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Abstract—The Internet of Things (IoT) is increasingly inter-
twined with critical industrial processes, yet contemporary IoT
devices offer limited security features, creating a large new
attack surface. Remote attestation is a well-known technique
to detect cyber threats by remotely verifying the internal state
of a networked embedded device through a trusted entity.
Multi-device attestation has received little attention although
current single-device approaches show limited scalability in IoT
applications. Though recent work has yielded some proposals for
scalable attestation, several aspects remain unexplored, and thus
more research is required.

This paper presents slimIoT, a scalable lightweight attestation
protocol that is suitable for all IoT devices. slimIoT depends on an
efficient broadcast authentication scheme along with symmetric
key cryptography. It is resilient against a strong adversary with
physical access to the IoT device. Our protocol is informative
in the sense that it identifies the precise status of every device
in the network. We implement and evaluate slimIoT considering
many factors. On the one hand, our evaluation results show a
low overhead in terms of memory footprint and runtime. On the
other hand, simulations demonstrate that slimIoT is scalable,
robust and highly efficient to be used in static and dynamic
networks consisting of thousands of heterogenous IoT devices.

Index Terms—IoT security, swarm attestation, scalability.

I. INTRODUCTION

The IoT envisions a future where billions of Internet-
connected devices are deployed in our environment to support
novel cyber-physical applications. Contemporary IoT networks
are large and growing in the scale of deployment such as
smart buildings and smart cities. IoT applications are naturally
distributed and often embedded in numerous heterogeneous
computing devices deployed over wide geographical areas.
Despite their specialized nature in terms of limited resources
and computing power, these devices are becoming attractive
targets for a wide variety of cyber attacks [1] with potentially
very dangerous consequences as they process privacy-sensitive
information and perform safety-critical tasks that may endan-
ger the lives of many people. Therefore, security measures that
detect and mitigate cybersecurity threats should take place.

Remote Attestation (RA) is a common detection and mit-
igation technique for exposing the misbehaviour of a com-
promised IoT device, where a trusted entity, denoted as a
verifier, checks the integrity of the internal state of an untrusted

remote device, denoted as a prover. Most research to date has
focused on attesting a single prover device [2]–[5], whereas
relatively little attention has been paid to the scalability issue,
even though real IoT applications deploy devices in massive
numbers forming large mesh networks or swarms where
physical access to any device is easily reachable.

The recently proposed attestation schemes [6]–[12] have
addressed the attestation problem at a large scale where a sig-
nificant number of devices have to be attested efficiently and
securely. To narrow the focus, only three approaches, namely
DARPA [8], SCAPI [10], and SALAD [11], have considered
both remote and physical attacks. The latter is expensive in
terms of using public key cryptography which is not suitable
for low-end embedded devices. SCAPI is a scalable attestation
protocol that handled the shortcomings of DARPA. In spite of
the strong security offered, SCAPI still depends on some hard
assumptions (e.g. requires half of the devices in a network
to be uncompromised) and incurs high overhead in terms of
memory footprint and power consumption due to neighboring
discovery and exchanging many channel keys.

In this paper, we present slimIoT, a scalable lightweight
attestation protocol that can be implemented efficiently also on
common resource-constrained IoT devices (e.g. IETF Class-1
[13]) with strong security guarantees. slimIoT classifies the
connected devices in the swarm into clusters where all clusters
are periodically attested against physical attacks under the
assumption that a physical attack is a time-consuming activity
[8], [14], and one or more clusters are attested against remote
attacks every attestation period. Our protocol relies on authen-
ticated parameterized broadcast messages using symmetric key
cryptography. Authenticated broadcast techniques require an
asymmetric encryption to provide strong security guarantees.
Otherwise, any compromised device can render the entire
swarm insecure. We achieve asymmetry through a delayed
disclosure of symmetric keys generated by using a one-way
hash-chain mechanism at the verifier side. In line with a
similar technique for authentication [15], slimIoT requires that
all devices are loosely time synchronized. To detect physical
attacks, we take advantages of the nonce value used to avoid
replay attacks. All nonces in various attestation periods are
updated securely in a linked way, where missing one update
prevents the corresponding prover from teaming up with the
swarm anymore as it is most likely physically-compromised978-1-5386-5790-4/18/$31.00 ©2018 IEEE
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due to its absence for a reasonable amount of time.
We show that slimIoT is secure, scalable, robust, and runs

efficiently on mesh-networked low-end embedded devices.
Scalability and robustness are demonstrated by simulating
large mesh networks using OMNeT++ framework [16].

