Bollettino dell'Unione Matematica Italiana
https://doi.org/10.1007/s40574-018-0170-4

@ CrossMark

On the Kummer construction for Kcsc metrics
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Abstract

Given a compact constant scalar curvature Kéhler orbifold, with nontrivial holomorphic
vector fields, whose singularities admit a local ALE Kéhler Ricci-flat resolution, we find
sufficient conditions on the position of the singular points to ensure the existence of a global
constant scalar curvature Kéhler desingularization. We also give complete proofs of a number
of analytic results which have been used in this context by various authors. A series of explicit
examples is discussed.

Mathematics Subject Classification 58E11 - 32C17

1 Introduction

In this paper we review and extend various existence results for Kéhler constant scalar
curvature (Kcsc from now on) metrics on compact complex manifolds and orbifolds.

In order to state our results precisely, let us briefly recall that one starts with a Kcsc base
M with isolated quotient singularities, hence locally of the form C"/T";, where m is the
complex dimension of M, j € J parametrizes the set of points we want to desingularize,
and I'; is a finite subgroup of U (i) acting freely away from the origin.
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Given such a singular object one would like to remove a small neighborhood of a singular point
and replace it with a (scaled down) large piece of a Kihler resolution 7 : (Xr, n) - C"/T’
keeping the scalar curvature constant (and close to the starting one). For such a construction
to even have a chance to preserve the Kcsc equation it is necessary that (Xr, 1) is scalar flat,
i.e. it is necessary to assume that C™ /I"; has a scalar flat ALE resolution.

It is well known (see Sect. 2 for a precise description) that such a metric has the following
shape,

2
— X . _
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for some real constants ex. and cx.. In particular the number ex,. is called the ADM mass
of the model (see [13] for a comprehensive study of its importance).

Having then fixed a set of singular points S = {p1, ..., py} C M each corresponding to
a group I'j, and denoted by B; , := {z € C"/T'; : |z| < r}, we can define, forall r > 0
small enough (say r € (0, rp)),

Mr = M\ Uj Bj,r~

On the other side, for each j = 1, ..., n, we are given a m-dimensional Kéhler manifold
(Xr;, n;), with one end biholomorphic to a neighborhood of infinity in C"/ I ;. Dual to the
previous notations on the base manifold, we set Cj g := {x € C"/T'; : |x| > R}, the
complement of a closed large ball and the complement of an open large ball in Xr; (in the
coordinates which parameterize a neighborhood of infinity in Xr ;). We define, forall R > 0
large enough (say R > Ry),

XF_,-,R = er\Cj!R.

which corresponds to the manifold Xr; whose end has been truncated. The boundary of
Xr; R is denoted by 9C g.

We are now in a position to describe the generalized connected sum construction. Indeed,
for all ¢ € (0, ro/Rop), we choose r, € (¢ Ry, ro) and define,

By construction,
M :=MUp ¢ Xr| Upys -+ Up,.e X1,

is obtained by connecting M,, with the truncated ALE spaces X, ; , ..., Xr, x - The iden-
tification of the boundary 9B, ,, in M,, with the boundary 0C; g, of X I, Re is performed
using the change of variables,

@M =l ™),

where (z!, ..., z™) are the coordinates in Bj ;, and (x!, ..., x™)are the coordinates in Cj Ry-

It was proved in [4] that if no nontrivial holomorphic vector fields exist on (M, w, g) the
ALE scalar flat condition on the model is also sufficient to construct a family parametrized
by the gluing parameter ¢ on the manifold (or orbifold) obtained by this procedure. On the
other hand, the known picture for the blow up of smooth points, suggests that the number
and position of points should be relevant to achieve the same existence theorem in presence
of continuous symmetries. In fact, being the linearized scalar curvature operator L, given
by,

Lof = A2f + 4(po|iddf),
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we have to look at the positions of points relative to the elements of ker(L,) =
spang {0, ¢1, ..., 94}, where g9 = 1, d is a positive integer and ¢y, ..., ¢4 is a col-
lection of linearly independent functions in ker(LL,,) with zero mean and normalized in such
away that [|gi|| 2 = 1,i =1,...,d,.

As it turns out, the hardest case is when the resolution has zero ADM mass (for example
when 7 is actually Ricci flat, which in turn forces the group I'; to be in SU (m)).

The following is our main result which gives the new conditions on the “symplectic”
positions of the singular points for the Kcsc equation to be solvable, thus generalising in the
Kcsc context the celebrated Kummer’s construction for Calabi—Yau manifolds ([15,17,22,28]
for a number of generalisations):

Theorem 1.1 Let (M, w, g) be a compact m-dimensional Kcsc orbifold with isolated singu-
larities and constant scalar curvature equal to s,. Let p = {p1,..., pN} S M the set of
points with neighborhoods biholomorphic to a ball of C" /T j where, for j =1, ..., N, the
I ’s are nontrivial subgroups of U (m) such that C" / T'; admits an ALE Ricci-flat resolution
(er Jhj, r]j) with vanishing ADM mass. Let,

ker (Lo,) =spang {1, @1, ..., ¢a}.
be the space of Hamiltonian potentials of Killing fields with zeros and assume that N > d.
Suppose moreover that there exists b € (RN such that,

Sy (Do) +509j) (P) =0 j=1.....d

Then there exists & such that for every € € (0, ) the orbifold,
M =M Up, ¢« Xr, Upye - Upy e XTy,

has a Kcsc metric in the class,
N
T [w] + Zazmb?m [i;] with 5[] = n;).
j=1
where 7 is the canonical surjection of M onto M and i j the natural embedding of Xr; g,
into M. Moreover,
BZIn _ |F] |b}

7 T — 1) < Ce¥V  forsome y >0,

where |I j| denotes the order of the group.

A version (with a non explicit balancing formula) of the previous result was announced
without proof in [3] (Theorem 1.2). In this paper we provide the complete proof and make
explicit the right balancing condition.

Whether, given I in SU (m), a Ricci flat Kéhler resolution exists is by itself an important
problem in different areas of mathematics and we will not digress on it here. It suffices to
recall the reader that Ricci flat models do exist for any subgroup of SU (m) with m = 2,
thanks to the work of Kronheimer, while in higher dimensions one needs to assume the
existence of a Kihler crepant resolution and then apply deep results by Joyce [15], Goto
[12], Van Coevering [29] and Conlon-Hein [8]. In particular m = 3 works fine again for any
I'in SUQ3).
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On the other hand, and contrary to the authors’ first expectations, Hein-LeBrun [13] have
proved the existence of many new examples of scalar flat with vanishing ADM mass but not
Ricci flat.

The proof we present in this paper follows the path of previous result of this type [3-5]. In
this respect the main difficulty comes from the fact that, contrary to all these previous known
cases, part of the obstruction, comes from the non linear analysis.

An alternative proof would rely instead of the existence result for extremal metrics proved
in [3]. Mixing this fact (whose analytic difficulties are undoubtedly much easier than the
present’s one) with the classical observation of Calabi [7] that an extremal metric in a class
with vanishing Futaki invariant is in fact Kcsc, leads to the delicate problem of how to compute
this invariant for resolutions of isolated quotient singularities. This is accomplished in [1]
and this will also allow to generalize the previous Theorem to the general case of scalar-flat
resolutions and to prove also the necessity of the balancing condition.

The proof we present here certainly requires a deeper and finer understanding of the PDE
point of view, but has the advantage, at least under these stronger assumptions, to give a
more refined information on the Kcsc metric produced. In fact as we will see in Sect. 3, each
singular point gives us the freedom of the choice of two parameters (b and c). Indeed for each
choice of these parameters the metrics wg p,c hk can be actually glued to the metric n (of
course not solving any particular PDE), but it is easy to check that the resulting Kéhler class
depends only on b and not on c. As we will show in the final part of the proof of Theorem 1.1,
the nonlinear part of the Kcsc equation will require a uniquely determined choice of ¢ as a
function of b (¢ = s,b), in accordance with the well known uniqueness property of Kcsc
metrics in a given Kéhler class. At the end of the proof one will then know explicitly how to
write down the first two exploding terms in the asymptotic expansion of the Kéhler potential
of the final Kcsc metric, a result out of reach if one takes the alternative route of passing
through extremal metrics and Futaki invariants.

We can then look for new examples of full or partial desingularizations of Kcsc orbifolds.
Of course it will be very hard on a general orbifold to compute A,¢;. On the other hand,
assuming for example that M is Einstein and using,

Sw

Appj = e

the balancing condition requires only the knowledge of the value of the ¢; at the singular
points. Moreover these values are easily computed for example in toric setting by the well
known relationship between the evaluation of the potentials ¢; and the image point via the
moment map.

