟩, where the time tse′ ,e′ is the time reference in se′ closest to e′.

Since events have a highly temporal nature, lack of time references in a sentence means

that an association is described for which time is not a significant factor. We will ignore

these descriptions, and consider only those that have temporal references.

Recall that our fundamental principle for event identification is that events are created

by entities connected in a specific time period. This means that if indeed two entities get

related due to an event, both should be well aware of it, i.e., the page of the first should

have a reference to the second, and the page of the second should contain a reference

to the first. We refer to this dual reference situation as co-reference. It can happen

that the two different references in our pages may be circumstantial and not related. To

ensure that they are referring to the same event, we require them to relatively coincide,

i.e., the two relationships they describe have some common time period. We refer to

this as time agreement.

For the time agreement between two time values we adopt an exponential function that

is based on Ebbinghaus’ forgetting curve that models the nature of forgetting over time

[Ebb13]. Given two times t1 and t2, their time agreement is computed as:
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ta(t1, t2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e−
distinct days(t1,t2)

M if t1 and t2 overlap

0 otherwise.

where distinct days(t1, t2) is the absolute number of days which are not in common

between the two times and M denotes the exponential decay. For our approach, we

consider the number of days to be a reasonable choice, but other time metrics may be

used as desired. The function returns 1 for a 0 distinct days time difference, converges

to 0 for very different time intervals and equals 0 for non-overlapping time intervals. We

can now formally define the co-reference relationship.

Definition 4. Given a threshold θ and two relationships le = ⟨e, e′, se′ , [t′s, t
′
e]⟩ and

le′ = ⟨e′, e, se, [ts, te]⟩, for which ta([t′s, t
′
e], [ts, te])>θ, a co-reference relationship is a

tuple ⟨e, e′, s, t⟩ for which s={se′ , se} and t=[max(ts, t
′
s), min(te, t

′
e)].

Intuitively, the co-reference relationship is a relationship that has as time the overlapping

part of the times of the two relationships and as context the union of the contexts of

the two relationships. The specific threshold θ as well as the value of the decay factor

M are application and data dependent. Section 5.8.1 provides more information on the

values we have selected.

Once the co-reference relationships have been created, it is possible that two entities have

more than one co-reference relationship between them with the same time (because an

entity is mentioned more than once in the same page). If this happens, then all these

co-reference relationships are collapsed into one that has as context the union of their

individual contexts and as time the common time value that all share.

Let L̂ denote the set of co-reference relationships extracted from the Wikipedia set of

pages according to the aforementioned procedure. Since each reference relationship is

a binary relationship between entities, the set L̂ can be modeled as a graph where the

nodes represent entities and the edges the co-reference relationships between them. Each

edge is annotated with time and context (i.e., the sentences of the Wikipedia page) of

the respective co-reference relationship. We refer to this graph as co-reference graph.

Definition 5. A co-reference graph is a graph G:⟨E, C, fτ , ft⟩ where E is a set of

nodes, C⊆E×E is a set of edges, while ft∣C→T and fτ ∣C→T are a time-assigning and

context-assigning function, respectively, on the edges.
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The creation of the co-reference graph is described in Algorithm 7. The first step is the

generation of relationships between entities. For each page p ∈ P it generates relation-

ships between the entity of the page e and the entities contained into the sentences of

the page. The set of all relationship is called L.

From these relationships, co-reference relations are extracted with the function getCo-

ReferenceRelations. First, relationships L are grouped by their entities into the set

Lg, and consequently Lg is divided in two distinct sets Lge and Lge′ based on page from

where the relationship has been created.

Then, each element of the two sets is compared each other and if the time agreement

between the two time period of the relationships is greater than the threshold θ a co-

reference relationship is created and added to the set of co-reference relationships L̂.

Finally, the co-reference graph is created from the set of co-reference relationships L̂.

Algorithm 7 Co-reference Graph Creation

1: procedure Generate co-reference graph(P )
2: L← {}

3: for each p ∈ P do
4: L← L ∪ getRelations(p)
5: end for
6: L̂← getCo-ReferenceRelations(L)
7: G← createCo-ReferenceGraph(L̂)
8: return G
9: end procedure

10:

11: procedure getCo-ReferenceRelations(L)
12: L̂← {}

13: Lg ← groupbyRelationByEntities(L)
14: for le ∶ ⟨e, e

′, se′ , [t
′
s, t

′
e]⟩ ∈ Lge do

15: for le′ ∶ ⟨e
′, e, se, [ts, te]⟩ ∈ Lge′ do

16: if ta([t′s, t
′
e], [ts, te]) > θ then

17: s = {se′ , se}
18: t = [max(ts, t

′
s),min(te, t

′
e)]

19: cl = ⟨e, e′, s, t⟩
20: L̂← L̂ ∪ cl
21: end if
22: end for
23: end for

return L̂
24: end procedure
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5.6 Event Extraction

Once the co-reference binary relationships have been created, the next step is to identify

groups of entities that indicate a strong and meaningful connection between them, highly

likely representing an event. The co-reference graph offers an excellent structure for

performing this task since it models not only the entities, but also the way that they

relate to each other through the co-reference relationships, alongside context and validity

time of these relationships.

There are many possibilities to define what constitutes a strong and meaningful con-

nection between entities. As our initial assumption is that an event is a set of entities

associated within a specific time period, all our strategies are based on the same ini-

tial step: the division of the co-reference graph into a set of components of temporally

connected entities. We identify this kind of component with the term time agreement

subgraph. With this step, we aim to identify a maximal set of connected entities in such

a way that the time difference between any two co-reference relationships that exist be-

tween these entities is within a specific threshold. Given the resulting set of subgraphs,

we can add further constraints, e.g. taking the context into account. We do not need to

apply these constraints on the complete co-reference graph. Instead, they are applied

on the connected components, resulting in more efficient extraction. This process is

described in Algorithm 8.

We will describe and evaluate three different strategies. Each of them returns as answers

subgraphs of the input co-reference graph. Turning an answer subgraph into an event

is straightforward: (i) the event entities are composed by the nodes and those entities

that the subgraph’s sentences have in common, (ii) the event time is the intersection of

all times assigned to the co-reference relationships (edges), and (iii) the event context is

composed of the union of all involved contexts.

Algorithm 8 Event extraction process

1: procedure Event Extraction(P )
2: G←GenerateCo-ReferenceGraph(P )

3: Gc ←GraphCompression(G)

4: Gmaximal ← ExtractTimeAgreementSubgraphs(Gc)
5: R ← extractEvents(Gmaximal)
6: end procedure
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5.6.1 Time Agreement subgraphs

The co-reference graph may contain multiple co-reference relationships between the same

entity in the same time period. In order to extract, time agreement subgraphs we first

compress edges, between two entities, related to the same periods, into a single edge by

joining the all contexts together.

The second step of our approach is the extraction of time agreement subgraphs. Given

the co-reference graph, we are looking at discovering maximally connected components

in the co-reference graph such that the time agreement between the time of any two

edges (co-reference relationships) in the connected component is greater than a specific

threshold θ.

To materialize such a result, we start from an edge in the co-reference graph and incre-

mentally expand it with new edges in a breadth-first fashion. This procedure is shown

is Algorithm 9.

In order to extract time agreement subgraphs we iterate over the set of edges of co-

reference graph. For each edge c ∈ C, the function ExtractTTC extracts the time

agreement subgraph that contains the edge c. This function is implementing a breadth-

first visit in the graph starting from the input edge c that is the first node inserted in

the queue q.

After this initial setup, until the queue is empty a node c is extracted from the queue

q, and the neighbors of the edge c has been extracted. For every neighbor edge that

is analyzed, the time agreement between its time and the time of each edge already

included is calculated (line 23). The function checkTimeAgreement checks if all the

time periods previously encountered have a time agreement greater than θ.

If there is at least one case in which that time agreement is less than the threshold θ,

then the visited edge is not added to queue. If not, the visited edge becomes part of

the connected component and it will be added to queue q and also the time period of

the edge is added to timeIntervals set (line 23 - 27) and the breadth-first traversal

continues. Once no more edges can be added, the connected component G′ is emitted.

This procedure is repeated for every edge in the co-reference graph and each resulting

subgraph G′ is added to the set of subgraphs G.
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Algorithm 9 Extraction of Time Agreement SubGraphs

1: procedure ExtractTimeAgrementSubgraphs(Gc)
2: G ← {}

3: for c ∈ GC do
4: G′ = ExtractTTC(c)
5: G ← G ∪G′

6: end for
7: Gmaximal ←MaximalSubgraphs(G)
8: return Gmaximal
9: end procedure

10:

11: procedure ExtractTTC(c)
12: visited← {}, timeIntervals← {}

13: q ← {c}
14: G← ∅

15: timeIntervals← timeIntervals ∪ ft(c)
16: while q /= ∅ do
17: c← dequeue(q)
18: visited← visited ∪ c
19: G′ ← G ∪ c
20: neighbors← getNeighborsEdges(G, c)
21: for n ∈ neighbors do
22: if n /∈ visited then
23: if checkTimeAgreement(n, intervals) then
24: q ← q ∪ n
25: interval ← ft(n)
26: intervals← intervals ∪ interval
27: end if
28: end if
29: end for
30: end while
31: return G′

32: end procedure

It may happen that two processes starting from different edges produce the same con-

nected component. We therefore perform duplicate elimination after all components

have been constructed, this process is also in charge of selecting between duplicate com-

ponent the maximal ones. The set of maximal subgraphs are contained into the set

Gmaximal.

5.6.2 Temporally Related Events (TR)

The time agreement subgraph represent the basis of discovery events. These subgraph

encodes relationships of a set of entities in similar time period. The first approach aims
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at extracting events from these temporal components. Not all of these components

might represent events, but in all cases provide a good basis for further methods with

stricter constraints. Each subgraph G′ ∈ G is transformed into an event. This procedure

is described in Algorithm 10.

Algorithm 10 Extraction of TR events

1: procedure extractTR(Gmaximal)
2: R ← {}

3: for G′ ∈ Gmaximal do
4: R = R ∪GenerateEvent(G′)

5: end for
6: R′ ← RemoveDuplicateEvents(R)

7: return R′

8: end procedure

Entity Sentence

e1: Nintendo s1: Intending to broaden the 3DS market, Nintendo released 2013’s
cost- reduced Nintendo 2DS.

e2: Nintendo 2DS s2: On 31 October 2013, Nintendo president Satoru Iwata admit-
ted that the Nintendo 2DS lacked awareness among prospective pur-
chasers.

e3: Nintendo 3DS s3: On October 31, 2013, Nintendo abruptly suspended the Swap-
note/Nintendo Letter Box SpotPass functionality . . .

Figure 5.2: Sentences related to Nintendo and its products.

h13/10/31, {s1, s2}ih13/10/31, {s1, s2}i h13/10/31, {s1, s3}ih13/10/31, {s1, s3}i
e2: Nintendo 2DS e1: Nintendo e3: Nintendo 3DS

Figure 5.3: Co-reference graph and TR subgraph for the
example in Figure 5.2.

Example 5.1. Consider three Wikipedia pages with sentences that mention each other

as indicated in Figure 5.2. The first (e1) references the second and the third as seen by

sentence s1. The second (e2) references the first but not the third, and the third (e3)

references the first but not the second. As a result, the co-reference graph is the one

illustrated in Figure 5.3, where the times on the edges are computed as the intersection

of the times in the respective sentences. Since these times are the same for both edges,

the procedure will build the same connected subcomponent (the whole graph itself) for

both edges. After duplicate elimination, one copy remains as result that is afterwards

transformed into the set of TR events.
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5.6.3 Fully Temporally Related Events (FTR)

The previous criterion for event generation was based on time agreement but allowed

the entities to be connected to each other in any possible way. However, if an event

is considered as the concentration of entities at a specific point in time for a specific

reason, it is only reasonable to assume that each entity participating in the event will be

connected to each of the others. Thus, we can enforce an additional constraint which asks

for all entities participating in an event to be fully connected. To implement this, we run

the Bron and Kerbosch algorithm [BK73] on the time agreement subgraphs Gmaximal,

in order to identify and extract from each one of them the maximally fully connected

component (clique) that they contain Gclique, or all of them in case they contain more.

Each clique serves as an answer, i.e., is considered to represent an event. This process

is described in Algorithm 11.

Algorithm 11 Extraction of FTR events

1: procedure extractFTR(Gmaximal)
2: R ← {}

3: for G′ ∈ Gmaximal do
4: Gclique ← ExtractClique(G′)

5: for Gc ∈ Gclique do
6: R ← R ∪GenerateEvent(Gc)
7: end for
8: end for
9: R′ ← RemoveDuplicateEvents(R)

10: return R′

11: end procedure

Example 5.2. Clique discovery applied on the result of the TR approach in Figure 5.3

yields two subgraphs as shown in Figure 5.4.

h13/10/31, {s1, s3}ih13/10/31, {s1, s3}i

h13/10/31, {s1, s2}ih13/10/31, {s1, s2}i
e2: Nintendo 2DS e1: Nintendo

e1: Nintendo e3: Nintendo 3DS

Figure 5.4: Subgraphs extracted using FTR.
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5.6.4 Content-Temporally Related Events (CTR)

Two sentences with the same entities and time expressions could describe different events

if there are multiple actions between them, as in Figure 5.2. To distinguish between such

events, we investigate a third method that looks for content-temporally related events

(CTR). A key insight here is that semantics does play an important role in the case

of concurrent events involving the same entities: the proposed extraction of TR and

FTR events is solely based on connectivity and temporal constraints, but the sentences

(i.e., context) from which the relationships originate are not considered. To incorporate

them, we demand that entities involved in an (CTR) event not only share a similar time

period (i.e. time agreement), but they need to be extracted from semantically similar

sentences. This is done by first clustering similar sentences and then extracting events

based on these clusters.

Algorithm 12 Extraction of CTR events

1: procedure extractCTR(Gmaximal)
2: R ← {}

3: for G′ ∈ Gmaximal do
4: GD ← ∅

5: for ⟨i, j⟩ ∈ G′ do
6: Si,j ←GetSentences(i, j)
7: SNi,j ← ClusterSentences(Si,j)

8: for Ski,j ∈ S
N
i,j do

9: cd = ⟨ei, ej , S
k
i,j , t⟩

10: GD ← GD ∪ cd
11: end for
12: end for
13: GKD ← ExtractCTRSubgraphs(GD)

14: for GkD ∈ GKD do
15: R = R ∪GenerateEvent(GkD)

16: end for
17: end for
18: return R
19: end procedure

Sentence Clustering

An edge is describing the relationship between two entities and the sentences is giving

the describing this relationships. This whole procedure is described in Algorithm 12.

Given a time agreement subgraph G′, the set of sentences Si,j between each pair of
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connected entities ei and ej needs to be clustered. The goal of this step is clustering

set of contexts based on their similarity based on the event that they describe. In order

to compare sentences, we used the set of tokens (i.e., entities, times and words) of the

sentence itself. Therefore, we employ a distance measure based on two token sets:

dist(O1,O2) = 1 − (α ⋅ simE(E1,E2) + (1 − α) ⋅ simW (W1,W2)),

where simE(E1,E2) is an entity-based similarity function, simW (W1,

W2) is a word-based similarity function, and α is used to balance between their values.

Similarity between two sets of words W1 and W2 is computed using the pre-trained

Google News word embeddings 1: for both word sets W1 and W2, the sums of their em-

beddings are compared using cosine similarity [ML08]. The similarity function between

the two entity sets E1 and E2 is defined as their overlap coefficient:

simE(E1,E2) =
∣E1 ∩E2∣

min(∣E1∣, ∣E2∣)
.

At the beginning of the clustering phase, each sentence s ∈ Si,j resembles a cluster.

Iteratively, two clusters are joined if the distance of their union of tokens is lower than

the threshold γ. This clustering step results in a set of clustered sentences S1
i,j . . . S

n
i,j .