Paper outline. The remainder of this paper is organized
as follows. Section II reviews the related work. Preliminaries
are presented in Section III. Section IV describes slimIoT in
details. Implementation details and evaluations are reported in
Section V and VI respectively. Section VII concludes.

II. RELATED WORK

Prior work in single-prover RA can be divided into three
approaches: hardware-based [2], software-based [3], and hy-
brid [4], [5]. Each of these approaches has pros and cons.
Nevertheless, all of them target a single-device attestation.
Accordingly, they are not efficient for collective attestation.

Recently, few research papers have been published to ad-
dress the problem of swarm attestation. Depending on public
key cryptography, SEDA [6] lets each device in the network
attests its neighbours and propagates the aggregated attestation
reports back to its parent till eventually received by the
verifier. SANA [7] enhanced SEDA by providing an efficient
and scalable attestation technique based on a novel signature
scheme that enables anyone to publicly verify the attestation
reports in a very efficient way. The authors in [9] have pre-
sented two different swarm attestation protocols, called LISAα
and LISAs using symmetric key cryptography and depending
on SMART architecture [4]. WISE [12] is the first smart
swarm attestation protocol that minimizes the communication
overhead by attesting some devices only (instead of the entire
swarm) while preserving an adjustable level of security.

All the aforementioned swarm attestation proposals have
assumed software-only adversary model. In mesh networks
this assumption may not hold as it is easy for an adversary to
capture a device and physically tamper with it. SALAD [11]
targets highly dynamic networks in a distributed manner de-
pending on public key cryptography, with limited scalability in
networks containing IoT devices with small memory footprint
to exchange and store a swarm-wide attestation report.

DARPA [8] mitigates invasive physical attacks by combin-
ing the current scalable attestation protocols, e.g. SEDA [6],
with an absence detection protocol [14] under the assumption
that the physical attack consumes an amount of time, whose
lower bound is known a priori, during which, the compromised
prover device is offline.

SCAPI [10] has enhanced DARPA by proposing a better
way to detect physical attacks, where all devices in the
swarm share two common session keys that are periodically
updated by a leader device. Building on the assumption that
the physical tampering with the IoT device requires turning
it offline for a considerable amount of time, SCAPI detects
physically-compromised devices by periodically updating the
group-wide secrets in a way that all offline devices cannot get
this update and as a consequence they cannot team up with the
swarm once they are online again. Both session-key update and

attestation phases in SCAPI rely on mutually authenticating
neighboring devices by exchanging channel keys used for
encrypting all messages exchanged. In nutshell, we show that
slimIoT overcomes the limitations of SCAPI as follows:
• It precisely attests the devices in the network and iden-

tifies the ones that run a compromised software or have
been physically manipulated, assuming that there is only
one device within the range of the verifier uncom-
promised. This relaxes the assumption of SCAPI that
requires at least half of the devices to be healthy.

• It is more efficient for highly dynamic and heterogenous
networks where devices do not have to know about their
neighbours or exchange any channel key. Accordingly,
slimIoT requires less memory footprint where the space
needed to store cryptographic keys is constant in all
devices in the swarm.

• It is more robust to false positives i.e., healthy devices that
are regarded as physically-compromised, as we explain
later on.

III. PRELIMINARIES

Network and Device Requirements. We consider that
devices in a swarm S can have various software configurations
and possess heterogenous hardware capabilities. However, we
assume that each device Di in S satisfies the minimum
hardware properties required for secure RA [17] which are
ROM and memory protection unit (MPU). The ROM is needed
to store the attestation routine and cryptographic keys, whereas
the MPU is required to enforce access control over secret data.
The swarm topology can be either static or dynamic. However,
we assume that devices stay connected to the network during
motion and there is at least one device that is physically
uncompromised and reachable by the verifier. Furthermore,
we assume that all devices are loosely timed synchronized
with the verifier. Henceforth, we refer to the verifier as υ
and the prover (Di) as ρ.
Adversary Model. We consider a strong adversary adv,
who has the ability to perform remote and invasive physical
attacks. We assume that the remote adv has full access to
the network and can either perform passive (e.g. eavesdrop
on communication, etc.) or active (e.g. inject a malware, etc.)
attacks. Additionally, the physical attacker is able to physically
compromise any device Di (except one) in S, turn it off, and
perform any operation over it (e.g. learn all stored secrets).
Similar to all prior work [8], [10], we build on the assumption
that a physical attack requires at least an amount of time that
is known a priori, denoted as Tadv . We rule out DoS and non-
invasive physical attacks (e.g. side channels).
Attestation Considerations. We assume that υ is a powerful
device (e.g. Raspberry pi or higher) and is unaware of the cur-
rent network topology of the swarm due to it’s dynamicity. If
the IoT device lacks a Trusted Execution Environment (TEE)
(e.g. Class-1 devices [13]), we assume that the attestation code
should be correct, atomic, leak no sensitive information, and
leave no traces in the RAM after execution (for example, by
employing the security MicroVisor [18]).