With these classical observations one can then look for toric Kéhler—Einstein orbifolds
with isolated quotient singularities to test to which of them our results can be applied. In
complex dimension two things are pretty simple and in fact two such examples are,

o (P! x P!, nfwrs + m5wrs) with Z; acting by,
(Ixo : x1], [yo : y1) — ([x0 : —x1], [yo : —=y1D) -
This orbifold is isomorphic to the intersection of two singular, quadrics in P*.
{2023 — 25 =0} N {z122 — 23 = 0}.
o (P?, wpg) with Z;3 acting by,

[20:21:22] — [x0: Gax1 i &3xal &3 # 1,45 = 1.
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This orbifold is isomorphic to the singular cubic surface in, P3
{202122 — 23 = 0}

In both cases we will show in Sect. 7 that our results provide a full Kcsc (clearly not
Kihler—Einstein) desingularization (in the first case applied to 4 singular SU (2) points, while
3 SU(2) points in the second). It is worth noting that both these orbifolds are also limits of
smooth Kiahler- Einstein surfaces. This can be seen in various ways: either applying Tian’s
resolution of the Calabi Conjecture [27] or by [2] in the first case, or by Odaka—Spotti—Sun
[21].

Working out higher dimensional examples turned out to be much more challenging than
we expected. Even making use of the beautiful database of Toric Fano Threefolds run by
Brown and Kasprzyk ([10], see also [16]) and their amazing help in implementing a complete
search of Einstein ones with isolated singularities, we could only extract orbifolds where only
a partial Kcsc resolution is possible. We will describe two such examples in Sect. 7.

It is interesting to observe that in the list of toric Fano KE 3-folds it appears a very
intriguing example which does not satisfy any balancing condition, neither the one in Theo-
rem 1.1 nor those of [3]. It seems a very intriguing question whether this example be actually
desingularized by Kcsc manifolds in some way. Beyond this example, it is worth mention-
ing, among the possible extensions of the present technique and the possible directions of
research, the desingularization of Kcsc manifolds with non isolated singularities, in the spirit
of the generalized connected sum constructions performed in [18-20].

Structure of the paper In Sect. 2 we collect some known facts and we prove a crucial
refinement (Proposition 2.3) of results of Joyce, Tian-Yau and others on the asymptotics of
a Kihler Ricci flat metric on a crepant resolution.

In Sect. 3 we collect all results needed at the linear level on the linearized scalar curvature
operator on the base orbifold. In particular we construct global functions in the kernel of the
linearized operator with prescribed blow up behaviour near the singularities (see Proposi-
tion 3.3).

Section 4 contains the (weighted) linear analysis on a scalar flat Kéhler resolution of an
isolated singularity. These results are significantly different from what was known, in that
our problem forces us to use weights in a different, more delicate, range.

In Sect. 5 the existence of truncated Kcsc metrics on the base and on the models is proved
in Propositions 5.1 and 5.2.

Section 6 contains the analytic proof of Theorem 1.1 by proving the mentioned Cauchy-
data matching property of the truncated metrics previously produced.

Section 7 gives a complete description of the above mentioned examples.

2 Notations and preliminaries

2.1 Eigenfunctions and eigenvalues of Agom-1

In order to fix some notation which will be used throughout the paper, we agree that >~ is
the unit sphere of real dimension 2m — 1, equipped with the standard round metric inherited
from (C™, geucr). We will denote by {¢x }ren @ complete orthonormal system of the Hilbert

space L2 (S?"~1), given by eigeinfunctions of the Laplace-Beltrami operator Agom-1, so that,
for every k € N,
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Agm—1Qp = Ao,

and {Ag}ren are the eigenvalues of Agom-1 counted with multiplicity. We will also indicate
by ®; the generic element of the j-th eigenspace of Agam-1, so that, for every j € N,

AS2VI171 (D/ = A, q>/,

and {A ;} jen are the eigenvalue of Aém_l counted without multiplicity. In particular, we have
that Aj = —j(2m — 2+ j), forevery j € N.If I" <« U (m) is a finite subgroup of the unitary
group acting on C” having the origin as its only fixed point, we denote by {A;} jeN the
eigenvalues counted without multiplicity of the operator Agam—1 restricted to the I'-invariant
functions. For future convenience we introduce the following notation, given f € L? (SZ’"—] )
we denote with f® the L2 (Szm’l)-projection of f on the Ag-eigenspace of Agm-1 and,

f('}') = f— f(O)_
2.2 The scalar curvature equation

We let (M, g, ) be a Kéhler orbifold with complex dimension equal to m, where g is the
Kéhler metric and w is the Kéhler form. Notice that we allow the Riemannian orbifold (M, g)
to be incomplete, since in the following we will be eventually led to consider punctured
orbifolds. We denote by s,, the scalar curvature of the Kédhler metric g and by p,, its Ricci
form. In the following it will be useful to consider cohomologous deformations of the Kéhler
form w. Hence, for a smooth real function f € C*° (M) such that w + i EF) f >0, we set,

wf = w+iddf,

and we will refer to f as the deformation potential. Since we want to understand the behavior
of the scalar curvature under deformations of this type, it is convenient to consider the
following differential operator,

Su() : C®(M) —> COM), [ > Su(f) =5, 57+
which associate to a deformation potential f the scalar curvature of the corresponding metric.

We then have,

1 1
So(f) =50 = S Lof + SN (f). 2.1
where the linearized scalar curvature operator L, is given by,

Lof = ALf + 4(pw|iddf). (2.2)
Once we introduce the bilinear operator o acting on tensors in (7T M *)(1’0) QR(TM *)(0’1)
as,

(1,0) 0,1)

(ToU);:=T;e"U; T,Ue(TM*)"” @ (TM*)
the nonlinear remainder N, takes the form,

No(f) = 8try, (100 f 0idd f 0 pw) — 8try, (13 f 0idd Ay f)
+4A,tr, (300 f 0iddf) + 2R, (1), (2.3)

with R, (f) the collections of all higher order terms.
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2.3 The Kahler potential of a Kcsc orbifold

We let (M, g, ) be a compact constant scalar curvature Kihler orbifold without boundary
with complex dimension equal to m. Unless otherwise stated the singularities are assumed
to be isolated.

Combining the local 33-lemma with the equations of the previous section, we now recall
a more precise well-known description of the local structure of the Kéhler potential of a Kesc
metric.

Proposition 2.1 Let (M, g, w) be a Kdhler orbifold. Then, given any point p € M, there
exists a holomorphic coordinate chart (U, zL ..., Z™) centered at p such that the Kdihler
form can be written as,

2
caT Z .
w=id0 (% + ¢w> . with Y, = O(z[Y).
If in addition the scalar curvature s of the metric g is constant, then g is a real analytic

Sunction on U, and one can write,

+o0

Vol(2,2) = ) Va2, 2),

k=0

where, for every k € N, the component Vi is a real homogeneous polynomial in the
variables 7 and 7 of degree 4+ k. In particular, we have that W4 and Vs satisfy the equations,

APy = —25,,

A* s =0,
where A is the Euclidean Laplace operator of C™. Finally, the polynomial W4 can be written
as,

Sw
16m@m + 1)

where @, and ®4 are functions in the second and fourth eigenspace of Agpm—1, respectively.

Wy (z,2) = < + P + q>4> lz)*, (2.4)

2.4 The Kahler potential of a scalar flat ALE Kdhler resolution

We start by recalling the concept of Asymptotically Locally Euclidean (ALE for short) Kahler
resolution of an isolated quotient singularitiy. We let I' < U (m) be a finite subgroup of the
unitary group acting freely away from the origin. and we say that a complete noncompact
Kihler manifold (X, &, n) of complex dimension m, where /4 is the Kéhler metric and n
is the Kéhler form, is an ALE Kihler manifold with group I' if there exist a positive radius
R > 0 and a quotient map  : Xp — C” /T, such that,

7 Xr\n~'(Bg) — (C™\Bg) /T,

is a biholomorphism and in standard Euclidean coordinates the metric 7./ satisfies the
expansion,

0 1 S
ae (g = 535 )| =0 (7).

for some v > 0 and every multindex o € N"'.
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Remark 2.1 The reader must be aware of the fact that the above definition gives only a special
class of Kdhler ALE manifolds. In particular we are identifying the complex structure outside
a compact subset with the standard one, while in general it could be only asymptotic to it
and in fact the complex structure could not even admit holomorphic coordinates at infinity
as shown for example by Honda [14] also in the scalar flat case.

Remark 2.2 In the following, we will make as systematic use of 7 as an identification and,
consequently, we will make no difference between & and 7./ as well as between 1 and 7,.1.

Remark 2.3 1t is a simple exercise to prove that if " is nontrivial, then there are no I'-
invariant linear functions on C”, and thus, with the notations introduced in Sect. 2.1, we
have that Alf > Aj. This will be repeatedly used in our arguments in Proposition 2.3 and
Proposition 4.2.

We are now ready to present a result which describe the asymptotic behaviour of the Kéh-
ler potential of a scalar flat ALE Kihler metric. This can be though as the analogous of
Proposition 2.1. We omit the proof because in the spirit it is very similar to the one of the
aforementioned proposition and the details can be found in [4].