We exploit these sentence clusters to create a decompressed multigraph GD = (E,CD)

with the same set of nodes as the co-reference subgraph G′. For each cluster Ski,j , there

is an edge in the form ⟨ei, ej , S
k
i,j , t⟩ (t is computed as the intersection of the closest time

mentions of each sentence in Ski,j) (lines 4 - 12).

Example 5.3. Starting from the subgraph in Figure 5.3, the clustering phase results in

four distinct edges containing a single sentence each, due to the dissimilarity of the sen-

tences: dist(O1,O2) > γ and dist(O1,O3) > γ. The resulting decompressed multigraph

is shown in Figure 5.5.

CTR Subgraph Extraction

Given the decompressed multigraph GD, we extract CTR event subgraphs under the

constraint that no subgraph may include more than one edge between a pair of entities.

1https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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e2: Nintendo 2DS e1: Nintendo e3: Nintendo 3DS

h2013, {s1}ih2013, {s1}i

h13/10/31, {s3}ih13/10/31, {s3}i

h2013, {s1}ih2013, {s1}i

h13/10/31, {s2}ih13/10/31, {s2}i

Figure 5.5: Decompressed multigraph GD created from the co-reference graph in
Figure 5.3.

We collapse semantically similar edges in a greedy manner. Starting from any pair

of entities, a new subgraph is created for each edge between them. Distances between

these edges and all adjacent edges are computed based on the union of their tokens. The

subgraph connected to the least-distant edge is extended by this edge if the distance is

lower than γ. This process continues until all edges in the graph GD have been visited

and assigned to a subgraph. During that process, if an edge cannot be connected to

any subgraph (distance greater than γ), it constitutes a new subgraph. At the end, the

subgraphs G1
D . . .GD

k constitute the basis for CTR events. Each cluster of sentences

on the edges represents the context.

Example 5.4. The decompressed multigraph GD in Figure 5.5 is divided into three

different subgraphs: starting from the entity pair e1 and e2, two subgraphs are created,

one containing the edge ⟨2013,{s1}⟩, the other one ⟨13/10/31,{s2}⟩. As dist(Os1 ,Os1) <

γ, the two edges ⟨2013,{s1}⟩ that connect e1 with e2 and e3 are merged into one subgraph.

No other connections are possible. As dist(Os2 ,Os3) ⩾ γ, the two edges ⟨13/10/31,{s2}⟩

and ⟨13/10/31,{s3}⟩ compose their own subgraphs. The resulting three subgraphs are

shown in Figure 5.6.

e2: Nintendo 2DS e1: Nintendo e3: Nintendo 3DS

e2: Nintendo 2DS e1: Nintendo

e1: Nintendo e3: Nintendo 3DS

h2013, {s1}ih2013, {s1}i

h13/10/31, {s3}ih13/10/31, {s3}i

h2013, {s1}ih2013, {s1}i

h13/10/31, {s2}ih13/10/31, {s2}i

Figure 5.6: Subgraphs extracted using CTR.
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5.7 Event Clustering and Expansion to Asymmetric

Events

The generated events can be semantically described by their entities, time span and

textual context. To extend these semantic descriptions, we now present an approach

to create clusters of conceptually similar events, based on key terms and entity types.

The use of key terms is motivated by the concepts of Folksonomy [SM07] where similar

items are grouped based on tags like ”sports” or ”music”. Using entity types such as

“Person” and “Company” is a common way to describe relations [PB13, ABK+07a].

In addition to the semantic description, more events can be found using the generated

clusters. Until now, the described methods enable an extraction of high-quality events

that are mentioned not only in the context of one entity, but in the context of multiple

entities. However, this means that events of asymmetric importance among their par-

ticipants may be overseen. By exploiting the structure of the clusters, such events of

asymmetric importance can be detected.

5.7.1 Event Clustering

The goal of the event clustering is to generate a set of clusters and to assign our events

to them. A cluster is defined as follows:

Definition 6. A cluster is a tuple c = ⟨r,c′⟩, where r ⊆ R is a set of events and c′ is its

centroid.

Algorithm 13 gives an overview of the event clustering approach. Given as an input

the set G of all co-reference relations, the set R of generated events, a sample of events

R′ ⊂ R and some parameters explained later, the following steps are executed in order

to create the clusters: First, key terms and an entity type hierarchy are extracted that

are later used in the similarity functions (line 2 - 3). Based on the key terms and entity

types of the events in R′, blocks are created for efficiency reasons: event distances are

computed only for events within the same blocks (line 4 - 5). Finally, the clusters are

created in two steps explained later (line 6 - 7).
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Algorithm 13 Event Clustering

1: procedure Event Clustering(G,R,minSupport,minImpact,R′, keyTermTh, ε)
2: K ←KeyWordExtraction(G,R,minSupport,minImpact)
3: T ← ExtractTypes
4: B = createBlocks(R′, keyTermTh)
5: initDistances(B)

6: C = clusterEvents(R′, ε)
7: C = mergeClusters(C, ε)
8: return C
9: end procedure

5.7.1.1 Key Term Extraction

In order to limit the number of tokens within the context of each event, a set of key

terms is created first. These key terms are specifically important terms in the contexts of

events. We employ and approach similar to [KL08], where important terms in a specific

corpus are distinguished from the terms in a generic corpus. Precisely, key terms are

extracted from the events by comparing the frequencies of the words in all co-reference

relations G to the frequencies in the sentences contained in the relationship set R′ as

defined in Section 5.5.

The context of each event is split into tokens. For each token k, the support is computed

as the relative frequency of that token in the given co-reference corpus (here G):

SupportG(k) =
∣{e ∈ G∣k ∈ τ(e)}∣

∣G∣
(5.1)

We also compute the token’s impact as the ratio of occurrences in R′ compared to G:

ImpactR′,G(k) =
SupportR′(k)

SupportG(k)
(5.2)

Now, the set of key terms is the set if tokens whose support and impact exceeds the

input threshold parameters minSupport and minImpact:

K = {k ∈ T, SupportR′(k) ≥ minSupport ∧ ImpactR′,G(k) ≥ minImpact}
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5.7.1.2 Type Extraction

The second feature to compare events in the cluster are entity types: From an external

resource, a type hierarchy is extracted first. With this, each entity can be assigned a set

of entity types with sub and super types: For example, Nintendo is both a toy company

and video game publisher, which are both (transitive) sub types of “company”. By

resolving the type hierarchy, each entity is assigned a type frequency vector of length

y, where Y is the total number of types and where each entry denotes the number of

occurrences of the respective type in the entity’s type and super types.

5.7.1.3 Similarity Metrics

The distance between two events v1 and v2 during the clustering phase is based on their

key terms and entity type distance. These two sub scores are weighted using 0 ≤ α ≤ 1.

distance(v1, v2) = α ⋅ keyTermDistance(v1, v2) + (1 − α) ⋅ typeDistance(v1, v2)

To compute key term based distance scores, we first introduce a term similarity metric:

termSimilarity(k1, k2)↦ [0,1] that gives a higher scores to semantically similar terms

based on word embedding similarity. The key term based distance between two events

v1 and v2 is then computed by averaging over pairs (k1, k2) of least distant key terms in

both events:

keyTermDistance(v1, v2) =

1

2
⋅
∑k1∈v1.K mink2∈v2.K{1 − termSimilarity(k1, k2)}

∣K1∣

+
1

2
⋅
∑k2∈v2.K mink1∈v1.K{1 − termSimilarity(k1, k2)}

∣K2∣

The type-based distance scores are computed in a similar manner. Instead of the term

similarity function, the cosine similarity between the entities’ type frequency vectors is

used:
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typeDistance(v1, v2) =
1

2
⋅
∑e1∈v1.E mine2∈v2.E{1 − cos(e1, e2)}

∣E1∣

+
1

2
⋅
∑e1∈v2.E mine2∈v1.E{1 − cos(e1, e2)}

∣E1∣

5.7.1.4 Blocking

To avoid computing the distance for each possible pair of events in R′, blocks of presum-

ably similar events are created first. Each block is characterized by a set of key terms

and one entity type. To do so, similar key terms are grouped, such that there is a set of

key term groups:

K ′ = {K1,K2, . . . ,Kκ}, where ∀Ki ∈K
′ ∶

∀kp ∈Ki ∶ ∃kq ∈Ki, kq ≠ kp, such that

termSimilarity(kp, kq) ≥ keyTermSimilarityThreshold

Each entity type is combined with a key term group, such that there are y ⋅ ∣K ′∣ blocks.

Events are assigned with respect to their key terms and entity types (one event can

be assigned to multiple blocks). Then, the distance scores between each pair of events

within these blocks are computed.

5.7.1.5 Clustering

Using the similarity metrics, we create clusters of events using a similar approach as

in [SAMA17] where events are clustered based on their nearest neighbors. The exact

procedure is shown in Algorithm 14: For each event, events within a distance of ε are

collected (line 4) and a new cluster c is created consisting of these neighbors and the

event itself. Now, for each neighbor n that is already assigned to a cluster n.cluster, the

cluster cohesiveness scores of c and n are computed as defined in [SAMA17] (line 7). If

the new cluster’s score is higher, this one is added to the set of clusters.
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Algorithm 14 Event Clustering

1: procedure ClusterEvents(R′, ε)
2: C ← {}

3: for e ∈ R′ do
4: N ← Neighbors(e, ε)
5: c← new Cluster(N ∪ e)
6: for n ∈ N do
7: if n.cluster ≠ ∅ ∧ clusterCohesiveness(c) >

clusterCohesiveness(n.cluster) then
8: n.cluster.remove(n)
9: if n.cluster.isEmpty() then

10: C.remove(n.cluster)
11: end if
12: end if
13: end for
14: if ¬c.isEmpty() then
15: C = C ∪ c
16: end if
17: end for
18: return C
19: end procedure

The cluster cohesiveness is a strict metric that strives for highly coherent, but rather

small clusters. Therefore, an additional post-processing step is added where clusters are

merged based on the similarity of their centroids. As shown in Algorithm 15, a priority

queue PQ of cluster pairs is created in order of increasing cluster distance, where a

cluster distance below the input threshold ε is required (line 2 - 8). In that order, in

each step the two most similar clusters c1 and c2 are merged into a common cluster c.

In the following, the map is reorganized by removing all reference to the cluster pair and

by inserting new cluster pairs containing c (line 9 - 19).

5.7.2 Expansion to Asymmetric Events

For efficiency reasons, the cluster generation is based on a sample set R′. Consequently,

the event set R′′ = R ∖R′ has not been assigned to clusters yet. This needs to be done

in an additional step with R′′ and the set of clusters as inputs C, where events in R′′

are assigned to clusters in C.

In a similar process, the clusters in C can be used to detect even more events: Until now,

our event extraction approach relied on the assumption that significant event are told

from the perspective of several involved subjects, so they can be detected by looking
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Algorithm 15 Cluster Merging

1: procedure MergeClusters(C, ε)
2: for c1 ∈ C do
3: for c2 ∈ C do
4: if c1 ≠ c2 ∧ distance(c1, c2) ≤ ε then
5: PQ.add((c1, c2))
6: end if
7: end for
8: end for
9: while ≠ PQ.isEmpty() do

10: c = new Cluster(PQ.peek())
11: C = C ∪ c ∖ {c1, c2}
12: removeFromQueue(PQ, c1)
13: removeFromQueue(PQ, c2)
14: for c1 ∈ C do
15: if c1 ≠ c ∧ distance(c, c1) ≤ ε then
16: PQ.add((c, c1))
17: end if
18: end for
19: end while
20: return C
21: end procedure

for co-references. As demonstrated later in the evaluation, this approach enables to

generate a set of events with high precision: However, it misses out events of asymmetric

importance. For example, consider the event about Nintendo’s foundation in Tokyo on

23 September 1889 may be important for Nintendo itself, but not for the city Tokyo.

That means, there is a reference to the date and Tokyo in the Nintendo article, but

the date is not mentioned in the Tokyo article. Moreover, that foundation event should

even be detected if there was no mention of Tokyo in the Nintendo article: The term

“founded” and the date reference should already make up an event.

To detect events of asymmetric coverage in Wikipedia or event with one entity mention

only, we utilize the clusters C generated from the events extracted by exploiting the

temporal entity co-reference. Our goal is to identify each sentence annotated with at

least one entity and a time reference as an event if it can be assigned to one of the

previously generated clusters.

As no new clusters are being created and no changes are made in their description

and due to the high number of potential cluster similarity computations, we propose

a straight-forward approach to assign asymmetric event candidates and those outside

of the sample (R′′) to clusters: For each event candidate, (i) select the clusters that
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Figure 5.7: Part of the timeline for Nintendo. Above this frame, more events are
displayed for the selected time span.

share the most key terms with the event candidate, (ii) From the clusters, choose that

cluster that shares most entity types with the event candidate. At least one common

key word and two common entity types are required. Otherwise, the event candidate is

not assigned to the cluster. While we treat the events in R′′ as events even when they

can not be assigned to clusters, only those candidate events assigned to clusters are kept

as events.

5.8 Experiments and Examples

5.8.1 Dataset annotation

As input corpus we used the article pages contained in the complete English Wikipedia

dump of March 3, 2016. From each article we removed the infoboxes, tables, categories

and citations. Page texts were split into sentences using the Stanford Parser [KM03],

their time expressions were extracted using SUTime [CM12] (which also detects and

normalizes implicit time expressions such as “one year earlier”), and links were retrieved

from the Wikipedia markup language. Since entities in Wikipedia are linked just at

their first occurrence in a page, we used DBpedia Spotlight [DJHM13] with a confidence

threshold of 0.6 as a named entity disambiguation tool to extend the pages with further

links. DBpedia Spotlight was shown to perform well and efficiently on Wikipedia texts

[NHTW14].

5.8.2 Extraction Process

During the preprocessing step we found that 5M pages contain at least one entity

mention. These pages were split into 121M sentences. Within these sentences we found

105M instances of entity mentions and 61M time reference instances. Experimentally,

we set the parameters for the temporal similarity function ta to M = 2000 and θ = 0.6.
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With these parameter values, a time period composed by a single day can still be matched

to another time period referring to an entire year. From the entire English Wikipedia we

extracted a set of 684K co-reference relationships R̂. This set was used for the creation

of the co-reference graph that is composed of 552K nodes and 684K edges. For CTR

we experimentally set α = 0.5 and γ = 0.7. We implemented our approach in Java 1.8, as

a distributed map-reduce application running on top of Apache Spark 2.1 [Spa16]. Our

experiments were performed on a cluster of six virtual machines, each one with eight

cores and 96GB of main memory. The total time needed for the event extraction (TR,

FTR and CTR) was 5 hours, while the entity and time annotation took 4 days on a

single machine. The TR, FTR and CTR events are available online, as well as the

code and further data from the evaluation described in the following section.

5.8.3 Illustrative Results

Before getting into details, let us discuss some example events extracted with our ap-

proach under the constraints of temporal co-references to illustrate its flexibility. Our

first example describes the foundation of the Canadian football team Montreal Alouettes

by its three founders in 1946:

⟨{Eric Cradock, Lew Hayman, Léo Dandurand, Montreal Alouettes}, {“The Alouettes

were first formed in 1946 by CFL hall of famer Lew Hayman along with businessmen

Eric Cradock and Léo Dandurand.”, “Along with Lew Hayman and Léo Dan-

durand, Cradock co-founded the original Montreal Alouettes in 1946.”}, 1946 ⟩.

The foundation plays an important role for all involved entities and clearly marks a

specific event that can be mapped to a specific point in time. These kinds of events

may potentially be found also in knowledge bases with a limited set of relations, as

both the foundation of the team and the relation between a founder and the team can

be expressed using binary relations. However, due to the use of binary relations as in

[WZQ+10] and [ZSW15], the foundation is often not represented as a single and coherent

event.

