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IMPROVED CONVERGENCE THEOREMS FOR BUBBLE CLUSTERS.
I. THE PLANAR CASE

M. CICALESE, G. P. LEONARDI, AND F. MAGGI

ABSTRACT. We describe a quantitative construction of almost-normal diffeomorphisms between
embedded orientable manifolds with boundary to be used in the study of geometric variational
problems with stratified singular sets. We then apply this construction to isoperimetric prob-
lems for planar bubble clusters. In this setting we develop an improved convergence theorem,
showing that a sequence of almost-minimizing planar clusters converging in L' to a limit clus-
ter has actually to converge in a strong C''®-sense. Applications of this improved convergence
result to the classification of isoperimetric clusters and the qualitative description of perturbed
isoperimetric clusters are also discussed. Analogous results for three-dimensional clusters are
presented in part two, while further applications are discussed in some companion papers.
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1. INTRODUCTION

1.1. Overview. The aim of this two-part paper is developing a basic technique in the Calculus
of Variations, that we call improved convergence, in the case of geometric variational problems
where minimizers can exhibit stratified singularities. Here we think in particular to variational
problems where the minimization takes place over families of generalized surfaces.

Stratified singularities appear in many problems of physical and geometrical interest. The
term stratified indicates the possibility of decomposing minimizing surfaces into a hierarchy of
manifolds with boundary meeting in specific optimal ways along lower dimensional manifolds
of singular points. Although this behavior is well documented from the experimental point of
view, its mathematical description is a quite challenging problem, which has been satisfactorily
addressed only in a few specific cases. The most celebrated example of this is probably the
isoperimetric problem for bubble clusters (and, more generally, any other variational problem
whose minimizers can be shown to be (M, ¢, d)-minimal sets in the sense of Almgren ])
Indeed, Taylor M] has shown that two-dimensional (M, &, §)-minimal sets in the physical
space R3 satisfy Plateau’s laws, that is to say, they consist of regular surfaces meeting in threes
at 120 degrees angles along regular curves, which in turn meet in fours at common end-points
forming tetrahedral singularities.
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By improved convergence we mean the principle — usually exploited in the Calculus of
Variations when showing that strict stability (positivity of the second variation) implies local
minimality (in some suitable topology) — according to which a sequence of almost-minimizing
surfaces converging to some limit in a rough sense has actually to converge to that same limit in
a smoother sense. This is a very familiar idea in PDE theory: for a sequence of, say, harmonic
functions, L'-convergence always improves to smooth convergence. In the context of geometric
variational problems this kind of result is known to hold (and has been extensively used, see
section [[L2)) under the assumption that the limit surface is smooth. Our main goal here is
discussing improved convergence theorems when the limit surface has stratified singularities. In
this setting, by smooth convergence one means the existence of diffeomorphisms between the
involved surfaces which converge in C! to the identity map, and are almost-normal (in the sense
that, at fixed distance from the singularities, the displacement happens in the normal direction
to the limit surface only), stratified (in the sense that singular points of a kind are mapped to
singular points of the same kind), and whose tangential displacements (which cannot be zero if
the singular sets do not coincide) are quantitatively controlled by their normal displacements.
Obtaining this precise structure is fundamental in order to use these maps in applications: in
other words, the matter here is not just constructing global diffeomorphisms between singular
surfaces, but also doing it in a quite specific way, and with quantitative bounds.

From the technical point of view, our main result is Theorem B, see section Bl which
provides one with a quantitative method to construct almost-normal diffeomorphisms between
embedded orientable manifolds with boundary. This result is proved in arbitrary dimension and
codimension, and should have enough flexibility to be applied to different variational problems.
Given a specific variational problem, the starting point for deducing an improved convergence
theorem from Theorem B.]] is having at disposal a satisfactory local regularity theory around
singular points. Bridging between such a local description of singularities and the global as-
sumptions of Theorem 1] is in general a non-trivial problem, which needs to be addressed by
some ad hoc arguments.

Our two-part paper, in addition to Theorem Bl contains exactly this kind of analysis for
those variational problems involving isoperimetric clusters. After a review of what is known
about isoperimetric clusters in arbitrary dimension, see section [l we devote section [ to address
this problem in two-dimensions, thus obtaining an improved convergence theorem for almost-
minimizing clusters in R?, see Theorem [ below. In part two ] we address this very same
problem for isoperimetric clusters in R3.

The improved convergence theorem for planar clusters has various applications. Some are
discussed in section [0, where we obtain structural results for planar isoperimetric clusters, see
Theorem and Theorem [[JO. Improve convergence is also used as the starting point to
obtain quantitative stability inequalities for planar double bubbles M] and for periodic
honeycombs M] These companion papers provide one with a clear illustration of why it is
so important to formulate improved convergence to a singular limit in terms of the existence of
almost-normal, stratified diffeomorphisms converging to the identity map, with a quantitative
control between the tangential and normal components of the displacements.

It is also interesting to note that the applicability of Theorem B.1] is definitely not limited
to the problem of isoperimetric clusters. For example, in M] we use Theorem B and the
free boundary regularity theory from M] to obtain an improved convergence theorem for
capillarity droplets in containers.

This introduction is organized as follows. In section [[L21we review some of the applications of
improved convergence to smooth limit surfaces, and discuss which form an improved convergence
theorem should take on singular limit surfaces. In section [[L3] we state our improved convergence
theorem for planar minimizing clusters, Theorem [I.5], while section [[.4] presents the applications
of Theorem discussed in this paper.
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1.2. Improved convergence to a regular limit and applications. A basic fact about
sequences of perimeter almost-minimizing sets, which comes as a direct consequence of the clas-
sical De Giorgi’s regularity theory ], is that L'-convergence improves to C'-convergence
whenever the limiting set has smooth boundary, that is to say

{ {Ek}ren are perimeter almost-minimizing sets N OE, — OF in CL. (1.1)

Ej, — E in L' with OF smooth

Referring to section @Il for the (standard) notation and terminology about sets of finite perimeter
used here and in the rest of the paper, let us recall that given A > 0, rg > 0, and an open set
A CR" (n>2),aset E of locally finite perimeter in A is a (A, ro)-minimizing set in A if

P(E;B,,) < P(F;B,,)+ A|EAF], (1.2)

whenever EAF CC By, = {y € R" : |y — 2| < r} CC A and r < ro. In this way, (L)
means that if {Ej}ren is a sequence of (A, 7p)-minimizing sets in R™ with |ELAE| — 0 as
k — oo and if OF is a smooth hypersurface, then for every a € (0,1) there exist ky € N and
{¥k >k, € CH(OF) such that, denoting by vg the outer unit normal to E and for k > ko,

OE), = (Id + ¢yvg) (0F), Sup [Ykllcre@r) < o0, Jim lvkllcrop) = 0. (1.3)

>ko

(Here we have set (Id + ¢pvp)(0F) = {z + ¢Yr(x)vp(x) : © € OE}.) A local version of this
improved convergence result is found in ] in the case A = 0, but actually holds even for
more general notions of almost-minimality than the one considered here; see , Theorem
1.9]. Tt immediately implies a regularizing property of the sets E}, in the sense that 0 Ej must be
a C'-hypersurface as a consequence of ([3). Improved convergence finds numerous applications
to geometric variational problems. These include:

(A) Sharp quantitative inequalities: In [CL12], (1)) was used (with E = B = By
tion with a selection principle and a result by Fuglede on nearly spherical sets
an alternative proof of the sharp quantitative isoperimetric inequality of

in combina-
¢89] to give
], namely

P(E) > P(B) {1 +e(n) min |[EA(w + B)\2} , VECR",|E|=|B|.

This strategy of proof has been subsequently adopted to prove many other geometric inequali-
ties in sharp quantitative form. Examples are the Euclidean isoperimetric inequality in higher
codimension M], the isoperimetric inequalities on sgheres and hyperbolic spaces m,

M], isoperimetric inequalities for eigenvalues |, minimality inequalities of area
minimizing hypersurfaces CM], and non-local isoperimetric inequalities ML more-
over, in | the same strategy is used to control by P(FE) — P(B) a more precise distance
from the family of balls (see also M] for the case of the Wulff inequality).

(B) Qualitative properties (and characterization) of minimizers: Given a potential g : R — R
with g(z) — 400 as |z| — oo and a one-homogeneous and convex integrand ® : R — [0, 00),
in | the variational problems (parameterized by m > 0)

inf{/a*ECD(uE)d”H”_l +/Rn o(a)de: [B] =m). (1.4)

are considered in the small volume regime m — 0*. Denoting by E,, a minimizer with volume
m, one expects m~ Y™ E, to converge to K, the unit volume Wulff shape of ®. One of the
main results proved in ] is that if ® is a smooth elliptic integrand and g is smooth, then
m~Y"E,, — K as m — 01 in every C*©, with explicit rates of convergence in terms of m. The
improved convergence theorem (ILII), applied with £ = K and on (®, A, r9)-minimizing sets,
plays of course a basic role in this kind of analysis. The same circle of ideas has been exploited
in the qualitative description of minimizers of the Ohta-Kawasaki energy for diblock copolymers
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m], and to characterize balls as minimizers in isoperimetric problems with competing nonlo-
cal terms [KM13, [KM14, BC13, FEM™), and in isoperimetric problems with log-convex densities
-FMl 2].

(C) Stability and L*-local minimality: A classical problem in the Calculus of Variations is that
of understanding whether stable critical points of a given functional are also local minimizers.
This question was addressed in the case of the Plateau’s problem by White M], who has
proved that a smooth surface that is a strictly stable critical point of the area functional is
automatically locally area minimizing in L (see [MR10, DPM14b] for the L'-case). A key
step in his argument is again an improved convergence theorem (for area almost-minimizing
currents) towards a smooth limit. Similarly, in the case of the Ohta-Kawasaki energy, volume-
constrained stable critical points with smooth boundary turn out to be volume-constrained
L'-local minimizers, see ] Once again, (LLI]) is the starting point of the analysis.

We now try to address the question of the precise meaning one should give to an assertion
like

{ {E} }ren are perimeter almost-minimizing sets

i ol
B — Ein L! = OE, - O0F in C", (1.5)
when OF is possibly singular. To this end we split JF into its regular and singular parts:
precisely, recalling that the reduced boundary 0*F of a (A,rg)-minimizing set in R™ is a C1:-
hypersurface for every a € (0,1) (relatively open into OF), we define the singular set X(E) of
OF as the closed subset of OF given by

S(E)=0E\ 9"E.

It turns out that X(F) is empty if 2 < n < 7, discrete if n = 8, and H*-negligible for every
s >n—8if n > 9; see, for example, m, Theorem 21.8, Theorem 28.1]. The regularity
theory behind these results also leads to a weak form of (L3)), which in turn reduces to (3]
when X(FE) = (. More precisely, given a sequence {Ej}ren of (A, ro)-minimizing sets with
E; — E in L', denoting by I,(S) the p-neighborhood of S C R", and setting

DE], = 0E\ I,(S(E)) C 0°E,  p>0, (1.6)

one finds (see, e.g. Theorem below) that, for every o € (0,1) and p small enough there
exist ko € N and {¢y x>k, C CH*([OE],) such that

OFE} \ IQP(Z(E)) C (Id + wkl/E)([aE]p) C O*Ey, Vk > ko, (17)
sup [dklloreqor,) = € im [[Ykllorom,) = 0- (1.8)

Of course, if X(E) = ), then (1) and (L) coincide with (L3]). Moreover, we notice that to
replace 0F), \ I2,(3(F)) with, say, [0Fj]3, in the first inclusion in (L)), one would need to
prove Hausdorff convergence of ¥(E)) to X(E). However, in this generality, one just knows
that ¥(E)) C I,(X(E)) provided k > kg, and actually ¥(FEj) may not converge in Hausdorff
distance to X(FE). Indeed, by a classical result of Bombieri, De Giorgi and Giusti ],
the Simons’s cone in R® is the limit of perimeter minimizing sets with smooth boundary.

Even though (7)) and (L8] seem to contain all the information we can extract from the
classical regularity theory, this is however not sufficient, for several reasons, to address any of
the above mentioned applications. The first evident gap is that we do not parameterize the
whole 0F; on OE. Of course, in presence of singularities we cannot expect to do this by means
of a normal diffeomorphism of OF; see Figure [Il Therefore, the best we can hope for is to find
a sequence {fi}ren of CL@-diffeomorphisms between OF and OE}, such that

sup || fellcre@r) < 00, lim || fp — Id||c1om) = 0. (1.9)
LeN k—o0
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FIGURE 1. The limit boundary dF is depicted with continuous lines, the approximating
boundaries 0Fj, by dashed lines, the singular set X(F) by a black disk, and its p and
2p-neighborhoods I,(X(E)) and I5,(3X(E)) by concentric balls: I,(X(E)) contains the
singular set of JE}, (depicted by a black square), while (L) says that OEy \ Iz, (X(E))
can be covered by a normal deformation of [0FE], = 0E \ I,(3(E)) (depicted as a grey
region) which is C*-close to the identity thanks to (L8). Of course, we cannot describe
OFE), by a normal deformation of the four components of 9*E unless X(Fy) = 3(E).

A difficulty here is to specify what is meant by a C1®-diffeomorphism between OF and 0E},
since these are singular hypersurfaces. Moreover, in passing from (L7)-(L8]) to (I9) we may
lose the useful information that OF}, is actually a C'-small normal deformation of F away from
the singular sets. It is therefore natural to require that

fe=1d+Yrvg on [8E]p, (1,10)
with ¢, as in (L7)—(L8]). The maps f; must have a nontrivial tangential displacement

up = (frr = 1d) = ((fr — 1d) -ve) ve,
on [0F], if 3(Ey) # X(FE): and, actually, in order for the maps fj to be usable in addressing
problems (A) and (C), it is crucial to have control of the C'-norm of wy, in terms of the distance
between 3 (E)) and X(FE). A possibility here is requiring that fi(X(E)) = ¥(E)) (and this
is something that makes sense only if, in the situation at hand, one has already shown the
Hausdorff convergence of ¥(E)) to £(E)), with fr = Id on X(FE) if ¥(Ey) = X(F), and, for
some constant C' depending on OF,

lukllcrory < Cllfe — 1dllcrmmy) - (1.11)

Due to our limited understanding of singular sets, proving (LT)—(LII) seems a goal out of
reach, and so the possibility of understanding improved convergence to singular limit sets. The
theory of bubble clusters (partitions of the space into sets of finite perimeter) provides us with
a (more complex) setting where singularities appear even in dimension n = 2. However, at least
when n = 2,3, these singularities have been classified and understood, and the corresponding
local regularity theory enables one to show the Hausdorff convergence of the singular sets (see
Theorem [5.5]in the case n = 2 and , Theorem 3.2] in the case n = 3). It thus makes sense
to look for improved convergence theorems in this setting, and this problem is indeed addressed
in this paper and in [LM15).

1.3. An improved convergence theorem for planar clusters. Following the ideas dis-
cussed in the previous section, we now formulate our improved convergence theorem for sequences
of almost-minimizing planar clusters. Given n, N € N with n, N > 2 and an open set A C R",
we let & = {€(h)}Y_, be a family of Lebesgue-measurable sets in R™ with |£(h) N E(k)| = 0 for
1 <h< k<N, and say that £ is an N-cluster in A if £(h) is a set of locally finite perimeter in
A with |E(h) N A > 0 for every h = 1,..., N. The sets £(h) are called the chambers of £, while
£(0) = R™\ UN_, £(h) is called the exterior chamber of €. The perimeter of € relative to some
F C R" is defined by setting

N
> P(E(h);F),  P(£)=P(&R"Y). (1.12)
h=0

P(&;F) =

N —
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Setting vol (£) = (|€(1)], ..., |E(NNV)]), a minimizer in the partitioning problem
inf { P(E) : vol () =m}, m € RY given, (1.13)

where ]Rﬂ\rf ={m¢e RN :my, >0Vh =1, ..., N1}, is called an isoperimetric cluster. It is of course
natural to study partitioning problems in the presence of a potential energy term, like

N
inf {P(ﬁ) + hZ::l /6(h) g(x)dx :vol (£) = m} ; (1.14)

where, say, g : R" — R with g(x) — 400 as |z] — co. The existence of minimizers in these
two problems can be proved by a careful restoration of compactness argument due to Almgren,
see , Chapter 29]. It turns out that if £ is a minimizer either in (LI3]) or in (LI4]), then
there exist positive constants A and rg such that £ is a (A, ro)-minimizing cluster in R"™, that is

(in analogy with (L2))

P(S, B:c,r) < P(./.", B:c,r) + Ad(é’,]—") ) (1’15)
whenever z € R”, r < rg and £(h)AF(h) CC By, for every h = 1,..., N, and where we have set
N
1
dr(€,F) =35> (F N (g(h)Af(h))( . d(E,F) = dn(E,F). (1.16)
h=0

In this case, as a consequence of the results obtained in ] (see also , Chapter 30] for
the case A = 0, and section @ below otherwise), 9*€ is a C1®hypersurface for every a € (0,1)
(CYH1if n = 2) which is relatively open into € and H"~}(X(£)) = 0, where

N N
0 =|JoEn), o°&=|JoEh), Sp(E)=Fn(0E\IE), X(E)=Ipe(£). (1.17)
h=1 h=1

One does not expect this almost-everywhere regularity result to be optimal in any dimension
n, although the situation is clear only when n = 2 (by elementary arguments) and when n = 3
by ]. We now review the structure of singular sets when n = 2, and then exploit this
description to formulate an improved convergence result for planar clusters. With the notation
introduced in section ], if £ is a (A, rp)-minimizing cluster in R?, then one has

9 = , where [ is at most countable,
e S 7; is a closed connected C'1-curve with boundary, (1.18)
0"E = Ujerint (7)
e v {7i}ier is locally finite,

(see [Ble87], [Mor94], or [Magl2, Section 30.3] in the case A = 0, and Theorem [5.2] below in the
general case — which is a simple variant of the A = 0 case). Moreover,

where J is at most countable,
S(€) = g]{pg—} = gjbd 00 b s locally finite. (1.19)
J 7

Finally, each p; € 3(€) is a common end-point to three different curves from {v;}ics, which
form three 120 degree angles at p;.