Proposition 2.2 Let (X, h, n) be a scalar flat ALE Kdihler resolution of an isolated quotient
singularitiy and let 7 : Xr — C™ /T be the quotient map. Then for R > 0 large enough,
we have that on Xr\J'Fl (BR) the Kdhler form can be written as,

2
— x _ _ . _
n=id9 ('2' + exp T2 — exp 2T 4y, (x)) . withyry = O(lx|72™),

or some real constants ex,. and cx.. Moreover, the radial componen in the Fourier
) [ tants ex and cx.. M the radial comp t ,30) the Ft
decomposition of Yry, is such that,

v (x) = O (jx[ 7).

In the case where the ALE Kéhler metric is Ricci-flat it is possible to obtain sharper estimates
for the deviation of the Kihler potential from the Euclidean one, which we believe to be of
independent interest. This is far form being obvious and in fact it is an important result of Joyce
[15, Theorem 8.2.3 pag 175]. With the following proposition we now give an improvement
of Joyce’s result which will turn out to be crucial in the rest of the paper.

Proposition 2.3 Ler (X, h, n) be as in Proposition 2.2. Moreover let T <U (m) be nontrivial
and e (T') = 0. Then for R > 0 large enough, we have that on Xr\n =" (Bg) the Kiihler form
can be written as

— X 2
n=1id9 <% — cxp X7 4 Yy, (x)>, with ¥, = O(|x|™>"), (2.5)

for some positive real constant cx. > 0. Moreover, the radial component 1//,50) in the Fourier
decomposition of Yy, is such that,

Y0 (1x) = O (Ix[**") .

Proof By [15, Theorem 8.2.3], we have that on Xr\n’l(BR) the Kihler form 7 can be
written as,

2
n = mﬁ(%—cxr 22 4y, (x)) with ¥, (x) = O (|x[2"27),
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for some y € (0, 1). Since (Xr, h) is scalar flat, arguing as in Proposition 2.1, we deduce
that v, is a real analytic function. To obtain the desired estimates on the decay of v, we are
going to make use of the equation Sy (Y — cxr- |x|2_2m) = 0. By means of identity (2.1),
(2.2) and (2.3), this can be rephrased in terms of v, as follows,

A%y = 8tr(idd (Y — cxp [X1P72") 010 AYry)
+ 4 A (99 (Y — cxp IX1772") 0089 (Y — cxp [X772"))
+ 2Ryt (Vry — cxp 1x12727),
where, in writing the first summand on the right hand side, we have used the fact that
Alx|?>~2m = (. Since Yy = O(|x|?2~2m=7), for some y € (0, 1), it is straightforward to see

that all of the terms on the right hand side can be estimated as O(|x| —2=4m=v) with the only
exception of the purely radial term,

At((931xP2") 0 (1031x172™) = O(lx| 724"

For sake of convenience, we set now the right hand side of the above equation equal to F'/2,
so that,

A%y, = F.

It is now convenient to expand both v, and F in Fourier series as,

+00 +oo
Y () = > PP (x) dp(x/Ix) and Fx) = > FO(x]) ge(x/x).

k=0 k=0
where the functions {¢x}ren, are the eigenfunctions of the spherical laplacian Agom-1 on
S?=1 counted with multplicity. Since ¢o = |S*"~1|~1/2, we will refer to w,go) and F© as
the radial part of v, and F, respectively. We also notice that in the forthcoming discussion it
will be important to select among the eigenfunctions ¢y ’s, only the ones which are I'-invariant,
in order to respect the quotient structure. So far, we have seen that F(© = O(|x|~2=%") and
F® = O(|x|~24"=7), for k > 1. On the other hand, using the linear ODE satisfied by the
components w,(]k), it is not hard to see that their general expression is given by,

Y (x]) = alx |20 b P20 x| B) o dy x| O+ O (1x)),
where, in view of the behavior of the F®)’s, the functions 1},(/‘) are such that,
U0 = O(xP™*) and Y0 = O(xPTY), for k > 1,

and the integers «(k)’s are such that « (k) = h if and only if ¢ belongs to the /-th eigenspace.
Since the cited Joyce’s result implies that 1//,(,k) = O(]x|>72"77), it is easy to deduce that
cx = 0 = dy, for every k € N. Moreover, we have that ag = 0 = b and thus 1//,(]0) =

O(|x|>~%™), as wanted. The same kind of considerations imply that the components w,(,k)’s
satisfy the desired estimates for every k > 2m + 1, that is for every k such that a (k) > 2.
For 1 < k < 2m, we have that ¢ = 0, but a priori nothing can be said about the b;’s and
thus at a first glance, one has that,

YO (1x) = bilx "2 + P (1x)), forl <k < 2m.

As it has been pointed out in Remark 2.3, there are no I'-invariant eigenfunctions for Agom-1
in the first eigenspace. This means that the components 1//,’]‘ ’s, with 1 < k < 2m do not appear

in the Fourier expansion of ¥, and hence ¥, (x) = O(|x|~2m). O
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We conclude this section with the following, probably well known observation, which
will turn out to be very useful in our proof. The authors are not aware of a reference of it so
we include its proof for the reader’s convenience.

Proposition 2.4 If (X, n) is Ricci flat, we have,

duy =m*dpo,
and for R > 0
|S2m—l| 5
Vol,, (X = —R™".
oly (Xr.8) = 5o

Proof Let iy : C™ — C™ /T the canonical holomorphic quotient map, since,
oy =0,
on (C™\Bg) /T we have,

i99 [log (det ((np)* (x=1y* n))] —0.
We want to prove that on C™\ {0},
_ 1
det ((ﬂr)* (w 1)* 77) =5
By Proposition 2.3 we have on C™\ Bg,
8i7 _
()" (x7) iy = 5 = e@)did; P 4+ 0 (Ix 7).
that implies immediately,
* —1)\* _ —2-2m
log (det ((nr) (71 ) n)) =—mlog(2) +(9(|x| )
On C™\ Bg we have,

199 log (det ((nr)* ()" n)) ——id (a log (det ((rrr)* ()" n))) ,
s0,
9 log (det ((zr)* (v~")"n) ) € H' (C"\Bk. ©).
but H' (C™\Bg, C) = 0 and there exists &; € C! (C"\Bg, C) such that,
dlog (det ((er)* (v~")" 1)) = dhy = ohy +3hy 3y =0.
Analogously, there is iy € C! (C™\Bg, C) such that,
F] [1og (det ((nr)* (x=1)* n)) _ hl] = dh = dhy + 3hy dhy = 0.
It is now clear that,
d [10g (det (Ger)* (x=")"n)) =11 = ha] =00
We conclude that on C™\ B,

log (det ((nr)* (n_l)* n)) =hi+hh+K KeR Jmhy=-Jmh,
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moreover /1, hy are holomorphic on C™\ By and by Hartogs extension theorem they are
extendable to functions Hj, Hy holomorphic on C™. Since H;, H, are holomorphic, their
real and imaginary parts are harmonic with respect to the euclidean metric on C” and by
assumptions on 1 we have on C™\ Bg,
ReH) + ImH, + K = —mlog (2) + O (Jx|7>72m).
Since ReH| +ImH; + K is harmonic and bounded, Liouville theorem implies it is constant,
so that,
1
R

det ((ﬂr)* (=71 n) =2

‘We can now see that,

Am

Ly [ )™ = o

and then,
|S2m—1 | )
Vol,, (Xr.r :/ dip_—1y, = m.
n (Xr.r) By O 2m T
so also the third statement is proved. O

3 Linear analysis on a Kcsc orbifold

In this section we develop the linear analysis for the operator I, and we do it in full generality
even if, in this work, we will use only some particular cases of this theory. We distinguish
between two sets of points: {py, ..., py} with neighborhoods biholomorphic to a ball of
C™/T; with I'; nontrivial such that C"/T"; admits an ALE Kahler scalar-flat resolution
(er ,h, nj) with exr, = 0 and the set (possibly empty) {q1, . ... gk} whose points have
neighborhoods biholomorphic to a ball of C™ / 'y such that C" / I"y_; admits a scalar flat
ALE resolution (Y1, k7, 6;) with €Xry. # 0. To simplify the notation we set,

p:=1{pi.....p~}, q:=1{q1,....qx}, and Mpq := M\ (pUQq).

CAVEAT  We agree that, if q = ¥, then My := Mp, g. When this case occurs and whenever
an object, that could be a function or a tensor, has indices relative to elements of q we set
these indices to 0.

3.1 The bounded kernel of L,

As usual we let (M, g, w) be a compact Kcsc orbifold with isolated singularities and we
assume that the kernel of the linearized scalar curvature operator L, defined in (2.2) is non-
trivial, in the sense that it contains also nonconstant functions. By the standard Fredholm
theory for self-adjoint elliptic operators, we have that such a kernel is always finite dimen-
sional. Throughout the paper we will assume that it is (d 4+ 1)-dimensional and we will
set,

ker(Ly) = spang {0, ¢1, ..., @a}, 3.1

where o9 = 1, d is a positive integer and ¢y, .. ., ¢4 is a collection of linearly independent
functions in ker(LL,,) with zero mean and normalized in such a way that ||g;|[z2p = 1,
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i =1,...,d, for sake of simplicity. We recall the following classical characterization of
ker(ILy,).