Another event, which involves different types of entities is the following, describing

the killing of two Italian journalists working for Rai 3 on their way from Bosaso to

Mogadishu, Somalia in 1994:
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⟨{Bosaso, Ilaria Alpi, Italy, Miran Hrovatin, Mogadishu, Rai 3, Somalia}, 1994-03-20 ⟩.2

The event involves two persons (Ilaria Alpi and Miran Hrovatin), an organization (Rai

3), locations of the actual event (Bosaso, Mogadishu, Somalia) and a location referring

to the journalists’ citizenships (Italy). Given this complex structure it is not possible

to map it to a general and reusable schema representing such events as done in other

approaches [ZSW15, KW12]. Despite this, it clearly represents an important singular

event in the real world. The killing of both journalists could also be described for each

single journalist, though without providing an opportunity to detect the connection

between these two deaths.

A broader event that includes not just the original event, but its consequences as well

is the following:

⟨{Boom in the production of wheat, Epidemic, Stem rust, 1687 Peru earthquake, Peru,

Chilean wheat cycle}, 1687 ⟩.

After an earthquake and a stem rust epidemic in 1687, there was a heavy demand

for wheat in Peru which could be met by Chilean exports. This event describes a

long-running process involving two countries which plays an important role in their

history. Such dependencies from long-running processes are often only seen afterwards

and therefore not detectable when searching for peaks in user activity like in [LLL+12]

and [TA14].

As demonstrated by these example events, our approach is able to detect important

events that do not fit into predefined schemas, and does not have any limitations re-

garding the type of entities or the timing of events.

5.8.4 Entity Exploration

The generation and visualization of timelines has been discussed in several contexts,

for depicting events involving a specific person [ADM+15b], topics in a given corpus

[SA00] or a set of topically related events [ZDFB12]. Of particular interest is the first

case which allows to efficiently get an overview of the events in a person’s life and to

explore them to gather more information. However, the timelines presented by Althoff

et al. [ADM+15b] are restricted to human beings, their events are strictly filtered to

2For brevity, we omit the context information for the remaining exemplary events in this chapter.
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Figure 8: Statistics about the Generated Event Sets.

example, the stemmed term “debut” appears in 2% of the relation-
ships extracted from R̂ (support) and more than 6 times as often in
R̂ than in the rest of Wikipedia (support ratio).

For e�ciency, we apply this algorithm only to a sample of 50,000
events to create the set of clusters and then add the remaining ones
by mapping them to the centroids. With that sample, we found 258
clusters and were able to cluster more than 80% of the events after
the additional mapping.

Table 2: Selection of clusters found for the CTR events.
# Size Key terms and entity types

1 25,149 Terms: released, album, band, studio, song
Types: Person, Creator, Artist, Musician, Artifact

2 23,287 Terms: directed, �lm, starring, american, written
Types: Movie, Person, Psychological Feat., (Social) Event

10 8,508 Terms: music, won, award, awarded, song
Types: Person, Creator, Artist, Musician, Singer

11 7,971 Terms: party, elected, election, defeated, won
Types: Person, Leader, Abstraction, (Social) Group

17 6,781 Terms: married, born, son, daughter, wife
Types: Person, Leader, Communicator, Entertainer, Performer

21 5,237 Terms: company, acquired, purchased, million, announced
Types: Abstraction, (Social) Group, Organization, Institution

Table 2 gives an overview of selected clusters for the CTR events.
We observe that some of the clusters such as clusters 10 and 17
directly resemble YAGO relations (“hasWonPrize”, “isMarriedTo”)
and therefore show potential to extend knowledge bases based on
existing properties. The two biggest clusters resemble the YAGO
“created” and “wasCreatedOnDate” relations, but are more detailed,
referring to the music or movie domain. Finally, we �nd relations
not present in YAGO: cluster 11 is about political elections4, while
cluster 21 is about the acquisition of companies. This analysis of
our events based on key terms and clustering not only con�rms the
presence of relations known from classic knowledge base schemes,
but also demonstrates the ability of our approach to detect more
types of events.

8 EVALUATION
8.1 Coverage-Based Analysis
We have pointed out the �exibility of our event extraction approach
with respect to the general types of real-world events covered,
number of involved entities and temporal �exibility. To gain more
insight into the actual coverage of our event sets, we have compared
them also to established human-curated datasets. Due to the variety
of event models (e.g. named events, textual events and temporal

4Note that due to our co-reference approach, opposing key terms such as “defeated”
and “won” are often found in the same events.

Table 3: Coverage-based comparison of our events and a
frequency-based baseline with two sets of trusted events.

Method \ Trusted Events Named Events Textual Events
CTR 14,977 (12.81%) 23,406 (17.31%)
B1 4,536 (3.88%) 15,012 (11.10%)
B2 13,980 (11.95%) 22,886 (16.91%)

relations) and the vast amount of real-world event described in
web resources, such a comparison is di�cult and often requires
human judgments on small samples [1, 27]. We will �rst present
some automated comparisons to other resources and methods to
understand their coverage of events and in addition assess the
quality of our extracted events through human judgments.

First, we compare the CTR events and two baselines to (i) named
events according to the subclass hierarchy of Wikidata [31], and (ii)
textual events automatically extracted from the Wikipedia current
events portal [30] and Wikipedia event lists, similar to [11]. From
these resources, we retrieve 116, 939 trusted named events and
178, 933 trusted textual events. As baselines, we apply the event
extraction approach described in [1] on Wikipedia. In that approach,
events are identi�ed by frequent collections of entity sets extracted
from all sentences in the corpus that refer to at least one location
and date, grouped by date. On Wikipedia, we demand for an itemset
frequency of 5, which leads to a baseline set B1 of 91, 367 events.
When also allowing sentences without locations, this number rises
to 274, 150 (B2).

Table 3 shows the results for this comparison. There are few
overlaps between the di�erent event sets: Only 12.81% of the named
events are found within the CTR events and 17.31% of the textual
events can be mapped to CTR events (by demanding that they share
at least two entities and similar time periods ta � � ). Considering
that only 7.20% of the textual events are found in the named events,
these numbers con�rm the aforementioned di�culty with respect
to the di�erent event representations, but also indicate the need to
extend existing event collections. In both cases, we �nd clearly more
trusted events than the frequency-baseline B1 (e.g. more than three
times as many named events). Without the location restriction,
more trusted events are found. However, the CTR result contains
more than twice as many events in total compared to B2, which
shows the potential of identifying events across sentences.

To compare our approach to another method that also aims at
the extraction of events from the same resource i.e., a complete
Wikipedia snapshot, we compare it to the temporal facts found in
the YAGO knowledge base. Instead of searching for co-references
between entities across the pages, YAGO’s relations are extracted
from categories, textual patterns, and from structured information
in the Wikipedia infoboxes [33]. YAGO focuses on more static and

Figure 5.8: Distribution of event size.

follow some visual constraints, and they are based on facts from the deprecated Freebase

knowledge graph. Consequently, these timelines are limited to very few selected events

that are often taken from few available properties, such as starring in movies. With the

set of events that we have generated by exploiting temporal entity co-references, we aim

at providing a broad overview of an entity’s life span, including not just human beings,

but also other types of entities such as companies, military conflicts and others.

Figure 5.7 shows an example of our timeline application. It illustrates a selection of FTR

events involving the entity “Nintendo”. For each event, time and duration, involved

entities, and images of them are shown. If the user clicks on one of the events, more

detailed information is shown, including the Wikipedia sentences from where the selected

event was extracted and the link to entities involved. The user can interact with the

timeline to explore the entity in more details: By zooming in or out, the time span of

interest can be specified, and by selecting one or more of the entities involved in the

events, the set of events is filtered according to that selection. The Nintendo example

provides a detailed overview of the company’s history, e.g. the evolution of their systems

over time. Nintendo started with arcade machines in the 1980s, later released their first

video game console, and then developed handheld game consoles.

5.8.5 Statistics

Table 5.1 presents basic statistics for each of these methods: each of them leads to the

generation of more than 425k events, with TR generating less events compared to the

other two methods, but with a greater number of involved entities with respect to FTR

and CTR. CTR leads to the highest number of events, as it distinguishes concurrent

events between the same set of entities.
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example, the stemmed term “debut” appears in 2% of the relation-
ships extracted from R̂ (support) and more than 6 times as often in
R̂ than in the rest of Wikipedia (support ratio).

For e�ciency, we apply this algorithm only to a sample of 50,000
events to create the set of clusters and then add the remaining ones
by mapping them to the centroids. With that sample, we found 258
clusters and were able to cluster more than 80% of the events after
the additional mapping.

Table 2: Selection of clusters found for the CTR events.
# Size Key terms and entity types

1 25,149 Terms: released, album, band, studio, song
Types: Person, Creator, Artist, Musician, Artifact

2 23,287 Terms: directed, �lm, starring, american, written
Types: Movie, Person, Psychological Feat., (Social) Event

10 8,508 Terms: music, won, award, awarded, song
Types: Person, Creator, Artist, Musician, Singer

11 7,971 Terms: party, elected, election, defeated, won
Types: Person, Leader, Abstraction, (Social) Group

17 6,781 Terms: married, born, son, daughter, wife
Types: Person, Leader, Communicator, Entertainer, Performer

21 5,237 Terms: company, acquired, purchased, million, announced
Types: Abstraction, (Social) Group, Organization, Institution

Table 2 gives an overview of selected clusters for the CTR events.
We observe that some of the clusters such as clusters 10 and 17
directly resemble YAGO relations (“hasWonPrize”, “isMarriedTo”)
and therefore show potential to extend knowledge bases based on
existing properties. The two biggest clusters resemble the YAGO
“created” and “wasCreatedOnDate” relations, but are more detailed,
referring to the music or movie domain. Finally, we �nd relations
not present in YAGO: cluster 11 is about political elections4, while
cluster 21 is about the acquisition of companies. This analysis of
our events based on key terms and clustering not only con�rms the
presence of relations known from classic knowledge base schemes,
but also demonstrates the ability of our approach to detect more
types of events.

8 EVALUATION
8.1 Coverage-Based Analysis
We have pointed out the �exibility of our event extraction approach
with respect to the general types of real-world events covered,
number of involved entities and temporal �exibility. To gain more
insight into the actual coverage of our event sets, we have compared
them also to established human-curated datasets. Due to the variety
of event models (e.g. named events, textual events and temporal

4Note that due to our co-reference approach, opposing key terms such as “defeated”
and “won” are often found in the same events.

Table 3: Coverage-based comparison of our events and a
frequency-based baseline with two sets of trusted events.

Method \ Trusted Events Named Events Textual Events
CTR 14,977 (12.81%) 23,406 (17.31%)
B1 4,536 (3.88%) 15,012 (11.10%)
B2 13,980 (11.95%) 22,886 (16.91%)

relations) and the vast amount of real-world event described in
web resources, such a comparison is di�cult and often requires
human judgments on small samples [1, 27]. We will �rst present
some automated comparisons to other resources and methods to
understand their coverage of events and in addition assess the
quality of our extracted events through human judgments.

First, we compare the CTR events and two baselines to (i) named
events according to the subclass hierarchy of Wikidata [31], and (ii)
textual events automatically extracted from the Wikipedia current
events portal [30] and Wikipedia event lists, similar to [11]. From
these resources, we retrieve 116, 939 trusted named events and
178, 933 trusted textual events. As baselines, we apply the event
extraction approach described in [1] on Wikipedia. In that approach,
events are identi�ed by frequent collections of entity sets extracted
from all sentences in the corpus that refer to at least one location
and date, grouped by date. On Wikipedia, we demand for an itemset
frequency of 5, which leads to a baseline set B1 of 91, 367 events.
When also allowing sentences without locations, this number rises
to 274, 150 (B2).

Table 3 shows the results for this comparison. There are few
overlaps between the di�erent event sets: Only 12.81% of the named
events are found within the CTR events and 17.31% of the textual
events can be mapped to CTR events (by demanding that they share
at least two entities and similar time periods ta � � ). Considering
that only 7.20% of the textual events are found in the named events,
these numbers con�rm the aforementioned di�culty with respect
to the di�erent event representations, but also indicate the need to
extend existing event collections. In both cases, we �nd clearly more
trusted events than the frequency-baseline B1 (e.g. more than three
times as many named events). Without the location restriction,
more trusted events are found. However, the CTR result contains
more than twice as many events in total compared to B2, which
shows the potential of identifying events across sentences.

To compare our approach to another method that also aims at
the extraction of events from the same resource i.e., a complete
Wikipedia snapshot, we compare it to the temporal facts found in
the YAGO knowledge base. Instead of searching for co-references
between entities across the pages, YAGO’s relations are extracted
from categories, textual patterns, and from structured information
in the Wikipedia infoboxes [33]. YAGO focuses on more static and

Figure 5.9: Temporal event distribution (TR).
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example, the stemmed term “debut” appears in 2% of the relation-
ships extracted from R̂ (support) and more than 6 times as often in
R̂ than in the rest of Wikipedia (support ratio).

For e�ciency, we apply this algorithm only to a sample of 50,000
events to create the set of clusters and then add the remaining ones
by mapping them to the centroids. With that sample, we found 258
clusters and were able to cluster more than 80% of the events after
the additional mapping.

Table 2: Selection of clusters found for the CTR events.
# Size Key terms and entity types

1 25,149 Terms: released, album, band, studio, song
Types: Person, Creator, Artist, Musician, Artifact

2 23,287 Terms: directed, �lm, starring, american, written
Types: Movie, Person, Psychological Feat., (Social) Event

10 8,508 Terms: music, won, award, awarded, song
Types: Person, Creator, Artist, Musician, Singer

11 7,971 Terms: party, elected, election, defeated, won
Types: Person, Leader, Abstraction, (Social) Group

17 6,781 Terms: married, born, son, daughter, wife
Types: Person, Leader, Communicator, Entertainer, Performer

21 5,237 Terms: company, acquired, purchased, million, announced
Types: Abstraction, (Social) Group, Organization, Institution

Table 2 gives an overview of selected clusters for the CTR events.
We observe that some of the clusters such as clusters 10 and 17
directly resemble YAGO relations (“hasWonPrize”, “isMarriedTo”)
and therefore show potential to extend knowledge bases based on
existing properties. The two biggest clusters resemble the YAGO
“created” and “wasCreatedOnDate” relations, but are more detailed,
referring to the music or movie domain. Finally, we �nd relations
not present in YAGO: cluster 11 is about political elections4, while
cluster 21 is about the acquisition of companies. This analysis of
our events based on key terms and clustering not only con�rms the
presence of relations known from classic knowledge base schemes,
but also demonstrates the ability of our approach to detect more
types of events.

8 EVALUATION
8.1 Coverage-Based Analysis
We have pointed out the �exibility of our event extraction approach
with respect to the general types of real-world events covered,
number of involved entities and temporal �exibility. To gain more
insight into the actual coverage of our event sets, we have compared
them also to established human-curated datasets. Due to the variety
of event models (e.g. named events, textual events and temporal

4Note that due to our co-reference approach, opposing key terms such as “defeated”
and “won” are often found in the same events.

Table 3: Coverage-based comparison of our events and a
frequency-based baseline with two sets of trusted events.

Method \ Trusted Events Named Events Textual Events
CTR 14,977 (12.81%) 23,406 (17.31%)
B1 4,536 (3.88%) 15,012 (11.10%)
B2 13,980 (11.95%) 22,886 (16.91%)

relations) and the vast amount of real-world event described in
web resources, such a comparison is di�cult and often requires
human judgments on small samples [1, 27]. We will �rst present
some automated comparisons to other resources and methods to
understand their coverage of events and in addition assess the
quality of our extracted events through human judgments.

First, we compare the CTR events and two baselines to (i) named
events according to the subclass hierarchy of Wikidata [31], and (ii)
textual events automatically extracted from the Wikipedia current
events portal [30] and Wikipedia event lists, similar to [11]. From
these resources, we retrieve 116, 939 trusted named events and
178, 933 trusted textual events. As baselines, we apply the event
extraction approach described in [1] on Wikipedia. In that approach,
events are identi�ed by frequent collections of entity sets extracted
from all sentences in the corpus that refer to at least one location
and date, grouped by date. On Wikipedia, we demand for an itemset
frequency of 5, which leads to a baseline set B1 of 91, 367 events.
When also allowing sentences without locations, this number rises
to 274, 150 (B2).