IV. SLIMIOT: PROTOCOL DESCRIPTION

Overview. slimIoT is a scalable attestation protocol that
aims to efficiently attest multiple devices connected in a mesh
network and detect the compromised ones. It consists of two
different phases. The first phase (§ IV-A) takes place once,
before the deployment, where all devices are initialized by a
trusted party, υ, with some public write-protected and private
data. Upon deployment, all devices in the swarm are loosely-
time synchronized with υ using a write-protected real time
clock. In the second phase (§ IV-B), υ periodically performs
the attestation routine in order to learn the precise status of
every ρ in S. The attestation phase is very flexible and can
be performed in three ways: (i) identifying only physically-
attacked devices through absence detection (physical attesta-
tion), (ii) attesting all devices against physical attacks and
verifying the software integrity of some devices (clusters)
against remote attacks (partial attestation), or (iii) attesting the
entire swarm against both physical and remote attacks (full
attestation).

A. Initialization Phase

1) Verifier Setup: First, υ produces a sequence of secret
keys (one-way keychain) of length j by choosing the last Kj

randomly, and generating the remaining values by successively
applying a one-way hash function F (e.g. SHA-256) where
Kj−1 = F (Kj). During the deployment, devices are initialized
with K0 as a commitment secret value. Using it, they can
authenticate all other keys in the keychain by recursively
executing F (e.g. K0 = F (F (F (K3)))). However, they cannot
compute any of these keys due to the one-way property of
F . The remaining keys are used as session keys in sequence,
starting with K1 and ending up with Kj , to authenticate
packets exchanged in the attestation phase. To authenticate
successive session keys quickly, the last authenticated session
key is always saved at ρ side (it does not replace K0 as it
is not secret and always exchanged in plaintext). Whenever υ
needs to update the keychain, K0 can be easily updated to the
correct value by broadcasting a message containing the new
value of K0 and encrypted using the old one.

Second, υ divides the time into discrete time intervals,
called epochs, where the maximum duration of one epoch,
Tatt, should not last longer than the overall physical attack
time, Tadv . The value of both Tatt and Tadv is application-
dependent. The attestation phase is performed periodically at
the beginning of every epoch. Each epoch is divided into
multiple unequal discrete time sub-intervals. For the sake
of clarity, in our protocol, we assume 4 non-overlapping
time sub-intervals per epoch. υ associates each session key
of the one-way keychain with one time sub-interval as a
MAC key to authenticate all packets sent in that period.
Upon the expiration of the corresponding time sub-interval,
υ exposes the associated session key after a delay d. The
disclosure delay, d, is either a secret variable value that can
be adjusted in every new attestation request or a fixed value
tied to the time intervals and broadcasted periodically in a
special packet. In the explanation later and in Figure 1, we

deliberately abstract from any implementation details related
to time-related functions due to the limited space.

2) Prover Initialization: Each ρ is initialized with some
public and private values. The public values are (i) its Id (Di),
(ii) the Id of the parent node in S (ParID), and (iii) the Id of the
cluster (ClusID), where ρ belongs to, in S. The value of ParID
is initially null and is updated only by the attestation code
after forming the spanning tree during attestation. Devices are
classified by υ into different clusters where each cluster has
a ClusID. This classification is protocol-independent and can
be based on various factors (e.g. geographical locations in
static networks, common tasks among devices, network traffic
distribution, equal clusters, and etc.).