Proposition 3.1 Let (M, g, w) be a compact constant scalar curvature Kdhler orbifold with
isolated singularities. Then, the subspace of ker(IL,,) given by the elements with zero mean
is in one to one correspondence with the space of holomorphic vector fields which vanish
somewhere in M.

The aim of this section is to study the solvability of the linear problem,
Lou = f, (3.2)

on the complement of the singular points in M. In order to do that, we introduce some notation
as well as an appropriate functional setting. We consider geodesics balls By, (p j) ., By (q1)
of radius ro > 0, with Kéhler normal coordinates centered at the points p;’s and g;’s and we
set,

K
My, = M\ | | B (p) U B (@)
=1

TCs

For § € R and @ € (0, 1), we define the weighted Holder space C§’°‘ (Mp,q) as the set of

functions f € Clko’f (Mp.q) such that the norm,

”f”Cr]s('a(Mp.q) = ”f”Ck'a(M’O) + oj;lgro Cke(By\By)

N
D) PO TP
j=1

K
+ sup ’782”f(r‘)|3,0(qz>
=1

0<r<rg Cke(By\By)

is finite. We observe that the typical function f € C3“ (Mp,q) beheaves like,

FO = 0(dw(pj.)’). on By(p;) and f() = O(dy(q;.-)’). on By (q5).

where d,, is the Riemannian distance induced by the Kahler metric w.
We are now in the position to solve Eq. (3.2) in the case where the datum f is orthogonal
to ker(L,,). By this we mean that, looking at f as a distribution, we have,

(floi)grxa =0, (3.3)

foreveryi =0, ..., d, where we denoted by (- | - - )9/« % the distributional pairing and the
functions ¢;’s are as in (3.1). It is worth pointing out that since the functions in ker(LL,,) are
smooth, everything makes sense.

To solve Eq. (3.2) we need to ensure the Fredholmness of the operator IL,, on the functional
spaces we have chosen. The Fredholm property depends heavily on the choice of weights,
indeed the operator L, is Fredholm if and only if the weight is not an indicial root (for
definition of indicial roots we refer to [5]) at any of the points p;’s or g;’s. Since in normal
coordinates on a punctured ball, the principal part of our operator L, is *asymptotic’ to the
Euclidean Laplacian A, then the set of indicial roots of IL,, at the center of the ball coincides
with the set of indicial roots of A at 0. We recall that the set of indicial roots of A at 0 is
given by Z\ {5 —2m, ..., —1} form > 3 and Z for m = 2.
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By the analysis in [4], we recover the following result, which provides the existence of
solutions in Sobolev spaces for the linearized equation together with a priori estimates in
suitable weighted Holder spaces.

Theorem 3.1 For every f € LP(M), p > 1, satisfying the orthogonality condition (3.3),
there exists a unique solution u € WP (M) to,

]qu = fv
which satisfy the condition (3.3). Moreover, the following estimates hold true.

e I[fm > 3 and in addition f € Cgi(MP-,q) with 8§ € (4 — 2m ,0), then the solution u
belongs to Cg’a (Mp,q) and satisfy the estimates,

for some positive constant C > 0.
e Ifm =2 and in addition f € Cg’_a4 (Mp,q) with & € (0, 1), then the solution u belongs

to Cfo’g (Mp,q) and satisfy the following estimates,

N K N K
u=Y uppxp; — Y u@)xg + ) lupp)l + Y lulg)]
j=1 =1 C;}‘“(MM) j=1 =1
S C ”f”Cng(;;(Mpq) ’ (35)
where C > 0 is a positive constant and the functions xp,, ..., Xpy and Xq,, - . ., Xqx are
smooth cutoff functions supported on small balls centered at the points py, ..., py and
q1, - --,qk, respectively and identically equal to 1 in a neighborhood of these points.

In order to drop the orthogonality assumption (3.3) in Theorem 3.1 and tackle the general
case, we first need to investigate the behaviour of the fundamental solutions of the operator
L. This will be done in the following section.

3.2 Multi-poles fundamental solutions of L,

The aim of this section is twofold. On one hand, we want to produce the tools for solving
Eq. (3.2) on My, q, when f is not necessarily orthogonal to ker (IL,,). On the other hand, we
are going to determine under which global conditions on ker(IL,,) we can produce a function,
which near the singularities behaves like the principal non euclidean part of the Kéhler
potential of the corresponding ALE resolution. In concrete, building on Propositions 2.3
and 2.2, we aim to establish the existence of a function, which blows up like |z|>~2" near the
p;j’s and like |z]*=2" near the ¢;’s. Such a function will then be added to the original Kihler
potential of the base orbifold in order to make it closer to the one of the resolution. At the
same time, for obvious reasons, it is important to guarantee that this new Kéhler potential
will produce on M, ¢ the smallest possible deviation from the original scalar curvature, at
least at the linear level. Thinking of g as a perturbation of the flat metric at small scale, we
have that L, can be thought of as a perturbation of AZ. Since |z]2~2" and |z|*~2" satisfy
equations of the form,

A(AIZP72" + Blz|*72™) = C A8 + Dby,
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where &g is the Dirac distribution centered at the origin and A, B, C and D are suitable
constants, we are led to study these type of equations on M for the operator L,,.
The following easily follows from standard arguments in functional analysis.

Proposition 3.2 Ler (M, g, w) be compact Kcsc orbifold of complex dimension m and let
ker(IL,) = span{po, ¢1, ..., @a}, as in (3.1). Let (fo, ..., fa) be a vector in Rt Assume
that the following linear balancing condition holds

K N N
fi+ D agita) + Y bi(Ae(py) + Y ciwilp)) =0, i=1,....d,

I=1 j=1 j=1

K N
foVoly(M) + Y ar + Y cj = v Voly(M), (3.6)
=1 j=1
for some choice of the coefficients v, a = (ay,...,ax), b = (b1,...,by) and ¢ =
(c1,...,cn). Then, there exist a distributional solution U € 2'(M) to the equation,

d K N N
LolUl +v = Y figi+ Y by + D bjAS, + Y cjdp,. in M. (3.7)
i=0 I=1 =1 =1

Remark 3.1 When f; =0, fori =0, ..., d, we only impose the balancing condition (3.6),
which specializes to,

K N N
Zazwi(qz) + ij(A¢i)(P_/) + ch‘/)i(pj) =0, (3.8)

=1 j=1 j=1

and we obtain a real number v, ¢, defined by the relation,
K N
a4+ ) ¢j = vaeVoly(M), (3.9)
=1 j=1

and a distribution Ga p.c € 2'(M), which satisfies the equation,

K N N
Lo [Gabe] + vae =D aidy + Y bjAsp, + > ¢jdp, in M.
=1 j=1 j=1

We will refer to Ga pb,c as a multi-poles fundamental solution of L.

The following two lemmata and the subsequent proposition (3.3) will give us a precise
description of the behavior of a multi-poles fundamental solution Ga p  of L, around the
singular points. The same considerations obviously apply to a distributional solution U of
the Eq. (3.7). The first observation in this direction can be found in [5] and we report it here
for sake of completeness.

Lemma3.2 Let (M, g, w) be a Kcsc orbifold of complex dimension m > 2 and let M, =
M\{q}, with q € M. Then, the following holds true.

e Ifm > 3, there exists a function Gaa(q, ) € ij’m My N CZOOOC(M,I), orthogonal to
ker(LL,,) inthe sense of (3.3), such that,

2(m — 1) |S~!
Lo[Gaa(g. )] + % [40m —2) 5,] € cOe(m),
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where |T"| is the order of the orbifold group at q. Moreover, if z are holomorphic coordi-
nates centered at q, it holds the expansion,

Ganlg,2) =212 + O (1zI°72™).

o If m = 2, there exists a function Gap(q, ) € Cio.(My), orthogonal to ker(L,,) inthe
sense of (3.3), such that,
4183
LolGaa(q: )] = —rrd € ot (M),
where || is the order of the orbifold group at q. Moreover, if z are holomorphic coordi-
nates centered at q, it holds the expansion,

Ganlg, ) =log(lz]) + C; + Oz,

for some constant Cy4 € R.

Before stating the next lemma, it is worth pointing out that Gaa (g, -) has the same rate
of blow up as the Green function of the bi-Laplacian operator AZ. Since we want to produce
a local approximation of the multi-poles fundamental solution Gy ¢ , we also need a profile
whose blow up rate around the singular points is the same as the one of the Green function
of the Laplace operator. This will be responsible for the Ad),’s terms.