Table 3 shows the results for this comparison. There are few
overlaps between the di�erent event sets: Only 12.81% of the named
events are found within the CTR events and 17.31% of the textual
events can be mapped to CTR events (by demanding that they share
at least two entities and similar time periods ta � � ). Considering
that only 7.20% of the textual events are found in the named events,
these numbers con�rm the aforementioned di�culty with respect
to the di�erent event representations, but also indicate the need to
extend existing event collections. In both cases, we �nd clearly more
trusted events than the frequency-baseline B1 (e.g. more than three
times as many named events). Without the location restriction,
more trusted events are found. However, the CTR result contains
more than twice as many events in total compared to B2, which
shows the potential of identifying events across sentences.

To compare our approach to another method that also aims at
the extraction of events from the same resource i.e., a complete
Wikipedia snapshot, we compare it to the temporal facts found in
the YAGO knowledge base. Instead of searching for co-references
between entities across the pages, YAGO’s relations are extracted
from categories, textual patterns, and from structured information
in the Wikipedia infoboxes [33]. YAGO focuses on more static and

Figure 5.10: Event distribution by time granularity.

Method #Events Average size

TR 425,400 2.67

FTR 584,948 2.39

CTR 652,413 2.50

Table 5.1: Cardinality and average size of event sets.

These observations are also supported by Figure 5.8 which lists the number of events

found for different sizes of entity sets. For all event sets the number of events decreases

with the number of entities involved.

The TR method extracts less events than FTR and CTR which can be explained

by the exploratory manner of the graph traversal, illustrated by the following example

event:

⟨{Beijing West Railway Station, Baiziwan Station, Jiaohuachang Station, Jiulongshan

Station, Nanlouzizhuang Station, Huagong Station, Happy Valley Scenic Area Station,
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Dajiaoting Station}, 2014-12-28 ⟩ .

This event represents the opening of a new line as part of the Beijing Subway. There

is no page mentioning all the entities, instead the pages contain sentences like “It was

opened on December 28, 2014 as a part of the stretch between Beijing West Railway

Station and Jiaohuachang and is located between Huagong Station and Happy Valley

Scenic Area Station” (from the “Nanlouzizhuang Station” page). The exploration of the

TR subgraphs succeeds fusing this information together into a single event.

Time plays an essential role in our event detection process, as it is a mandatory com-

ponent of each event and employed for the actual detection of entity co-references. In

contrast to other approaches being limited to ongoing events or events covered by the

time span of a news collection, our approach is not limited to any time period, includ-

ing past events given the encyclopedic nature of Wikipedia. Figure 5.9 supports this

claim by giving an overview of the temporal distribution of events detected with the

TR method (FTR and CTR have a similar distribution): our data covers events from

modern and post-classical history and even finds several events from ancient history, as

well as (possible) futures, as shown by the following examples:

• ⟨{William II of England, Westmorland}, 1092 ⟩: In 1092, William II took control

of the area Westmorland previously claimed by the Scots.

• ⟨{100 Years (film), Robert Rodriguez}, 2115-11-18 ⟩: The film “100 Years” directed

by Robert Rodriguez is due to be released on 18 November 2115.

As shown in Figure 5.10, durations differ across the generated events: while single-day

events tend to describe singular events like deaths or natural disasters, longer-lasting

events represent election processes, military conflicts or similar.

5.8.6 Clustering Results

Extracting terms with a minimum support of 0.5% in R̂ and a minimum support ratio

of 1.25 gives us a set of 161 key terms. For example, the stemmed term “debut” appears

in 2% of the relationships extracted from R̂ (support) and more than 6 times as often

in R̂ than in the rest of Wikipedia (support ratio).
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For efficiency, we apply this algorithm only to a sample of 50,000 events to create the set

of clusters and then add the remaining ones by mapping them to the centroids. With

that sample, we found 258 clusters and were able to cluster more than 80% of the events

after the additional mapping.

# Size Key terms and entity types

1 25,149
Terms: released, album, band, studio, song
Types: Person, Creator, Artist, Musician, Artifact

2 23,287
Terms: directed, film, starring, american, written
Types: Movie, Person, Psychological Feat., (Social) Event

10 8,508
Terms: music, won, award, awarded, song
Types: Person, Creator, Artist, Musician, Singer

11 7,971
Terms: party, elected, election, defeated, won
Types: Person, Leader, Abstraction, (Social) Group

17 6,781
Terms: married, born, son, daughter, wife
Types: Person, Leader, Communicator, Entertainer, Performer

21 5,237
Terms: company, acquired, purchased, million, announced
Types: Abstraction, (Social) Group, Organization, Institution

Table 5.2: Selection of clusters found for the CTR events.

Table 5.2 gives an overview of selected clusters for the CTR events. We observe that

some of the clusters such as clusters 10 and 17 directly resemble YAGO relations (“has-

WonPrize”, “isMarriedTo”) and therefore show potential to extend knowledge bases

based on existing properties. The two biggest clusters resemble the YAGO “created”

and “wasCreatedOnDate” relations, but are more detailed, referring to the music or

movie domain. Finally, we find relations not present in YAGO: cluster 11 is about po-

litical elections3, while cluster 21 is about the acquisition of companies. This analysis of

our events based on key terms and clustering not only confirms the presence of relations

known from classic knowledge base schemes, but also demonstrates the ability of our

approach to detect more types of events.

5.9 Evaluation

5.9.1 Coverage-Based Analysis

We have pointed out the flexibility of our event extraction approach with respect to

the general types of real-world events covered, number of involved entities and temporal

3Note that due to our co-reference approach, opposing key terms such as “defeated” and “won” are
often found in the same events.
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flexibility. To gain more insight into the actual coverage of our event sets, we have

compared them also to established human-curated datasets. Due to the variety of event

models (e.g. named events, textual events and temporal relations) and the vast amount

of real-world event described in web resources, such a comparison is difficult and often

requires human judgments on small samples [SG16, AB15]. We will first present some

automated comparisons to other resources and methods to understand their coverage

of events and in addition assess the quality of our extracted events through human

judgments.

First, we compare the CTR events and two baselines to (i) named events according

to the subclass hierarchy of Wikidata [VK14], and (ii) textual events automatically

extracted from the Wikipedia current events portal [TA14] and Wikipedia event lists,

similar to [HL12]. From these resources, we retrieve 116,939 trusted named events and

178,933 trusted textual events. As baselines, we apply the event extraction approach

described in [AB15] on Wikipedia. In that approach, events are identified by frequent

collections of entity sets extracted from all sentences in the corpus that refer to at least

one location and date, grouped by date. On Wikipedia, we demand for an itemset

frequency of 5, which leads to a baseline set B1 of 91,367 events. When also allowing

sentences without locations, this number rises to 274,150 (B2).

Table 5.3 shows the results for this comparison. There are few overlaps between the

different event sets: Only 12.81% of the named events are found within the CTR events

and 17.31% of the textual events can be mapped to CTR events (by demanding that

they share at least two entities and similar time periods ta ≥ θ). Considering that only

7.20% of the textual events are found in the named events, these numbers confirm the

aforementioned difficulty with respect to the different event representations, but also

indicate the need to extend existing event collections. In both cases, we find clearly

more trusted events than the frequency-baseline B1 (e.g. more than three times as

many named events). Without the location restriction, more trusted events are found.

However, the CTR result contains more than twice as many events in total compared

to B2, which shows the potential of identifying events across sentences.

To compare our approach to another method that also aims at the extraction of events

from the same resource i.e., a complete Wikipedia snapshot, we compare it to the tem-

poral facts found in the YAGO knowledge base. Instead of searching for co-references
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Method \ Trusted Events Named Events Textual Events

CTR 14,977 (12.81%) 23,406 (17.31%)

B1 4,536 (3.88%) 15,012 (11.10%)

B2 13,980 (11.95%) 22,886 (16.91%)

Table 5.3: Coverage-based comparison of our events and a frequency-based baseline
with two sets of trusted events.

between entities across the pages, YAGO’s relations are extracted from categories, tex-

tual patterns, and from structured information in the Wikipedia infoboxes [WZQ+10].

YAGO focuses on more static and concrete facts like birthdates and binary relations be-

tween entities, e.g. marriages or foundations. Table 5.4 shows the number of temporal

YAGO relations that are also present in our event set using the CTR method (i.e. they

share a time interval and the entities are part of the respective event in our set).

Relation YAGO CTR Coverage

isMarriedTo 6,594 2,055 31.16%

created 1,372 387 28.21%

hasWonPrize 8,933 1280 14.33%

wasCreatedOnDate 973,464 185,079 19.01%

happenedOnDate 86,907 31,965 36.78%

diedOnDate 453,098 14,508 3.20%

wasBornOnDate 983,365 13,070 1.33%

Table 5.4: Overlap between temporal YAGO relations and CTR events grouped by
selected binary and unary relation labels.

For the listed event relations found in both sets, we distinguish between unary (“was-

BornOnDate”) and binary (“isMarriedTo”) relations. As our approach considers co-

references of entities, it is better at finding binary events that affect both involved enti-

ties. But even in the case of the unary YAGO relation “wasCreatedOnDate” (covering

films, albums, organizations, etc.), our approach often provides additional information

like the director, artist or founder. For marriages, YAGO finds relations not covered

in our events because the “spouse” relation is an essential part of Wikipedia infoboxes

about persons. As our approach is based on the unstructured Wikipedia page text, we

can detect marriages only if covered in the entity’s textual description.

Given that more than 248,344 events are shared between YAGO and our extracted en-

tities, nearly 70%4 of the events from our extraction cannot be matched with YAGO

4Consider that one of our events could be correctly mapped to multiple YAGO facts.
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facts and therefore describe new information. Clearly, our set of events provides com-

plementary information extending existing knowledge bases such as YAGO.

5.9.2 Qualitative Analysis

The coverage-based and clustering-based analyses have shown the high number and

variety of new events found by using our approach, i.e. recall. Next, let us measure

the quality of our results in terms of precision regarding the percentage of correctly

retrieved events. To do this, it is not sufficient to compare our set of events against

existing sources because (1) we aim at the extraction of events not representable by

given temporal relations or named events in other sources and (2) if there is an overlap

between the event sets we cannot easily detect which events match, as one of the sources

could add some more descriptive entities to an event. Due to these issues, we decided

to explicitly ask human annotators for the correctness of our extracted events.

In the user evaluation, we show users extracted events and ask them to categorize these

events into one of the following categories:

• Specific real-world event (e.g. DNA discovery)

• Temporal relation during a specific period (e.g. football players of the same team

in a specific season)

• Unrelated at the specified time

Through this, we identify two different categories of events: specific real-world events

and temporal relations where the latter capture more general interactions of entities that

often go beyond a single interaction between entities.

For the study, we randomly sampled 50 events per method. 17 users participated,

categorizing 26 events on average, which results in a set of 450 ratings, where each event

was rated by three users to allow for majority voting. Users were shown events one after

another, and had to categorize them based on the involved entities and the timespan.

As additional help we provided them with links to the entities’ Wikipedia pages and the

sentences the specific event was extracted from.
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Method
Specific real-
world event

Temporal
relation

Unrelated

TR 67.39% 28.26% 4.35%

FTR 84.78% 15.22% 0%

CTR 88.00% 12.00% 0%

all 80.05% 18.50% 1.45%

Table 5.5: Precision of the extracted event sets.

Results

If at least two users agree on the class of an event, this class is chosen. Otherwise, the

event is ignored in the following results analysis, which happened for 9 out of the 150

rated events only, even though the Fleiss’ κ score of 0.11 suggests a slight agreement

between the raters. This again shows how difficult it is to agree on what is an event

and what is not an event, as also seen in the previous analyses in this section. Table 5.5

shows the study results: the CTR method outperforms both other method, given that

88.00% of the events in its sample were rated representing real-world events, and none

of them not modeling any temporal relation at all, while only 67.39% of the results

in the TR sample were rated as specific real-world events. Considering the event sets

together, just 1.45% of our events were rated as unrelated and 98.55% of them were

evaluated as real-world events or relations. We investigate some specific cases leading

to disagreement between the raters or negative ratings:

• Complex sentences: For the event ⟨{Maryland Route 45, U.S. Route 111},

1963 ⟩, the sentence on the “U.S. Route 111” page is “The route disappeared in

1963, by then completely replaced by I-83, and running along I-83 except inside

the Baltimore Beltway (where it used present Maryland Route 45 to the end)”

which is difficult even for a human to understand and to map to an event.

• Conceptual entities: Events involving generic concepts like ”Author”, ”Novel-

ist” or ”Actor” were often not rated as specific real-world events.

• Erroneous time expressions: Errors coming from the time extraction tool can

be propagated to the final events.

Based on the above we conclude that our event extraction approaches are not only

able to detect a vast amount of new events but also show high precision when finding
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temporal relations and in particular events. Demanding for textual relatedness and strict

connectivity constraints between the entities in an event contributes to the extraction

of more precise events.

5.10 Discussion

With our methods, we were able to generate a corpus of high quality and heterogeneous

historical and contemporary events. Due to the underlying assumption that important

events are reported from the perspective of all participating entities, we may miss out

further events of asymmetric importance among the participants.

By exploiting the clusters, we are able to find also this kind of events. From all sentences

in Wikipedia that mention at least one entity and one time expression, we collect those

sentences that have not been used to create our event sets. For each sentence, the closest

cluster is identified using entity type and time overlap measures. If a sentence’s distance

to its closest cluster is below the clustering distance threshold, the sentence is considered

to describe an event. We run this procedure over 21M additional Wikipedia sentences

that contain both entities and time expressions and obtained close to 7M sentences

potentially representing more events.

In this way, the characteristics induced from our event collections can help to identify

further events with less connectivity constraints. As this extraction is solely based on

sentences annotated with entities and time expressions, it could even be applied on other

sources such as news collections.

5.11 Summary

We have introduced a novel approach to extract events exploiting temporal co-reference

relationships between entities. We formally defined the problem, described its applica-

tion on Wikipedia, and its implementation on a Wikipedia snapshot. Our results show

that the extracted set of events is diverse with respect to the involved entities, occurrence

times and event types, and we emphasize the role of word similarity in getting higher

quality results. Comparing our results to existing event collections from Wikipedia and

events extracted by YAGO, we find that the events we extract nicely complement and



138

extend existing collections and provide an important source of additional event infor-

mation and temporal relationships. Measuring correctness of our results through a user

study confirmed the high precision of our methods.



Chapter 6

Finding Synonymous Attributes in

Evolving Wikipedia Infoboxes

Previous chapters present different approaches that extract data from unstructured and

structured data that are not evolving. In this chapter and in the following chapter we

deal with problems in which the data is evolving. In this context, we aim at extracting

synonymous attributes, i.e. attributes that describe the same characteristic, on data

that is changing over time. We focus our attention on Wikipedia Infoboxes that are

semi-structured data structures organized in an attribute-value fashion. While policies

establish for each type of entity represented in Wikipedia that the attribute names of the

Infobox should selected from predefined templates. However, these requirements change

over time and often users choose not to strictly obey them. As a result, it is hard to

treat in an integrated way the history of the Wikipedia pages, making difficult to analyze

the temporal evolution of Wikipedia entities through their Infobox and impossible to

perform direct comparison of entities of the same type. To address this challenge, in this

chapter we propose an approach to deal with the misalignment of the attribute names

and identify clusters of synonymous Infobox attributes.

6.1 Contributions

The main contributions of this chapter can be summarized as follows.

• We introduce the problem of attribute name alignment in Wikipedia Infoboxes.

139



140

• We propose a novel approach to the problem of attribute name alignment in

Wikipedia infoboxes that exploits co-occurrence information as a negative evi-

dence and common attribute values as a positive evidence.