On the other hand, each ρ is initialized with (i) two device-
dependent secret keys for authentication (Ka) and software
integrity (Kt) purposes, (ii) one cluster-dependent secret value
(Kc) for multicasting and attestation purposes, and (iii) one
group-wide secret key (K0), which is the last key in the key-
chain and used for authenticating the session keys exchanged
at the swarm level. Furthermore, every ρ holds a group-wide
secret value, nonce, that serves as a refreshment value to
avoid replay attacks. This value is securely updated twice in
every attestation period. The updates are linked in a way to
detect physical attacks, where missing one update prevents
the corresponding device from authenticating future messages.
Also, ρ stores securely the correct MAC digest of the safe state
of its memory, computed using Kt, and denoted as HS .

B. Attestation Phase

Initiation of Remote Attestation. At the beginning of a
new epoch (see 1© in Figure 1), υ generates a new random
value, Nnew, and computes the MAC of this value with a key
that is secret at that point in time, where this key belongs to
the keychain generated at the initialization phase. Considering
that υ and ρ’s are loosely time synchronized, and each node
knows the upper bound of the maximum synchronization error,
υ broadcasts the new value along with its MAC to all devices
within range without revealing the secret key. υ then updates
the value of the secret nonce by computing the hash value of
the current one concatenated with the random generated value
(e.g. nonce = HASH(nonce||Nnew). All receiving nodes
accept this packet if it complies with their time schedule, store
it in a buffer for authentication later on, and re-broadcast it
again to their neighboring nodes.

Upon the start of the next time sub-interval in the current
epoch (e.g. a few milliseconds later in our implementa-
tion) (see 2© in Figure 1), υ creates an attestation request
(Attestreq) consisting of (i) a new random value (Nnew)
used to update the nonce one more time, (ii) the number of
devices in S (DevNum) used to notify ρ’s about the length
of the n−bit vector that has to be created for acknowledging
the physical presence where 1 at position i indicates that Di

is physically present in S and uncompromised, and (iii) two
lists of different cluster ID’s where ρ’s that belong to any of
the clusters in the first list (Asend) have to send an attestation
response reflecting the state of their software too, whereas ρ’s



Verifier (v)

msg1

Device Di Devices Dj, Dk, ...

Dj & Dk proceeds like Di ...

1

Initially, nonce = r

Nnew = generateNonce()

Hn = MAC(K1, Nnew)

msg1 ← (Nnew, Hn)

Broadcast(msg1)
nonce = HASH(nonce, Nnew)

addToQueue(msg1)

Broadcast(msg1)
msg1

Nnew = generateNonce()

KENC = HASH(K2, nonce)

Asend ← {ClusID’s}

Acalc ← {ClusID’s}

Attestreq ← Encrypt(KENC, Nnew, DevNum, Asend, Acalc)

Hn = MAC(K2, Attestreq)

msg2 ← (Attestreq, Hn)

Broadcast(msg2)
nonce = HASH(nonce, Nnew)

msg2
addToQueue(msg2)

Broadcast(msg2)
msg2

2

Broadcast(K1)
3

Broadcast(K1)

IF authenticated(K1)

IF authenticated (msg1)

updateNonce()

K1 K1

4
Broadcast(K2)

K2 Broadcast(K2)

IF authenticated(K2)

ackToParent()
IF authenticated (msg2)

updateNonce()
repi ← Report()

Repi ← aggregare(repi, others)

Propagate(Repi)

computeDigestIfAsked()

Repj
Repi

VerifyReports()

UpdateSecretsIfNeeded()

Figure 1: An overview of the working mechanism of slimIoT

that belong to clusters mentioned in the second list (Acalc)
have to compute the MAC digest of the existing software
in their memories using Kt as a last step of this attestation
routine in order to produce the attestation report quickly in
the next attestation period when asked. The calculation of
MAC digest comes after propagating the aggregated attestation
reports and thus the time consumed is not counted in the total
time consumed in attesting the entire swarm (e.g. see 4© in
Figure 1). In any attestation period, either of both lists can be
empty if υ is interested only in attesting the physical presence
of devices in S.