Remark 1.1. As already noticed, if £ is an isoperimetric cluster in R?, or if £ is a minimizer in
(L) with n = 2 and g is smooth, then £ is a (A, rg)-minimizing cluster in R? for some A and
ro, with the additional property of being bounded, so that I and J are finite. Moreover, if £ is
an isoperimetric cluster, then each ~; is either a circular arc or a segment; if £ is a minimizer in
(LI4), then ~; is a closed connected smooth curve with boundary, whose curvature is equal to
(the restriction to ; of) g up to an additive constant.

Motivated by these examples, we now give the following definitions, and then state our
improved convergence theorem for planar clusters.
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Definition 1.2. Let £ be a cluster in R2. One says that & is a C*®-cluster in R? if there exists
a family of C**-curves with boundary {7;};cs such that (II8) and (I9) hold.

Definition 1.3. Let £ be a CY%cluster in R?. Given a map f : 9€ — R? one says that
f € CH(0€;R?) if f is continuous on IE, f € C1(v;;R?) for every i € I, and

[fllcre(ae) = sup || fllcra(y,) < oo.
el

If £ and & are Ch%-clusters in R?, then one says that f is a CL®-diffeomorphism between
0& and 0&’ provided f is an homeomorphism between O£ and O& with f € CL%(9&;R?),
e CL(9E;R?), and f(X(&)) = B(E).

Definition 1.4. Given a map f : R — R? and a cluster £ in R?, the tangential component of
f with respect to & is the map 7¢f : 0*€ — R? defined by

Tef(x) = f(x) = (f(2) - ve(@)ve(x),  x€dE,
where vg : 0*€ — S! is any Borel function such that either v(z) = vy (z) or v(z) = Vg (2)
for every x € 9*E(h) N 0*E(k), h # k.

Theorem 1.5 (Improved convergence for planar almost-minimizing clusters). Given A > 0,
ro > 0 and a bounded C*'-cluster £ in R?, there exist positive constants py and Co (depending
on A and &) with the following property.

If {&}ren is a sequence of perimeter (A, ro)-minimizing clusters in R? such that d(&, E) —
0 as k — oo, then for every u < pg there exist k(1) € N and a sequence of maps { fi}p>r(y) such
that each fy, is a CY1-diffeomorphism between OE and O&;, with

[ frllcriey < Co,
Jim [ fi = Idfjeree) = 0,
—00

C
ITe(fe —1d)]|c1(ore) < 70 £ — 1l cogse)) -
Te(fr —1d) = 0, on 08\ 1,(X(£)) .

Remark 1.6. A natural question is of course whether the maps fr in Theorem can be
extended to C'!!-diffeomorphisms g; of R? with lgkllcri@e) < Co and |[|g, — 1d[|cr(rey — 0 as
k — oo. The answer is yes, but at the cost of a longer proof which only employs ideas similar
to the ones already used in the proof of Theorem At the same time, in the applications of
Theorem presented in , ] there seems to be no real advantage in working with
the maps g in place of the maps fg.

Remark 1.7. We briefly comment on the proof of Theorem The first step consists in
exploiting the interior regularity theory to show (much in the spirit of ([L7)—(LS])) the existence
of normal diffeomorphisms between those parts of € and 9&, that are at a fixed small distance
from the singular sets 3(€) and X(&). This step of the proof can be carried out in arbitrary
dimension, and it is addressed in Theorem Next, one exploits the description of singular
sets of planar clusters in order to prove the Hausdorff convergence of ¥(&) to 3(E) (Theorem
£3), and to prove that actually if xp € X(&), € X(€) and zp — =, then the tangent
cones to 0& at xj converge locally uniformly to the tangent cone to 9, see step four in the
proof of Theorem In Theorem we actually show various other preliminary convergence
properties of 0, towards OE, including the fact that for k large enough, 0&, and OE share
the same topological structure. Given all these preparatory facts, one is ready to extend the
normal diffeomorphisms defined away from (&) to the whole 9 by exploiting the construction
of almost-normal diffeomorphism described in Theorem [B11

Remark 1.8. The delicate extension of Theorem to clusters in R? is discussed in M]
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1.4. Some applications of Theorem As explained in section [[2] a result like Theorem
opens the way to several applications. The ones given below, see Theorem [I.9] and Theorem
[LI0OL are inspired by a list of questions concerning partitioning problems proposed by Alm-
gren in [Alm76, VI.1(6)], precisely “to classify in some reasonable way the different minimizing
clusters corresponding to different choices of m € ]Rﬂ\rf ?. In this direction, let us consider the
equivalence relation ~ on the family of planar C!-clusters such that & ~ F if there exists
a Chldiffeomorphism between 0 and OF. Theorem shows that isoperimetric clusters of
a given volume (or with volume sufficiently close to a given one) generate only finitely many
~-equivalence classes.

Theorem 1.9. For every mg € ]Rf there exists 0 > O with the following property. If Q is the
family of all the isoperimetric N-clusters £ in R? with [vol (£) —mo| < &, then Q/~ is a finite
set.

By an entirely analogous principle, we can describe qualitatively minimizers in (LI4]) when
the potential energy is small enough. (In the case of planar double bubbles N = n = 2 we can
upgrade this description to a quantitative one in the spirit of M], see M])

Theorem 1.10. Let mg € ]Rﬂ\rf be such that there exists a unique (modulo isometries) isoperi-
metric cluster & in R? with vol (§y) = mo, and let g : R? — [0,00) be a continuous function
with g(x) — oo as |z| — oo. Then there exists 6o > 0 (depending on & and g only) such that
for every 6 < dy and |m — my| < &y there exist minimizers of

N
inf {P(é’) +4 }; /S(h) g(x)dzx :vol (£) = m} . (1.20)

If € is a minimizer in ([L20Q), then & ~ &. Moreover, if Hg(p i) denotes the scalar mean
curvature of the interface E(h,k) with respect to vg,y, then He,yy is continuous on E(h, k),
with

pmax | He(hky — Heg iy llco ey < Cod, (1.21)

for a constant Co depending on & and g only. (Notice that Hgyp ) is a constant for every
0<h<k<N.)

Of course, thanks to Theorem [[.9], if the uniqueness assumption on mgq in Theorem [[.I0]
is dropped, then one can still infer that minimizers in (L20) with 6 < g and |m — mg| < do
generate only finitely many ~-equivalence classes. Moreover, we explicitly notice that the novelty
of Theorem is not the existence part, which follows by standard arguments, but the fact
that £ ~ &.

Further applications of Theorem are discussed elsewhere. In M], Theorem [L.A] is
the starting point for obtaining a sharp stability inequality for planar double-bubbles, while in

| we address a sharp quantitative version of Hales’s isoperimetric theorem for the regular
hexagonal tiling ].

1.5. Organization of the paper. The paper is essentially divided in two parts. The first part
consists of sections BH3l The goal here is to provide in a reasonable generality the construction of
almost-normal diffeomorphisms between manifolds with boundary. As said, this is the key result
in constructing the maps appearing in Theorem [[Hl It is considered in arbitrary dimension and
co-dimension (and not just for curves in the plane) in view of its applications to the improved
convergence of clusters in R3 ] and to the description of capillarity droplets in containers
. We provide two statements of this result, see Theorem B.I]and Theorem [3.5], the second
one being more practical in applications. These results are proved in section Bl after some
preliminary facts concerning the implicit function theorem and Whitney’s extension theorem
are gathered in section 2l In the second part of the paper, which consists of sections [AH5] we
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gather the various ingredients needed to deduce Theorem from Theorem B.1] as described
in Remark [[L71 Finally, in section [0l we give the (closely related proofs of) Theorem and
Theorem [L.10

Acknowledgement: We thank Frank Morgan for improving the presentation of our paper
with some useful comments. The work of FM was supported by NSF Grants DMS-1265910 and
DMS-1361122 The work of GPL has been supported by GNAMPA (INdAM).

2. NOTATION AND PRELIMINARIES

We gather here some basic notation and classical facts to be used here and in M]

2.1. Sets in R". Given z € R" and r > 0 we set B(z,r) = By, = {y € R" : |[y —z| < r} and
B(0,r) = By, = By, where |[v]*> = v-v and v - w is the scalar product of v,w € R". We set
St = {z € R" : |z| = 1}. Given S C R", we denote by S, 85, and cl (S) the interior, the
boundary, and the closure of S respectively, while I.(S) denotes the tubular e-neighborhood of
S in R™, that is I.(S) = {z € R : dist(x,S) < €}, € > 0. Given S,T C R" we define the
Hausdorff distance between S and 7" localized in K C R" as

hdg (S, T) = max { sup{dist(y,S) : y € TN K},sup{dist(y,T) : y € SNK}}, (2.1)
so that hdg (S,T) < € if and only if SN K C I.(T) and TN K C I.(S), while
hd, (S, T) = hdp, (S, T),  hd(S,T) = hdgn(S,T).

If S is a k-dimensional C''-manifold in R" (we always work with embedded manifolds), then the
geodesic distance on S is given by

1
distg(x,y):inf{/o W (O)ldt v € C([0,1:5),7(0) =2, 7(1) =y}, @yeS.

We also define the normal e-neighborhood of S as

n—=k n—=k
Ne(S)={z+ t;ivD(@):2€8,) <&}, (2.2)
i=1 =1

provided {v")(z)}?=F denotes an orthonormal basis to (7,,S)*. If S is a k-dimensional C’-
manifold with boundary in R™, then int (S) and bd (S) denote, respectively, the interior and the
boundary points of S. If z € bd (S), then we define TS as a k-dimensional space (thus, not as
an half-space), and we denote by v&’(x) € T,,S the outer unit normal to bd (S) with respect to
S. Moreover, we set

[Sl, =5\ 1,(bd(9)), Vp > 0. (2.3)
Denoting by 75 the projection of R” onto TS, for every f : S — R™ we define 7%f : S — R"
by taking

(P f)(@) = w3 [f(x)], weS.
The terms curve, surface and hypersurface are used in place of 1-dimensional manifold, 2-
dimensional manifold and (n — 1)-dimensional manifold in R".

2.2. Uniform inverse and implicit function theorems. If S is a k-dimensional C1°-
manifold in R" (a € (0,1]), z € S, and f : S — R™, then we say that f is differentiable
at x with respect to S if we can define a linear map V°f(z) : R — R™ by setting

vSf(x)[U] _ %%w lf'U S sz, Yy S Cl((—g,s);S), ’7(0) =z, ,7/(0) =,
0 if v e (T,5)*.
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Denoting by || L|| = sup{|L[v]| : |v| = 1} the operator norm of a linear map L : R™ — R™, we set

Iflleres) = sup (@) + IV f @)

Of course, if f is differentiable on an open neighborhood of S, then V* f(z) is just the restriction
of the differential V f(x) of f at x to T3S, extended to 0 on (7,S)*. For a € (0,1] we set

VS f(a) = VW)l
VSf 0.0 — sup ” :
V- Tlonecs) ,y€S, vty |z —y|*
195 llgves) = sup V57 @)+ V¥ fleoes).
Iflcras) = suplf@)]+ V5 fllooas)
x€eS

(note the use of the Euclidean distance in the definition of []co.a(g)). If {ri(x)}r_| is an or-
thonormal basis of 1,5, then we define the tangential Jacobian of f as

k
TS f(z) = ‘ A\ Vf@m@)], =zeSs.
i=1
The following theorems are uniform versions of the inverse and implicit function theorems. The
proof of the first result is included in Appendix [Al for the sake of clarity.

Theorem 2.1 (Uniform inverse function theorem). Givenn > 2, 1 <k <n-—1, a € (0,1],
L >0, and Sy a k-dimensional C“*-manifold in R™ with diam(Sy) < L and

distg, (z,y) < L|x —yl, Vx,y € So, (2.4)
ly —z| < 2|72 (y — )|, Vr € So,y € By N So, (2.5)
||7T:(:SO - 7TySO|| <L |3§‘ - y|a7 V$7y S SOv (26)

there exist positive constants €g, po and Cy, depending on n, k, «, and L only, with the following
properties. If f € CH*(Sy;R™) is such that

1
e 1S, s
b S 270 IV llevacsy < L (2.7)

then f is injective on By ., N Sy for every x € Sy. If, moreover,

If = 1dlco(se) < po s (2.8)
then S = f(So) is a k-dimensional C*“-manifold in R™ and f : So — S is a CH*-diffeomorphism
satisfying Hf_chl,a(S) < Cy.

Theorem 2.2 (Uniform implicit function theorem). Let n, k, o, L and Sy be as in Theorem
2. Then there exist positive constants Coy and 1y depending on n, k, a, and L only with the
following property. If zo € Sy and u € C*(Sy x (—1,1)" "%, R"=*) 4s such that

n—k
ou 1
u(z9,0) =0, ‘ A g(fﬂoyo)‘ 27 [ullere(sox (—1,1n+) < L, (2.9)
i—1 7

where 0 = (0, ...,0) € R"F, then there exists a function ( € CH*(Sy N Bmo,no;R"_k) such that
((wg) =0, u(z,((2)) =0, Vz € So N By » I<llero(sonB@ome)) < Co- (2.10)

Proof. One applies the first conclusion of Theorem 2.l to the manifold Sy x (—1,1)""* and the
function f: So x (—1,1)""% — R defined by f(x,t) = (x,u(z,t)); see, e.g. ] O
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2.3. Whitney’s extension theorem. Here we review some basic facts concerning Whitney’s
extension theorem. By k = (kq, ..., k) we denote the generic element of N", and set

K[ => ki, K=][k, H=]]4",
i=1 i=1 i=1
for every k € N™ and z € R™. If f is |k|-times differentiable at z € R"™, we let
9Kl okl

=—(z)= T
oot oak )T Bk

denote the k-partial derivative of f, with the convention that D°f = f (here, 0 = (0, ...,0) € N").
Let now X be a compact set in R”. A jet of order h on X is simply a family F = {Fk}‘kgh

of continuous functions on X, see M] We denote by J"(X) the vector space of jets of order
h on X, and set

”JrHJh(X) = max HFk”CO(X) .

k|<h

One says that F € J"(X) is a Whitney’s jet of order h on X if, for every |k| < h,
h—|k|

sup F¥(y) — F¥@) = Y FH(@)(y — 2)H| = o(r" M)
z,yeX 0<|z—y|<r ljj=1

Given a € [0, 1], we denote by W.J™?(X) the space of Whitney’s jets of order h on X such that

H]:HWJ’%Q(X) = Iﬁ% ||Fk||CO(X)
F¥(y) = F¥(@) = S0 5 P (y — o))
+ max sup p— ,
[k|<h z,yeX x#y ‘.’L’ - y‘ ~lkl+a
is finite. We set WJ"(X) = WJ"0(X), and notice that WJ"*1(X) c WJ(X) c WJHX)
for every h € N and « € (0, 1].

Theorem 2.3 (Whitney’s extension theorem). For every n,h > 1, a € [0,1] and L > 0 there
exists a constant Cy depending onn, a and L only with the following property. If X is a compact
set in R™ with X C By, and F € WJ"*(X), then there exists f € C®°(R™\ X)NCH*(R™) such
that

DXf = F¥ on X for every |k| < h, (2.11)
[ fllene@mny < CollFllw gne(x) [ fllen@ny < CollFllw.nix) - (2.12)

If, moreover, X is connected by rectifiable arcs and its geodesic distance disty satisfies
distx (z,y) <wlx —y|, Ve,y e X, (2.13)

for some w >0, then || F|lw mx) < 2wl Fl jn(x), and thus, in particular,
[ fllenmny < 2w Co [ Fllyn(x) - (2.14)
Proog. The classical construction introduced by Whitney (see M, Theorem 4, Chapter VI]

or , Theorem 2.3]) gives a function g € C*(R™\ X) N C"*(Byy,) with
D%g = F% on X for every |k| < h, (2.15)
lglleneByry < CIFllwneixy lgllen(Byry < CUFlwamx) s (2.16)

where the constant C' depends on n, h, a and L. If we now pick n € C2°(Bar;[0,1]) with n =1
on By, then by setting f = gn we prove the first part of the statement. The second part of the
statement is , Proposition 2.13]. For the sake of clarity, let us explain this point in the



12 M. CICALESE, G. P. LEONARDI, AND F. MAGGI

case h = 1. If X is connected by rectifiable arcs and =,y € X with  # y, then for every € > 0
there exists ¢ € C°([0,1]; X) such that

U¢) < (L +e)distx(z,y) < (I +e)wlz—y[,  60)=z, o) =y, (2.17)

where ¢(¢) is the total variation of ¢. We can re-parameterize ¢ on [0,1] so to have ¢ €
Lip ([0,1]; X) with |¢/(t)] = £(¢) for every ¢ € [0,1]. By (ZIT) we thus find

n

FOy) = FO(z) = ) Fei(2)(y — )

1=1

1
= )~ @) = Vi@ - =)l = | [ (V760) - i) d o

IN

1
21V fllenx) /0 () dt <2(1+ ) | Flly i wz — ul. 0

The following two propositions are used in the proof of Theorem B.11

Proposition 2.4. Ifn > 2, 1 <k <n-—1, a € (0,1] and L > 0, then there exist positive
constants C' and e depending on n, k, a and L only, with the following property. Let X be

a compact set in R™ with diam(X) < L, and assume that for every x € X one can define
n—k

an orthonormal system of vectors {V(j)(az) j=1 such a way that for every x,y € X and
() (y—2)| < Lle -y, [pPD(2) =V (y)| < Llz—y|*. (2.18)
Then there exists d € C®(R™ \ X;R**) 0 CL*(R™;R**) with
d(x) =0 and Vd(z) = E?:_ll e; @ V) (z) for everyx € X ,
I.(X) N {d = 0} is a k-dimensional C**-manifold in R", (2.19)
max {e7", |d|cra@n} < C.
Proof. By ([2I8), if one sets F]-O($) = 0 and F}*(z) = v (z) e; for zx € X and 1 < i < n,
then F; € W.JL(X) with | Fjllw grexy < C. Since diam(X) < L, by Theorem 2.3] one finds
d; € C®(R™\ X) N CY(R") with d; = 0 and Vd; = v on X. The function d = 3/~ d; e;

satisfies the first property in (2I9). If now z € I.(X), then there exists y € X such that
ly — x| <e, thus ||d| c1.a@n) < C gives

n—k n—k
. . 1
| A ViR > | A Va@)pD @) - Ce=1-Ce> 7,
Jj=1 J=1
provided ¢ is small enough (depending only on n, k, a and L). In particular, Vd(x) has rank
n — k for every x € I.(X), thus I.(X) N {d = 0} is a k-dimensional C'"®-manifold in R". O

Proposition 2.5. Ifn>2, 1 <k<n-1, a € (0,1] and L > 0, then there exists a constant
C depending on n, k, o and L only, with the following property. If S is a compact connected
k-dimensional C*'-manifold with boundary in R™ with diam(S) < L and

dlStbd(S)(x7y) SL’x_y‘a V.Z',yEbd(S),
and @ € CH2(bd (S)), then there exist a € CH*(R™) with a = a on bd (S) and

lallcramny < Cllallcreamas)y) lallcr ey < Cllallerpa (s)) -
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Proof. We note that, by definition of tangential gradient, VP49a(z) € T,(bd(S)) for every
x € bd (S). We then define F € J'(bd (S)) by setting FO(x) = a(z) and F(z) = e; - VP4 (x)
for 2 € bd (S), and note that F € W.J%(bd (S)) with

[ Fllw rrema sy < llallcramacs)) I F I wa sy < lallerwasy -
We conclude by Theorem O

3. ALMOST-NORMAL DIFFEOMORPHISMS BETWEEN MANIFOLDS WITH BOUNDARY

The main result of this section is Theorem B.I], where we address the following problem. We
are given two k-dimensional manifolds with boundary Sy and S, which are known to be close
in Hausdorff distance. Moreover, we are given a diffeomorphism fj (close to the identity map)
between the boundaries of Sy and S, and we know that .S is a small normal deformation of Sy
up to some small distance from its boundary. (The motivation for considering this scenario is
that — by interior and boundary/free-boundary regularity theorems — this is the typical starting
point in addressing the improved convergence problem in presence of singularities). Then we
would like to extend fj into a diffeomorphism f between Sy and S while keeping the size of the
tangential displacement 7g,(f — Id) of f as small as possible.