• We turn these evidences into metrics and treat the problem as a clustering problem,

providing an efficient implementation of it that is based on lineal programming that

provides a good approximation while maintaining a fast execution time.

• We apply the technique on a set of Wikipedia Infoboxes that span over 13 years

and report our findings on how effective such approach is indeed.

6.2 Outline

The remainder of the chapter is structured as follows. Section 6.3 shows an illustrative

example. In Section 6.4 we formally define the problem of attribute alignment in evolving

Wikipedia infoboxes. The Section 6.5 introduces the principles our approach. Section

6.6 provides an extensive evaluation of our technique and reports our findings.

6.3 Motivating Example

Consider Figure 6.1, it contains four Infoboxes from different versions in time of the

entity “Apple Inc.”. Note the attribute that describes the location of the company.

Initially (in 2007), the attribute name location was used to specify the country and

other geographical data. In 2009 it disappeared. In 2014 two new attributes were

introduced to indicate the location: the location country and location city. Finally,

in 2017, the attributes were renamed to hq location country and hq location city to

more accurately specify that the location is the location of the headquarters. The

aforementioned example is also indicating another situation. The fact the same can

happen to the attribute values. For instance, it can be noticed that the value indicating

the country USA was originally “united states” and later changed to “u.s.”.
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Figure 6.1: Evolution of schema and values of the entity Apple Inc.

6.4 Problem statement

This chapter deals with entities described in Wikipedia articles. We assume that an

article describes only an entity, identified by an identifier id (e.g., the page title). The

type T specifies the subject of the entity, e.g, an event, person, organization, product,

etc. Wikipedia articles consist of two components: an unstructured textual component

and a list of attribute-value pairs called infobox.

Definition 1 (Infobox and infobox schema). We define the entity infobox I =

{⟨a1, v1⟩, ..., ⟨an, vn⟩}, where ⟨ai, vi⟩ are attribute-value pairs. We denote with SI the

infobox schema, that is the set of attributes included within it, and with VI its values.

For each type of entity T , Wikipedia policies specify a template for the infobox schema,

i.e. the list of attributes that should describe that type of entity.

The data shown in an infobox may change over time. This happens mainly for two rea-

sons: 1) the referred entity changes, i.e, the infobox values change and/or 2) Wikipedia

releases new policies defining the infobox schema associated to a type of entity.

We define It the infobox at time t and Et the entity at time t it is describing.

Definition 2 (Entity). An entity at time t, denoted as Et, is a triple ⟨id, T, It⟩ where

id is the entity identifier, T is the entity type and It the associated infobox.

The set of all the changes occurred to the entity can be collected from all the infoboxes

and constitutes the entity evolution.
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Definition 3 (Entity evolution). Assuming the existence of a set of times values T that

correspond to all possible times instances ti, we define entity evolution E as the triple

⟨id, T, IT ⟩ where id is the entity identifier, T is the entity type and IT the set of all

infoboxes Iti describing the entity over time. We identify with SIT the schema of IT ,

that is the union of the schemas of all the infoboxes contained within it. Similarly, we

define VIT as the set of values in all the included infoboxes.

The problem we want to address is to find, for each entity type, lists of synonymous

attributes, i.e., attributes that are used over the time to describe the same property of

an entity. The set of attributes used in the infoboxes of a specific entity type is called

set of entity type attributes.

Definition 4 (Set of entity type attributes). For each entity type T , AT is the set of

entity type attributes and includes all attributes used in at least an infobox schema at

any time for describing an entity of type T .

Synonymous attributes are clusters of entity type attributes that describe the same

real-world entity property.

Problem 1 (Finding synonymous attributes) Given a set of entity type attributes AT ,

we want to find a disjoint partitioning of AT , denoted as S = {S1, ..., Sm}, where the

attributes aj ∈ Si are used to describe the same real-world entity property.

Furthermore, in the following, we denote:

• VI(a) as the set of values assumed over time by the attribute a within all the

infoboxes IT associated with an entity;

• ∆tI(a) as the time interval (i.e., a list, even if not contiguous, of time instants) in

which attribute a is valid, i.e. it appears in some infoboxes IT associated with an

entity;

• I as the set of the infoboxes IT collected over time for a collection of entities.

6.5 The approach

In this section, we present our proposal for finding synonymous attributes in Wikipedia

entities having the same type. For each pair of attributes, two measures are computed,
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assessing the extent in which the attribute represent (and do not represent) the same

entity property, respectively. In this way, they provide a positive and a negative evidence

of the synonymy. The measures are presented in Section 6.5.1. Then Section 6.5.2

shows how to use the knowledge provided by these measures to generate clusters of

synonymous attributes. For this purpose, we reduce our problem to the one addressed

by correlation clustering [BBC04], where data points are partitioned into groups based

on their similarity. A linear-programming approach has been adapted for this purpose.

The work has been inspired from [HCCT16], where a similar technique has been adopted

in the context of web search engines.

6.5.1 Positive and negative evidence for synonymy

We can model the synonymy relationship between attributes by analyzing their co-

occurrences in the same infobox. In this perspective, we assume that synonymous at-

tributes cannot appear simultaneously in the same infobox otherwise there would be

information redundancy. In other words, we leverage the co-occurrence of two attributes

in the same infobox as a negative evidence for their synonymy.

Example 6.1. Consider for example the attributes name and type which definitely

describe different aspects of an entity. They are very common attributes: in a random

sample of 60,760 infoboxes describing companies collected over the last 13 years, they

appeared, together or separately, in 74.61% of the cases (i.e. for describing 45,332

entities). Within these entities the attributes coexist in the same infobox in 99.89%

of the cases (i.e., 45,281 times), and they do not co-occur 51 times. According to our

idea, they cannot be considered as synonyms. Conversely, the name and company name

attributes, that instead can be used to describe the same characteristic of an entity, show

an inverse co-occurrence pattern: in 0.08% of the cases are present simultaneously in

the same infobox and in 99.92% of the cases do not co-exist.

More formally, given two attributes ai, aj belonging to infoboxes describing the same

entity type, Equation 6.1 provides a measure of their “negative” co-occurrence.

NegCoocc(ai, aj) =
∣{IT ∈ I ∣∆tI(ai) ∩∆tI(aj) ≠ ∅}∣

∣{IT ∈ I ∣ai, aj ∈ SIT }∣
(6.1)
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To compute this measure, all infoboxes in the collection are evaluated. For each of

them, the presence of both input attributes (i.e., ai and aj) in a time frame is verified.

This check is carried out by identifying whether there are overlaps in their validity time

interval (i.e., ∆t(ai) and ∆t(aj) respectively). The number of entities for which there

is overlap, normalized by the overall number of entities in I, provides the correlation

value that we consider as negative evidence for their synonymy.

As the experimental evaluation shows, the adoption of this measure only is not enough

to accurately identify the synonymous attributes.

Example 6.2. The highest values obtained by the application of Equation 6.1 to the

attribute company logo, are with the attributes logo, name and type. The results, in

our collection are respectively 0.9988, 0.965 and 0.94. Obviously, only the first pair

of attributes are synonyms. The other pairs are attributes representing very different

information. After a careful analysis of the temporal evolution of the infobox schemas

we noticed that the attributes with the “company” prefix have been introduced with an

old Wikipedia policy to identify all attributes describing “company” type entities. Today,

this policy is no longer adopted, in favor of more concise and direct attributes (such as

type and name instead of company type and company name respectively). However, a

delay in the application of the new policy produces misalignments in the infoboxes and

make Equation 6.1 not enough accurate.

To produce more accurate results, we introduce a measure for positive synonymy evi-

dence. In particular, we measure the values shared between attributes as the indication

that they are really synonyms. We analyze the different value representations of the

attributes throughout the entire history of Wikipedia and we calculate their fraction

of overlap through the Jaccard similarity. We do not deliberately consider other string

similarity techniques to have a more general approach, which does not rely on specific

domain knowledge. In more detail, for each pair of attributes we select the values that

generate the maximum fraction of overlap within the data collection. Equation 6.2

provides the formulation of the measure we adopt.

PosOverlap(ai, aj) =

∑
IT ∈I∣ai,aj∈SIT

max( ∑
vi∈VI(ai),vj∈VI(aj)

Jaccard(vi, vj))

∣{IT ∈ I ∣ai, aj ∈ SIT w}∣
(6.2)
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where, with reference to the notation introduced in Section ??, VI(ai) and VI(aj) repre-

sent respectively all values assumed over time by the attributes ai and aj for all infoboxes

in IT where they are valid.

Example 6.3. Let us consider the application of Equation 6.2 with the same input as

in Example 6.2. We obtain the following results: PosOverlap(company logo,

logo) = 0.8899; (company logo, name) = 0.003; and (company logo, type)

= 0.007. We can observe that the high value computed for the pair (company logo,

logo) confirms the previous evidence of synonymy. The very low values for the other

pairs do not confirm the evidence of synonymy resulting from Equation 6.1.

6.5.2 Holistic approach for synonym discovery

The measures of synonymy between pairs of attributes are used to compute clusters of

synonymous attributes which constitute the result of our work. Our idea is to model the

synonymy relations between the attributes by means of a graph and to apply a clustering

algorithm over the graph to extract groups of synonymous attributes.

Given some positive and negative evidence for attributes synonymy, we model attributes

and their synonymy relationship as an attribute-synonymy graph, where the nodes corre-

spond to the attributes and the edges to the synonymy relations between the attributes.

The edges are labeled according to whether the measure associated with them should

be interpreted as positive or negative evidence of synonymy.

Definition 5 (attribute-synonymy graph). An attribute-synonymy graph is a graph G =

(V,E) with vertices representing the attributes of the infoboxes we want to analyze. The

edges associate to each pair of vertices provide a measure of their synonymy through

a weight wi,j ≥ 0. Let Li,j be the label associated to each edge (i, j). L can assume

the value + or − according to whether the edge is representing the measure of the

negative or the positive evidence for their synonymy expressed by Equation 6.1 and

Equation 6.2, respectively. Let E+ be the set of edges identified by a label of value

+: E+ = {(i, j)∣Li,j = +}, and, analogously, E− (i.e., E− = {(i, j)∣Li,j = −}) the set of

edges identified by a label of value −. A representation of this graph is provided in

Figure 6.2, where solid edges indicate edges with positive weights and edges with crosses

the negative ones.
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Figure 6.2: Attribute-synonym graph for ”company” type entities

Our goal now is to apply a clustering strategy that partitions the nodes of the attri-

bute-synonymy graph so that each attribute is associated with a single cluster with its

synonyms (see the dashed blue circles of Figure 6.2). To obtain this result, we adopt a

correlation clustering algorithm [BBC04] which provides a method for clustering data

points into the optimum number of clusters based on their similarity without specifying

that number in advance. In our implementation, the aim is to identify the partitioning of

the infobox attributes that best respects the positive and negative evidence of synonymy

provided as input.

Problem 2 (discovery of synonymous infobox attributes) Given an attribute-syno-

nymy graph G = (V,E), we want to find a disjoint partitioning of V , denoted as

S = {S1, ..., Sm}, that agrees as much as possible with the labels L associated to the edges

E of the attribute-synonymy graph. More precisely, we want a clustering that maxi-

mizes the weight of agreements: the weight of + edges within clusters plus the weight of

- edges between clusters.

The resolution of this problem exploits a heuristic procedure already proposed in the

literature [DEFI06] for solving the correlation clustering problem. This technique is

divided into two steps. First a linear programming approach is used to provide an

approximate solution to the problem. The results produced by this model are fractional



147

values that correspond to scores of synonymy between attributes. In a second step a

technique called region-growing is applied to group attributes with a high synonymy level

within the same cluster and remove the attributes that describe different information

about the referred entity.

Linear-programming approach In the first phase of the approach the following linear

model has to be solved.

minimize ∑
(i.j)∈E−

wi,j(1 − xi,j) + ∑
(i.j)∈E+

wi,jxi,j

subject to xi,j ∈ [0,1], xi,j + xj,k ≥ xi,k, xi,j = xj,i.

The goal of this model is to identify a valid assignment of the variable xi,j that minimizes

the sum of the negative edges included in a cluster and maximizes the sum of positive

edges. Intuitively, this variable provides an indication of the collocation of the nodes in

the clusters (i.e., it assumes, in the borderline cases, the value 0 when two attributes

are included in the same cluster and 1 in the opposite case). An assignment of xi,j is

considered valid if xi,j ∈ [0,1] and xi,j satisfies the triangular inequality. This motivates

the inclusion of the constraints in the problem formulation. The adaptation of this linear

model to our problem requires the addition of a further constraint, which requires that

the negative weights (i.e., wi,j in the first sum) are defined according to Equation 6.1,

and the positive ones (i.e., wi,j in the second sum) according to Equation 6.2.

Region growing Once a first approximated solution to the problem is obtained, we

apply the region growing technique. Its objective is to convert the approximate cluster

membership indication of the attributes provided by this first solution, into an exact

distribution of the attributes in the different clusters. More precisely, this technique

is used to convert the fractional solution x in an integral solution which identifies if

two attributes belong to the same cluster. Since this technique represents a classical

clustering strategy, below we provide only an insight into its operation. More details

instead can be found in [DEFI06]. The intuition behind this technique is to construct,

in an iterative way and starting from randomly selected seed nodes, some balls (i.e.,

groups of graph nodes) modifying, step by step, their coverage radius on the graph. The

growth of these balls is determined by the weights associated with the graph edges: a ball

will continue to grow as the sum of the positive weights included inside the subgraph
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identified by the ball is advantageous. On the contrary, the ball will stop growing,

causing the creation of a new ball (or a new cluster), when its growth would incorporate

dissimilar nodes compared to those already included in the cluster. The arrangement of

these balls within the graph determines its final partitioning.

6.6 Experimental evaluation

In this section, we firstly provide a description of the dataset used for the experimental

evaluation (Section 6.6.1) and then we qualitatively (Section 6.6.2) and quantitatively

(Section 6.6.3) evaluate the effectiveness of the approach. Finally, a case study is pre-

sented (Section 6.6.4) to show how Wikipedia synonymous attributes can be used in a

real scenario.

6.6.1 Dataset description

The dataset used in the experimental evaluation is a collection of infoboxes of entities

having type associated to the “concept of company” (i.e., we consider entities having

type company, organization, dot-com company, etc.). This collection includes, for each

entity, its complete history between August 2004 to August 2017, i.e. all updates in the

infobox schemas that have been introduced by Wikipedia users. The result is 60,760

entities and around 1,861,252 changes.

The number of attributes used in the infoboxes varies: it is not fixed per entity type and

in the time. Table 6.1 provides some statistics about attributes and values. The average

number of attributes and values per entity are 12.84 and 25.35 respectively. Moreover,

the maximum number of attributes associated to an entity, in the considered period of

time, is equal to 253, and the maximum number of different values is 503.

In Tables 6.2 and 6.3 the top 10 most frequent attributes and values are reported. The

attribute “name” is the most used: it appears in 97% of the collected entities, while

“company name”, appearing in 47% of the entities, is the 10th most used attribute.

Concerning the values, “united states”, “privately held companies” and “public compa-

nies” appear respectively in 31.78%, 31.63% and 23.47% of the entities and are the most

frequently values used in the collection.
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avg std max min

# attribute per entity 12.84 5.64 253 1

# value per entity 25.35 23.67 503 1

Table 6.1: Number of attributes and values per entity

attr freq freq (%)

name 59017 97.13%

industry 51845 85.33%

foundation 49033 80.70%

homepage 47076 77.48%

type 46015 75.73%

logo 40102 66.00%

key people 36176 59.54%

products 33388 54.95%

location 32490 53.47%

company name 28565 47.01%

Table 6.2: Frequencies of attributes and values: Top 10 most frequent attributes

value freq freq (%)

united states 19310 31.78%

privately held company 19221 31.63%

public company 14259 23.47%

united states dollar 9692 15.95%

private 7983 13.14%

subsidiary 7144 11.76%

united kingdom 5986 9.85%

worldwide 5973 9.83%

yes 5289 8.70%

chief executive officer 4793 7.89%

Table 6.3: Frequencies of attributes and values: Top 10 most frequent values

Table 6.4 and Table 6.2 provides an insight on the evolution of the attributes and values

in the considered period of time. In particular, Table 6.2 shows the attributes whose

values were most frequently subject to change, and Table 6.5 the top 10 entities affected

by the greatest number of changes over time. Note that 10% of all the infobox updates

involves the “key people” attribute, and the most modified entity is “Eurosport”.