Attestreq is encrypted using a secret key that is derived
from computing the hash value of the next session key in the
keychain along with the previously updated nonce (KENC

= HASH(K2, nonce)). υ then computes the MAC of the
encrypted Attestreq using the same session key (K2) and
broadcasts it to all nearby devices. At ρ side, every node
stores this request in a buffer if it complies with its time
schedule, and re-broadcasts it again in order to be received
by all nodes in S. As a last step in the current time sub-
interval, υ updates the nonce for a second time. Please note
that even after revealing K2, ρ’s will not be able to derive

KENC if they did not manage to authenticate the previous
NonceUpdate request and update the nonce successfully.
Key Disclosure. At the time of key disclosure, υ broadcasts
the verification key to all ρ’s in vicinity. If this key is received
according to the time schedule, the receiving ρ re-broadcasts it
to other neighbors. If the authentication process of this key is
passed successfully, ρ uses it to authenticate the corresponding
packet in the buffer. Upon the successful authentication of any
packet, ρ executes the request of that packet. For example, in
the third time sub-interval (See 3© in Figure 1), ρ performs
the NonceUpdate request. Using the true updated nonce along
with the exposed session key in the fourth interval, ρ is able
to derive the decryption key, KENC , and decrypt Attestreq .
Every ρ acknowledges about receiving the second session key
to the sender device (the parent) and thus the spanning tree is
formed and rooted by υ.
Attestation Report. An n-bit vector is created by the leaf
nodes in the spanning tree where n equals to the number of
devices in S mentioned in Attestreq . Considering that the
largest prover ID does not exceed DevNum in S, every
active Di, during the ongoing attestation, has to set the ith

position in the n-bit vector to 1 to avoid being labeled as



physically-compromised. If any ρ received more than one
propagated n-bit vector, it aggregates all of them by per-
forming an OR operation. If any ρ is asked to provide an
attestation report verifying its software integrity (by having
its cluster ID in the Asend list), it checks the computed MAC
digest (H ′S) upon the exit of the previous attestation period and
compares it with the stored one (HS). If H ′S equals to HS ,
ρ creates an attestation report that constitutes of its ID and
an attest value that equals to the hash value of the computed
MAC digest along with the last updated nonce (e.g. attest =
HASH(H ′S ||nonce)). After setting the ith position in the n-
bit vector to 1, ρ propagates both the (aggregated) attestation
report(s) and the n-bit vector to the parent device. A secure
aggregate of multiple attestation reports is computed by XOR-
ing all attest values [19] in these reports and maintaining the
participating devices IDs in an accompanying list. If H ′S and
HS are not equal, ρ does not create an attestation report of
its status as it is most likely remotely-compromised but it still
confirms its presence physically by assigning a one value to the
ith position in the n-bit vector. As a last step after propagating
the aggregate of the attestation reports, every ρ checks if its
cluster ID is included in Acalc in Attestreq. If so, it calculates
the MAC digest of its memory using Kt, and stores it in
an unprotected 1 memory area. Having this value accelerates
the creation of the attestation report in the next period, thus
reducing the runtime overhead of slimIoT as computing MAC
is time-consuming activity. All communications between ρ’s
are authenticated using HASH(K0||nonce).
Physical and Remote Attacks Detection. Remotely-
compromised devices are detected by being unable to par-
ticipate in the aggregate of the attestation reports (their ID’s
are not present!), whereas physically-compromised devices are
detected through their absence during the execution of the
protocol (zero values present at positions with indexes equal
to their ID’s in the n-bit vector). Upon detection, security
measures can take place to recover compromised devices (e.g.
secure erasure [20]).
In case of detecting a physical attack, there is a probability that
the attacker can decrypt all group-wide secret communications
if she was eavesdropping on the communication during the
execution of the attestation process, as explained in § IV-C.
Therefore, to avoid this vulnerability, υ updates all group-
wide secrets (e.g. nonce and K0) by broadcasting a number
of messages equal to the number of healthy clusters. Each
message contains the new values of secrets and is encrypted
using one of the healthy cluster-wide secrets, Kc. For operative
healthy devices in the compromised cluster, υ creates a mes-
sage containing new cluster-wide secret value (Kc), encrypts
this message with each of the individual healthy devices keys,
Ka, appends all these ciphertexts to each other in one big
message, and then broadcasts it. After that, υ broadcasts
another message containing the new group-wide secrets and
encrypted using the updated cluster wide secret key Kc.

1It reflects the existence of a malware if it is altered before being used to
create the attestation report in the next attestation iteration.

C. Security Analysis

The goal of a secure attestation scheme is to distinguish be-
tween healthy and compromised devices in a swarm S, where
limited false positive cases are accepted but not vice versa.
This is formalized by the following adversarial experiment
ATTn,cadv(j), where adv interacts with n devices in addition
to υ, and compromises up to c devices in S, where c ≤
n−1. Considering that adv is computationally bounded to the
capabilities of the devices deployed in S, adv interacts with the
devices a polynomial number of times j, where j is a security
parameter. υ verifies the attestation aggregates received from
attesting S and outputs a decision as 0 or 1. Denoting the
decision made as A, A = 1 means that the attestation routine
is finished successfully and all devices are labeled correctly,
or A = 0 otherwise. According the definition of secure swarm
attestation given by [6], we summarize the security of slimIoT
with an informal proof sketch (due to the limited space).