In section [B.I] we state and prove Theorem [3.I], while in section we provide an alternative
formulation of this result in terms of sequences of manifolds converging to a limit manifold Sy
which is more natural to invoke when addressing applications.

3.1. Construction of the diffeomorphisms. Before stating the theorem we premise the
following definition, which in turn is motivated by Proposition 24l Given an orientable k-
dimensional C®-manifold S in R” which admits a global normal frame of class C1? (i.e., such

that for every x € S there exists an orthonormal basis {I/éi) (2)}=F of (T,,S)* with the property
v € CH(S) for each i) then one writes
”S”CLQ <L,
if
(1) (1) a

ve'(x) —ve'(y)| < Lz —yl™,

| i-)( ) —vs W< L] 1' Vo,ye S,i=1,..,n—k. (3.1)
vg'(x) - (y — @) < Lly — [,

We are now ready to state the main result of this section (see Remark B.4] below for some
clarifications about the cumbersome assumption (a)).

Theorem 3.1. Ifn >2,1<k<n-—1, a € (0,1], and L > 0, then there exist o € (0,1) and
Co > 0 (depending on n, k, a, and L only) with the following property.

(a) Let Sy be a compact connected k-dimensional C*'-manifold with boundary in R™, let §0 be
a k-dimensional C*'-manifold in R"™, and assume that

bd(So) #0, Sy S, diam(Sy) < L, (3.2)
distpq () (7, y) < Lz —yl, Va,y € bd (So) (ifk>2), (3.3)
dists, (z,y) < L]z —yl, Va,y € So, (3.4)
distg (z,y) < Lz —yl, Va,y € So. (3.5)

Moreover, let {I/Oi) k¢ C11(So; S be such that {I/Oi) (2)}"=F is an orthonormal basis of
(T,So)* for every x € Sy, and

(1) ~
151?33(% [ Hcl,l(so) <L. (3.6)
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(b) Let S be a compact connected k-dimensional CY®-manifold with boundary such that, for
some p € (0,p3), one has

bd (S) # 0, [S]lcre < L, hd (S, So) < p. (3.7)
In addition:
(i) if k =1, assume that, setting bd (So) = {po,qo}, bd (S) = {p,q}, fo(po) =p and fo(q) = q,

2 < Ipo ol
L= Po qo| ,
Ilfo = Idllcoma (so)) + 1¥8°(fo) = v& llcomwa (se)) < P;

if k > 2, assume that there exists a CL-diffeomorphism fo between bd (So) and bd (S) with

(3.8)

| follcreba (so)) < L
| fo — Id”cl(bd (S0) S P>

(i) 0 (3.9)
1§H%%X_k HVS (fO) ) ||Co(bd (S0)) <p,
V5 (fo) = v& lcoa sy < P
where {Vg)}?z_lk is as in (B3I)).
(ii) there exists {1;}7=F < CH([Sp],) such that, setting ¢ = Z?:_Ik )i Vgg, one has
Sls, C (Id + S C S,
1S3y < (1d + )([S0],) (3.10)

Il ere(so),) < Ls Ml (se),) < P
Then, for every p € (\/p, jo) there exists a Che-diffeomorphism f between So and S such that

f == fo s on bd (So) s (3.11)

f = Id+4, on [Solu (3.12)

[ fllcrea(sy < Co, (3.13)

If =Tdllcogsyy < Co (hd(S,S0) + [fo —Tdllcr(base) + [¢llcogsa,y)»  (3:14)

1f = Tdllersy) < % “, (3.15)
—1d) - v o . ifk=1,

o < G {WTRReme 2

Remark 3.2. One would expect the C° norm of fy — Id, and not its C'-norm, to appear in
(BI4)). When k =1 we indeed prove this, as in that case bd (Sp) consists of two points and thus
[fo—=1Idllc1ba (so)) = lfo—Id[lcoba (sy))- However, when k > 2, our construction of f requires a
preliminary rough extension of fy from bd (Sp) to R™ by means of Whitney’s theorem. Although
the C1*(R™) and C'*(R")-norms of this rough extension will be controlled by the C1(bd (S))
and C*(bd (Sp))-norms of fy, because of how Whitney’s extension procedure works, the C°(R")-
norm will only be controlled by the full C'(bd (Sp))-norm of fo.

Remark 3.3. In order to obtain (in the spirit of ([B.I4])) a more precise estimate than (BI5]),
that is, in order to replace p® by some function of hd(S, So), || fo—1d|[c1(ba (se))s 1¥llc1((s0),) €be-s
one would need to relate to these quantities the smallest value of p which makes the inclusion
[Slz, € (Id + 9)([So],) in BI0) hold. More precisely, with such a control at hand one could
prove such a strengthened form of ([B.I3]) by the same argument used below.
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Remark 3.4. We claim that assumption (a) can be replaced by
Sy is a compact connected k-dimensional C?!-manifold with boundary in R”

and there exists {I/(i) n=k ¢ C11(Sp;S*1) such that (3.17)

nk

{VSO is an orthonormal basis of (7},50)* for every z € Sp .

(In the case k = 1, (B.I7) simply amounts in requiring that Sy is a compact connected C?!-
curve with boundary in R™.) More precisely, we clalm that (BI7) implies the existence of an

extension Sy of Sp and of a normal frame {1/0) F to Sy such that assumption (a (a) holds for a
suitable value of L: correspondingly, the constants Cp and pp given by the theorem will depend

on the particular extension Sy we have considered. We now prove the claim. By compactness
of Sp one immediately finds a constant L’ such that (33]) and ([B4) hold with L’ in place of L,

diam(Sy) < L/, and ||l/gg||cl,1(50) < L'. Now let us fix £ =1,....n — k, and for x € Sy set
e; {4 e;+e; _ 14
FO@) =0,  F(a)=vi)(@) e,  FF%(2) = e VOl (@)fey).

By compactness of Sy we find that F = {Fkhk‘gg € WJ?1(Sy). Hence, by arguing as in the
proof of Proposition 24} there exist dg, € C*!(R™; R"*) and gy > 0 such that

ds,(z) = 0 and Vds, (z) = X" e; ® Vé)( ) for every z € Sy,

I.,(So) N {ds, = 0} is a k-dimensional C*!-manifold in R", (3.18)

max {60 llds, || 2. A(Rn) } <C,
where C depends on n, k and Sy only. Let us set Sy = I.,(So) N{ds, = 0}. Up to further

decreasing the value of £y one immediately deduces ([3:2]) and ([B.5) for some value of L. Moreover,
by construction, for every i =1,...,n — k there exists {h; ;}_; C CYH(R™) such that

Vds, (z Z e ® (Z hij(z)e;), Vo e R".
j=1

Up to further decreasing the value of 9 we can define {I/(gi) ?:_1]“ € C’l’l(go; S"1) in such a way
that (|3_.__6]) holds by simply applying the Gram-Schmidt orthogonalization process to the vectors

{Zg 1 hij(x) e ?1k

Proof of Theorem [31l. In the following we denote by C a constant which may depend on n, k,
« and L only. We start our argument by extending S into a larger manifold S. More precisely,
by ||S]|c1.e < L and Proposition 4] there exist dg € CH*(R™; R" %) and ¢ > 0 such that
ds(x) =0 and Vdg(z) = X" e ® Vé)( ) for every z € S,
I.(S) N {ds = 0} is a k-dimensional C''®-manifold in R", (3.19)
max {e !, [|ds|cre@mm } < C,
where 0 = (0, ...,0) € R"7¥. We shall use dg to locate the position of S in R™ (see the proof of
the claim below). We set
S =1.(5) N {ds = 0},
and we record for future use that, by @I9), if v € S*™!, § > 0, and x € S, then
|Vds(z)v| < C4, if |72 (v)| >1-4, (3.20)
\Vds(z)v| >1—C4, if |75 (v)] <6, (3.21)
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Next, we note that

| Jnax k\z/éi)(a;) (y—a)| < C\ﬂfo(y —2)|?, Vo e Sy,y € Byijcn So. (3.22)
-l <2 -a)l,  VoeSiveBaond o
Ir — P <Cle—yl,  VeyeS. |

Indeed, 322) follows from (B6) and the fact that {v®(z)}"=} is an orthonormal basis of

(T, So)L, the first condition in @23) follows from ([3.22), and the second condition in B23) is

an immediate consequence of [v(?)] €0.1(30) < L. We now set

Ups=S0NBrs, Ks=I5(bd(So))NSy, K; =1I5(bd(So))N So, z€8p,6>0,
and then we make the following claim:

Claim: There exists 1o depending on n, k,  and L only such that, if yo is small enough with
respect to 7o, then one can construct f : K,, — S with

f = fO ) on bd (SO) ) (324)
f = Id+4v, on K\ K, , (3.25)
Ifllcrer,,) < C, (3.26)
If =Tdllcoggy < € (hd(S,S0) + Ifo = Tdllcrvas)) » (3.27)
O (6%

1F = 1dllor gy < P (3.28)

g c I =1d) - v llcowacsey, k=1,

So 0 0
m0(f —1d < = . 3.29
H ( )HCl(Kno) L { ”fO _ Id”Cl(bd (S0)) » ifk>2, ( )
S 1

JYof > 50 on Ky, (3.30)
70(f—1d) = 0, on K, \ K, (3.31)
fKy,) < 8. (3.32)

Given the claim, the theorem follows: Indeed, if one extends f from K, to K, , U Sy by setting
f = Id+% on Sp\ Ky, then thanks to (328, (B10) and (B26) we find that f € C1(K,,USp; R™)

and that (311)), (312) and (3I3) hold; similarly, (314]) and (BI5]) follow by B.27) and ([B28),
while (3:29)) and (B3T]) imply (BI6). By Theorem 211 (34), (3:23]), (3:26]) and (3:30]) there exists

7o > 0 (depending on n, k, v and L only) such that if || f —Id|[co(g,) < 70 (as we can entail thanks
to (B27), B7), (39), and BI0) provided we take p2 < 7g), then f is a Ch-diffeomorphism

between int (Sp) and f(int (Sp)). Let us set
5% = cl(f(int (S0))),
so that S* C S by BI0) and [B32). Moreover, S* is a compact connected k-dimensional
CY-manifold with boundary in R” with
int (5%) = f(int (So)), ~ bd(S") ="\ f(int (So)) = f(bd (So)) = bd (S),

thus, by connectedness of S, one has S = S* = f(Sp). Indeed, in order to obtain a contradiction
it suffices to consider y € int (S) \ S*, together with a curve v with int () C int (S5) \ S*, i.e.
which lives in the connected component of int (S)\ S* determined by y, such that bd (v) = {y, x}
with x € bd (5).
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Proof of the claim: We first describe the case k > 2, and then explain the minor variants needed
when k£ = 1. We fix ¢ € C°(R" x (0,00); [0,1]) such that, setting ¢, = ¢(-, ) for u >0,

Op € CZ(Lu(bd (S0))),  ¢u=10nI,,5(bd(S))), (3.33)
Vool <5, @IS VemeRx(O00). (33
Let us define a; : bd (So) = R, i = 1,....n — k, and b : bd (Sg) — R™ by setting
ai(z) = (fo(z) —2) - v\'(x),  blx) = f . zebd(Sy), (3.35)
so that, trivially, -
folz) = 2+ b(z) + ni:kai(x) v (@), Vo ebd(S). (3.36)
i

By ([B3) one has
il 1 (s6)) + 10l cteba (s9)) < €'
||di||01(bd(so)) + ||b||cl(bd(so)) <Clfo— Id||cl(1od (S0)) = Cp,

By Proposition 5 and by B3] we find a; € CH*(R"), i = 1,...,n — k, and b € CL*(R";R")
such that

(3.37)

a;=a; and b="b, on bd (Sp),

(3.38)
laillcre@ny + [1bllcra@ny < C,  lailler@ny + 1bllor @y < Cllfo —1d][er b (so)) -
Correspondingly we define G € C’l’o‘(go; R™) by setting
G(z) = gu(x) b(z) + Y as(2) v (x),  z€Sp. (3.39)
By @33) and @E30),
fo(z) =2+ G(x), Vx € bd (S), (3.40)
while (334), (338) and p < p? give
1Gllcogyy < € llfo = 1dllcrpaso) »
1Gllgra(g,) < € C C (3.41)
cre 1Glles sy < 7 1o = Mllorwas < 7 0 < C o
We now define F € Ch(Sy x (—1,1)"*; R") by settmg, for (z,t) € Sp x (—1,1)"F,
F(xz,t) =2+ ¢u(x 4—2:(1Z (:17)
. (3.42)
=x+G(x) + Z t; V(()Z)(.Z') ,
i=1
and then exploit dg € C1*(R™; R"*) to define u € C1(Sy x (—1,1)" kR F) as
u(x,t) =ds(F(x,t)),  (2,t) € 5o x (-1,1)"*
By B.40),
F(Jj,O) = fo(l‘) > Va € bd (SO) ’ (343)

which combined with S C {ds = 0} implies
u(z,0) =0, Va € bd (Sp) . (3.44)
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By B41)) and by (3I9) one has

||F||C'1,a(§0><(_171)n7k) < C,

||u||cl,a(§0><(_171)n—k) <C. (345)

We claim that if p is small enough (and up to identify (n—k)-vectors in R"~* with real numbers,
with the convention that e; A -+ Ae,_ = 1), then

mF ou 1
—-— > = . .
i:/\l 3 (,0) > 5, ¥z €bd(S) (3.46)
Indeed, by B.43), BI9), and by 0F/0t;(z,t) = V(()i) (x) we find that
n—k n—k n—k
N 5p@0) = A\ Vis(fo@)ly @) = [[ v (o) -1 (@).  Yrebd(S), (347)
i=1 i=1 i=1

so that ([@3.46) follows by ([B3) provided pg is small enough (recall that p < p2). By [B.44),
B45), B.46) and Theorem (that can be applied thanks to (3.0 and ([3.23])) there exists a
positive constant 79 > 0 (depending on n, k, a, and L) such that for each zy € bd (Sp) one can
find Cpy € C1(Usy i RF) with

u(a:, CSL‘() (‘T)) =0, Vo € USL’OWO 5 (348)
Cole) =0, Gollcen, 1y < O (3.9

Note that we had to put constraint on the smallness of iy to assert the existence of 79. We are
of course free to decrease the value of pg without affecting the value of 7y5. We shall require that
lip is suitably smaller than 7, precisely that g < n9/Cy for some suitable C, = Ci(n, k, a, L),
and we shall further decrease the value of 19 depending on n, k, « and L only.

Let us now prove that if xg, 21 € bd (Sp), then

Cmo (l‘) = le (‘/E) ’ Vo € Umoﬂ?o N U9017?70 . (3'50)
Indeed, by [Caolcoa (v, ) < C and Gz (20) = 0 one has
G0 llco @y ) < C110 5 (3.51)

for some constant C7 depending on n, k, a and L only. In particular, up to further decreasing
the value of 79 in dependence of the C*bound on u in (345]) and of Cy, we can entail

n—k

ou 1 B
/\ ﬁ(‘/p’t) = 37 V(z,t) € Uy % (—=C1mo, C1m0)" . (3.52)
i=1 "

Now, if © € Uyymy N Uy and we set Ag = (—Cimo, C110)"F, then by [B45) and (352) one
has u(z,-) € CL¥(Ag; R ) with

1
[w(z, )creay < C, JAou(z, ) > 3 on Ag.

By Theorem 2] there exists £y (depending on n, k, o and L only) such that u(x, -) is invertible
on A = (—€0,20)" *. By requiring that Cy 19 < o, we thus find that u(x,-) is invertible on

Ap, and since (g, (), () € Ag with u(x, (4 (2)) = u(x, (4, (2)) by B48), we deduce ([B50).
Moreover, by an entirely analogous argument, we deduce from ([3.44]) and ([3.48) that

Coo(@) =0, VYo €bd(So) N Uy - (3.53)

By B28), B19) B350), and B53), if we define ¢ € CH¥(K,; R" ) (recall that K,, =
I, (bd (Sp)) N Sp) by setting ¢ = (4o on Uy p, for each zg € bd (Sp), then

u(z,((z)) =0 Vre K,,, ((x)=0 Vz € bd(Sy), (3.54)
[Cllcox,,) < Cimos ¢llcrar,,) < C- (3.55)
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We finally set

f(@) = F(z,((x)) =z + G(z) + Z Gi(x . zeK,, (3.56)

where (; = e; - ¢, and show that f has the required properties. By (3:43]) and (3.54]) we prove
B24), while (326]) follows from ([B.45]) and (B55). Similarly, (854]) and the definition of u give
f(Ky) € {ds =0}. (3.57)

By B.24), B.26)), and f(bd (Sp)) = fo(bd (Sp)) = bd (S), we find that f(K,,) C Icy,(bd(S5)),
so that, up to decrease 7 and thanks to e > C~! (recall 1)), we can entail f(K,,) C I.(S).