A more detailed analysis of the evolution is shown in Figure 6.3 and Table 6.6, where

the top 5 most updated types of entity are analyzed. Table 6.6 shows the number

of entities collected per type and the total number of changes. Figure 6.3 plots some

statistics about the number of updates per entity. Although the total number of updates

in the “company” category is the highest, a particularly high number of average updates
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attr freq freq (%)

key people 162465 10.07%

products 112440 6.97%

location 94936 5.89%

foundation 87828 5.45%

industry 86707 5.38%

homepage 84182 5.22%

name 77894 4.83%

logo 62653 3.88%

type 61655 3.82%

revenue 59206 3.67%

Table 6.4: Updates in Wikipedia entries: Top 10 most changed attributes

entity title freq freq (%)

Eurosport 1924 0.10%

National Geographic (TV channel) 708 0.04%

Canada 672 0.04%

Apple Inc. 594 0.03%

Nintendo 580 0.03%

HBO 538 0.03%

Cuba 527 0.03%

Animax Asia 526 0.03%

General Motors 525 0.03%

Amazon.com 509 0.03%

Table 6.5: Updates in Wikipedia entries: Top 10 most changed entities

has been applied to entities belonging to the “television” type. The other categories of

entities, on the other hand, present an average number of updates which is approximately

the same (i.e., the range varies between 20 and 40 updates).

entity type # entities
# total
changes

company 57,553 1,494,245

defunct company 664 15,304

dot-com company 127 6,340

television 40 4,953

organization 155 4,819

Table 6.6: Entities and updates for the top 5 most updated entity types.

6.6.2 Qualitative evaluation of the effectiveness

In this section we qualitatively evaluate the effectiveness of our approach by analyzing

a sample of its results. Table 6.7 shows 10 clusters of synonymous attributes generated
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Figure 6.3: Number of changes of the top 5 most updated entity types.

by our approach. We can observe that our approach is able to identify interesting and

non-trivial synonymy relations between attributes. For example, it is able to find the

correspondences between attributes like “established” and “founded” or “predecessor”

and “former name” which would not be identifiable by a string similarity technique.

Furthermore, we match attributes expressed in different languages, such as “employees”

with “mitarbeiterzahl” and “city” with “sitz”. Analyzing these results, we can observe

the various textual forms used over time by the Wikipedia community to indicate the

same characteristic of an entity. This variety of forms presumably derives from the

adoption of different schema guidelines/policies imposed by Wikipedia1. The attributes

“name”, “company name” and “type”, “company type” are examples of this situation.

The inclusion of the prefix “company” has been introduced by a policy to make more

explicit the type of entity described by the attributes.

6.6.3 Quantitative evaluation of the effectiveness

The effectiveness of the proposed approach is assessed in quantitative terms. The main

goal of this analysis is to empirically demonstrate that both the measures contribute in

identifying synonymous attributes. To perform this evaluation, firstly a ground truth has

been manually created. We have exploited public attribute mappings directly provided

by the Wikipedia Template pages to obtain a first minimal set of attribute matches.

1Note a cleaning procedure has been applied to the input infoboxes to remove the “noise” generated
by human mistakes.
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cluster

num staff, employees, number of employees, num employees,
numemployees, mitarbeiterzahl

established, opened, formation, founded date, start year, date founded,
foundation, gründungsdatum, introduced, founded

logo, non-profit logo, network logo, company logo, firm logo

web, url, website

operating profit, ebitda, operating income, operating income

creator, founder(s), founder, founders

predecessor, former names, former name, predecessors

company type, type, unternehmensform, former type, former type,
company type, non-profit type

headquarters, headquaters, hq city, location city, city, sitz,
residence, hq location city, location, place, hq location

agency name, network name, group name, name, non-profit name,
company name, firm name, company name

Table 6.7: Example of synonymous attributes produced by our approach

This basic information has been then extended with new manually inserted attribute

correspondences. The generated ground truth includes about 2,000 attributes clustered

in 454 groups of synonyms. Once an exact set of attribute correspondences has been

generated, we evaluated our approach on a sample of the entire collection of Wikipedia

infoboxes. In more detail, we tested our approach on an attribute-synonymy graph,

generated starting from the input dataset, consisting of 6,854 attributes and 52,707

synonymy relations. The results provided by our approach were finally compared with

the ground truth.

To provide a measure of the quality of the clusters generated by our approach with

respect the ground truth, we adopted four measures: precision, recall, f1 score and rand

index. We calculate precision as # true synonyms in cluster
# total attributes in estimated cluster , and recall as

# true synonyms in cluster
# total attributes in real cluster . The f1 score is a combination of precision and recall defined

as 2 ∗ precision∗recall
precision+recall . Finally, the rand index [MR71] was used to evaluate the similarity

between the clustering solution produced by our approach and that provided by the

ground truth.

The experiment aims, in particular, to evaluate the contribution of each measure in

obtaining the final result. To force such behavior, a linear combination of the two

measures has been introduced. Its formulation is proposed in Equation 6.3, where the

α parameter is used to weight the contribution of the measures.
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SynonymyScore(ai, aj) = α ∗ PosOverlap(ai, aj) + (1 − α)NegCoocc(ai, aj) (6.3)

The results of this experimentation are given in Table 6.8. The results show that, with

reference to the company entity type, linear combinations that assign more importance

to the positive evidence of synonymy produce better results. Table 6.8 shows only α

ranging from 0.6 to 1, however with lower α results follow a similar trend: precision

decreases and instead recall increases. The best configuration is α = 0.8, that obtains

the highest values in all evaluation measures. We observe that the configuration with

α = 1, where there is no contribution from the negative evidence of synonymy, is the one

that obtain the highest precision level. Nevertheless, in that configuration, the recall,

rand and f1 score levels decrease considerably.

α parameter
(positive contribution)

precision recall f1 score rand in-
dex

0.6 0.375 0.764 0.372 0.146

0.7 0.817 0.759 0.757 0.886

0.8 0.797 0.767 0.760 0.947

0.9 0.791 0.754 0.752 0.942

1 0.831 0.668 0.723 0.858

Table 6.8: Effectiveness evaluation with different positive contributions

6.6.4 Case study

In this section we provide a small case study to show that synonymous attributes can

support the extraction of high quality and accurate information from Wikipedia. Ta-

ble 6.9 introduces 5 information needs a user would like to satisfy against the collection

of infoboxes described in Section 6.6.1. Each information need has been transformed

into 2 structured queries: one with the original filtering condition formulated by the user

and the second where the attributes have been substituted with a number of disjunc-

tive clauses, each one expressing the same information need but by using synonymous

attributes. Table 6.9 shows the number of entities retrieved when both the queries are

executed and the number of results it is expected to be retrieved. Last two columns show

the same information in percentage. We observe that synonymous attributes largely sup-

port the retrieval of all results. The maximum improvement is obtained with the last
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query
# query results

original
clauses

using
synonymous
attributes

ground
truth

original
clauses

(%)

using
synonymous
attributes

(%)

location city=“tokyo” 268 293 298 89.93 98.32

founded<1900 681 705 705 96.59 100

location=“USA”,
year=2014

381 531 531 71.75 100

location=“united states”,
net income>1 billion

371 429 429 86.48 100

type=“public company”,
num employees>10,000,
year=2010

221 1154 1154 19.15 100

Table 6.9: Case study

query (i.e., type="public company", num employees>10,000, year=2010) where the

application of synonymous attributes allows us to retrieve all results, instead of 19.15%

of them, as we obtain with the original formulation.

6.7 Summary

We introduced an approach that automatically defines clusters of synonymous temporal-

evolving infobox attributes. The approach is mainly based on two kinds of knowledge:

a negative evidence of synonymy provided by co-occurrences of the attributes in the

same infobox in a given time instance, and a positive evidence of synonymy generated

by co-occurrences of similar values for the attributes in different time instances. We

formalized this issue as a correlation clustering problem over a weighted graph and

we used a linear programming model to solve it. Our experiments, over the last 13

years infoboxes history, shows that our approach is effective in discovering synonymous

attributes.



Chapter 7

Finding Movements of Values in

Evolving Wikipedia Infoboxes

In the previous chapter, we treat the problem of finding synonymous attributes from

evolving infoboxes. Evolving datasets, such as Wikipedia Infoboxes, open opportunities

for new information to be extracted. In this context, we analyze how attributes values

are moving between the different entities during a vast time period of time. In this

chapter, we formally introduce the concept of movements of attributes, we propose an

effective strategy for the identification of the movements, and we validate our results

with real data.

7.1 Contributions

The main contributions of this chapter can be summarized as follows.

• We formally define the problem of attribute movement identification.

• We propose an effective strategy that identifies the movements through a pruning

procedure that first remove frequent and systematic changes, then we score the

remaining movements in order to select only relevant movements.

• We apply our approach on a set of Wikipedia Infoboxes that spans over a decade,

and we discuss our shortcomings and possible further research directions.

155
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7.2 Outline

The chapter is organized as follows. In Section 7.3, we present a motivating exam-

ple. Section 7.4 formally defines movements; Section 7.5 introduces our approach in

order to find movements between evolving Infoboxes. Finally, Section 7.6 contains the

experimental evaluation.

7.3 Motivating Example

Consider the manager ”Ursula Burns” that in 2017 left its CEO position at Xerox to

later join the company VEON. On the data perspective, on the infobox of entity ”Xerox”

the attribute ”Key people = Ursula Burns” changed to ”Key people = Jeff Jacobson”

at the beginning of 2017. In 2018, after a certain time the attribute ”Key people” was

changed with ”Ursula Burns” in the entity VEON. We identify this kind of transfer as

an attribute movement. This movement represents both the changes in jobs of the entity

”Ursula Burns” and the change of essential figures between two top companies.

7.4 Problem Statement

In our data model the fundamental component is the entity, an artifact that correspond

to a real world object. An entity is a data structure composed of a unique identifier and

a set of attributes representing its aspects at a specific point time.

More formally, we assume the existence of an infinite set of identifiers O that corresponds

to all the possible real objects, an infinite set of names N and an infinite set of atomic

values V.

An attribute is a pair ⟨n, v⟩, with n ∈ N and v ∈ {V ∪ O}. Let A = N × {V ∪ O} be

the infinite set of all possible attributes. Thus, an attribute name n ∈ N describes the

properties that characterize aspect of the entities e ∈ E such as name, address, and many

others and this correspond to column of a in table or as the predicate in an RDF-triple.

Values characterize these properties, and they can be null �.
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The world is naturally evolving, and consequently entities need to reflect these changes.

They are reflected in the attributes of the entities, where attributes values can be added,

updated or deleted. Thus, each attribute is associated with a time validity period in

order to capture all the changing that affect an entity.

We assume the existence of an infinite set of times values T that correspond to all the

the possible times instances. Let a time-aware attribute be a tuple ⟨n, v, tb, tf ⟩, with

n ∈ N , v ∈ {V ∪O} and tb, te ∈ T , where tb and tf represent the begin and end time of

the validity period of the attribute. We indicate with At = N × {V ∪ O} × T × T the

infinite set of possible time-aware attributes.

Definition 1. A time-aware entity e is a tuple ⟨id,At⟩ where id ∈ O is the entity

identifier and At ⊆ At, with At finite, is the set of time-aware attributes of the entity.

For simplicity we will refer to the time-aware entities as entities. As an example, consider

a person that changes his/her address due to a new job, the attribute that represents

the address changes its value in order to capture this change. The previous address was

valid until the time that this changed.

For each time-aware attribute at = ⟨n, v, tb, tf ⟩ ∈ A
t of an entity e = ⟨id,At⟩ we can define

a time-aware entity attribute ate as the tuple:

ate = ⟨id, n, v, tb, tf ⟩

Note that since we allow entity identifiers to appear as attribute values, our model

supports also relationships between entities.

Whenever a change occurs in the value of an entity attribute, we say that the en-

tity evolved. Changes can be of different kinds, i.e., updates, insertions, or dis-

appearances: an update is characterized by the existence of two distinct tuples

⟨id, n, v′, t′b, t
′
f ⟩, ⟨id, n, v

′′, t′′b , t
′′
f ⟩ ∈ A

t, where v′ ≠ v′′ and t′e < t
′′
b , indicating that the value

of n changed from v′ to v′′; an appearance is characterized by the existence of a tuple

⟨id, n, v, tb, tf ⟩, where tf is undefined; and a disappearance of a value v is characterized

by the existence of a tuple ⟨id, n, v, tb, tf ⟩, where tf is defined.

A database D is a finite set of entities E , where each entity partially models a real-world

object. Since we live in a community where these objects (e.g. people, companies and
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others) depend on other objects, we assume that the attribute values of an entity can

change because of changes in the attributes of other entities.

In this work, we want to analyze how attribute values move between entities. The

migration of a value v from an entity e1 to an entity e2 is called a move.

Definition 2. A move m(v, e1, e2) of a value v from an entity e1 to an entity e2 is a

tuple m(v, e1, e2) = ⟨v, e1, e2, td, ta⟩ where td = t
i
f for some ai = ⟨e1, n, v, t

i
b, t

i
f ⟩ ∈ A

t
1, ta = t

j
b

for some aj = ⟨e2, n, v, t
j
b, t

j
f ⟩ ∈ A

t
2, and tif < t

j
b.

By definition a move m(v, e1, e2) occurs if and only if the value v disappears from e1

and later appears in some attribute of e2. We define the set of possible movements in a

database D as MD = {m(v, ei, ej)∣ei, ej ∈ D ∧ ei ≠ ej ∧ v ∈ {V ∪O}}.

For example, consider ”Ursula Burs” that leaves a company ”Xerox” to join another

company ”Veon”. In this case we can say that the employee moved from the entity

”Xerox” to the entity ”Veon”.

Notice that not every disappearance of an attribute value of an entity e1 is related to a

later appearance of the same value in another entity e2, because appearances may occur

by chance. As an example consider a public company e1 that becomes ”private” at time

t1 and a private company e2 that becomes ”public” at time t2 > t1. It is clear that

the first update did not caused the second update, and therefore we would not consider

these change as a move of ”public” from e1 to e2.

Since not every change represents a move, we need a way to measure how likely a

value actually moved from one entity to another one. Thus, we assume the existence of

function i ∶MD → [0,1] called movability score, which associates a level of relevance to

each candidate move m(v, e1, e2).

Finally, notice that a value may move between different entities multiple times. For

example, an employee may change company more than once.

Problem 3. (The movement identifiication problem.) Given a set of time aware entities

At, our goal is to identify all movement MD of attribute values v ∈ V that move between

those entities.
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7.5 Movement extraction

The extraction of movements from the dataset is a challenging task. Since an attribute

movement is originated from a change, first we need to identify the changes that are not

generating movements, and then we score the remaining possible movements in order to

find the most relevant ones.

7.5.1 Systematic and frequent changes

We recall that not every change in an attribute can be considered a move of a value

between two entities. Indeed, the amount of moves is negligible with respect to the

number of changes that happened in the data. As we will see later, for each change of

attribute value, we must perform a quadratic number of comparisons between entities

in order to generate the candidate movements involving that value. Therefore, a crucial

step of our approach is the identification of efficient and effective strategies to identify

only the changes that most likely indicate actual movements. Among the changes that

less likely suggest a move of a value between entities, we first focus on the changes at

system level and the changes in close-domain attributes.