Theorem 1 (Security of slimIoT). slimIoT is a secure scalable
attestation protocol if Pr[A = 1 | ATTn,cadv(j) == A] is
negligible for 0 < c < n, under the following conditions:
• Tatt ≤ Tadv .
• The PRNG, MAC, and aggregation schemes used are

secure and selective forgery resistant.

Proof. adv can be either: (i) remote, (ii) physical, or (iii)
sophisticated (performs remote and physical attacks simulta-
neously). In the case of a remote adv, compromised devices
are always detected with a probability 100% as the attestation
routine is atomic and executes in TEE. adv can not bypass
the rules enforced by MPU and thus can not learn the stored
secrets or break the selective forgery MAC scheme.

Physical attack is a time-consuming activity which requires
at least few minutes to retrieve the secrets. Attesting S is
guaranteed to be achieved in less time, Tatt. Accordingly, the
exposed secrets will be useless for adv as the attestation is
performed and the secret nonce is updated. Thus, adv can
not decrypt or authenticate any further communications and
the compromised device will be detected due to its absence.

In the case of a sophisticated adv, she can eavesdrop on
the communication and record all exchanged packets while
performing a physical attack on one of the devices. The
compromised device will be detected by υ as explained above
but with the information gained from both attacks, adv is
able to synchronize and learn the current secret keys and
thus decrypting all future communications and threatening the
security of slimIoT if no action is taken. Therefore, in case
of detecting a physical attack, the last step of the protocol is
securely updating all group-wide secrets in all healthy devices.
This means that the probability of adv to get benefits from the
exposed group-wide secrets is negligible.

V. IMPLEMENTATION

We implemented a practical scenario on a 5-node heteroge-
neous mesh network where each node belongs to either the



Arduino or the MicroPnP IoT platform [21]. The Arduino
platform offers an 8-bit AVR ATmega 328p microcontroller
running at 16 MHz with 2 KB of SRAM and 32 KB of flash
memory, whereas the MicroPnP IoT platform provides an 8-
bit AVR ATmega 1284p microcontroller running at 10 MHz
with 16 KB of SRAM and 128 KB of flash. Both platforms are
equipped with IEEE 802.15.4e Time-Slotted Channel Hopping
(TSCH) [22] radio transceiver for wireless communication.

We used SHA-256 as a one-way hash function for gener-
ating keychains, and as a keyed-hash message authentication
code (HMAC) to measure the software integrity during the
attestation phase. We employed AES-128 in counter mode
(CTR) as an authentication encryption scheme.

VI. EVALUATION

In this section, we first present an analytical model for
cluster selection where the communication cost depends on
the tolerated latency of detecting remotely-compromised de-
vices. Then, we illustrate our experimental results in terms of
performance, scalability and robustness.

A. Communication Costs versus Latency of Detecting Attacks

Let G = (N,L) represents a graph for a mesh network
where N is the number of IoT devices (vertices) and L is
any number of links (edges) that maintains the connectivity
between devices. Considering that the network is divided into
M non-overlapping clusters, let Ci = {n1, n2, ...} ⊆ N be a
set of devices representing the ith cluster such that

⋂M
j=1 Cj =

∅. We model the attestation response at iteration t of the ith

cluster selected for attestation by 3-tuple Ait = 〈Ci, Sit , Tlas〉,
where Sit ∈ {0, 1} as 0 value indicates that the corresponding
cluster has at least one compromised device in this iteration,
whereas 1 value reflects a safe status. Tlas is the last time
when the cluster has been attested (represented in minutes).