In particular (357) gives
F(EK,,) CS. (3.58)

By B.56) and (3.39),

w0 (f —1d)(2) = pu(2)blz), Vo€ Ky, (3.59)
so that (331)) follows by spt¢, CC I,(bd(Sp)). By differentiating (3.59) along 7 € T, S we
find o -

VO~ 1))(2) [r] = (V6u(a) - 7) bla) + 6u(2) Vb)),
which implies (3.29) (recall we are addressing the case k > 2) once combined with ([B.38]) and
(BX19). By differentiating ([B50]) along 7 € 1,5y we find that
n—k

VL)) = T+ > VG v (x) (3.60)

=1
VG (x +Z<z (2) VS (@)r].

The first term on the second line is bounded by Cug thanks to ([B.41]), while the second term
on the second line is bounded by C7g thanks to (B.6]) and ([B.53]), so that, as we are requiring
o < no/Ci < no,

V5 f(@)lr —(T+ZV% v @))] < omo. (3.61)

Thus, if {T, ", is an orthonormal basis of T, So, then

k

T f() > |, (mZv% (@) | - Cno

=1

Since AF i=1 Ti is orthogonal to \;c; Ti AN c s 1o )(:17) forevery I C {1,...,k} and J C {1,....,n—k}
with #1 + #J = k and #I < k, by projecting over /\f:1 7; one finds

JSOf ‘/\ <TZ+ZVSOCJ [7:] 1/0 (ZE)) . /k\n

i=1
provided 7 is small enough; this proves ([B.30]). Again by ([B.6I]) we find that if = € bd (Sp), then

V@) ()] v (@) = v () v (F@) = O max [y (@) - 1§ ()]~ Cmo.

1
—0770:1—077025, (3.62)
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By B9), v (z) - v$’(f(z)) 21— Cp and |1/(()i)(x) v (f(x))] < Cp, so that
VO f (@) [vg ()] - v (f(x)) =

provided 79 (thus p < p2) is small enough. By B.24), 358), and @30), for every = € bd (Sp)
one has

. Yz ebd(S), (3.63)

N —

VO f(@)[T2S0] = Ty@yS,  V* f(@)[Te(bd (S0))] = T (bd (5)),
so that ([3.63)) gives
Vo f(x) [{v eT,Sy:v- vg (z) < 0}} ={we Tf(x)g cw-vg(f(z) <0}
By combining this fact with (858]) we deduce [B32]) (up to possibly further decreasing 7y in

dependence of the bound in ([326])). We are thus left to prove [B25]), B27) and ([B:28]).
We first prove B.27). By ([3:32) one has

hd(S, So) > dist(f(z),S0), Vo€ K. (3.64)

Let g9 > 0 be the inverse of the maximum of the largest principal curvature of Sy, so that, by
(4], £9 depends on L only. Then

n—k
dist (m + 3t (@), 50) —t|], Vze St <eo. (3.65)
i=1
By spt¢,, CC I,(bd (Sy)) and by (B56)
n—k )
f(x) :a:+Z(a,~(a:)+C,~(x))l/(()z)(a:), Vo € Ky, \ K,
i=1

where |la; + Giflco(x,,) < Cno by B.38) and B.55). Up to decrease 7o in order to obtain
lai + Gillcox,,) < €0, we can apply B.65), B.64) and [|a;|co@n) < Cllfo — Id||c1ba (s0)) to find
HC”CO(K%\KH) < C (hd(S,50) + |1 fo — Id]l o1 ba (s0)) ) - (3.66)
In order to estimate ||C||CO(K;) we consider, for every x € K,,, a point g(x) € Sy such that
|f(z) — g(x)| = dist(f(z), So): we claim that then one must have
lg(z) — x| <hd(S,S0)+Cp,  VeekK|. (3.67)
Indeed, let z € K so that there exists y € bd (Sp) with [z —y| < p: since f(z) € S implies
[f(x) = g(2)] = dist(f(z), So) < hd(S,50), by B.26) we find
l9(z) — = < g(x) = f@)| + |f(x) = f(y)| + |z — y| <hd(S,S0) + C'lz —y|

that is (B67). By B67), provided py is small enough with respect to the constant 1/C appearing
in (322)), we find that

_ 0 So _ 2 +
L (@) =)o@ < Clrolgle) o), Vee K (3.68)

Now, by [B.64) and [B59) we find that, if z € K7, then
hd(S, o) > dist(f(x),50) = |f(z) — g(x)| = |73°(f (z) — g(x))]
=m0 (z — g(x))] — [b(2)] du (@)
so that (B68) and B38) give

\max_|(g(z) — )0 (@) < C (hd(S,50) + lfo ~ Wllcrgacsy)’s Vo€ KL
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By exploiting this last inequality, (3.56) and [B38) we deduce that if z € K, then

hd(S,S0) > dist(f(2),5) = [f(2) — g(x)| > |(f(2) - g(x)) - 1" ()]
> (@ — g(2)) - v (@) + (@ilw) + G(@)] = b(x)] ()
> |Gi(x)| = C (hd(S, So) + II.fo = Id]lcr ba (s0))) -
By combining this estimate with ([B.66) we thus conclude that
ICllgoqryy <€ (hd(S, So) + [l.fo — Idll o1 ba (so))) - (3.69)

By combining ([3.69), (350) and 341l we prove (B.27).
We now prove ([3.25]). First, we claim that there exists a constant M depending on n, «, k
and L only such that
f(z) €1Sls,, Ve e K\ K. (3.70)
Indeed, let x € K&\ Ky, and let y € bd (Sp) be such that [f(z) — f(y)| = dist(f(z), bd (5))

0

(we can find such a point y as fy is a bijection between bd (Sy) and bd (S) and since f = fy on
bd (Sy)). By B21), we have

dist(f(z),bd (5)) = [f(z) = fW)| = |z —yl = [f(2) — 2| = |f(y) — vl
> dist(z,bd (Sp)) —Cp> (M —-C)p > 3p,
provided M is large enough. This proves ([B.70), which, combined with assumption (ii) and
(B65)), gives in particular

fl@) =g(@) +¥(g(z))  g(z) €[Solp, Vo€ Ky \Ku,. (3.71)
By B31) and B1I), we find g(z) = x for every = € K, \ K, so that, in particular,
f(x) =z +9(z), Ve e Kf\ K, (3.72)

that is (B.28). Note that this argument also gives ¢; = a; + (; on K, \ K, so that [3.38) gives
us

Il e\ i) < C (I1fo = Tdllcr ba so)) + N1¥llerison)) »
and thus, by [B56]) and (341

Hf - Id”cl(K%\K#) <

C
which will be useful in proving [3:28]), as we are now going to do. We first note that by (B.60),
B41), B27), and B8], it is enough to show that

3 C

S «

v OCHCO(K%) < ZP . (3.74)

To this end, the natural starting point is differentiating dg(f) =0 on~K770 at some fixed x € K,
along 7 € T,;Sp. By combining the resulting identity Vdg(f(z))[V f(2)[r]] = 0 with (360,
(BA00) and [B69) one finds that, if z € Kl and 7 € T,;S with |r]| = 1, then

(Vds(f(x» [T + ’f (V5 ¢i(@)Ir) yg%)] \ < % (hd(S, So) + || fo — Tl (b so))) < %p,
that is - -
Vst [ X (Vi) o] < S+ Vs e
We claim that
(Vs (f(x))[v]] = ’12’ . Vaze K| ve (TpS) . (3.76)
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Indeed, if € bd (Sp), then, by (3.9]), I/(()i)(ﬂ;‘) . l/g)(f($)) >1—Cpforeveryi=1,..,n—k, that
is, |7T}q(x) [v]] < Cplv|: thus by (B2I)) and provided pg is small enough

2

Vds(f(2))lv]] = 3 v

which immediately gives us [B.70) for x € Kﬁ' provided pg is small enough depending on C >

|ds||c1.e(mny. If instead z € K F'\ K, then by B.73) we find that \ﬂ]*f(x) [v]| = \ﬂ]*f(x) [v] =730 [w]| <

|, Vzebd(Sy),v e (T,S)", (3.77)

0

C po [v|. Thus we deduce that ([B.76) holds for z € K\ \ K, too, once again, thanks to (3.2I)
and provided pg is small enough. By combining ([B.76]) with ([B.75]) we thus find

~ C .
V¢ (2)[r]] < " (p+|Vds(f@)[r)), VaeK} reT,Sons" . (3.78)
We are now going to show that
IVds(f(z)[r]] < Cp*, Voze Kl reT,SnS" . (3.79)

Indeed, if € bd (Sp), then 19 follows by exactly the same argument used to prove ([B.77)
(with p in place of p®). By exploiting || Vds||c1.e@mn) < C, one deduces the validity of [3.19) for
every x € K]J\} p (here is the point where p® appears in place of p). In order to prove (3.79]) on
Ko\ K, we first notice that if x € Kf', then |g(x) — f(x)| = dist(f(z), So) < [f(z) — z], so

1m0’
that (327 implies the following improvement of ([3.67):

lg(x) — x| < C (hd(S, So) + [ fo — Idllc1base)) < Cp, Ve e K. (3.80)
At the same time, by (Id +1)([Sol,) C S and [[¢[c1(s,),) < p one finds

Ty [Tl = A= Cp)rl, Vo € [Sol,,7 € TuSo,
which, by @ZI), gives
|Vds(z + ¥(x))[r]| < Cplr|, Vo € [Sol,, 7 € TpSo .
By B19), BI0) and (B:30)
Vds(g(x) +9(g@)lr]l < Cp™Irl, Vo e Ky \K,,7€T,S,

which implies B.79) for 2 € K} \ K, thanks to (3.71). This completes the proof of (B.79),
which combined with (B78]) gives us B.74). The claim, thus theorem, is then proved in the case
k > 2. Concerning the case k = 1, the main difference is that the extensions a; and b of a;
and b satisfying (3:38) can now be defined by elementary means by exploiting the assumption
lpo — qo| > 1/L, with their C'(R")-norms controlled in terms of || fo — Id|lcoga (sy)) (see also
Remark [3.2)). The rest of the proof carries on almost verbatim, and we thus omit the details. [

3.2. A reformulation of Theorem 3.1l In the situations in which we plan to apply Theorem
B we are usually given a sequence of manifolds {S;}; converging to a limit manifold Sy rather
than a pair of nearby manifolds S and Sy. In order to apply Theorem B.I] one thus needs to
pass from the former situation to the latter, and this can indeed be done by a simple argument.
Instead of having to repeat this argument at each application of Theorem [3.1] it seems preferable
to prove once and for all an alternative version Theorem Bl which is already tailored for the
case of sequences.

Theorem 3.5. Letn >2,1<k<n-—1, a€(0,1], and L > 0. Let Sy be a compact connected
k-dimensional C*'-manifold with boundary in R™ and let {l/go) ?:_1]“ c CY1(Sp;S™1) be such

that {I/go) ;‘:_1]“ is an orthonormal basis of (T;,So)* for every x € Sy. Then there exist jio € (0,1)
and Cy > 0 (depending on n, k, a, L and Sy only) with the following property.
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Let {S;j}jen be a sequence of a compact connected k-dimensional CYH®-manifold with bound-
ary in R™ such that

bA(S) A0, ISillere <L, lim hd(S;,80) =0, (3.81)
Jj—00

and assume in addition that:

(1) if k = 1, then, setting bd (So) = {po,qo}, bd (S;) = {pj,q;}, foj(po) = p; and fo;(q0) = qj,

jli{glo 10,5 = Idllcowa so)) + 11¥5] (fo.5) — VS5 lcowa so)) = 0 (3.82)
if k > 2, then there exist C1*-diffeomorphisms fo ; between bd (Sp) and bd (S;) with
sup || fo,jllcrebd (so)) < L
JeN

lim [1foj = 1]l (na si)) = 0
. (3.83)
]lggol<nzl<a;zx k”’/s (fo.5) = o llcowa (so)) = 0

hm 1v§7(fo,5) — v llcoma (se)) = 0

where {VS 7 is satisfies B0) with S = S;;

(ii) for every p < p3 cmd i= 1 ,n —k there exist j(p) € N and {ij};> () C C*([So],) such
that, setting v¥; = Y 1] w” VSO, one has

[Silsp € (Id +5)([Solp) €S, Vi=>j(p),

,a < i ; = .
]Sljla)\\%ﬂm (1Sol,) < L jEI{}OHT/’JHm([So]p) 0

(3.84)

Then, for every p € (0, o) there exist j(p) € N and, for each j > j(u), a CH*-diffeomorphisms
fj between Sy and S; such that

fj = f(),j on bd (S()) s fj =1Id + T/Jj on [So]u N

sup || fjllcta(sy) < Co, lim [|f; —Id[c1(s) =0,
525 (1) e (3.85)
Co | I(fo; —1d) - & llcoba (o)) - ifk=1,
70 (f; = 1)l o1 50y < — o e b
H 1fo,5 — 1d]lc1 (b (s0)) » ifk>2.

Proof. By Remark [3.4] up to increasing the value of L depending on Sp, one can entail the
existence of Sy such that assumption (a) in Theorem [B] holds, and also that |pg — qo| > 1/L
in the case Kk = 1. Now let ug and Cy be determined as in Theorem Bl by n, k, o and the
increased Sp-depending value of L, and let us fix u € (0,p9). Given p € (0,u2), by [B:82),
(383), and ([B3.84), and up to increasing the value of j(p), then for each j > j(p), S, fo; and
1p; satisfy assumption (b) of Theorem B.I] that is, referring from now on to the case k£ > 2, for
every j > j(p) one has [Sj]3, C (Id + v;)([So],) C S; with

max {hd(So, 55, I1fos — 1dlln ba (o)) 128 (Forg) = 485” llen (ba (50
1€ (fo.5) = v6°ller a (so)ys 19illcr sl } < s
max { || Sjllcr.a;, | fojllcrema (se)s [¥5llcreqse,) } < L-
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Hence, by Theorem .11 for each j > j(p) we can construct C'“-diffeomorphisms f]’-) between
So and S; such that

f]p = fO,j on bd (S()) s f]p =1d+ w on [So]ua

C (0%
1 e < Con I = Tdllonsyy < —2 7
C H(f(],'_ld)'ljgouco bd (So)) 5 lfk’zl,
72 (f2 = 1d) o5y < = g7 00 10°d (50) |
" 1fo.; = Idllcrba (s0)) - ifk>2.

Finally, let us set, for £ > 2, p; = p?/*/(2 4 ¢). For each ¢ > 2, p;, € (0,1?). By iteratively
applying the construction above we can find a strictly increasing sequence {js}¢>2 C N such
that if j, < j < jpt1, then f; = ff ¢ defines a C1®-diffeomorphism between Sy and S; such that

(B:85) holds with
CO C()/L
1 < 20 o _OH
115 = Tdllerso) < =7 2 2109

This completes the proof of the theorem. O

4. PERIMETER ALMOST-MINIMIZING CLUSTERS IN R"

The goal of this section is preparing the ground for the application of Theorem Bl to the
proof of Theorem Specifically, in this section we discuss those preliminary facts that we
can prove in arbitrary dimension n. (In particular, these results shall also be used in part two
]) For the most part the arguments of this section should be familiar to some readers,
but we have nevertheless included some details of most of the proofs for the sake of clarity.
In section ] we gather some relevant definitions from Geometric Measure Theory. In section
we recall the classic regularity criterion for almost-minimizing sets (Theorem (1)) and derive
from it a very useful technical statement (Lemma[£.4]— which is well-known to experts, although,
apparently, not explicitly stated in the literature). In section 3] we exploit a simple “infiltration
lemma” to construct normal diffeomorphisms away from the singular sets (Theorem [£12]) and to
prove Hausdorff convergence of the boundaries (Theorem [.9]). Finally, in section [.4] we briefly
discuss blow-up limits of clusters.

4.1. Basic definitions and terminology. Here we gather various definitions from Geometric
Measure Theory needed in the sequel.

Rectifiable sets. Let #* denote the k-dimensional Hausdorff measure on R™. A set S C R™ is
locally k-rectifiable in A C R™ open, if #*LS is a Radon measure on A and S is contained, modulo
an H*-null set, into a countable union of k-dimensional C'-surfaces. If S is locally H*-rectifiable
in A then for H*-a.e. x € SNA there exists a k-plane TS in R™, the approzimate tangent space to
S at x, with H* (S — x)/r = HFLT,.S when r — 0% as Radon measures; see ﬂm, Theorem
10.2]. Given such z € S, T' € CHR™R"), and {7;(z)}¥_, an orthonormal basis of 7,5, the
tangential divergence divgT of T over S at x is defined by divg T'(z) = Zle 7i(x)- (VT (z)7i(x)).
One says that S has generalized mean curvature Hg € L (H*L(AN S);R™) in A, if

/divSTdez/ T-HsdH*, VT e€CLARY). (4.1)
S S

If Hg € L®°(H*L(AN S);R™) one says that S has bounded generalized mean curvature.