A change at system level is a change forced by the system (i.e., an external source) inde-

pendently from the evolution of the entities. In Wikipedia, for example, the value ”USA”

has been progressively replaced by the value ”U.S.” due to a new data representation

policy.

On the other hand, a change in a close-domain attribute happens when an attribute

value changes from v to v′ with v, v′ ∈ R ⊆ {V ∪ U} ∧ ∣R∣ < k for some k << ∣V ∪ U ∣. We

disregard these changes, because the number of evolving entities is huge compared to

the number of values that the attribute can take, and hence it is very likely that a value

disappears from an entity and appears in another entity at the same time just by chance.

An example, the field ”type of company” in the Wikipedia infoboxes can assume value

only among ”private” and ”public”, and therefore it will likely happen that different

companies change their company type to opposite values in similar time periods.

In order to prune set of values that are generating changes at system level and the changes

in close-domain attributes we need to reconstruct the evolution of each attribute name
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for each entity. To construct the evolutions of the attribute names of an entity e, we first

split the set of time-aware attributes Ate into a set of sets Ate↾n, each of which contains

the attributes referring to the same attribute name n, i.e., Ate↾n = {⟨n̄, v, tb, tf ⟩∣⟨n̄, v,

tb, tf ⟩ ∈ A
t
e ∧ n = n̄}. We propose two different approaches to create these sequences of

values.

The first method models the evolution of n as a set of ordered sequences of values

that n took during the lifespan of e, i.e., Se↾n = {[v1, . . . , vk] ∣∃a1, . . . , ak ∈ A
t
e↾n ∧ ∀i =

1, . . . , k , ai = ⟨n, vi, tbi , tfi⟩ ∧ tfi < tfi+1}. The second method, instead, models the evo-

lution of n as a set of ordered pairs of values took by n, i.e., Se↾n = {[v1, v2] ∣∃a1, a2 ∈

Ate↾n ∧ ∀i = 1,2 , ai = ⟨n, vi, tbi , tfi⟩ ∧ tf1 < tf2}. The union of all the sets Se↾n is denoted

by SD = ⋃e∈D ⋃n∈Ne Se↾n where Ne ⊂ N is the finite set of attribute names of the entity

e.

Note that an attribute name can take more than a value at a time. For example, in the

Wikipedia infobox of the entity ”Apple Inc.” the attribute ”Founders” takes 3 values

(i.e., Steve Jobs, Steve Wozniak, and Ronald Wayne), and the attribute ”Key People”

takes as many as 10 different values. As a consequence, in the first method, the set Se↾n

can contain multiple sequences, while in the second method, multiple pairs can share a

common value v1 or v2.

Furthermore, we implemented a strategy, which can be embedded in both the two meth-

ods, in order to deal with two edge cases: constant value and disappeared value. The

first case happens when an attribute name n of an entity e does not change its value v

during the lifespan of e, while the second case happens when the value v of the attribute

disappears without being replaced by a new value. In both cases, the set Se↾n would be

empty, and thus v would not be considered in the next steps of the algorithm. However,

both these two kinds of values can convey important information, and therefore should

be somehow included in the set SD. Therefore, we introduce the suffix ∗ to indicate

that a value is constant, and the suffix # to indicate that a value disappeared without

being replaced. Then, we define Se↾n as {[v,∗v]} in the first case, and as {[v,#v]} in

the second case.

We claim that the changes at system level and the changes in close-domain attributes

can be identified by means of the frequent itemsets that can be extracted from SD. We

formally denote an itemset c in SD as the set c = {v1, . . . , vl} where ∃Se↾n ∈ SD .∃s ∈
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Se↾n ∧ c ⊆ s, and the support sup(c) of c as sup(c) = {s∣s ∈ SD ∧ c ⊆ s}/∣SD ∣. Then, a

frequent itemset is defined as follows:

Definition 3. Given a threshold τ , an itemset c is a frequent itemset if sup(c) > τ .

In particular, we use the frequent itemsets to generate association rules that likely

contain values representing one of the two changes we want to discard. Associa-

tion rules are implications in the form of X → Y , where X,Y ⊆ V. The sup-

port of an association rule is simply the support of the union of the two sides of

the implication, i.e., sup(X → Y ) = sup(X ∪ Y ), while its confidence is defined as

conf(X → Y ) = sup(X ∪ Y )/sup(X).

Note that both kinds of changes will appear in rules with high confidence. Indeed,

changes at system level affect almost every entity in the dataset and therefore they

will be included in a large number of sequences s ∈ SD, while changes in close-domain

attributes are likely very frequent due to the narrow set of possible values that that

attribute can take. Therefore, we introduce two threshold α and β, and discard the

rules X → Y with support sup(X → Y ) ≤ α and confidence conf(X → Y ) ≤ β. The

excluded values are inserted into the set Wf . The values appearing in the rule kept will

be excluded in the step of movement extraction described in the following section.

Example 7.1. Consider a set the set of infoboxes related to organizations in Wikipedia.

They consist of 57400 infoboxes that span over 13 years. In this dataset the number of

possible movements is greater that 57M.

Since the candidates are greater than 57 M, we need the initial pruning phase. Note that

we consider only values that are links to other entities. Table 7.1 shows the distribution

of the movements with respect to the distinct values. With only 100 values we are able

to discover more than 55 millions of candidate movements that correspond to more that

96% of the total number of possible movement with remain set of values. Table 7.2 shows

the number of candidate movements generates per each value. Values are displayed in

decreasing order with respect to the number of candidate movements generated. Only

the value ”privately held company” is able to generate more than 12 millions of possible

movements.

As shown in the previous example, the number of movement is considerably high with

respect to the number of entities that is quite slow. Given this enormous amount of
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#Values #Movements Coverage (%)

100 55529952 0,9669

200 56420671 0,9825

300 56782902 0,9888

400 56972754 0,9921

500 57078997 0,9939

1000 57285782 0,9975

2000 57372584 0,9990

3000 57396333 0,9994

5000 57413333 0,9997

10000 57424724 0,9999

Table 7.1: Number of distinct attribute values with respect to the candidate move-
ments generated. The values are ordered by the ones that are generating more move-

ments.

Value #Movements

privately held company 12035712

united states 10852849

public company 9875540

united states dollar 9006635

chief executive officer 2286292

united kingdom 2097759

subsidiary 1084830

chairman 607206

london 524468

financial services 497412

TOTAL 48868703

Table 7.2: Top 10 values that generate movements.

movement generated by this small amount of values, we first apply the removal process

for systematic and frequent changes. This process will generate a set of remaining

values that we denote with Wf . Given the rest of the values, the process of generating

the candidate movement is described in Algorithm 16.

7.5.2 Candidate movement extraction

Given the set values excluded Wf obtained from the previous, we now extract the set of

remaining candidate movements.

The algorithm takes as input the database D containing the set of entities and returns

the movements related to those entities. As a first step, the algorithm retrieves the
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Algorithm 16 Candidate Movement Extractor

Input: D: a database
Output: MD, the movement database generated from D

1: MD ← {}

2: W ← retrieveValues(D)

3: Ŵ =W ∖Wf

4: for each w ∈ Ŵ do
5: E ← extractEntities(w)

6: Atw ← getAttributes(E,w)

7: sort(Atw)
8: for each a1 ∈ A

t
w do

9: At+w ← getFurtherAttributes(Atw, a1)
10: for each a2 ∈ A

t+
w do

11: if a1.id! = a2.id then
12: if a1.tf < a2.tb then
13: MD.add(⟨w,a1.id, a2.id, a1.tf , a2.ts⟩)
14: else
15: break;
16: end if
17: end if
18: end for
19: end for
20: end for
21: return MD

candidate values that can move between entities. Candidate values are values that

appear in more than one entity and values have to disappear in order to be considered.

The function retrieveValues() is responsible for the extraction of candidate value.

From the set of candidate value W , we remove the frequent values extracted in the

previous phase producing the set Ŵ . Therefore, for each of these selected values Ŵ

we generate the temporal valid movements present in the database D. The extraction

process is composed of several steps.

First, for each value w ∈ Ŵ , we extract all the entities E that contains this specific value

w with the function extractEntities(), from this set of entities E we collect all the

attributes Atw that contains the value w using the function getAttributes(). This set

of attributes Atw is ordered by the end validity time and for each element a1 ∈ A
t
w, the

function getFurtherAttributes() retrieves the set of attributes At+w that has begin

time greater the end time of the analyzed attribute a1, so At+w = {a2∣a2.tb > a1.tf ∧ a2 ∈

Atw}. For each a1 ∈ A
t
w we compare with the elements in the set At+w and then we collect

all the movements (MD) that are temporally valid.
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7.5.3 Ranking of candidate movements

The set of candidate movements MD identifies the set of candidate movements that

remain for the previous filtering procedure. This candidate movements are not equally

important and represent real movements of values between the entities. In order to

identify significant movements we define a scoring function that identifies the important

characteristics of a movement. Each candidate movement will be associated with a score

named movability score that represents how important of a movement m be. Given the

set of candidate movements MD we score all of them and discard movements with a

score lower than γ.

The movability score highlights different aspects of the movement that qualify which

movements are more important than the one that is not identified as movements.

A movement is generated from the disappearance and the appearance of a value within a

certain amount of time, this fact imposes that the number of disappearances and appear-

ances of a value have to be balanced. To measure that we introduce a scoring function

called bal that uses entropy in order to measure the diversity between appearances and

disappearances of a value in the history of a database D.

bal(m(e1, e2, v)) = −
n

∑
i=1

P (xi)log(P (xi))

where e1, e2 ∈ E , v ∈ V and X is a discrete random variable that contains two values, for

each couple of entities. The first represents the probability of appearance of a specific

attribute value w ∈ {V ∪ O} in a certain amount of time ∆t in which the value w

disappears from the entity e1, and it appears in the entity e2.

Another characteristic that qualifies a movement are the entities in which the values

are moving around, in general, the entities in which the values are floating around are

similar. In order to qualify this aspect, we define a similarity function between two

entities:

simE(e1, e2) = J(Names(e1),Names(e2))
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avg std max min

# attribute per entity 12.84 5.64 253 1

# value per entity 25.35 23.67 503 1

Table 7.3: Number of attributes and values per entity

where Names ∶ E → N return all the attribute names N ⊆ N of the entity e1. Moreover,

J ∶ E × E → [0,1] is the Jaccard similarity.

The final score is computed by the mean of the two previous scores: bal and simE.

Finally, when all the movements have been scored, we used a threshold τ in order to the

most probable movements.

7.6 Experimental Evaluation

This section descibes first the data that we used to show the potential of our method

and then it provides details and examples of the rest of the process.

Dataset description. The dataset used is composed by a collection of infoboxes

that are related to the entities of type company. This collection includes each entity, its

complete history between 2004 and 2018. The result is 57465 entities.

The number of attributes used in the infoboxes varies: it is not fixed per entity type and

in the time. Table 7.3 provides some statistics about attributes and values. The average

number of attributes and values per entity are 12.84 and 25.35 respectively. Moreover,

the maximum number of attributes associated to an entity, in the considered period of

time, is equal to 253, and the maximum number of different values is 503.

In Tables 7.4 and 7.5 the top 10 most frequent attributes and values are reported. The

attribute “name” is the most used: it appears in 97% of the collected entities, while

“company name”, appearing in 47% of the entities, is the 10th most used attribute.

Concerning the values, “united states”, “privately held companies” and “public compa-

nies” appear respectively in 31.78%, 31.63% and 23.47% of the entities and are the most

frequently values used in the collection.

Given our input dataset, composed of more than 50k entities, we first need to build

our sequences of values as described in the previous section. The number of sequences

generated is 949970. These sequences are then processed in a different manner (pairwise
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attr freq freq (%)

name 59017 97.13%

industry 51845 85.33%

foundation 49033 80.70%

homepage 47076 77.48%

type 46015 75.73%

logo 40102 66.00%

key people 36176 59.54%

products 33388 54.95%

location 32490 53.47%

company name 28565 47.01%

Table 7.4: Frequencies of attributes and values: Top 10 most frequent attributes

value freq freq (%)

united states 19310 31.78%

privately held company 19221 31.63%

public company 14259 23.47%

united states dollar 9692 15.95%

private 7983 13.14%

subsidiary 7144 11.76%

united kingdom 5986 9.85%

worldwide 5973 9.83%

yes 5289 8.70%

chief executive officer 4793 7.89%

Table 7.5: Frequencies of attributes and values: Top 10 most frequent values

splitting or constant/end case addition). The distribution of sequences is shown in

Figure 7.1.

Figure 7.1: Distribution of sequence cardinality

Table 7.6 presents some results about the pruning phase and the candidate movements
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extraction process. Given the different type of sequence creation process, we show

the effectiveness and efficiency of the pruning approach. The column Sequence Type

indicates the different sequence construction used: ”Normal” indicates the sequences

built without any addition the constant and ending case. Instead, Pair indicates the

other sequential strategy that is based on pairs, and the suffix E,C indicates the usage

of the strategy that includes extra cases of constant and ending cases. Support and

confidence values are reports and for each of them the number of values excluded by

frequent itemset, the values excluded by association rules and the number of candidate

movements that have been generated with these settings.

Sequence
Type

Support Confidence
#Vs excluded

by FI
#Vs excluded

by AR
Candidate
Movements

Normal 0,001 0,001 59 0 3735829

Normal 0,0001 0,001 862 46 299838

Normal 0,00005 0,001 1554 93 144257

Normal 0,00004 0,001 1900 128 112423

Normal 0,00003 0,001 2406 182 83542

Normal 0,00002 0,001 3497 327 54251

Normal 0,00001 0,001 6700 740 25934

NormalE,C 0,001 0,001 96 71 3735829

NormalE,C 0,0001 0,001 1490 1196 299838

NormalE,C 0,00005 0,001 2712 2179 144257

NormalE,C 0,00004 0,001 3316 2656 112423

NormalE,C 0,00003 0,001 4219 3376 83542

NormalE,C 0,00002 0,001 6154 4916 54251

NormalE,C 0,00001 0,001 11432 8747 25934

PairE,C 0,001 0,001 84 61 3997222

PairE,C 0,0001 0,001 1329 1008 345946

PairE,C 0,00005 0,001 2480 1892 163802

PairE,C 0,00004 0,001 3026 2297 125895

PairE,C 0,00003 0,001 3873 2921 94277

PairE,C 0,00002 0,001 5494 4136 61590

PairE,C 0,00001 0,001 10271 7303 29644

Table 7.6: Effectiveness of pruning of Systematic and frequent changes removal.

7.6.1 Quantitative evaluation of the effectiveness

The quantitative evaluation wants to analyze that our approach is able to identify the

movements that happen in the data. To perform this evaluation, we first manually create

a ground truth. The generated ground truth includes the movements of 16672 values,

and a set of labelled movements greater than 40M .
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To provide a measure of the quality of the clusters generated by our approach with

respect to the ground truth, we adopted three measures: precision, recall, and f1 score.

We calculate precision as
# find movements

# total movements

and recall as

# true synonyms in cluster

# total attributes in real cluster

. The f1 score is a combination of precision and recall defined as

2 ∗
precision ∗ recall

precision + recall

.

The experiment aims, in particular, to evaluate the contribution of each measure in

obtaining the final result. In order to find our final set of movements we used support

= 0.00017, confidence = 0.05 and γ = 0.3. In this setting, we obtain a set of candidate

movements of 15149, and we score them with the scoring function introduced in previous

settings. After selecting candidate movements with a score greater than γ > 0.45, we

obtain a set of candidate movements composed of 6529 movements.

After comparing it with the groundtruth we obain a precision = 0.83 and recall = 0.99.

These results are part of a preliminary work that will surely be improved with future

extensions.

7.7 Summary

In this chapter, we present our approach that discovers movements of attributes between

evolving entities. We first formalized the problem, then propose an approach that can

identify the correct movements with good quality. This work is at an initial state but it

shows the potential of our idea.