Lemma3.3 Let (M, g, w) be a Kcsc orbifold of complex dimension m > 2 and let M, =
M\{p}, with p € M. Then, the following holds true.

e If m > 3, there exists a function GA(p,-) € Cgf2m (Mp) N Cpe (M), orthogonal to
ker(IL,) inthe sense of (3.3), such that,
2(m — 1) |SP1|

LolGa(p, ) = 2= [Aap 4

Sp(m? —m+2)

0,0
mm + 1) 5"} € T an,

where |I'| is the cardinality of the orbifold group at p and s, is the constant scalar
curvature of the orbifold. Moreover, if 7 are holomorphic coordinates centered at p, it
holds the expansion,

2

Ga(p.) = [2P72" + 272" (@a+ @a) + |72 D dgjpy + O (I26727),
j=0

Sfor suitable smooth T-invariant functions ® ;’s defined on S?"=1 and belonging to the
J-th eigenspace of the operator Agom-1.
e Ifm = 2, there exists afunction GaA(p, -) € C4_’g (M,)NCS (M), orthogonal toker (L)
inthe sense of (3.3), such that,
IS 50215’ 0
Ly[Ga(p,)] — — A8, — ——— §, € C"*(M),
wlGa(p, )] T p 3T P (M)
where |I'| is the cardinality of the orbifold group at p and s, is the constant scalar
curvature of the orbifold. Moreover, if z are holomorphic coordinates centered at p, it
holds the expansion

2
Ga(p, ) =121 + log(Izh)(®2 + ®4) + Cp + 2] Y Pany1 + Olzl?),
h=0
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for some constant C,, € R, some H € N and suitable smooth I'-invariant functions ®j’s
defined on S® and belonging to the h-th eigenspace of the operator Ag3.

Proof We focus on the case m > 3 and since the computations for the case m = 2 are very
similar, we leave them to the reader. To prove the existence of G (p, -), we fix a coordinate
chart centered at p and we consider the Green function for the Euclidean Laplacian |z|>~2".
In the spirit of Proposition 2.1, we compute,

Lol 2> ] = (L, — A%) [|z]*72"]
— 4t (i9921*7" 0 i00AY,, ) — 4tr (i80Y, 0iddAIZP7HM)
— 4 At (09, 0idd|z|**) + O (1z1*7*™)

AWy

m 2 m(m—+1) m AWy
= AWy + —— AW, — — A ——
4|Z|2m 4+ |Z|2m+2 4 |Z|2m

v
+4m (m + 1) Atr <|Z|27m4+2> +0 (|Z|2—2m) ’

where we used the explicit form of Wy,
] m
= _ i j k]
L114(z,z)——1 E Rzl
i,jkl=1

and the complex form of the euclidean laplace operator,

Expanding the real analytic function v, as ¥, = lz]* (@g + Py + Dy) + |2 (O] + D3+
®s) + O(|z°)), where, for h = 0, 1, 2, the ®2;,’s and the ®2j,1’s are suitable [-invariant
functions in the h-th eigenspace of Agam-1, we obtain,

2 2
2-2 -2 1-2 2-2,
Lollz72" = 121" Y " con @an + 121" Y conr Pangr + O (12772"),
h=0 h=0
where ¢y, ..., c5 are suitable constants. It is a straightforward but remarkable consequence

of formula (2.4), the fact that ¢y = 0. It is then possible to introduce the corrections,

2
Vi=1z|* 2" (Cry @y + C4@4) and Vs =1z > Cony1 Doy,
h=0
where the coefficients Cy, ..., Cs are so chosen that,
2
AP [V + Vs]= 27" (2@ + ca @4) + |22 Y congt Qo
h=0
This implies in turn that Ly, [ [z[*7" — V4 — V5] = O(|z|*">"). Using the fact that

in normal coordinates centered at p the Euclidean bi-Laplacian operator A2 yields a good
approximation of L, it is not hard to construct a function W € C gfl2m (B;) on a sufficiently
small punctured ball B;k0 centered at p, such that,

Lo [ 127" — V4 — Vs — W] e C™*(B)).
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By means of a smooth cut-off function x, compactly supported in B, and identically equal
to 1 in By,,2, we obtain a globally defined function in L! (M), namely,

2
Up=x <|Z|2_2m — |22 (Cy @y + CyDg) — [P ZC2h+l Dopyr — W)
h=0

In order to guarantee the orthogonality condition (3.3), we set,

d
1
Ga(p. ) =Up() — WfM Updpw — Y ¢i() fM Up i dite.
@ i=1

and we claim that L ,[G A (p, - )] satisfies the desired distributional identity. To see this, we set
M. = M\B,, where B; is aball of radius ¢ centered at p, and we integrate L,,[G A (p, - )] =
L, [U,] against a test function ¢ € C*°(M). Setting,

and using formula (2.2), it is convenient to write,
Y —_
Lo[Uy] = A2 U, + Z‘“ Ao U, + 4(p21id3U, ),
so that we have,

¢ Lo [Up] dite =/ ¢(Ai + S—wAw)[Up]duw + 4/ ¢ (0011000, ) dp,.
M, M m

& €

We first integrate by parts the first summand on the right hand side and we take the limit for
& — 0, obtaining,

. S
i 9 (23 + ) 0

= /Up (Ai + %”Aw> [¢]dn, + lim ) 8y(AuU,) do,
M

+ lim (Ape) 0,Updoy, + 2 lim / ¢ wUpdoy,
e—0 Jg M, e—0
where do,, is the restriction of the measure d ., to d M, and v is the exterior unit normal to
0M;. Combining the definition of U}, with the standard development of the area element, it
is easy to deduce that,

lim [ (Ap¢) 3,Updo, + — lim [ ¢ 3,U,doy,
e—0 aME =0 ()Mg
2(m —1)|S¥—1

= [Aw¢<p) +24().

To treat the last boundary term, we use Proposition 2.1 and we compute,

250 (m — 1)3

av AwU — 1-2m
(AoUp) =[] <m(m+1)

+ K2 @ + K4 <1>4> + O(Iz]P7"),

for suitable constants K, and K4. Hence, we get,

2(m—1)|82’” ! |:Sw(m 1)2
m(m +1)

1i 3, (A,U,) doy,
sfba‘p( p)do Tl

¢ (p )]
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In conclusion we have that,

(5 Ea o], = [ (52 + S0l
2= DIST] ‘lr)“gszl' (206 () + 75”(2;_;"1? 2 () |

We now pass to consider the term contanining ,og. An integration by parts gives,

lim/¢(pg|i85U,,>duw: / Up (p01i00¢) dpie
e—>0 Ms M

+ lim ¢ X(Up)adue + lim Up X(@)adug,
e—=0 aM, e—0 M,
where, for a given function u € C L p), the vector field X (u) is defined as X(u) =

(p%(d%u, -))". Itis easy to check that second boundary term vanishes in the limit. We claim
that the same is true for the first boundary term. To prove this, we recall the expansions,

0 = (0 () - 22 ) 8-
(08)i; = (2 (1) = 32 )87 + Ol
S —2m _i —2m a
attUﬂ:g;((l—m) 2|22 + O (|z)*2 ))871
diw = (1+0(121%)) dpo,

where the A;’s are the eigenvalues of the matrix (,og)ij and d g is the Euclideam volume
form. This implies,

m " g
X(Up) sdpy = (1 =m) 3 (3 (p) = 32) &' 5= sduo + O (2D
i=1

On the other hand, by the symmetry of d i, it is easy to deduce that,

d d
1 m
d dug.
/BMSZ azlJ o /3M£Z PP ad o

The claim is now a straightforward consequence. In synthesis, we have obtained,

— 2m—1
<]Lw[Up] |¢)9’><9 :/UP Lw[¢]duw =+ w
‘ M |
Sw(m? —m +2)
<[ + D )]
and the lemma is proven. .

Having at hand the above lemmata, we are now in the position to describe the local structure
around the singular points of the multi-poles fundamental solutions Gy p,c constructed in
Remark 3.1 through Proposition 3.2. For m > 3, it is sufficient to apply the operator L, to
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the expression,

K
a IT'n
G Ganlqr -
abet Z 4(m —2) [ 20m — 1] Gaatan)

N 2
sw(m —m+2)b; IT';] o
+,§ <4<m 2 m—2mm+ 1) ) [2<m—1>|82m—'| Gaalpy )]

i [—|Fj| Ga(pj ~)]
2m — 1)|Sm—1 AV

j=1

to get a function in C%(M). For m = 2, one can obtain the same conclusion, applying the
operator L, to the expression,

K

ar | TN+
Ga,b,c_ZZl[ |ISV3—II GAA(‘]Z,')i|

=1
i Swbj IT;]
- I Ganp;.-
G >[|S3| aa(pj.-)

_'1<

J
b, [ 1Tl (p: _)]
2|S3| Apjv .

Combining the previous observations with the standard elliptic regularity theory, we obtain
the following proposition.

=

&2

'MZ

1

J

Proposition 3.3 Ler (M, g, w) be a compact Kcsc orbifold of complex dimension m > 2, let
Ker(ILy,) = span{go, @1, ..., 94}, as in (3.1) and let Ga b, be as in Remark 3.1. Then, we
have that,

Gape € Co(Mpg).