Sets of finite perimeter. A Lebesgue-measurable set £ C R" is a set of locally finite perimeter
in an open set A C R™ if sup{ [, divT : T € C}(A; B)} < o0, or, equivalently, if there exists a
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R™-valued Radon measure y on A with

[ vewds= [ pdut).  voeci). (1.2)
E‘ n

The Gauss—Green measure pup of E is defined as the Radon measure appearing in ([d.2]) for the
largest open set A such that E is of locally finite perimeter in A. The reduced boundary 0*E of
FE is defined as the set of those x € spt up C A such that

. ,UE'(Bm,r)

o) = 08 el B

It turns out that 0* F is a locally "~ !-rectifiable set in A, and the Borel vector field vg : 0*E —

S"=1 (called the measure-theoretic outer unit normal to F) is such that up = vg H" 'LO*E on

bounded Borel subsets of A. If F' C A is a Borel set, then the perimeter of E relative to the

Borel set F is defined as P(E; F) = |ug|(F) = H" Y(F N 0*E), and we set P(E) = P(E;R").
One always has

Aﬂcl(@*E):Spt,uE:{:EeA:O<|EﬂBm7T|<wnr" Vr>0} CANIE,

where w,, is the volume of the Euclidean unit ball in R"; moreover, ug is invariant by modifica-
tions of F N A on and by a set of volume zero, and up to such modifications (see, for example,
, Proposition 12.19]) we can assume that

ANcl(0*E) =sptug = ANOE. (4.4)

Throughout this paper, all sets of finite perimeter shall be normalized so to have
identity (£4) in force (where A denotes the largest open set such that E is of locally finite
perimeter in A).

Let us now recall from the introduction that a family & = {£(h)}1_, of Lebesgue-measurable
sets in R™ with |E(h) NE(k)| =0for 1 < h < k < N is an N-cluster in A if each £(h) is a set of
locally finite perimeter in A and |E(h)NA| > 0 for every h = 1,..., N. If A is the largest open set
such that & is a cluster in A, then, according to [@3)), 0*E(h) is well-defined as a subset of A and
so are the interfaces E(h, k) = 0*E(h) N 0*E(k); thus 0*E, as defined in (LIT), is automatically
a subset of A, with

exists and belongs to S*~ 1. (4.3)

rE= |J EnE).
0<h<k<N
It will be useful to keep in mind that, by ([4£4), one has

N N
cl(0%€)=An U SPtile(n) = U {x €A:0<|E(h)NByy| <wpr™ Vr> 0} =ANoE,
h=1 h=1

4.2. A regularity criterion for (A, rp)-minimizing sets. Given 2 € R",r >0 and v € S"~!,
let us set

Cl,={yeR":|(y—a) v|<r,[(y—2)—((y —2) - v)v|<r},
Dy, ={yeR":|(y—2)-v[=0,[(y —2) — ((y —2) -v)v|<r},
and define the cylindrical excess of E C R™ at x, in direction v, and at scale r, as

1 _
excl ()= 5 [ e v,
z,r

provided FE is of finite perimeter on C} .. When v = e, and x = 0 we simply set
C. =Cg,, D, = Dg;, exc,(E) = excy’,.(E).

The next result is a classical local regularity criterion for (A, rg)-minimizing sets.
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Theorem 4.1 (Small excess regularity criterion). For everyn > 2 and « € (0,1) there exist pos-
itive constants e.(n), C(n) and C(n,«) with the following property. If E is a (A, rg)-minimizing
set in C¥ . with xog € OF, r <rg, and

: excy, . (E) +Ar <e(n), (4.5)
then there exists a Lipschitz function v : D7 o — R with v(xg) =0,
HUHCO(D;OMZ) < C(n) rexcgo’r(E)lm(n—l) 7 (4.6)
IVolleos, ) < Cn) (excy, (E) + Ap)'2nml) (4.7)
re [Vv]co,a(D;wm) < C(n,a) (excl (E)+Ar) 1/2(n=1) , Va e (0,1), (4.8)
and such that
CrorpNOE = (Id+ov)(DY ). (4.9)

Moreover, if n = 2 then one can replace @8 with ||[v"||popr  y < CA.

0:7/2
Proof. Without loss of generality we set zg = 0 and v = ¢,,. By M, Theorem 26.3| (applied,
in the notation of that theorem, with v = 1/4) there exist positive constants e,(n) and C(n)
such that if (£3]) holds then (49) holds for a Lipschitz function v : Dy, /3 — R with v(0) =0
and

|v(z)] 174 [Vo(z) — Vu(y)|

. + |Vo(z)| + 7 F—z

for every = # y € Dy, /3. We now prove [L8). By (L2) and ([£3J) one finds that

/ \/1+\Vv\2§/ V1I+|V(v+ )2+ A lol (4.11)
D27‘/3 D

2r/3 Dy, /3

< C(n) (exc.(E) + Ar) 1/2(n=1) , (4.10)

for every ¢ € CCI(DQT/g). In particular, there exists g € L>°(Dy,/3) such that

\V/(,D € CCI(D2T‘/3) .

Vo
I A AN WL
By taking incremental ratios one sees that v € VVi’f(DQT /3) with
tr(A(z) V30 (z)) = g(z), for a.e. z € Dy, /3,

where A = (1 + |Vo|>)™3/2[(1 + |Vv|?)Id — Vv ® Vv] = F(Vv) for a Lipschitz map F : R® —
R™ @ R™. Thanks to (10,

G <A@ < COI. AW = AW < Cm) e =y Vo € Doy
If we set A*(z) = A(r ), v*(z) = v(rz) and g*(v) = g(r x) for z € Dy/3, then

tr(A*(z)V30*(z)) = 2 g* (z), for a.e. x € Dyj3,

with |A*(z) — A*(y)| < C(n) |z —y|"/* for every z,y € Dy/3. If n > 3, then by |GT01, Theorem
9.11], for every p € (1,00) one has

w2, < Cop) (107 |Lroy ) + I 97l o(, )
< C(n,p)r (exc,(E)+Ar) 1/2(n=1)

thanks to (ZI0). At the same time, by Morrey’s inequality, if we pick p > n — 1 such that
a=1—(n—1)/p then

Cln,p)l[v*llwzem, ) 2 107 llcrem, ) = [VVilcoem, ) = rite [Vvlcoam, )
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which gives us [3J) in the case n > 3. If n = 2, then ([@II)) directly implies that (1+ (v")?)~ Y2/
has a bounded distributional derivative g on the interval Dy, /3. By the chain rule we immediately

find 0"} < (0,0 < (14 [/ [20(p,, ,))*A < CA. O

Remark 4.2. Recall that lim,_,y+ inf,cgn1 excy . (E) = 0 for every = € 9*E; see, for example,
, Proposition 22.3|. In particular, if E is a (A, r¢)-minimizing set in A, then ANJ*E is
a Ch%hypersurface for every a € (0,1) (CH if n = 2).

Theorem 1] can be used to locally represent the boundaries of (A, rg)-minimizing sets F
converging to a set E as graphs with respect to 0F, at least provided 0F is smooth enough.
This basic idea is made precise in Lemma [4.4] below. Before stating this lemma, we prove the
following technical statement where, given v € C*%(D,) we set

k

HUHZk,Q(DT) = Z ri1 HDju”C'O(DT) 4 ph—lta [Dku]CO,Q(Dr) .
=0

In this way, if we set A\.(u)(z) = r~'u(rz) for z € D, then
[Ar(@)llcke ) = IAr(W)llcram) = lulleram,),  ¥r>0.
Moreover, given u : Dy, — R with |u| < 4r on Dy, we set
[ (u) = (Id + wey)(Dyy) C Cyr,
and let o A f = min{«, 5}.

Lemma 4.3. Givenn >2, L >0 and «, 3 € [0,1] there exist positive constants o9 < 1 and Cy
with the following property. If u; € C>*(Dy,), us € C¥(Dy,), and

mas loilen o,y S 00, mas (oo w2linsm, ) S L (412)
then there exists ¢ € CH(Cq. N T, (uy)) such that

Cr N Pr(u2) - (Id + wV)(Cw N Fr(ul)) - Fr(u2) ) (4’13)

[¥llco(cornr, (u o
C2 ) 19 00 0y + 7 [Vl oo0ns(anr ) < Co (4.14)

M’”CO Cor NIy (u
( ; lr(un) VYoo, i) < Collur — uzllcr(p,,) - (4.15)

Here, v € C1(T,.(u1);S"™ 1) is the normal unit vector field to T'v(uy) defined by
—Vui(z),1
(e (2) = AL
V14 |Vui(2)]

Proof. Up to replacing u; with A.(u;) we may directly assume that » = 1. Correspondingly,
we write I'(u;) in place of T'y(u;) for the sake of simplicity. We define F' : Dy x R — R"™ and
¢ : Dy xR — R by setting

Vz € Dy, . (416)

Vui(z)

t
Pt = (2=t T vaer 1+Nm<2>\2)’

P(z,t) = wua(z) —t, (4.18)
for (z,t) € Dy x R. Notice that F' € C1*(Cy) and ¢ € C1F(Cy) with
[Fllcrecy <C,  N1dllenscy) <€, (4.19)

(4.17)
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where C' is a constant depending on n, «, 8 and L only. Provided og is small enough we also
find F(Cy) C Cy, so that we can define ® : Cy — R by setting

Vuy(z t
O(2,t) = p(F(z,1) = U2(z —t \/ﬁ) — g (z) — NixT ek
By exploiting ([AI12]) and (£I9) we find that, provided o¢ is small enough,
@iy €€, 22 <1, @(z-2) 21, D(n< -,

for every (z,t) € Ca; hence there exists ¢ € CH*(Dy; (—1,1)) with

[Cllcransmyy < C ®(z,((2)) =0, Vz e Dy, (4.20)
By (AI6]) and ([20) we find

{(z,u1(2)) + ¢(2) v(z,u1(2)) : 2 € Do} C I'(ug). (4.21)

Again by ®(z,((z)) = 0 we deduce that
C(2) = 1+ |Vui(z)? <u2 (z —((2) Vul(z)(z)P) — u1(2)> , (4.22)

1+ \Vul
so that, by (12,

I€llcom,) < 4/1+ 03 (HUZ — utllcop,) + 0 ”CHCO(Dz))

and thus [[(|[cop,) < Cllur — uz||cop,)- Similarly, by differentiating [@.22)), by exploiting the
fact that u; € C?%(Dg) and thanks to ([@I2)), one finds that

[Cller sy < Cllur — uzllcrpy) - (4.23)

We finally define ¢ € C1*"3(Cy N T(uy)) by the identity (2, u;(2)) = ((2), 2z € Dy. In this

way ({I4) and ({I0) follow immediately from ([£I12), (£20) and ([A23]), whereas [@2]]) gives
the second inclusion in ([AI3]). The first inclusion in (£I3)) is obtained by noticing that: (i) up

to further decreasing the value of oy we have

{ ZEECQQF(ul),

r+tv(z),x+sv(x) e ug) = t=s; (4.24)

(ii) there exists > 0 (depending on L only) such that every y € N,(C2 NI'(u1)) has a unique
projection over Co NI'(uy). Since (by ([AI2) and provided oy is small enough) we can entail
CiNT(ug) C Ny(CoNT(ur)),
by (ii) we find that for every y € C; NT'(ug) there exists a unique § € Co NT'(u;) such that
y =y +dist(y,CoNI'(u1))v(y).

By the second inclusion in (AI3]), § € Co NI'(uy) implies that § + ¢ (§) v(y) € I'(uz). By (£24])
we thus find dist(y, CoNT(u1)) = ¢(9), and thus y = §+¢(9) v(7). The first inclusion in (£I3))
is thus proved. O

Lemma 4.4. Ifn>2, a €10,1], 5€(0,1), A >0, and E is an open set with 0 € OFE and
ClﬂE:{z—i—sen:zEDl,v(z)<s<1}, (4.25)

for some v € C%%(Dy) with v(0) = 0 and Vv(0) = 0, then there exists v € (0,1/64) (depending
onn, a, B, A and ||v]|c2.«(p,)) with the following property.
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If {Ex}ren is a sequence of (A, ry)-minimizing sets in Bsa, with |Bsa, N (ExAE)| — 0 as
k — 0o, then there exist kg € N and {¢g }r>p, € C1N(Ca, NOE) such that

C,NoE; C (Id + ¢kVE)(C2r N 8E) C Cy,r NOLEY, Vk > kg, (4.26)
sup ||l crans(cynom < C lim (|[¢kllcr(conom) =0, (4.27)
k>ko k—o0

where C = C(n,a, B, A, ||v]|c2.0(p,)). Moreover, when n = 2, one can take 8 = 1.
Proof. First, we note that by ([£25]) one has
CiNOE ={z+v(z)e,:z€D1}. (4.28)

Second, we set M = ||v[|c2.0(p,), and exploit v(0) = 0 and Vv(0) = 0 to find r € (0,1/64)
(depending on n, A, and M) in such a way that

excesr(E) + A(64r) < o, [vllerpy,) <o (4.29)

for a positive constant o to be chosen later depending on n, «, 8, A and M. Since 0 € JF, E},
is a (A, rg)-minimizing set in Bsy,, and |(EyAE) N Bsg,| — 0 as k — oo, by [Magl2, Theorem
21.14-(ii)] there exists {xg }ren with z; € OF) and 2, — 0 as k — co. By Magl2, Proposition
22.6], for a.e. t € (167,327),

lim excy, ((Ek) = lim exci(Ey — xj) = exci(E) < C(n) excesr(F) .
k—o0 k—o0

By ([@29)) there exists ko € N such that
excy, 1(Ey) + At <C(n)o,  Vk=>kh. (4.30)

Provided o is suitably small with respect to the constant ,(n) introduced in Theorem A1 one
finds that for every k > ko there exists wy : D, ;o — R such that

t
CotpNEy = {z+sey:2€D,, 15, wp(z) <s< 5} , (4.31)
C:ck,t/2 Nk, = {Z + wk(z) €n 2 € ka,t/2} > (432)
lorllors o, ) < C0:5)- (4.33)

(Note that (43T follows by ([@32]), (23] and the fact that | Bsa,N(ELAE)| — 0.) By composing
the functions wy with vanishing horizontal and vertical translations, and since t/2 > 87, we
actually find that, up to further increasing the value of kg, then for every k& > kg there exists
vy, : Dg, — R such that

Cs,NE, = {Z—I—SenZZEDgr,Uk(Z)SSSST’}, (4.34)
Cs,NOE, = {z—l—vk(z) en 12 € Dgr}, (4.35)
||Uk||21,B(D8T) < C(n,B). (4.36)

If we set L = max{M/r,C(n,B)} with C(n, ) as in (£30), then by ([€36]) and by definition of
M we have

ma {0z oy e Il sy} S Lo V= ko,

Let o9 = oo(n,a,8,L) = og(n,a, 3,A, M) be determined as in Lemma 3l By (£25]), ([£34)
and |Bza,N(ERAE)| — 0 we have vp — v in L' (Dg,.), thus by [@38]) we find v, — v in C}(Dg,),
so that, up to further increasing kg, decreasing o in terms of o, and thanks to (£.29),

max {[[v]|tnp, ) [0klEr D, )} S 00, VE =Ko

We thus apply Lemma and find v, € C1*"%(Cy, N JE) with the required properties. O
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4.3. Infiltration lemma and consequences. In this section we exploit an infiltration lemma
(Lemma — which is a special case of m, Lemma 4.6], see also m, Theorem 3.1]
for a similar result in the context of immiscible fluids) together with Theorem [4.1] to address
various regularity properties of (A, ro)-minimizing clusters, and to prove some basic convergence
properties, see Theorem and Theorem

Lemma 4.5 (Infiltration lemma). There ezists a positive constant ng = no(n) < wy, with the
following property: if € is a (A, ro)-minimizing cluster in A, then there exists a positive constant
r1 < ro (depending on A and ro only) such that, if

> 1EMR) N Byy| <mor™, (4.37)
heH
for some r <ry, HCA{0,...,N}, and x € R" with B, CC A, then
> 1E(M) N By, pl =0. (4.38)
heH
Proof. By arguing as in ﬂm, Lemma 30.2] one sees that if £ is a N-cluster in A such that
P(&; By ) < P(F;Bgy)+ Co|vol () —vol (F)I, (4.39)

whenever £(h)AF(h) CC By, CC A for some z € R", r < ry and every h = 1,..., N, then
#317) implies (#38) with 7y = min{rg, 1/8Cp}. This is achieved by exploiting the perturbed
minimality inequality (£39]) on comparison clusters F having the property that, if 0 < h < N,
then either F(h) C E£(h) or £(h) C F(h). We now notice that, on such clusters F one has

N
d(E,F) =Y _|EM)| = [F(h)|| < VN |vol (€) = vol (F)|.
h=1

Therefore, if £ is a (A, r9)-minimizing cluster in A, then (€39 holds on every comparison cluster
F as above with Cy = v/NA, and we can argue as in ﬂm, Lemma 30.2] to prove the lemma
(with 1 = min{r, 1/8V/NA}). O

Corollary 4.6 (Almost everywhere regularity). If € is a (A, rg)-minimizing cluster in A, then
0*E is a OV -hypersurface for every a € (0,1) (CYY ifn = 2), it is relatively open inside ANOE,
and H" 12 4(£)) = 0. Moreover, if n = 2, then we can replace CH* with C1,

Proof. Step one: We prove that there exists ¢(n) € (0,1) and r; < ry (depending on &), such
that, if 0 <h < N, z € 9€(h), and r < rq is such that B, , CC A, then

B"E T
oy < EWO Bl _
wn T
P(E(h); Br)
c(n) < 74"——1 < C(H,A) (1 + 7’) . (4.41)
Indeed, Lemma implies (@A0) with c¢(n) = no(n)/wn; sce [Magld, Section 30.2]. Up to
further decreasing the value of ¢(n), the lower bound in (A1) follows from (E40) and the
relative isoperimetric inequality on balls, see m, Proposition 12.37]. Finally, by testing
@CI8) on F(h) = E(h) \ Bey, 1 < h < N, we find that P(E(h); By,) < nw, ™1 4+ Aw, 17,
whence the upper bound in (Z4T]).

Step two: We show that if x € E(h,k) = 0*E(h) N 0*E(k), then there exists 7, € (0,rp) such
that |£(j) N Byr,| = 01if j # h,k and B, ,, CC A. Indeed, by standard density estimates (see
, Exercise 29.6]), we have

(I —c(n)), (4.40)

i LEB) O Ba] | [E0) 0 Bual

r—0+ Wy T Wy T

L,
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so that the existence of r, follows from Lemma As a consequence, ([LI5]) implies that both
E(h) and E(k) are (A, rp)-minimizing sets on By ,, . By Theorem 1] and Remark .2, 0*€ is a
Cl @ hypersurface for every a € (0,1) (C1! if n = 2) and it is relatively open inside ANOE. The
lower (n — 1)-dimensional estimate in ([Z4I]) implies H" ' (X4(€)) = 0 by a classical argument
(see for example [Magl2, Theorem 16.14]). O

Corollary 4.7 (Local finiteness away from the singular set). If £ is a (A, rg)-minimizing N -
cluster in A, p >0, and A’ CC A is open, then (A'NOE)\ cl(1,(X4(£))) is the union of finitely
many disjoint connected hypersurfaces.