Chapter 8

Conclusions

Big data analysis is the process of extracting knowledge from a huge amount of data that

is constantly increasing. Since the number of users accessing data in any format, from

different sources, is exploding, the process of extracting information from those data has

to adapt to this emerging need. This is becoming even critical when novice users are

involved in this process because they do not have any experience in the treatment of

such amount of data. The problems start from the acquisition of the data, if users are

not completely aware of the structure, the content and the information present in their

input dataset, they are not able to proceed with their analysis.

This dissertation aims at constructing an initial study. More precisely we proposed

methods to cope with very common problems in data analysis: (1) the generation of

data description, in which the user provides some parameters and system provides the

top-k description to the user; (2) the order dependency discovery, which deals with

the problem of finding list of columns that when ordered they order other columns;

and with (3) the extraction important information from textual data, in particular the

extraction of historical events from annotated documents. Furthermore, we also analyze

the dynamics of the evolving datasets: (4) with the extraction of synonymous attributes

of Wikipedia Infoboxes and (5) the extraction of movements of attributes values between

entities over time.

169



170

8.1 Key Contributions

In this dissertation, we study the problem of information extraction with particular

attention on the discovery of important types of information that could help the user

understanding the characteristic of a dataset. This dissertation provides five signifi-

cant contributions in this area by proposing a data explanation system that provides

descriptions of an input dataset [PSM+19a], a new method for the discovery of order

dependencies on relational data [CSMV19]; the extraction of historical events from text

corpora [SGNV19] and the identification of synonymous of attributes [SPGV19a] and

movements from evolving Wikipedia Infoboxes. For each problem, we provide algo-

rithmic solutions and experimental evaluation. We also build a prototype to show the

efficiency of our explanation system [PSM+19b].

8.1.1 Data Description

We started our investigation from the problem of data description. We introduce the

problem of generating data descriptions: a set of compact, readable and insightful for-

mulas of boolean predicates that represents a set of data records. We demonstrate that

is a hard problem, so we introduce a dynamic programming approach which, in con-

cert with a set of heuristics, allow us not only to generate descriptions at interactive

speed but also to accommodate diverse user needs — from anomaly detection to data

exploration. Using real datasets, we evaluate our approach both quantitatively and qual-

itatively and prove that descriptions are indeed a viable and powerful tool for supporting

data enthusiasts and practitioners in gaining insights from data.

8.1.2 Order dependencies discovery

We continue with a relevant task in the exploration and understanding of large datasets:

the discovery of hidden relationships in the data. In particular, functional dependencies

have received considerable attention in the past. However, other kinds of relationships

are significant both for understanding the data and for performing query optimization.

Order dependencies belong to this category. An order dependency states that if a table

is ordered on a list of attributes, then it is also ordered on another list of attributes. Our
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approach leverages the observation that discovering order dependencies can be guided

by the discovery of a more specific form of dependencies called order compatibility

dependencies. We show that our algorithm outperforms existing approaches on real

datasets.

8.1.3 Historical event discovery

We presented our third contribution that aims to extract information from textual data.

To allow this data to reach its full potential, there has been an increasing interest in

extracting structural information from it. A well-studied topic towards that direction is

entity extraction, that aims at identifying references and information about real world

entities. An equally important, but relatively understudied, the topic is event extraction,

i.e., the identification of real world events that have occurred at some point in time. In

this direction, we provide a novel approach to event extraction that is based on temporal

co-reference among entities. We consider an event to be a set of entities that collectively

experience some relationships between them in a specific period of time. This translates

to mutual reference across such entities for some specific time period. We formally define

the problem, describe three different solution implementations. We also show our finding

with an exhaustive experimental evaluation.

8.1.4 Finding Synonymous Attributes in Evolving Wikipedia In-

foboxes

Our fourth contribution, the identification of synonymous attributes of evolving

Wikipedia Infoboxes, deals with the evolving nature of the data. Despite a lot of atten-

tion has been devoted in the case of static datasets, very few attention has been spent

in the context of evolving data. However, since our storage capacity is increasing, there

is the possibility to store and preserve the data that has change over time. In this di-

rection, we study the attribute alignment or schema matching problem in the context of

the Wikipedia Infoboxes. Our approach leverages two different observation that we map

into an instance of the correlational clustering problem. We provide an approximate

solution that shows the potential of our approach in the reconciliation of attributes that

represent the same concept.
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8.1.5 Finding Movements of Values

Finally, our last contribution, the discovery of movement attributes in evolving datasets,

tackles the evolving nature of the datasets, and tries to find complex evolving patterns

in the data. While other work has been done in order to find insight from evolving data,

the problem of discovery movements has never been explored. We provide a formal

definition of a movement and present an experimental approach that tries to leverage

different observations to identify the values that really transfer to other entities.

8.2 Extensions and open problems in Evolving

Wikipedia Infoboxes

The work done in this dissertation, the studied problems and the proposed solutions

provide the need for some additional direct extensions classified with respect to the

different chapters presented in this dissertation.

8.2.1 Data Description

Incremental Generation of Descriptions. We demonstrate that our data de-

scription approach is able to provide descriptions in a very short time period also with

large datasets. Suppose that the user is using our framework in an interactive fashion,

in such a scenario, our approach will re-compute all the d-formulas and description

at each iteration of the user. This is extremely inefficient and time consuming, so it

will negatively impact on the usability. For these reasons, as an immediate extension,

we would like to integrate a caching strategy that is able to dramatically reduce the

computational time. Also, dependencies between data may improve the performance

since we can exclude some trivial descriptions based on the actual dependencies that

hold in the data.

Descriptions over multiple Datasets. So far we have studied data descriptions

over single tables and datasets. However, several scenarios require to deal with multiple

tables or datasets. For example, this is the case of the relational databases, due

to normalization, where data is spread in different tables. In such as scenario, our

approach needs to be adapted in order to deal with this data separation, for example,
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we can use other dependencies such as inclusion dependencies, functional or order

dependencies to help the description process.

8.2.2 Order dependency discovery

Approximate order dependency discovery. In Chapter 4, we presented our

approach for finding order dependencies. This approach discovers all the exact

dependencies holding in a specified dataset. However, in practice, many times order

dependencies may not hold exactly in the data, this is due to errors in the data. In order

to identify these errors, as a future extension, we plan to extend our algorithm for the

discovery of approximate order dependencies that hold in the data. The identification

of the pieces of the data that invalidate the exact order dependencies may be corrected

in order to improve the quality of the data.

Distributed order dependency discovery. Regarding order dependency discovery,

we to extend our work with a distributed version of our algorithm. Despite our

work outperforms existing work on the order dependency discovery, our experimental

evaluation shows an explosion of candidate dependencies when increasing the number

of columns. In order to make it scale, we could study and implement a distributed

version of the algorithm with a distributed framework like Hadoop1 or Spark2.

8.2.3 Event Extraction

Multilingual event extraction. In our experiments related to event extraction

approach presented in Chapter 5, the English Wikipedia was used. However, the

proposed approach is language-independent. As long as tools for sentence splitting and

time extraction are available, events from each Wikipedia language editions could be

extracted. While this could lead to a single set of events per language, we also consider

to establish co-references across languages – e.g., a reference to Barack Obama on the

English and French Wikipedia page of Donald Trump in an overlapping time span could

1https://hadoop.apache.org/
2http://spark.apache.org/

https://hadoop.apache.org/
http://spark.apache.org/
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be considered a temporal co-reference.

NLP for event extraction. To give precise results, our approach is solely based on

sentences, so that less wrong assignments between entity references and time references

are inferred. Additionally, for recall, we do not put any constraints on the semantics,

e.g. by using NLP dependency parsing. In future work, dependency parsing could be

used to establish more fine-grained events. For instance, the consideration of negations

could increase precision, while we could potentially also increase recall by applying an

approach that exceeds sentence borders.

Event extraction on different corpora. Document resources such as news collec-

tions or websites usually do not follow Wikipedia’s model where each page is constantly

referring to the same entity. Therefore, our methods need to be slightly updated in

order to extract entity relationships and events from other resources. For example, we

can establish new entity relationships by exploiting the closeness of entity mentions. As

soon as the co-reference graph is constructed with such data, our methods can be used

in the same manner as for the graph induced by Wikipedia.

8.2.4 Finding Synonymous and Movements in Wikipedia Infoboxes

Find synonymous attribute values. Our approach that discovers synonymous

attributes in evolving attributes is able to cluster attribute names in a very precise and

effective way. However, the same issue that affects attribute names also affects the set

of values. To this end, in future work, we may integrate into our approach a second

process that identifies synonymous attribute values. For example, we can use evidence

from both attributes and value synonymous in order to improve the effectiveness of our

approach.

Find movements in other contexts. The movement identification is only an initial

step in the direction of the discovery of new insights from evolving dataset. Our approach

provides initial work that could be extended in many directions. For example, we may

apply machine learning techniques to classify candidate movements or we can discover
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movements in other context such as free text (Wikipedia pages or news articles) or on

tabular data.
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[ALNZ13] Sören Auer, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, and Amrapali

Zaveri. Introduction to linked data and its lifecycle on the web. In Reasoning



List of Tables 183

Web. Semantic Technologies for Intelligent Data Access - 9th International

Summer School 2013, Mannheim, Germany, July 30 - August 2, 2013.

Proceedings, pages 1–90, 2013. 6

[Arm74] William Ward Armstrong. Dependency structures of data base relation-

ships. In IFIP Congress, pages 580–583, 1974. 25, 71, 75

[AS17] Prabal Agarwal and Jannik Strötgen. Tiwiki: Searching wikipedia with

temporal constraints. In Proceedings of WWW, pages 1595–1600, 2017. 30

[ASW09] Eytan Adar, Michael Skinner, and Daniel S. Weld. Information arbitrage

across multi-lingual wikipedia. In Proceedings of WSDM, pages 94–103,

2009. 31

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.

Machine Learning, 56(1-3):89–113, 2004. 143, 146

[BBJ+18] Tobias Bleifuß, Leon Bornemann, Theodore Johnson, Dmitri V. Kalash-

nikov, Felix Naumann, and Divesh Srivastava. Exploring change - A new

dimension of data analytics. PVLDB, 12(2):85–98, 2018. 13, 31

[BBK+18] Leon Bornemann, Tobias Bleifuß, Dmitri V. Kalashnikov, Felix Naumann,

and Divesh Srivastava. Data change exploration using time series clustering.

Datenbank-Spektrum, 18(2):79–87, 2018. 13, 32

[BBK+19] Tobias Bleifuß, Leon Bornemann, Dmitri V. Kalashnikov, Felix Naumann,

and Divesh Srivastava. Dbchex: Interactive exploration of data and schema

change. In Proceedings of CIDR, 2019. 13, 31

[BBR11] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm, editors. Schema

Matching and Mapping. Data-Centric Systems and Applications. Springer,

2011. 30

[BDI09] Gosse Bouma, Sergio Duarte, and Zahurul Islam. Cross-lingual alignment

and completion of wikipedia templates. In Proceedings of the Workshop on

Cross Lingual Information Access, pages 21–29. Association for Computa-

tional Linguistics, 2009. 31

[BFG+07] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios

Kementsietsidis. Conditional functional dependencies for data cleaning.



List of Tables 184

In Proceedings of the 23rd International Conference on Data Engineer-

ing, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007,

pages 746–755, 2007. 25

[BK73] Coenraad Bron and Joep Kerbosch. Finding all cliques of an undirected

graph (algorithm 457). Commun. ACM, 16(9):575–576, 1973. 116

[BKG14] Gabriel Bender, Lucja Kot, and Johannes Gehrke. Explainable security for

relational databases. In International Conference on Management of Data,

SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 1411–1422,

2014. 20

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where:

A characterization of data provenance. In Database Theory - ICDT 2001,

8th International Conference, London, UK, January 4-6, 2001, Proceed-

ings., pages 316–330, 2001. 20

[BMQ+15] Marcello Buoncristiano, Giansalvatore Mecca, Elisa Quintarelli, Manuel

Roveri, Donatello Santoro, and Letizia Tanca. Database challenges for ex-

ploratory computing. SIGMOD Record, 44(2):17–22, 2015. 4, 24

[BMR11] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema

matching, ten years later. PVLDB, 4(11):695–701, 2011. 30

[BOZ12] Nurzhan Bakibayev, Dan Olteanu, and Jakub Zavodny. FDB: A query

engine for factorised relational databases. PVLDB, 5(11):1232–1243, 2012.

23

[CIP13] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Holistic data cleaning: Putting

violations into context. In 29th IEEE International Conference on Data

Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 458–

469, 2013. 6, 25

[CLMR16] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe.

Explaining outputs in modern data analytics. PVLDB, 9(12):1137–1148,

2016. 20

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. Introduction to algorithms. MIT press, 2009. 38



List of Tables 185

[CM12] Angel X. Chang and Christopher D. Manning. Sutime: A library for rec-

ognizing and normalizing time expressions. In Proceedings of the Eighth

International Conference on Language Resources and Evaluation, LREC

2012, Istanbul, Turkey, May 23-25, 2012, pages 3735–3740, 2012. 29, 126

[CSMV19] Cristian Consonni, Paolo Sottovia, Alberto Montresor, and Yannis Vele-

grakis. Discovering order dependencies through order compatibility. In In-

ternational Conference on Extending Database Technology (EDBT), 2019.

7, 170

[CW03] Y. Cui and J. Widom. Lineage tracing for general data warehouse trans-

formations. The VLDB Journal, 12(1):41–58, May 2003. 20

[CWR14] Lei Cao, Qingyang Wang, and Elke A. Rundensteiner. Interactive outlier

exploration in big data streams. PVLDB, 7(13):1621–1624, 2014. 24

[DD89] Hugh Darwen and C Date. The role of functional dependencies in query

decomposition. Relational Database Writings, 1991:133–154, 1989. 25

[DEFI06] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Cor-

relation clustering in general weighted graphs. Theor. Comput. Sci., 361(2-

3):172–187, 2006. 11, 146, 147

[DFA+17] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang,

Michael Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Mad-

den, Mourad Ouzzani, and Nan Tang. The data civilizer system. In

CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research,

Chaminade, CA, USA, January 8-11, 2017, Online Proceedings, 2017. 2

[DG15] Benjamin Dietrich and Torsten Grust. A SQL debugger built from spare

parts: Turning a SQL: 1999 database system into its own debugger. In

Proceedings of the 2015 ACM SIGMOD International Conference on Man-

agement of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,

pages 865–870, 2015. 4, 22

[DH82] Jirun Dong and Richard Hull. Applying approximate order dependency to

reduce indexing space. In Proceedings of the 1982 ACM SIGMOD Interna-

tional Conference on Management of Data, Orlando, Florida, USA, June

2-4, 1982., pages 119–127, 1982. 6, 15, 26



List of Tables 186

[DHKS06] Gautam Das, Vagelis Hristidis, Nishant Kapoor, and S. Sudarshan. Order-

ing the attributes of query results. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Chicago, Illinois, USA,

June 27-29, 2006, pages 395–406, 2006. 24

[DJHM13] Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N. Mendes. Im-

proving efficiency and accuracy in multilingual entity extraction. In I-

SEMANTICS 2013 - 9th International Conference on Semantic Systems,

ISEM ’13, Graz, Austria, September 4-6, 2013, pages 121–124, 2013. 126

[DMT14] Daniel Deutch, Yuval Moskovitch, and Val Tannen. A provenance frame-

work for data-dependent process analysis. PVLDB, 7(6):457–468, 2014.

20

[DZS13] Ankur Dave, Matei Zaharia, and I Stoica. Arthur: Rich post-facto debug-

ging for production analytics applications. Technical report, UC Berkeley,

2013. 22

[Ebb13] Hermann Ebbinghaus. Memory: A Contribution to Experimental Psychol-

ogy. 1913. 109

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.

Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng.,

19(1):1–16, 2007. 8
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