The cluster selection process aims to minimize the com-
munication overhead by attesting various parts of the network
at different time periods while maintaining the security level.
However, excluding some clusters from attestation at iteration
t (in spite of its shortness) may increase the latency of
identifying the remotely-compromised IoT devices in these
clusters. Thus, we deal with the communication overhead issue
as a trade-off between the cluster selection and the latency
of identifying compromised devices, where we leverage the
history of every cluster (i.e., Ait−1, A

i
t−2, etc. ). More for-

mally, we handle the selection of clusters as a constrained
minimization optimization problem objectively defined as:

minimize
α1,...,αM

M∑
j=1

αj ∗ P (Sjt = 1) s.t.
∑M
i=1 αi ∗ |Ci|
|N |

≥ Trcov,

Max{(1− αi) ∗ (Tnext −Ait−1.Tlas) : i ∈ {1, . . . ,M}} ≤ TMax

(1)
where α• ∈ {0, 1} is a free variable corresponding to a cluster,
P (Sjt = 1) represents the probability of the jth cluster being
successfully attested, Trcov ∈ [0, 1] is a threshold specifying
the ratio of devices that will be attested, Tnext is the next
attestation time in minutes, and TMax ∈ Z+ is the maximum

number of minutes that each cluster can be excluded from the
attestation process. The first constraint (Trcov) in the objective
function is application dependent and can be tied to the time
period of attesting against physical attacks, whereas the second
constraint (TMax) is added to ensure that all clusters have
been attested in a pre-defined maximum time window. In
the computation of the probability component stated in the
objective function, we first assume that the current state of
the cluster is independent from the previous states (i.e. Sjt−1).
Thus, we adopt the Maximum Likelihood Estimation (MLE)
method [23] through leveraging the given information history
({Aj1, . . . , A

j
t−1}) about the state of the cluster at various

attestation iterations. More precisely, we first count the number
of times that the cluster has been successfully attested as
reported in the cluster’s history. Then, the resulted number
is divided by the number of times that the cluster has been
considered in the attestation process. Formally, the probability
component for the jth cluster is computed as follows:

P (Sjt = 1) =
|{Aji : i ∈ {1, ..., t− 1}, Sji = 1}|
|{Aji : i ∈ {1, ..., t− 1}}|

(2)

where | • | represents the set cardinality (length).
Selecting values of both constraints (TMax and Trcov) is

application-dependent. However, the experimental results in
the following section are based on setting the value of TMax

to 60 minutes and the value of Trcov to be either 0.25 or 1,
where 1 shows the worst case in the communication overhead
in terms of runtime as all clusters are selected in the attestation.

B. Experimental Results

Runtime Overhead. Computing the HMAC-SHA2 digest
of MCU with 128 KB flash memory in MicroPnP platform
consumed 9.68 seconds, whereas it demanded 1.47 seconds for
MCU with 32 KB flash memory in Arduino. Table I presents
the precise time consumed by the various cryptographic oper-
ations in slimIoT for both Arduino and MicroPnP platforms.

Network Runtime Measurements. We measured an av-
erage propagation delay between any two neighboring nodes
of 17 ms. Moreover, the maximum throughput we measured
at the application layer is 56 kbps. However, the maximum
throughput of IEEE 802.15.4e in theory is 250 kbps.

Memory Footprint. According to § IV-A, each ρ stores
(i) its own ID along with the parent and cluster IDs (each 3
bytes), (ii) two private keys (Ka & Kt) and one cluster-wide
key (Kc) (each 16 bytes), and (iii) a group-wide commitment
value (K0), a secret nonce, and the true MAC digest of
memory (HS) (each 32 bytes). In total, each ρ requires 153
bytes of permanent storage for data in addition to another
64 bytes for storing H ′S and the last authenticated session

Table I: Cryptographic Runtime Measurements

Runtime Measurements Arduino MicroPnP
ATmega328P ATmega1284P

Session Key Authentication 3.213 ms 5.145 ms
Updating Nonce value 6.34 ms 10.10 ms
Deriving KENC , authenticating, and decrypting AttestRequest (64 Bytes) 47.38 ms 75.9 ms
preparing and aggregating two attestation reports 3.61 ms 5.184 ms
Oring two vectors of length 255 Bytes (2000 devices) 0.449 ms 0.648 ms
Verification of 32 Bytes MAC (for 64 Bytes message) 12.7 ms 20.36 ms
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Figure 2: Evaluation of slimIoT properties

key. This value is constant and minimal comparing to all
other existing approaches. More precisely, assuming that the
minimum amount of storage is c, each ρ in slimIoT requires
only c, whereas in SCAPI, each ρ requires c + l ∗ g, where
l is the length of the channel key and g is the number of
neighbours of ρ.

Scalability. OMNeT++ framework [16] is used to simulate
large networks with different configurations. The compu-
tational and network delays are adjusted according to the
experimentally measured values illustrated previously. We set
the value of the disclosure delay d to 30 ms.