Proof. By Corollary .6, we can directly assume that 9*€ = |, Si, where each S; is a nonempty
connected C''-hypersurface with S; N.S; = 0 for i # j. If we set S? = (A’ N S;) \ cl (I,(Xa(E)))
then {S }ien is a disjoint family of connected C'-hypersurfaces whose union is equal to (A’ N
OE) \ el (I,(24(£))). We claim that only finitely many elements of {S”};cn are nonempty. If
this were not the case, then, up to extracting subsequences, we could find {z; };en C (A’ NIE)\
cl (I,(X4(€))) with z; € S; for every i € N and z; — « for some z € (cl(A") NIE) \ I,(Xa(E)).
Since z € 9*E, by Theorem 1] and step two in the proof of Corollary 4.6l there exists r, > 0
and v € S"7! such that € N CY, =9*ENCY, = (Id+vv)(DY, ) for some v € CH(DY,.).

By connectedness, we infer that S; N C7, = S n C’ ., which contradicts the assumption on
Si and Sj. O

Corollary 4.8 (Bounded mean curvature). If € is a (A, rg)-minimizing cluster in A, then ANOE
is a locally H™'-rectifiable set with bounded mean curvature in A, and

[HoelLoo (1gn—1.(anoe)) < A (4.42)

Proof. Since 9*€ is locally H" !-rectifiable in A and H" (X 4(€)) = 0, one finds immediately
that AN OE is a locally H™ -rectifiable set in A. By Riesz theorem and Lebesgue Besicovitch
differentiation theorem, in order to prove (d42)) it suffices to show that

/ divoe T dH™ ' < (1 + 1) AP(E; Bysr), (4.43)
o0&

whenever B,, CC A, r < ro, T € CL(B,,;R") with |T| < 1. To this end, let {ft}1)<c be the
flow with initial velocity 7', so that (see, e.g., , Theorem 17.5])

P(f{(E); Byy) = P(E; By,) +1t divgpT dH" 1 + O(t?),
o*E

for every set E of finite perimeter in B, ,. By Lemma (see Appendix [B)) one sees that for
every 11 > 0 it is possible to decrease £ > 0 in such a way that
[f(E)AE| < (1+n) P(E; Bey)[t], Vi <e,

for every Borel set £ C R™. Up to further decreasing the value of ¢ we have fi(E(h))AE(h) CC
B, , for every h =1,..., N, so that by (I]:IE) one finds

P(&;Boy) < P(fi(€) Zw )AF(E(h))]
_ P(S;var)—kt/ divoe T dH™ + O() + (1 + 1) Alt] P(E; Ba,)
o€
and immediately deduces (£43]). O

We now start to consider the situation when
{&k }ken are (A, rp)-minimizing N-clusters in A

4.44
and & is a N-cluster in A with d4(&;, &) — 0 as k — oo. (444)
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Note that in this situation, by arguing exactly, say, as in the proof of , Theorem 21.14],
one has that £ is also a (A, rg)-minimizing cluster in A. As a further corollary of the infiltration
lemma and of Theorem [£.I] we have the following theorem.

Theorem 4.9 (Hausdorff convergence of boundaries). If {44 holds, then for every A’ CC A
one has hd 4/ (0&,0E) — 0 as k — oo, and actually

lim hdy (agk(i) N AEK(5), DE(H) N ae(j)) =0, forevery0<i<j<N.  (4.45)
—00
Moreover, for every e > 0 there exist kg € N such that

Ya(&) C I.(Za(E)), Vk > ko. (4.46)

Remark 4.10. We are not able, in general, to prove the inclusion ¥ 4/(€) C I.(X4(&)) for k
large, and thus infer the full Hausdorff convergence ¥4 (&) to X 4(€) in every A’ cC A. We can
achieve this if n = 2, see Theorem below, and if n = 3, see .

Remark 4.11. Note that if A’N9E(i) NIE(j) = 0, then AT forces A’ N IEL (i) N IEL(F) =0
for every k large enough. Indeed, hd/(0,7) =0if TN A" = 0, with hd/(0,T) = +00 whenever
TNA #0.

Proof of Theorem [{.9 Step one: We prove ([A45]). To this end, let us fix 0 < i < j < N, set
SF; = 0& (1) NOEL(G),  Sij=0E(i) NOE()),
and show that for every ¢ > 0 there exists ky € N such that
ANSE, CI(Si;),  ANS;cI.(S), Vk>k. (4.47)
We prove the first inclusion in (L47)) by contradiction. Let us consider zj € A’ N Sf’j with
dist(zy, S; ;) > € for every k € N. (Note that if S; ; = 0, then dist(z, S; j) = +oo for every z € R”

and contradicting the first inclusion in (£47) exactly amounts in saying that A’ N Sffj #(.) Up

to extracting subsequences, we may assume that xp — z for some z € cl(A4’) C A. Since
dist(x, S;, ;) > €, by ([@4) there exists r, < dist(x,0A) such that

either |By.r, NE(1)| =0, or |By.r, NE(1)| = wprly,
or |Ber, NE(F)| =0, or |Byr, NE(G)| = wn iy

For r1 as in Lemma [£5] let s, = min{r,,r}/2, then for k > kg one has

either | Bz, 25, N EL(1)| < mo (252)", or | By, 25, N EL(1)| > (wn —mo) (252)",
or | Bay 25 N ER(F)] < mo (252)" or | Bay,2s. N ER(I)] > (wn — o) (282)"
and thus, by Lemma [£3]
either |Bz,,.s. NEL(I)| =0, or |Bz,,.s. N EK(T)| = wp sk,
or |Bz,.s. NEL(G) =0, or |By,..s. N ER(J)| = wn s, -

By &), zy, € A’\Sffj for k large, a contradiction. We now prove the second inclusion in ([£47):
by contradiction, there exist x € A’ N.S; ; and € > 0 such that B, . N Sf’j =0, i.e., by ([&4),

either |Bze NEL(1)] =0, or |By.e N EL(1)] = wne™,
or |Bze NEL(J)] =0, or |Bge NEL(J)| = wne™,
for infinitely many values of k; by letting £ — oo along such values we thus find that = ¢ 5; ;.

Step two: We prove ([A46]). Should ([£4Q) fail, we could find ¢ > 0 and zp € X4/ (&) with
dist(zg, 2(E)) > e for infinitely many k& € N. By step one, up to extracting subsequences,
xp — x as k — oo for some x € ANIE. Since dist(x,X(E)) > &, we have x € 9*E. By step two
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in the proof of Corollary 0] there exist 0 < h < b’ < N and 27, < min{ry,dist(z,0A)} such
that € E(h, ') and B2, C E(h) UE(R'). Hence, for some ky € N we have

|€k(h) N By 27| + €k (W) N By, 20| 2 (wn —mo) 17, V> ko

By Lemma 5] &£,(j) N By, r, = 0 for every k > ko and j # h, k', so that &, (h) is a (A,rg)-
minimizing set in By, ,,. By arguing as in Lemma 4] we find that

exc’ (E(h)) = kll)nolo excy, .(Ex(h)), for a.e. r <ry. (4.48)

z,r

Since z € £(h, 1), by Remark 2] there exist ry, < min{r,,7q} and v € S*~! such that

exch, (E(h))+Aru < x(n)

T, Tsx = "on

where €,(n) is defined as in Theorem Bl By (£48) and (£49) we conclude that, for some
7 € (rex/2, 1) and up to increasing kg, excy ,(Ex(h))+Ar < e, for every k > ky. By Theorem

T, T

@I By, r2 N0 Ek(h) is a Cl @ hypersurface, against x;, € ¥4/ (E). O

(4.49)

We now set
[85],) = (ANaE)\ Ip(EA(g)) )
recall the definition (Z2]) of normal e-neighborhood N.(S) of a manifold S C R”, and then
combine Theorem [.J] and Theorem to obtain the following weak improved convergence
theorem.

Theorem 4.12 (Normal representation theorem). If A >0, a € (0,1), and & is a N-cluster in
A C R™ such that 9*E is a C*'-hypersurface, then there erist positive constants py (depending
on &) and C (depending on a, A, and &) with the following property.

If [EZ) holds, then for every A CC A and p < po there exist kg € N, e € (0,p), Q open
with A’ CC Q CC A, and {1k} >k, C CHY(QN[OE],) such that

(A N OE)\ Ip(E4(E)) C (Id + dyre)(QN [DE],) C *Es . (4.50)
N-(A' N [9€],) N 0€, = (Id + ) (A’ N [9E],) | (4.51)
with
A {[Yellor@npae,) = 0, sup [|[¢xllcranjoe),) < C- (4.52)
o k>ho

Moreover, when n = 2 one can set a = 1 in this statement.

Proof. Since 0*€ is a C%!-hypersurface, for every = € 9*& there exist 7, > 0, v, € S"~! and
Vg € C2’1(Dgfﬁ4m) with vz (x) = 0, Vug(z) =0, and

0ENCy,, = (Id + vy v2) (D%, ) Cligar, CCA. (4.53)

By Theorem [L9] &£ is a (A, rg)-minimizing cluster in A, so that by step two in the proof of
Corollary there also exist 0 < h, < h/, < N such that, up to further decreasing r,, one has

and thus, taking (£53]) into account and without loss of generality,
Clioar, NE(hy) = {z +svy 2 € Dy, s v2(2) <8< 647*96} . (4.55)

By Lemma (5] and by ([@54]) there exists k, € N such that
‘5k(j)ﬂBx7ggrz‘ =0, Vj #hx,h;, Vk >k, (456)

so that & (hy) is a (A,7p)-minimizing set in By 32, for k > k;. By Lemma 4] there exist
sz € (0,7;) and, up to increasing k;, functions 1, € CH*(C¥%, . N IE(h,)) with

T,2 Sy
C.ry, NOEK(he) C (Id + Yu i Ve, (n,)) (Clhla s, NOE(hy)) C CLryy MOk (ha) (4.57)

x,4 8y
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« v < C 1 vz — 0 458
:;IE)H%,ka, (CY3, . NIE (ha)) kl{{.lo||’l;[)x7k‘||C’1(Cz’2szﬁag(hx)) , (4.58)

where C depends on «, A and €£.
Let pg > 0 be such that [0€],, # (. For every p € (0, pg) we can find {z;}}1, ¢ A'N[d€], C
0*E such that (for s; = s;, and v; = 1/%.) one has

'No€), cc U CYi

Ti,S; 7
=1

Since 9*€ is a C*-hypersurface we can find £(p) € (0, p) such that every point in Ny, (A'N[OE],)
has a unique projection onto A’ N [0€], and

Clless, CCA. (4.59)

Ne(p)(A/ N [8€]p) C Ie( ) U Cxl,sl . (460)

By arguing as in the proof of Lemma 3] we see that v; , = 1; on C;Z N C’ ., NOE for

rj,28;5
every i,j. In particular, if we set

Q= U C3121,231 ’

then we can define ¢, € C1(Q N 9E) for every k > ko = max{k,, : 1 < i < M} by letting
g = Yz, 1 O Cx 25, NOE. In this way,

&L N U CY L, C (Id+Ypre)(QNOE) CIE,  Vk >, (4.61)
sup ||Vl cte@nos) < C lim |9 [lc1onaey = 0- (4.62)
k>ko k—o00

By @60), @ET), A’ N[0€], C Q, and since Id + ¢ ve is a normal deformation of QN OE,
Ny (A N[0E],) N9, C  (Id + Prre)(QNIE) N Ny (A N [DE],)
= (Id+ ¢pre)(A' N [OE],) C Ny (A N [0E],) NOE,
where the last inclusion follows by the second inclusion in (@LGI]) provided [[¢ok||coanag) < €(p)

for every k > ko. This proves (£X]]). Finally, by Theorem 9] up to increasing ko, A’ N A&, C
I (,)(0€) for every k > ko, so that £(p) < p gives us

(A" N0\ p(Sa(E)) € A'N (15(,,) (9€) \ fzp(zA(g))) C AN L) ([0€]p) C Ly (A N [DE],).

By combining this last inclusion with (£60]) we find that

(A" N3E) \ Ip(2a(E)) C OE N U cy,.,

i=1
and thus deduce (£50) from (ZL.6T)). O

4.4. Blow-ups of (A,rp)-minimizing clusters. If £ is a N-cluster in A and = € A, then the
blow-up of £ at x at scale r > 0 is the N-cluster &, , in (A — z)/r defined by setting
5m7r(h):g(h)7_x, 1<h<N.
r
We set
=0(0&;,,0,1), 0(0€,x) = lim O(0E,x,r),

r—0+t
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provided this last limit exists. By a classical argument based on comparison with cones (see,
for example , Theorem 28.4]), one sees that if £ is a (A, rp)-minimizing N-cluster in A,
x € ANOE, and r, € (0,79) is such that w, r} < min{|E(h) N A|:1 < h < N}, then

0(0E, x,r) en ) wnAr is increasing on (0,7y), (4.63)
so that 6(0€,x) is defined for every x € AN JE. Moreover, the same argument shows that if
A =0 and 0(0, x,r) is constant on r € (0,r,), then B, ,, NOE is a cone with vertex at z. Now
let us say that a M-cluster K in R" is a cone-like minimizing cluster if K(i) is an open cone
with vertex at the origin for each i = 1,..., M, [K(0)] = [R* \ UM, K(i)| = 0, and

P(K;Bgr) < P(F;Bgr), (4.64)
whenever R > 0 and F is an M-cluster in R™ with F(i)AK(i) CC Bpg for every i = 1,..., M.

Moreover, given a N-cluster £ in A and an injective map o : {1,.... M} — {0,..., N}, let us
denote by (&) the M-cluster in A defined by setting

o€(i) = E(o(1)), i=1,...,M.

Theorem 4.13 (Tangent cone-like minimizing clusters). If £ is a (A, rg)-minimizing N -cluster
in A, x € ANOE, and s; — 0 as j — oo, then there exist a subsequence {S;—}jeN and a cone-like
minimizing M -cluster K (with 2 < M < N ) such that 0(0E,x) = 6(0K,0) and
lim dp, (0€,4,K) =0,  ¥R>0. (4.65)
j—oo )
for some injective map o : {1,...,M} — {0,...,N}. (Note that given R > 0 one has Br CC
(A —x)/r as soon as r is small enough.) Moreover, x € ¥ 4(E) if and only if 0 € X(K).

Proof. Once again this follows by a classical argument. We refer to m, Theorem 28.6] for
a proof in the case of (A, r¢)-minimizing sets. O

We conclude this section with a technical lemma, which is the starting point in showing
(under the situation described in (£44])) the Hausdorff convergence of (&) to X(E) when
n=23.

Lemma 4.14. Let n > 2 be fized. Either hd a(3(&),%(E)) — 0 as k — oo whenever (4.44])
holds and A’ CC A, or there exist a cone-like minimizing M -cluster K in R™ and a sequence
{Fj}ien of (05, 5]-_1)—mz'nimizing M -clusters F; in By with

0 e 3(K), Y, (Fj) =10 VjeN, lim max {§;,dp,(F;,K)} =0.
J]—00

Proof. Let us assume that for some &, £ and A as in (£44) there exists A" C A such that
lim supy,_, o, hd 4/ (2(&), X(€)) > 0. By Theorem and by (£46]) in Theorem and up to
extracting subsequences, we may directly assume the existence of x € ¥ 4/(€) and € > 0 such
that B, . CC A,

Bx,a N ZA(gk) =0 Vk e N, (4.66)
and such that z; — z for some xp € AN OE. In particular, up to discarding finitely many
values of k, we may assume that z;, € A’ N 0*E;, for every k, and finally, up to translating &,
that z = x for every k. Summarizing, we have & and £ as in ([£44]) such that there exists

reXAE)N ) 0.
keN
By Theorem T3] we can find a cone-like minimizing M-cluster K in R" with 6(0€, ) = 6(9K, 0)
(so that 0 € X(K) by = € £4(£)), an injective map o : {1,..., M} — {0,..., N}, and a sequence
sj — 07 as j — oo such that (G3) holds (with s; directly in place of s%). Correspondingly, we
consider {k(j)};jen such that

dp, (€, €) = O(S;L) as j — 0o, (4.67)
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and finally define (s; A, ro/s;)-minimizing M-clusters F; in (A — x)/s; by setting
Ep(jy(o(i) —

./."](Z) = —S' , that is .F] = U((gk(j)):c,sj-) .
j
By (@60 and (£67) for every fixed R > 0 one has dp,(F;,K) — 0, while (@60 implies that
Y B (F;) = 0 provided j is large enough. O

5. IMPROVED CONVERGENCE FOR PLANAR CLUSTERS

In this section we finally prove Theorem First, in section Bl we address the structure
of (A,7g)-minimizing clusters in R?, and deduce from this structure result and Lemma 14l the
Hausdorff convergence of singular sets. Next, in section £.2] and specifically in Theorem [5.6], we
complete the preparations needed to exploit Theorem in the proof of Theorem [[L5l This last
argument is then presented at the end of the section.

5.1. (A, ro)-minimizing clusters in R2. In view of Theorem E.I3} the starting point in the
analysis of almost-minimizing clusters near their singular sets is the classification of cone-like
minimizing clusters. Such a classification is currently known only in R? and R®. Referring to
] for the latter case, we work from now on in R2. Let us denote by )s the cone-like
minimizing 3-cluster in R? defined by

2 2
V(i) = {(tcose,tsine) L t>0,(i— 1) ?ﬂ <0< zg} i=1,2,3. (5.1)
Up to rotations around the origin, ) is the only cone-like minimizing cluster in R? (other than
the one defined by a pair of complementary half-planes, of course); see, for example, M,
Proposition 30.9]. As a consequence, by Theorem [L.13] one has that if £ is a (A, rg)-minimizing
cluster in A C R?, then 0*€ = {x € ANJE : (0E,x) = 2} and

SA(E) = {x € ANIE : B(OE,x) = Oy, 0) = 3} . (5.2)

We now localize Definition [[2] and then, in Theorem .2 describe the structure of planar
almost-minimizing clusters.