Moreover, if 7', ..., 2™ are local coordinates centered at the singular points, then the fol-
lowing holds.
o Ifm > 3, then Gy p.c blows up like |z|>~>" at the points points of py, ..., py and like
|z|4’2’" at the points q1, . .., qk-
e Ifm = 2, then Gy p ¢ blows up like |z|~2 at the points py, ..., py and like log (|z]) at
the points q1, . . ., qk-

3.3 Solution of the linearized scalar curvature equation

In this section, we are going to describe the possible choices for a right inverse of the operator
L, in a suitable functional setting. Since this operator is formally selfadjoint and since we
are assuming that its kernel is nontrivial, we expect the presence of a nontrivial cokernel. To
overcome this difficulty, we are going to consider some appropriate finite dimensional exten-
sions of the natural domain of L,,,, which, according to Theorem 3.1, is given by Cg’“ (Mp.q),
with§ € (4 —2m,0) if m > 3 and § € (0, 1) if m = 2. Building on the analysis of the
previous section, we are going to introduce the following deficiency spaces. Given a triple
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ofvectorsaeRKandﬂ,yERN,weset,formz3,l:1,...,Kandj:1,...,N,
a TN+
Wy =— Ganlar,") |,
“= " 4m—-2) [2(m—1)|s2m—1| aalar.)

Wy = | g Gatr10 ]
By =5 2(m — 1)|SP—1) »

- ( vi sw(mz—Wt+2)ﬂ/>
4(m — 2) (m—=2)m@m +1)

T
— G i) |, 3.10
X|:2(m—1)|82m—1| An(pjs ) (3.10)
whereas, form =2,/ =1,...,Kand j =1,..., N, we set,
TN
wl = G R
p l[4|S3| aalq, )
; T Yi  SoBi\ [Tl
Wi =8| =+ Ga(pj,- - G TONE
B.y :3] |:|Sg| A(PJ )| + 4 6 |S3| AA(p] )

We are now in the position to define the deficiency spaces,
Dq(oc)zspan{Wol(:lzl,...,K} and Dp(,B,y)=span{Wl{_y:j=1,,..,N}..

These are finite dimensional vector spaces and they can be endowed with the following norm.
IFV =35 VW, € Dy(@)and U = Y1_, UIW} , € Dy(B, y), we set,

K N

IVlpyw =Y IV and Ulp,py = U]
=1 j=1

We will also make use of the shorthand notation Dy (e, B, p) to indicate the direct sum
Dq(e) @ Dp(B, y) of the deficiency spaces introduced above, endowed with the obvious

norm ||+ o, @) + Il 12y 8-

To treat the case m = 2, it is convenient to introduce further finite dimensional extensions
of the domain Cg’“(Mp,q), with § € (0, 1). These will be called extra deficiency spaces and
they are defined as,

8q:span{qu :l:l,...,K} and Epzspan{xp./ :j:l,...,N},

where the functions ., ..., Xpys Xgi - - - » Xgx are smooth cutoff functions supported on
small balls centered at the points pi, ..., pn,q1,-..,qk and identically equal to 1 in a
neighborhood of these points. Given two functions X = Zj‘v:1 X' xp; € épand ¥ =

S K Y, € &, we set,
K N
IYlle, =Y 1¥'| and [Xg, =Y X/].
j=1

=1

We will also make use of the shorthand notation &, ¢ to indicate the direct sum Eq @ &p of the
extra deficiency spaces introduced above, endowed with the obvious norm || - ||gq +1- ||gp.
Notice that, with these notation, the estimate (3.5) in Theorem 3.1 reads,

~ o
||u||C§’H(Mp,q) + || u ||£p'q = C||f||c§fi‘s
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where u = 'IZ—H; S Cg'a(Mp,q) ® &Epgand f € Cg’_a4(Mp,q) are functions satisfying the
equation L, [u] = f as well as the orthogonality condition (3.3) and § € (0, 1).

We recall that we have assumed that the bounded kernel of L, is (d 4+ 1)-dimensional
and that it is spanned by {¢o, ¢1, ..., @q}, where 99 = 1 and ¢y, ..., ¢q, withd > 1,is a
collection of mutually L? (M)-orthogonal smooth functions with zero mean and L?(M)-norm
equal to 1. Given a triple of vectors @ € RX and 8, y € R", itis convenient to introduce the
following matrices,

Eil(e) =1 9i(q;), for i=1...,d and I=1,...,K,
O;i(B.y) = Bj Agi(pj) + vjpi(pj), for i=1...,d and j=1,...,N. (3.11)

These will help us in formulating our nondegeneracy assumption. We are now in the position
to state the main results of our linear analysis on the base orbifold.

Theorem 3.4 Let (M, g, w) be a compact Kcsc orbifold of complex dimension m > 2 and
let Ker(L,) = span{eo, ¢1, ..., @4} Assume that (N + K) > d and that the following
nondegeneracy condition is satisfied: a triple of vectors & € RX and B,y € RN is given
such that the d x (N + K) matrix,

((Eiz(a)) l<i<d

1<i<K

(©i(B.¥)) 1=i<d ) ,

15N
has rank d. Then, the following holds.

o [fm > 3, then for every f € Cg’_oa(Mp,q) with § € (4 — 2m, 0), there exist real number
v and a function,

u=10+7 € Cy*(Mpq) ® Dpgle,B,y)
such that,
Lou +v = f, in Mpgq. (3.12)
Moreover, there exists a positive constant C = C(«, 8, y, 8) > 0 such that,

|U| + ||ﬁ|IC§’“(Mpq) + ||ﬁ||Dp.q(a,ﬁ,y) =< C||f||c§f4(Mpq)

o [fm =2, then for every f € C?ﬂ(Mp,q) with § € (0, 1), there exist real number v and
a function,

u=T+u+a € Cy(Mpq) ®Epgq ® Dpql@, B,y
such that,
Lou +v = f, in Mpgq.
Moreover; there exists a positive constant C = C (e, B, y, 8) > 0 such that,

~ o —~~
|U| + || u ||C§'Q(Mp,q) + || u ||5p,q + || u ||Dp,q(a,ﬂ,}') S C || f ||C§)"_a4(Mp q)'

Proof We only prove the statement in the case m > 3, since it is completely analogous in
the other case. For sake of simplicity we assume & = 0 € RX, so that the nondegeneracy
condition becomes equivalent to the requirement that the matrix,

(©ij(B.¥)) 1<i<d
I,<j<N
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has full rank. Under these assumptions, the deficiency space Dp (e, B,y) reduces to
Dp(B, y). In order to split our problem, it is convenient to set,

d
R P
f/=r Vol,, (M) Mfde ;‘Pz qu)td,u(m

so that £ satisfies the orthogonality conditions (3.3). By Theorem 3.1, we obtain the exis-
tence of a function ut € Cg’“(Mp,q), which satisfies the equation,

L, [ut] = £+,

together with the orthogonality conditions (3.3) and the desired estimate (3.4). To complete
the resolution of Eq. (3.12), we set,

fO VOI (M)/fdﬂw and fl ffwldﬂwy fOI'l—l d
Recalling the definition of ®;;(8, y) and using the nondegeneracy condition, we select a
solution (v, Uy, ..., Uy) € RVt {0 the following system of linear balancing conditions,
N .
fi + YU [Bj (Ao (pj) + vigip))] =0, i=1,...4d,
j=1
N .
foVoly(M) + Y U/ y; = v Voly(M).
j=1

It is worth pointing out that in general this choice is not unique, since it depends in the
choice of aright inverse for the matrix ©;; (8, y). Theorem 3.2 implies then the existence of
a distribution U € 2’(M) which satisfies,

d N N
LolUl +v = > figi + Y UIB NSy, + Y Uly;sy, in M.

Arguing as in Proposmon 3.3, it is not hard to show that U € C/°
function ut + U € C}:

loc

(Mp). In particular the

loc
“(My) satisfies the equation,
p q

Lolu +Ul +v=f, in Mp.