First, we simulate slimIoT in various static and homoge-
neous network topologies with a large number of connected
IoT devices. Figure 2a shows the total runtime of slimIoT
with different configurations for binary, 4-ary, and 8-ary tree
topologies consisting of Arduino-based nodes. Considering a
swarm of 100K devices equally distributed over 8 clusters,
attesting the entire swarm against physical attacks in addition
to verifying the software integrity of 2 clusters (25% of the
devices) only against remote attacks consumes around 30
seconds in the binary tree, whereas it demands less than
17 seconds in a 4-ary tree and 9 seconds in an 8-ary tree.
Performing full attestation of the same network consumes at
most 18 seconds in an 8-ary tree and not more than 50 seconds
in a binary tree.

Physical Attack Detection. Considering the aforemen-
tioned scenario in addition to υ of type raspberry pi 3, iden-
tifying physically-compromised devices in an n-bit vector of

length 100K demands a few milliseconds whereas it consumes
6.3 seconds to verify the aggregated attestation reports from
2 clusters (25%). Assuming that υ detected a compromised
device in an 8-cluster mesh network, Figure 2b shows the
time consumed to update the group-wide secrets for different
network topologies. In a binary tree with 100K devices (the
worst case), updating healthy clusters (7 out of 8) consumes
at most 0.4 second, whereas it would last up to 2 minutes to
update the last healthy device in the compromised cluster.

Heterogenous Mesh Networks. We simulated three static
heterogenous mesh networks with different configurations and
number of devices. Figure 2c shows the runtime overhead
incurred by running either partial (20%) or full attestation in
each mesh topology with up to 10K devices. For each mesh
topology, we set diverse values for the size of the covered
geographical area as well as the communication range of
devices (20 m, 40 m, or 60 m).

Robustness. Sometimes, factors such as device mobility
and network delay prevent operative devices in the swarm
from receiving some updates. This causes false positive cases
where a healthy device is mistakenly considered as physically-
compromised. In slimIoT, If the lost packet carries the secret
session key that has to be exposed, the device can still get and
verify this key upon receiving the next secret key. For example,
assuming that there is a device Di received a Nonceupdate
packet, P1, in time interval 1, and another Attestreq packet,
P2, in time interval 2. So far, Di cannot authenticate any
packet yet. Lets assume that the packet that discloses key K1 is



lost. So, Di still can not authenticate P1. In the next disclosure
period, υ exposes K2. Upon receiving this key, Di is able to
authenticate both packets, by verifying K0 = F (F (K2)), and
learning K1 = F (K2). This important feature is not offered
by SCAPI2 where missing one packet by any Di renders it
directly compromised.

To evaluate the robustness of slimIoT to false positives
in highly dynamic networks, we randomly deployed various
small sets of devices in 999 m × 999 m square area. In
each set, we set 20% of the devices as stationary and let
the remaining ones move randomly at speed of 10 m/s. We
adjusted the communication range of all devices to 50 m.
We then run slimIoT 100 times in each group to record the
worst and best case (excluding the optimal case) in terms of
number of false positives detected and number of recovered
ones. Figure 2d shows the simulation results. For example, in
a network with 50 devices, the worst case shows that there
were likely 7 devices to appear as false positives since they
were out of range of the connected network and accordingly
missed the first session secret key required to authenticate
the Nonceupdate request. Five of which were able to receive
the second session secret key and thus authenticate both
Nonceupdate and Attestreq . Therefore, the worst case ended
up with 2 false positives instead of 7. For the same network,
the best case shows that 2 out of 3 devices are recovered and
so forth 1 false positive occurred. It is clear that the more
dense the network, the less false positives likely to appear due
to the high probability of recovery.

VII. CONCLUSION

This paper introduced slimIoT, an informative lightweight
scalable attestation scheme that is compatible with all classes
of IoT devices. slimIoT provides strong security guarantees
with the presence of a physical attacker. The overhead incurred
by slimIoT on the most resource-constrained devices in terms
of memory footprint and communication overhead is very
reasonable, while simulation results demonstrated that it is
scalable to large mesh networks consisting of thousands of
heterogenous IoT devices. Furthermore, it is robust in dynamic
networks where false positive cases are unlikely to occur due
to the possibility of devices to recover and synchronize with
the ongoing attestation depending on the keychain property.
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