Definition 5.1. Let £ be a cluster in A C R? open. One says that £ is a C*-cluster in A if
there exist at most countable families {7;};es of connected C*®-curves with boundary relatively
closed in A, and {p;};c of points of A, which are both locally finite in A (that is, given A’ CC A
we have 7; N A’ # () and p; € A" only for finitely many ¢ € I and j € J), and such that

AnoE =Jyi, o &=t (),
i€l i€l

Sa(€) = An|Jbd (3) = An | s}

icl jed

(5.3)

Theorem 5.2. If £ is a (A,70)-minimizing cluster in A C R?, then & is a C1 -cluster in A.
Moreover, each vy; has distributional curvature bounded by A and each p; is a common boundary
point of exactly three different curves from {v;}icr which form three 120 degrees angles at p;.
Finally, diam(~;) > 1/2A for every i € I such that v; CC A and bd (v;) = 0. (In particular, if
A =0, then bd (v;) # 0 for everyi € I.)

Proof. By exploiting the argument of , Theorem 30.7] (which addresses the case of planar
isoperimetric clusters, but actually uses only a minimality condition of the form (LI5]), and that
can be easily localized to a given open set) we just need to prove that the curves ~; have
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distributional curvature bounded by A and the diameter lower bound when ; CC A with
bd (v;) = (0. By Corollary .8 we have that

/ divoeTdH' = | T -HpedH', VT € CHA;R?), (5.4)
o0& o0&

where |Hpe| < A. In particular,
/ div., T dH' :/ T -HaedH', (5.5)
i i

for every T' € CL(A’; R?) such that spt TNAE = spt TNint (7;). Since [Hye| < A this proves that
each A’ N ~; has distributional mean curvature bounded by A. If, in addition, v; CC A’ cC A
and bd (v;) = ), then we can test (55) with T'(z) = ((z)(x — zo) where z9 € R? is such that
Yi C Bag2diam(y) and ¢ € CH(A") with ¢ = 1 on ; and spt¢ N OE = spt{ N, to find that
H(v;) < 2A diam(7;) HE (), as required. O

Remark 5.3 (Topology of boundaries of planar (A, rp)-minimizing clusters). If £ is a bounded
(A, 70)-minimizing cluster in R?, then Theorem implies the existence of finite families of
closed connected C1'-curves with boundary {v;};e; (whose distributional curvature is bounded
by A) and of finitely many points {p;};cs such that each p; is the common end-point of three
different curves from {7;}ics, which form three 120 degrees angles at p;. Moreover, (53] takes
the form

0=, oe=mt(n), 2E=Ubdew) =} (5.6)

i€l iel iel jeJ

Let I"” denotes the set of those i € I such that ~; is diffeomorphic to [0,1] (so that ~; is
diffeomorphic to S! for every i € I’ = I\ I”, this will be the notation used in the proof of
Theorem [B.6)). For each i € I”, ~; has exactly two end-points, both belonging to X(&), and
for every x € (&) there exist three curves from {v;};c;» sharing x as a common end-point:
therefore we find that

(1) = SH((E)).

Remark 5.4. With the notation of the previous remark, we claim that I” = I whenever &
is a planar isoperimetric cluster (that is, £ is a minimizer in (LI3]) with N > 2 and n = 2;
notice that &£ is necessarily bounded). Indeed, arguing by contradiction, let us assume there
exists i € I such that ~; is C'-diffeomorphic to S'. Since v; N £(&) = 0, the constant curvature
condition on interfaces of £ implies that ~; is, in fact, a circle. Moreover, since N > 2, we must
have #(I) > 2. Since #(I) > 2, we can translate ; along a suitable direction until it intersects
for the first time O€ \ 7; at some point z. Denoting by £’ the resulting cluster, we have that
P(&") = P(&) and vol (') = vol (£), so that &' is a minimizing cluster in R2. The fact that, in
a neighborhood of z, &’ is the union of two tangent circular arcs, leads to a contradiction with
Theorem [5.2] (applied to &’).

We now upgrade ([£40]) to the full Hausdorff convergence of singular sets.

Theorem 5.5 (Hausdorff convergence of singular sets). If {Ex}ren is a sequence of (A,ro)-
minimizing clusters in A C R? with d4(&, &) — 0 as k — oo, then

khm hda (Xa(&),24(E)) =0 VA cCc A.
—00

Proof. We argue by contradiction. In this way, by Lemma [.14] there exists a sequence {F;};en
of (8;,07 1)-minimizing M-clusters in By C R? such that

YRR
Yp,(Fj) =0  VjeN, jli_)rf)lomax{@,de(]:j,yg)} =0, (5.7)
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where )5 is defined as in (B.]). By Theorem [£.9]
lim max hdg (afj(z') N OF;(0), V(i) N 83@(6)) —0, (5.8)

j—vo0 1<i<<3
while, by Theorem {12} for every § small enough one can find {¢;};>;, € C*(B N [0)%s]s) such
that (on taking into account that Ip5(3()s)) = Bas)

OF; N (B\ Bys) C (Id+¢;0) (BN [0Va)s), Y5> jo, (5.9)

where v denotes a continuous normal vector field to 9*),. By Theorem there exists a
finite family of connected C'!'-curves with boundary {~; };cs, relatively closed in B, such that
BNOF; = BNU;e; i and Xp(F;) = U,;c; BNbd (74), so that, by (5.1), BNbd (v;) = 0 for every
i € I. Let 7, denote the connected curve in 0F; that contains (Id+1;v)(BN[0YV2(i)N0Ya2(€)]s),
for 1 <i < ¢ <3. By (5.9) we notice that

0F;N(B\ By) = |J 2N (B\ Ba) (5.10)
1<i<t<3
while by ([B.8) we get vi¢ N B C I5(0)2(i) N 0Y2(¢)) for all 1 < i < ¢ < 3. By combining this

last fact with (5.10), we deduce that bd (y;¢) N Bas # ), against the fact that BNbd (y;) = 0 for
every i € I. ]

5.2. Proof of the improved convergence theorem for planar clusters. We now prove
Theorem [[L5l We start by setting some notation. Let us consider A, rq, £ and &, as in Theorem
Since 9€ is bounded, by Theorem also 0& is bounded, and thus according to (5.6])
there exist finite families of C*'-curves {v;}sc;r and C''-curves {yf}ie I, and finite families of
points {p;};es and {pé‘?}jeJk such that

08 = Jv, ore={Jimt(w), 2E) =bdw) =},

el el el jeJ
&=\ JF,  o&=Jmt(p),  T(E)=Jbd(H) = |}
i€y, i€y, i€}, jeJk

Moreover, each p; is the common boundary point of exactly three curves from {v;}icr, and an
analogous assertion holds for p;? and {%k bier-

Theorem 5.6. Under the assumptions of Theorem 1A, there exist positive constants py and L,
depending on A and € only, such that the following properties hold:

(i) there exists ko € N such that for each k > ko, up to a relabeling of Iy, and Jy, one has
I =1y and J = Jy, with bd (v;) # 0 if and only if bd (v¥) # 0 for everyi € I, and

Jim[p§ —pj[ +hd(y), %) =0, VieljeJ; (5.11)
moreover
Ivillrs <L, Vi€, (5.12)
and if p; € bd (vy;) then pf € bd (F) with
Jim (V52 (p;) = vR ()] = 0 (5.13)
(ii) for every p < po there exist k(p) € N and {1k }r>p(p) C CH([0€),) such that
[8<€k]3p C (Id + ibkl/)([ag]p) C 0%, Vk > k(p) , (5.14)

where v is a CY'-normal unit vector field to 0*E and

i = < L. 1
Jim [[Yxllesgoe),) =0 k;gl(;)l!%\\c*lvl([as]p)_ (5.15)
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Proof. Step one: We prove statement (ii). By Theorem EI2 (applied with A = R? and A’ equal

to an open ball such that £(h) CcC A’ for every h = 1,...,N) there exist pg, L > 0 such that

for every p < po one can find k(p) € N, e(p) > 0 and {¢p } k() C C([0€],) such that (EI5)
holds, with

D€\ I2y(S()) € (14 + by )([0€]),) © & (5.16)

Na(p)([ag]p) No&, = (Id + ¢k7/)([ag]ﬁ) ) (5'17)

for all k > k(p). In turn, by Theorem (applied with A = R? and A’ as above), we have
hd(X(&),2(€)) — 0 as k — oo. Hence, up to increasing the value of k(p) we find 3(€) C
I,(X(&)) for k > k(p), and thus [0&]s, = 0 \ I3,(2(Ek)) C & \ I2p(X(E)). Thus (G14)
follows from (5.16]).

Step two: We prove (i) up to (EII). We first note that if xy,yr € X(&) with z; # yx and
xp — x and yr — y (so that x,y € X(&) by hd(2(&),3(E)) — 0), then it must be = # y.
Indeed, if z = y, then e, = |z — yx| — 0, and the sequence of clusters Fy = (& — xi) /e would
converge (up to subsequences and in the sense explained in Theorem [£13]) to a Steiner partition
of R%. At the same time, this Steiner partition should have a singular point at unit distance
from the origin, arising as the limit of of some subsequence of (y — xx)/er. This contradiction
proves our remark, which coupled with the Hausdorff convergence of ¥(&) to X(€) allows us to
assume without loss of generality that J = J, with

lim |ph—p;|=0, VjelJ. (5.18)
k—00

Let now I’ and I"” be the sets of those i € I such that ~; is homeomorphic, respectively, either to
St or to [0,1], and similarly define I}, and I}/ starting from I;. By intersecting with N (,0)([7ilp)
in (5.I7) and by directly assuming that [[¢x[|co(jag),,) < €(po) < po for every k > ko = k(po) we
find

Ne(po) ([Vilpo) N0 = (Id + i) ([vilpo) . Vi€L k> ko.

In particular, by exploiting the connectedness of the curves {’y}C }Yier,, one defines for every k > ko
a map oy : I — I in such a way that

(1d + ) ([ilpo) 75, i)
(Id + xv)([vilp) Ny =0, Vie I,V € Iy \ {ox(i)} ;

hence,
(Id + ¢k’/)([72‘]p0) = Ns(po)(hi]po) N &, = Ne(po)(h/i]po) N /%:k(i) ’ Vk>ko,i€l. (5'19)
To complete the proof of (B.IT]) it will suffice to show that
oy, is a bijection with oy (I') = I}, and o (I") = I}/, (5.20)
lim hd(y;,7s, ;) =0,  Viel. (5.21)
k—o0 k
We start by choosing n > 0 such that
Ly(vi) NIy (vir) = 0, Vi,i' € I'. (5.22)
If i € I’, then [v;], = v; and N, i) =1 ;) for ever > 0, so that ives
: Yilp =¥ () (7 () y p>0, g
(1d + 1) () = Loy (1) VO = L(oo) (i) Ny, Yk > ko,ie L. (5.23)

Since (Id + 1) () is homeomorphic to S' and is contained in ’ygk (i)» Py connectedness of ’ygk 0
we conclude that o (7) € I} with

(I + 1) (3) = Ty (1) N OEL =25, () (5.24)
hd(9i, 75, i) < Ikllcoqogt) < pos Yk >ko il (5.25)
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By combining (5.22]), (5:24]) and (5.15) and up to requiring py < 1 we conclude that
(E21)) holds for every i € I', o, (I') C I}, oy, is injective on I”. (5.26)
Before showing that o,(I') = I}, we first prove that
oy, is a bijection between I” and I}/ . (5.27)

To this end, we shall first need to prove (5.28) and (£.32)) below. In order to formulate (5.28]) we
introduce the following notation: given j € J, let us denote by a;(1), a;(2), and a;(3) the three
distinct elements in I” such that the curves {%j(g)}?zl share p; as a common boundary point

(as described in Theorem [5.2)), and let {af(ﬁ)}?zl C I} be defined analogously starting from pg? .
We claim that, up to permutations in the index ¢ € {1,2,3}, one has

af(0) = on(a;(0)), Vi€ T, k>k(p),le€{1,23}. (5.28)
Indeed, by Theorem (2], up to decrease the value of > 0, we find that, for every j € J,

3

3
OEN By, 5 = U Ya; () N By » {pj} =%(E)N By, = U bd(%j(Z)) N By, (5.29)
=1 =1

Since €(pg) < po, up to further decreasing py depending on 7, we can entail by Theorem (4.9 and

(EI8) that
o0& C Ie(po)(c‘)é’) , (&) N pJ n = {p;f} C Bpj,s(po) , ViedJ, k>ky. (5.30)
By (529) and provided pg is small enough,

Le(p)(€) N By = | Le(oo) (Vay0)) N Bpyo
/=1

C Bpj 2p9 U U ( e(po) ([’Vaj(é)]po) N Bpj,n> ) ViedJ.

By 08, C I.(py)(0€) and by (5.19) one thus finds

w

08,1 By, © (06 11 By ) U U (% (a0 " Bosn) - (5.31)

Let now w be the connected component of ’y 5 Necl (B, ” ) which contains pk In this way, w

)
is a connected C'll-curve with boundary, homeomorphlc to [0, 1], with pj € bd(w) N By, 4 It

k() CC By, , and thus X(&) N
By, \ {P} # 0, against (B.30). Hence w N8By, , # 0. At the same time, by (E.31),

cannot be w CC By, 5, because otherwise it would be w = ’ykk

3
k
w Bpjﬂ? C (w N Bpj@ﬁo) U U <w N /YO'k(aj(f)) N Bpjﬂ?) ’
=1

and since w is connected with wNIBy,, ; # (), it must be w ﬁ’ygk(aj(z)) # () for some £ € {1,2,3},
thus ’yfk(l) N ’yﬁk(aj ) # (). Up to relabeling ¢ € {1,2,3}, we have thus proved that
j

’y%() p A0, Vi€ k>ko, e {123},

’yok CLJ

from which ([5:28)) follows by the connectedness of the curves {y¥};c;. Having proved (5:28)), we
now introduce the notation needed to formulate (5.32)): given i € I”, let b;(1) and b;(2) denote
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the two distinct elements of J such that bd (v;) = {b;(1),;(2)}, and define similarly b¥(m)
(m =1,2) for each i € I}]. Then, up to permutations in the index m € {1, 2},

by y(m) =bi(m), Vi€l k>ky,m=12. (5.32)
Indeed, if i € I" then i = ay,(1)(¢) for some ¢ € {1,2, 3}, therefore, by (E.28]),

or(i) = Uk(abi(l)(g)) = alzfi(l)(g) )
that is,

Py € bd (Yo, ) = {Pbgk(i)(l)mbgkm(z)}a thus — bi(1) € {0}, (1), 65, 5, (2)}

as required. With (B.28) and (E32) in force, we now prove ([5.27). The fact that o5(1") C I}/
is immediate from I” = {a;(¢) : j € J,¢ € {1,2,3}} and (528). If now ¢,i’ € I"” are such that
o1 (i) = o1(i') then by (5.32))
{jeJ:pjebd(m)} = {bi(m)} s = {bik(i)(m) 1 = {bik(i/)(m) F—
= {by(m)}rmy = {5 € J:pj € bd (3)},
so that bd (y;) = bd (v;r), and thus i = ¢; this proves that oy is injective on I”. Finally, by
Remark (3] it must be # I” = (3/2) # J = (3/2) # Ji, = # I}/, so that oy, is actually a bijection

between I” and I}/, and ([@.27) is proved.
Let us now show that

Jim hd(vi,75,@) =0,  Viel”. (5.33)
We first notice that, by (£.32]),
e ebd(rf o)} = (b (o (m) Py = (him) sy = {j € 7 p; € bd (1)},
so that (B.I8)) gives
Jim_hd(bd (i), bd (V5 ) =0,  Viel”. (5.34)
Next, if ¢ € I”, then by (5.23)) one has ’ka(z‘) N I(pg) (ir) = O for every 7 € I', while (5.19) gives

o

7§k(z‘) N Ne(po) ([Virlpo) = 0 for every i' € 1"\ {i}; since O C I, (,,)(9E) for k > ko, we thus find

P C (U U b (), Vie I b2 k.
el
Since Iy, (74) is disjoint from (J;¢n Lop0(bd (i) thanks to (5.29), we conclude that ’yfjk @ C
Iy o (773) for every i € I” and k > ko. At the same time, by (G.I9), (G.13), and (G.34)

[’Yi]po - IPO (7§k(z)) ) Ipo (bd ('7@)) - I2P0 (Wijk(l))’ Viel” k> ko,

that is, v; C Iap, (7§k(i)) for every i € I" and k > ko. We have thus proved (5.33]).

In order to complete the proof of (£.20) and (5:2I]) we are thus left to show that oy (I") = I}.
We argue by contradiction, and assume the existence of i, € I}, \ oy (I"). Since I.(,)(vi) NOE =

yﬁk (i) for every i € " (recall ([B.24])), by connectedness we deduce that
¥ N Loy (i) = 0. (5.35)
iel!
Since Ne(p)([Vilpo) N O = Ne(po)([Vilpo) N ’ng(z') for every i € I (recall (BI9)), if ’yi]i N

Ne(po)([Vilpy) # O, then, by connectedness of ’yﬁk(i), one finds i, = oy(i) € ox(I), a contra-
diction: hence,

¥ 0 Negoo) (iloo) =0 (5.36)
Z’e[l/
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Since 0E C I () (0E) = Uier Le(po) (7i), by [@.33) and (5.36) we find
%*CUIPO %\UNPO 72!’0 UBpJﬂ?v

el el jeJ
and since the balls {B,, ,}je are disjoint by (5.29), we conclude that for every i, € I}, \ o3 (I')
there exists a unique j € J such that yi C By, 2py; however, by Theorem (5.2

1
A < diam(7F) < 2po,

which leads to a contradiction if pg is sufficiently small.

Step three: We prove (5.12). We directly consider the case when bd (v¥) # (), and omit the (analo-
gous) details for the case bd (vF) = (). Let us set £¥ = H!(7¥), consider o € C11([0, £F]; R?) to be
an arc-length parametrization of ¥, and define unit normal vector fields v¥ € C%!(v;;S') by set-
ting vF(al(t)) = () (t)*, with the convention that v = (vy, —v1) for every v = (v1,vq) € R2.