To complete the proof of our statement, we need to describe the local structure of U in more
details. First, we observe that, by the very definition of the deficiency spaces, one has,

Lo [Wﬂ/ y] lBj A(Sl’j + Vi 81’/ + Vﬂ/y
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where, for every j = 1, ..., N, the function VI{ y is in C®°(M). Combining this fact with
the linear balancing conditions, we deduce that,
N d N
SRS UM EYEIED D oS
j=I i=1 j=1

N

d
= Yol (M) (M) Z Ulyi - 21:
P =
_ Z Uj v/
j=1

By the definition of Vlg y it follows that,

U’ ©ij (B, y) i
J=1

/M Vi, 0 duy, =—y; and /M Vi, i diw =~ 04 (B.p).

and thus, it is easy to check the right hand side of the equation above is orthogonal to ker (L, ).
Hence, using Theorem 3.1 and by the elliptic regularity, we deduce the existence of a smooth
function u € C°° (M) which satisfies,

Lo @l = oo (M) ZU vi — ;;U’@,/(ﬂ V) $i — ZU/ , in M.
Setting u = ij:l U/ Wﬁ{!y, we have obtained that L, [U ] = L, [& + u], hence,
]Lw[MJ_'F ut+ul+v = f, in Mp7

witht = (ut+1u) € Cg'“ (Mp) and @ € Dp(B, ). Moreover, combining the estimate (3.4)
with our construction, it is clear that, for suitable positive constants Cy, ..., C3, possibly
depending on B, ¥ and §, it holds,

|| u ||C§’W(Mp)®pp(ﬂa}’) = || ﬁ'lcg«“(Mp) + ||ﬁ||Dp(ﬂ,y)

IA

n _ -~
[lu ||C§’Q(Mp) +[lu ”C:’a(Mp) +[lu ||Dp(ﬁ,y)

A

N
< Coll fHll¢oa o,y +C1 D U]

IA

d
L1 .
2 (IIf lleoa g,y + Zl |ﬁ|>
1=

C3 1 Fllgoe ury

IA

which is the desired estimate. Finally, we observe that the constant v as well can be easily
estimated in terms of the norm of f. This concludes the proof of the theorem. O

Remark 3.2 In other words, with the notations introduced in the proof of the previous theorem,
we have proven that, form > 3 and § € (4 — 2m, 0), the operator,

Lo

O, T Cr(Mp.q) ® Dpq(@. B.y) x R — C(Mp.q)

(U+u, v)yr—Lylu+ul+v,
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with B8, y and « satisfying the nondegeneracy condition, admits a (in general not unique)
bounded right inverse,

5 0, 4,
Josy @ Col(Mpq) — C*(Mpq) ® Dpqle, B,y) x R,

sothat(}L‘(f)ﬁy g)ﬁy)[f] = f,forevery f € CY% (Mp q) and,

(©)
”Jaﬂy ”Ca “(Mp,q) ® Dp,q(a,B.y) xR = CHfHCg'_‘Z(Mp{q)'

Of course, the analogous conclusion holds in the case m = 2.

4 Linear analysis on ALE manifolds

We now reproduce an analysis similar to the one just completed on the base orbifold on
our model ALE resolutions of isolated singularities. We define also in this setting weighted
Holder spaces. Since we will use duality arguments we introduce also weighted Sobolev
spaces. Let (X1, i, n) be an AL E Kéhler resolution of isolated singularity and set,

Xrry = x! (BRO) .
where 7 : Xp — C™/T is the canonical projection. This can be thought as the counterpart
in Xr of M,, in M. For § € Rand « € (0, 1), the weighted Holder space Cg’“ (Xr) is the
set of functions f € ck loc “(Xr) such that,

gy 3= 1 hesotren) + 399 RS R levaym ) < o0
0

In order to define weighted Sobolev spaces we have to introduce a distance-like function
y € Ci (Xr) defined as,

yp)=xP+UA-x{@P)Ix(p| peXr,

with x a smooth cutoff function identically 1 on Xr g, and identically 0 on Xr\Xr 2g,. For

5 € R, the weighted Sobolev space W{f’z (Xr) is the set of functions f € L}UC(XF) such
that,

k
. . 2
g = 30 f Iy duy < oo
j=0

where,

VWD f:=Vo---0Vf.

J times
We recall now the natural duality between weighted spaces,
(1 ¢ L§ (Xr) x L%, _s (Xr) —> R,
defined as,

(flghy, /fgdun 4.1)
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Remark 4.1 We note that a function f € Wé"z (Xr) N Cpy. (Xr) on the set Xr\Xr g,
beheaves like,

Flxe\Xrg, (P) = O <|x () |5’) for dome 8 < 5.
and a function f € C*% (Xr) on the set X\ X, R, typically beheaves like,
Flxe\xrg, (P) =0 (X (p)I°).

We also note that for every 8’ < § we have the inclusion,

Cy* (Xr) € Wy (Xr).
The main task of this section is to solve the linearized constant scalar curvature equation,

Lyu=f.
We recall that by (2.2),
Lyu = Aju +4(py|idou).

and, since (Xr, &, n) is scalar flat, I, is formally self-adjoint. We also notice thatif (Xr, &, 1)
is Ricci-flat, the operator L, reduces to the n bi-Laplacian operator. Since we want to study
the operator IL;, on weighted spaces we have to be careful on the choice of weights. Indeed
to have Fredholm properties we must avoid the indicial roots at infinity of L, that, thanks to
the decay of the metric, coincide with those of euclidean bi-Laplace operator A? . We recall
that the set of indicial roots at infinity for A2 on C™ is ZN\N{5 —2m, ..., —1} form > 3 and
Z form = 2. Let § € R with,

8¢ Z\{5—-2m,...,—1}.
form > 3 and § ¢ 7Z for m = 2, then the operator,
L® : Wi (Xr) — L}_y (Xp).
is Fredholm and its cokernel is the kernel of its adjoint under duality (4.1),
Lm0 w5 (Xr) = L2, 4 s (XD).
For AL E Kihler manifolds a result analogous to Proposition 3.1 holds true.

Proposition 4.1 Let (Xr, h, n) a scalar flat ALE Kdhler resolution. If m > 3 and § €
4 —2m, 0), then,

LY P (Xr) — €% (Xr).,
is invertible. If m =2 and § € (0, 1), then,
LY P (Xr) — €% (Xr).,
is surjective with one dimensional kernel spanned by the constant function.

Remark 4.2 Rephrasing Proposition 4.1 we can say that for § € (4 —2m) if m > 3 and
8 € (0, 1) if m = 2 the operator,

4 0,
LY ¢ (Xr) — €3 (XT).
has a continuous right inverse,

IO (Xr) — C (Xr).
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The proof of the above result follows standard lines (see e.g. Theorem 10.2.1 and Proposition
11.1.1 in [23]). We focus now on the asymptotic expansions of various operators on ALE
manifolds.

Lemma 4.1 Let (Xr, h, n) be a scalar flat AL E-Kdhler resolution with e (I') = 0. Then on
the coordinate chart at infinity we have the following expansions,

e for the inverse of the metric n'/
. ;7 2cxp (m—1) xix )
V=28 - 2§ —m—— | +0O(|x " 4.2
77 [ |x|2m L] |x|2 (| | ) ( )
e for the unit normal vector to the sphere |x| = p
1 /(,8 —38 exp (m —1)? 9
T (" o 8xi>|: A U
e for the laplacian A,

Aﬂ _ |:1 _ ZCXT (lrgm— 1):| A+ |:8qu (lf’;’lmzzl)m;xj +0 <|x|7272m):| 8/‘81" (44)
X X

The proof of the above lemma consists of straightforward computations and is therefore
omitted.
We conclude this section with an observation regarding fine mapping properties of,

L® : Wy (Xr) — L}, (Xr),

that will be useful in Sect. 5.3 in a crucial point where we show how the nonlinear analysis
constrains the choice of balancing parameters. In the following proposition we want to solve
the equation,

Ln[”]=f’

with f € L§_4 (XT1) (C(g)’_a4 (Xr)). In general, when § € (2 — 2m, 4 — 2m), the indicial root
3 — 2m imposes to the solution u to have a component with asymptotic growth |x|3~2" . The
keypoint of Proposition is that if I" is non trivial this doesn’t occur.

Proposition 4.2 Let (Xr, h, n) be a scalar-flat ALE Kdhler resolution with ex, = 0 and
nontrivial ' <« U (m). For § € (2 —2m, 4 — 2m), the equation,

]Ln [ul = f

with f € L§74 (Xr) (respectively f € Cgﬂ (X)) is solvable for u € ng (Xr) (respec-
tively u € Cg’a (X)) if and only if,

fdu, =0.
Xr
Proof We are going to prove the following characterization:
LO (w2 x| = {f € L} (Xr) | /X f oy = 0} :
r

Since L, is formally selfadjoint we can identify, via duality (4.1), the cokernel of,

LY Wi (Xr) — L34 (Xr) §e€@—2m,4—2m),
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with the kernel of,
Ly Wh s (Xr) = L2,y 5 (XT).
We want to identify generators of this kernel. Let then u € W; 2 (Xr) such that,
Ly [u] =0,

with § € (0, 2),we want ot prove that u = cq for some ¢y € R. By standard elliptic regularity

we have that u € C{) . (Xr). On X\ X1, g we consider the Fourier expansion of u,

+o0
w=y u® (x]) 1,
k=0

withu® e ng,oz ([R, 4+00)) for any n € N and this sum is C"“-convergent on compact sets.
Then, using expansions (4.2), (4.3), (4.4), we have on X1\ Xr g,

+00
0= A2 ul =Y A2 [u® (x]) g | + 162" La fu] + 1x1 772" L [u] + 151272 Lo fu).
k=0

where the Lj’s are differential operators of order k and uniformly bounded coefficients. The
equation,

+o00
>0 A2 [u® () e | = =l Ll = 672 L ] = x| Lo [,
k=0

implies
A2 [uBg] € €15,y (Xr\Xrk) fork = 0.
Suppose by contradiction that,

lim sup |u| > 0.
[x|—+o00

Since u® ¢y € C5** (Xr\Xr &) the only possibilities are,
u®@ (|x]) = co + vo (|x])
uD (Ix]) = (x| + v (1x])) o1,
n,o

with vp, vy € C;75,, ([R, +00)) and ¢¢ € R. But there are not ¢; that are I'-invariant (see
Remark 2.3) since I is nontrivial, so the only possibility is that,

u® (Ix]) = co + o (Ix]) .
We now show that u is actually constant, indeed u — ¢o € Cg'_“zm (X) and,
Ly lu = col = A7 [u — co] =0,
so by Proposition 4.1 we can conclude,
u—co=0.