According to Definition Bl we just need to show that, up to further increasing the value of L

i) (y—a) < Lle—yf*, @) - vyl < Lle—yl,  Voyent. (5.37)
Indeed, if x,y € vF with s, € [0, £¥] such that z = ¥ (s) and y = a¥(t), then, by Lip ((aF)") < A,
@) -(y—a)| <Cls—t*,  [Wf(z) = i) < Cls —t];

we are thus left to show that
s —t| < Clak(s) —af @), Vs, te0,er]. (5.38)
If |s —t| < 1/A, then (E38) follows with C' > 2 by noticing that

ak(s) — ok |—‘/ r) dr

once again thanks to Lip ((a¥)’) < A. If ~;[x, y] denote the arc of ; with end-points z,y € ;,
then by compactness

|t — s

>t —s[—A :
2

1
f{ — L >_}>
min in |z —y| : wye%ﬂ(%[ﬂt,y])_% >c,

where ¢ > 0 depends on £ and A only. Since for every i € I we have hd(yF,v;) — 0 as k — oo,
we can thus entail
.. 1 c
min inf {|o — y| 12 = af(s) .y = al(t) s —1/ = T } > .
so that (5.38) holds on |s —¢| > 1/A provided C' > 2A/c. This completes the proof of (5.37),
thus of (G.12]).

Step four: We prove (BI3). Let us fix j € J, and consider pg? € X(&) and iy,19,i3 € I such
that {pf} = bd (%kl) Nbd (752) Nbd (%’g) Since each 7 is a compact connected C'!-curve with
distributional curvature bounded by A one finds that, for every ¢ = iy, io, i3,

lim supth<% —7 Ry [ E)]) =0, (5.39)
r—0t LeN r

where we have set Ry[r] = {t7:t > 0} for every 7 € S!, and we have set

— _yco k __
Ti — 'Yl 7—2 — —V_yk 5
7
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for the sake of brevity. We thus find

k

k ok
hdp <R+ [7i(pj)], Ry [Tz'k(Pf)]) < sup hdp (’YZ . b Ry [Tz'k(Pf)]) (5.40)

—p; hd(v%, v; + (0% — pj))
K3 p 7
—i—th(fY " ]7R+[Ti(17j)])+2 . L,

where we have also used the fact that, for k large enough,

v —ph —pj> -5 hd(vf,vi + (p% — py)) . (5.41)

r T

hd

5 ;
At this point we can choose a sequence 7, — 0T, such that the right-hand side of (5.4
with r = 7, is infinitesimal as & — oo. By also exploiting (BI1) and (539), this gives
hdg (R4 [7(pj)], Ry [Tf(pf)]) — 0 as k — oo, that is (LI3). O

Proof of Theorem [I.3. Let € be a C?*'-cluster in R?, {& }1en be a sequence of (A, rg)-minimizing
clusters such that d(&, &) — 0 as kK — oo, and let L, pg and, for each p < pg, k(p) € N, be the
constants given by Theorem Denote by pg and Cj the smallest and the largest constants,
respectively, associated by Theorem to some ; such that bd (y;) # 0. In this way, po and
Cpy depend on A and &£ only. Up to further decreasing the value of pg, we can also assume that
pd < po. Given p < g, we now want to find k(1) € N such that for every k > k(u) there exists
a C'bl-diffeomorphism fi, between 9 and 9&;, with

[fellcraeey < Co, (5.42)
Jim |[fy = Idlloree) = 0, (5.43)
—00
C
Ire(fe = 1d)llcrore) < ZOka—IdHCO(z(g)), (5.44)
Te(fr —1d) = 0, on [0&],. (5.45)

Let us fir i € I such that bd (y;) # 0. Since u? < p2 < po, Theorem 5.0 ensures that {75 }r>x,
satisfies the assumptions (i) and (ii) of Theorem By Theorem for every k > k(u) one
finds a C'!-diffeomorphism fF between v; and ¥ with fF(p;) = pf, fEpj) = pé?, (j and j" as
in statement (ii) of Theorem [(.0]) and

I lcragy < Co, (5.46)
I(fF=1d) - 7illorgy < %Hff_Id”CO(bd(%))v (5.47)
(fF-1d)-m = 0 onlyl; (5.48)
Jim [|ff —Tdllerr,y = 0. (5.49)

Let us now fix i € I such that bd (y;) = 0. Up to further decreasing pg, 7; is a connected
component of [0],, and thus by statement (ii) in Theorem B.6] {1y }r>r(p) C Ch1([0&)],) are
such that

v = (Id + ) (%) dm [[dkllorqy =0, suplvelleni e, < Co- (5.50)
—+00 keN

We set fF = Id + vy v for every i € I such that bd (y;) = (), and finally define fi,(z) = fF(z) for
x € ;. The resulting map f; defines a C+!-diffeomorphism between O and 9&;, (see Definition

[3) with (542)-([45) in force. O
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6. SOME APPLICATIONS OF THE IMPROVED CONVERGENCE THEOREM

We now prove Theorem [[L9 and Theorem [[L.TOl To this end, let us notice that if {& }ren is a
sequence of planar isoperimetric clusters with sup,cy P(Er) < 00, then there exist xy € R? and
a planar N-cluster & such that, up to extracting subsequences, xy + &, — &. This is a simple
consequence of (i) the inequality 2diam(E) < P(FE), which holds for every indecomposable set
of finite perimeter £ in R? (this, of course, after the normalization ([@4)); (ii) the fact that
R?\ £(0) is indecomposable whenever € is an isoperimetric cluster (as it can be easily inferred
by arguing as in Remark [5.4]).

Proof of Theorem[1.9. We argue by contradiction, and assume that there exists a sequence
{&k}ken of isoperimetric N-clusters with vol (£;) — mg such that [Ex]x # [€j]~ whenever
k#j. Let ¢: ]Rﬂ\_’ — (0, 00) denote the infimum in (ILI3)), then it is easily seen that ¢ is locally
bounded. In particular, sup,ey P(Ex) < oo, and thus there exists a N-cluster & and zj € R?
such that, up to extracting subsequences, x; + & — & as k — oco. We claim that, for k large
enough, x), + & is a (A, rg)-minimizing cluster in R, where A and 7o are independent from k.
To this end, let gy, rg, and Cy be the constants associated with & by Theorem [B] and let kg
be such that d(zy + &, &) < €o for k > ko. Given F with F(h)A(zy + Ex(h)) CC By, for
h =1,...,N, by applying Theorem Bl with £ = z}, + & we find F}, such that

vol (F},) = vol (x), + &) = vol (&), P(F,) < P(F)+ Cod(xy + &, F).

so that, by the isoperimetric property of &, P(zy + &) < P(F,) < P(F) + Cod(zy, + &, F).
Thus z + & is a (A,7g)-minimizing cluster in R? for k large enough. By Theorem we
infer that & is also a (A, rg)-minimizing cluster in R?, and thus conclude by Theorem that

xp+E = € for k large enough. Since x4+, ~ &, we have found a contradiction to [Ex|~ # [£]~
for k # j. O

Proof of Theorem [LI0. Step one: We first prove that, if £ is a minimizer in (L.20) with 6 € (0, o)
and |m — mg| < dg, then € ~ &. We argue by contradiction, and consider a sequence {& }ren
of minimizers in

Mo = int {P(€ +5k2/ r)de:vol(€) =my}, kel (6.1)

where 0 — 0 and myp — mg as k — oo, and [Exl~ # [Eo]x for every k € N. Let {Fk}ren be a
sequence of isoperimetric clusters with vol (Fj) = my. Since my — myg implies sup,ey P(Fk) <
oo, by the argument presented at the beginning of this section there exists R > 0 such that, up
to translations, Fy(h) CC Bpg for every h = 1,..., N and k € N. By comparing & and Fj in

(61)) we find
P(&) mZ/ g < P(Fi) mZ/ g < P(Fe) + 0 lmel swpg (62)
Er(h) Br

and since P(Fy) < P(&) we thus find that for every r > 0

inf Ei( B, <
R?\l&gz"“ )\ Br| < i supg.

By g(z) — oo as |z| — oo, we conclude that

lim supz |E(h) \ By| =0. (6.3)

r—00 ke
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Since ([6.2)) also implies supen P(Ek) < o0, by ([6.3]) we conclude that up to extracting subse-
quences, d(&,E) — 0 as k — oo, where & is a planar cluster with vol (£) = mg. In particular,
recalling that & denotes the unique isoperimetric cluster with vol () = mg, we have

P(&) < P(€) < limint P(&) (6.4)

Now, by M, Theorem 29.14] there exist positive constants e, n and C, a smooth map ® €
CH((—n,n)N xR?;R?), and a disjoint family of balls { B,, -}, such that, for every v € (—n,n)¥
the N-cluster defined by &, (h) := ®(v,&(h)), h =1,..., N, satisfies

M
Eow(h)AE(h) CC A= (B, P(&w) < P(&)+Clo|, vol (€)= vol (&) +v

i=1

For k large, vy, = vol (£) — vol (&) € (—n,n)", so that vol (&, ) = my, and, by g > 0

P(&) +5k2/ 9 < P(&o,) +5kZ/ g < P(&) + C lvg| + 6 sup g

&o,v;, (h) Bas
where S is such that thl Eo(h) UA CC Bg. Letting k — oo we find that
lim sup P(&) < P(&)

k—o0

so that, by (64]), P(£) = P(&). Since vol (£) = my, we find € =~ & (through an isometry),
and we may thus assume, without loss of generality, that £ = &). By arguing as in the previous
proof (with some minor modification because of the presence of the potential), we see that, for
k large enough, & is a (A, rg)-minimizer with A and rg uniform in k. Since d(&,&) — 0 as
k — 0o, by Theorem we find that & =~ &, for k large enough, a contradiction.

Step two: The argument of step one can be easily adapted to show the existence of minimizers in
(L20), together with the existence of Ry (depending on &y, dp and ¢ only) such that £(h) C Bpg,
for every h = 1,..., N and every minimizer £. In particular, there exists Cy depending on g and
Ry only such that

P(E) < P(F) + Cydd(E, F), (6.5)

whenever vol (£) = vol (F) and F(h) C Bag,. Let us fix 1,20 € E(h, k), T; € CH(By, »;R")
(t=1,2) with |E(j) N By, »| =01if i # h, k andr < |z1 — x2|, and with

/ T - ven) dH" P =n; >0, sup |T;| < 1.
*£(h) R™
By a standard argument we can construct a one-parameter family of diffeomorphisms f; with

fi(x) = 2+t (T1(x) — (m/n2)Te(x)) + O(t?) such that vol (f;(€)) = vol (£). For t small enough
F = fi(€) is admissible in (63]), with

d(€, fi(€)) < 2[fi(E(h)AE(R)| < 2 P(E(R); By, U Bayr) [t
by Lemma [B.2l Since

PUAE) = PE)+t [ (T~ m)T3) - veim i + 0.
and P(E(h); Bzy.s U Byy.s) = wn—1 8" 114 O(1)) as s — 0T, by (6.5]) we conclude that

/8 E(h)(TI - (771/772)T2) “Vg(h) Hf(h,k) <2Cy 5wn_1,r,n—1(1 + O(l)) '
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Let now T = T/ — 1p, Ve in LY(H'LOE(R)) as j — oo, so that
/ Heng) — n / Hepy <2Co 0w, (14 0(1)).
Bay +NO*E(h) 12 J By, rn0*E(R)
By the mean value theorem, as 7 — 07, we find that He, py(21) — He(p ) (72) < 2Co 0, that is,

)
o8 M Hen) = Hiklloogeg, ) < €0,

for some H 27 r € R. At the same time, by arguing for example as in [CL12, Lemma 3.7(ii)], one
see that Hg(j, 1) has to converge in the sense of distributions to Hg ;1) as 6 — 0", and thus

prove (L21)). O

APPENDIX A. PROOF OF THEOREM 2.1]

Proof of Theorem [21l In the following, we denote by C' a generic constant depending on n, k,
o, and L only. Let us set Amin, Amax : S0 — R as Ain(2) = inf{|V f(2)v| : v € TS0, |v| = 1}
and Apax () = ||V f(2)||. By @) we find that

1
E < Jsof($) < )\min($) )\max($)k_1 < )\min($) Lk_l 5

that is Amin(z) > L™ for every = € Sp. In particular, by also using (Z.5]) we find that

So
S S S 720 (y — )| ly — 2|
‘V Of(x)(y_x)’ = ‘V Of(x)ﬂxo(y_x)‘ = LE = 2Lk 7’ Vy € Bm,l/LmSO’ (A’l)

We now assume g9 < 1/L and fix y € By., N Sp \ {z}. Since distg,(x,y) > 0 we can find
v € CY([0,1]; Sp) such that v(0) = x, v(1) = y and
1
dists, () < [ 13(0)]de <2 dists, (2.). (A.2)
0
By (AT,

1
1) = 1@ = [T F@ =) = [ (T2 560) = V@i d

—x 1
> B [ 19 6 - v @ o) a
By (7). (), and &)
1
/0 V5 F((8)) — V0 £ (@)||14(8)| dt

IN

1
L /0 & — (O] ()] dt

v ([ eenas) ool

L2 distg, (z,y)' e < L (2L)1H |z — y|!+o.

IN

IN

We thus conclude (up to further decreasing the value of gy) that if € Sy and y € B o, N So,
then

@) = FI 2y 2] (57 - LeDeeg) 2 L2 (A3)

This shows that f is injective on B, ., N Sy for every z € Sy. If now (28] is in force with
po < €0/4, then by diam(Sy) < L one finds that for every x,y € Sy with |x — y| >

@) = )| = e =yl = |f(@) = 2| = |f) —yl 220~ 2p0 2 T = Tl —yl,
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so that, in conclusion, f is injective on Sy with

|f M 1) = F 7 (p2) < Clp1 — pal s Vp1,p2 € S = f(5). (A4)
We are thus left to prove that
IV o) = VO o) < Clpr —p2l®,  Ypip2 €S, (A.5)
Indeed, by ([26), (27) and (A4) we can entail
Imy — | <Clp—ql*,  Vpg€S. (A.6)

Let us now fix p1,p2 € S and set
M;=VofYp)), m=m, m=f"p), Ni=Vf(x;), 7d=m30.

P
By exploiting the relations
mM; = M; = Mym;,  mN; = N; = Nym? (A7)
N1 M7y = m, NoMomy = mo M Ny =¥, My Noym) = 7§, (A.8)
one finds that
M, (Ng — N1)Ms + My(No — Ny) M,
= MiNoMy — MyN1Ma + MaNo My — MoNy My
= M;NyMymy — MyNy7) My + My NomwI My — My Ny My
= Mymy — W?MQ + 7T8M1 — Mymy
= 2(M; — M) + (My + Ms)(ma — m1) + (79 — 77) (M1 + Mo).

By ([28) and (AL6]), and since ||M;|| < C by ([A4]), we thus find
20— Ml < 2[MI|ME] N2 = Nl + 1131 + Ma | (Jlm = | + |15 — )
< O (IN2 = Nill +[p2 = p1|* + oz — 21"
< (D)l —a1l* +lp—pil*) < Clps = ;"

where in the last line we have first used [V fleoasy)y < L and then (Ad). This completes the
proof of ([A.5]), thus of the theorem. O

APPENDIX B. VOLUME-FIXING VARIATIONS

Comparison sets used in variational arguments usually arise as compactly supported pertur-
bations of the considered minimizer. In order to use these constructions in volume constrained
variational problems, one needs to restore changes in volume due to such local variations. In the
study of minimizing clusters, this kind of tool is provided in , Proposition VI.12]; see also

, Section 29.6]. The following theorem is a version of Almgren’s result which is suitably
adapted to the problems considered in here. In particular, it adds to m, Corollary 29.17]

the conclusions (B.6l) and (B.1).

Theorem B.1 (Volume-fixing variations). If & is a N-cluster in R™, then there exist positive

constants ro, €9, Ry and Cy (depending on &) with the following property: if & and F are
N -clusters in R™ with

d(&,&) < eo, (B.1)

F(h)AE(h) CC Byyys Vh=1,..,N, (B.2)
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for some x € R™, then there exists a N-cluster F' such that

F'(h)AF(h) CC Bpry\ Bzrg, Vh=1,..,N, (B.3)
vol (F') = wol(€), (B.4)
|P(F'Y = P(F)] < CoP(€)|vol (F) —vol(€)], (B.5)
|d(F,E) —d(F, &) < CoP(E)|vol (F) —vol (£)]. (B.6)
Moreover, if g : R™ — [0,00) is locally bounded, then
Z / o d S ol PE) vl (F) el €] (B.7)

We shall need the following slight refinement of ﬂm, Lemma 17.9].

Lemma B.2. If g : R” — [0,00) is locally bounded, E is a set of locally finite perimeter in an
open set A and T € CL(A;R™), then for every n > 0 there exist K C A compact and ¢ > 0
(depending on T') such that if {fi} ;)< is a flow with initial velocity T', then

/ 9 < (A +n)ITlcowny gl xy P(E; K) [t], VY|t <e. (B.8)
(E)AE

Proof. Since (d(f;)~t/dt)|i=0 = —T, if we set ®s4(z) = sz + (1 — s)(f)"H(x) for z € R”
and s € (0,1), then for every n > 0 there exists ¢ > 0 such that {®,;} . is a family of
diffeomorphism on R™ with

Jnf J®sy(z) 21-n,  [ld- (f) oy < X+ [t Tllco@ny, VIt <e.

Let K C A compact be such that {f; # Id} C K for every |t| < e. By Fubini’s theorem and by
the area formula, if u € C*(R"), then

1
[ alu=ut ™l < @ +nlITleog [ o ds [ 19u(@, @) ds

= (e bITlosgnlslimn [ s [ 5T

1—1—77
2 Tllovgeny lglzey [ [Vl
K

By [Magld, Theorem 13.8] there exists {us}ren C CL(R™) such that up — 1g a.e. on A and

limsup,_,o [ [Vun| < P(E;K). Since |up, — up((fe) )] — lgaf,(p) a-e. on A, we conclude
the proof by Fatou’s lemma. O

Proof of Theorem[Bl. One repeats the proof of [Magld, Corollary 29.17], exploiting Lemma
in place of [Magl?, Lemma 17.9] in order to obtain (B:6) and (BZ). We thus omit the
details. g

IN
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