The proposition now follows immediately. O
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5 Nonlinear analysis

In this section we collect all the estimates needed in the proof of Theoreml.1. As in [4]
and [5] we produce Kcsc metrics on orbifolds with boundary which we believe could be of
independent interest (Propositions 5.1, 5.2).

From now on we will assume that the points in p C M have resolutions which are Ricci-Flat
ALE Kdihler manifold.

Given ¢ sufficiently small we look at the truncated orbifolds M, and X1 i Re forj=1,...,N
where we impose the following relations:

2m—1
Fe = £2m+l = SRE-

We want to construct families of Kese metrics on M), and Xr; g, perturbing Kéhler potentials
of w and n;’s. We build these perturbations in such a way that they depend on parameters
that we call pseudo- boundary data and we can also prescribe, with some freedom, principal
asymptotics of the resulting Kcsc metrics. By principal asymptotics we mean the terms of the
potentials of the families of Kcsc metrics on M,, that near points p; beheave like |z|>=2" or
|z|*~%" and the terms of the potentials of the families of Kcsc metrics on X r;,R, approaching
infinity beheave like |x|>~2" or |x|*~2". In a second moment we choose the exact shape of
these asymptotics by specifying some free parameters (tuning). The pseudo-boundary data
form a particular set of functions on the unit sphere and they are the parameters that rule
the behavior of the families of Kcsc metrics at the boundaries dM,, and X P Re- They
are the main tool for gluing the various families of metrics to a unique Kcsc metric on the
resulting manifold, indeed their arbitrariness will allow us to perform the procedure of data
matching. We call them pseudo-boundary data because they represent small perturbations
of the (suitably rescaled) potentials of the Kcsc metrics at the boundaries.

Notation For the rest of the section y ; will denote a smooth cutoff functions identically equal
to 1 on By, (p_,-) and identically equal to 0 outside B3, (p.,-).

5.1 Pseudo-boundary data and euclidean Biharmonic extensions

A key technical tool to implement such a strategy is given by using outer (which will be
transplanted on the base orbifold) and inner (transplanted on the model) euclidean biharmonic
extensions of functions on the unit sphere. We define now the outer biharmonic extensions of
functions on the unit sphere. Let (i, k) € C 4 (Szm_ 1) x Ch (Szm_l) the outer biharmonic
extension of (4, k) is the function H];” ¢ € C*¢ (C™\By) solution fo the boundary value
problem,

AHM =0 onC™\B,
HW = h on 3B
AH}‘I”’Q =k on dB;.

Moreover Hy% has the following expansion in Fourier series for m > 3,

+00
k) k)
How . — 2 h(y) 2-2m—-y _ 4—2m—y ; 51
" H(( Ty - )" sty -2 P OD
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and form =2

t ©),,1—2 k©
Hijt = hOw| ™ 4+ = log (jw))

k) k)
) 4 —2-y _ -y
+Z(<h y)lwl ekl >¢>y. (5.2)

Remark 5.1 In the sequel we will take T-invariant (i, k) € C*® (S*"~1) x Cc*« (s?m~1)
and by the Remark 2.3 we will have no terms with ¢; in the formulas (5.1) and (5.2) for
nontrivial I".

We define also the inner biharmonic extensions of functions on the unit sphere. Let
(fz, IE) e CH (SPm=1) x €2« (S?™~1), the biharmonic extension Hé”}z on B of (fz, IE)
is the function H }i;”]; € C* (B)) given by the solution of the boundary value problem,

A? nEZO w € By
H}%:E w € B .

AH}E;”]; =k w € 9B

S~

The function H }1;”]; has moreover the expansion,
+00 = ~
. - k) k)
H" (w) = Z pwvm = lw|?” + 7|w|7+2 b, .
h,k s 4(m +y) 4(m +y)

Remark 5.2 Again, if the group I" is non trivial and for I'-invariant (%, k), by Remark 2.3,
there will be no ¢-term in the above summations. So we will have,

) - Q) k© > - k) kw
Hn — (7O ) _ Y y+2 .
ok ( el Bl lw? +X; el L o | L K%

As in [4,5] we introduce some functional spaces that will be needed in the sequel that will
naturally work as “space of parameters” for our construction:

B/ — C4,a (S2m—1/rj) x C2,0( (SZI/;l—]/Fj)
B:= ﬁ Bj
j=1

Bc.8) = {(h, K e B ‘ Hhﬁm’k(fm HB. < g2, —6m 4= Hh(fﬂ’k;}‘) HB~ < g2, 2—4m=s }
) J ) J

(5.3)

We call the functions in B (k, §) pseudo-boundary data and will be used to parametrize
solution of the Kcsc problem near a given “skeleton” solution built by hand to match some
of the first orders of the metrics coming on the two sides of the gluing.
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5.2 Kcsc metrics on the truncated base orbifold

We start with a Kcsc orbifold (M, w, g) with isolated singular points such that there is a
subset of sungular points p C M whose elements have resolutions which are Ricci-flat ALE
Kihler manifold. We want to find F(;”f)’ chk €C 4o (M,.s) such that,

. - 0D pout
@0.b,chk =+ laaF&Ifxc,h’k

is a metric on M,, and its scalar curvature Su,, ., 1S @ small perturbation of the scalar
curvature s,, of the reference Kihler metric on M.
The function Fg4/ . .  consists of four blocks,

out . 2m out out
Fobenk =6 Gope+Poy+Hy'y + folhcnk

the skeleton £2"Gg p.c, extensions of pseudo-boundary data Hp', transplanted potentials

of n;’s Ppy and a “small” correction term fg'y! c.hk that has to be determined. We want

Fy ‘,‘D’ ..k be asmall perturbation of @ and hence we can use the expansion in Proposition 3.1

to look for the equation that £/ ., \ has to satisfy on M,,. We have,

Sonpenk = So (=8 Gop.e + Poy + Hy'k + /)

1 5, 1 1 1
=Sw — 582 Vo,c — ELw [Pb,n] - EILa) [ ﬁﬁi] - ELa) [f]

1
+ 5Ny (7" Go.e +Poy + Hy + f) (5.4)

where in the second line we used the very definition of Gy p,c. Rewriting the above equation
in terms of the unknown f we obtain,

Lo [f1= (250 — £™v0.c — 2S0ppcni) — Lo [Pba] — Lo [HY]
+ Ny (=" Gope + Poy + HY't + f) .

The rest of this section is devoted to solve this equation.

Skeleton The skeleton is made of multi-poles fundamental solutions Go p,¢ of L, introduced
in Sect. 3.2. These can be regarded as functions defined on M), that are in ker L, and blow
up approaching points in p. For this reason, the existence of a skeleton, is strictly related to
balancing conditions (3.8) and (3.9) in Remark 3.1 with a = 0, namely,

N N
D bi(Ae(py) + Y cjvi(p)) =0

j=1 j=1
N
ch = g, Vol, (M)
j=1
so that,
N N
Lo [Gobe] + voe=Y bjAS, + > ¢;8,. in M.
j=1 j=1
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for a local description of the skeleton it is useful to keep in mind that, by Lemma 3.2, near
points p; we have the expansion,

bl

G ~——o0GC ih2) .
0,b,c 2m—1) |Sz’”—1| A (Pj Z)

It is clear that the form,

_ b . |1-! . | m
w+i0d | —e"G + I e2x v,
N Crr iy syl AL
1
2¢ (F,) (m—1) |S2mfl| " .
x hd
bj |Fj| &
b;IT; 0
matches exactly at the highest order the form (W) " 1, once we rescale (as

we will in the final gluing) the model using the map,

<2c (T;) (m — 1) |82m—1|)r]" z
X = -

bj|l“j| &

)

where the coefficient ¢ (1" j) is given by Proposition 2.3. It is then convenient, from now on,
to set the following notation,

B = bl " (5.5)
! 2¢ (T) (m — 1) |S2m=1] ' '

It will also be convenient to identify the right constants C; such that,

N
Lo | Gop,e — ZC(F,') sz'mGA (pj.2) +CjGan (pj.2) | € C™*(M).
=1

By Lemma 3.3 one gets,

Cj_S(m—Z)(m—l) |:2€(F./)Bj T So |1+ D —cj|. (5.6)

The highest blow-up terms of Ga, Gaa in Gy p ¢ i.€. terms exploding like |z|2~2m |74 2m
are the principal asymptotics of the family of Kcsc metrics wg p, ¢ h k. At the moment of data
matching, the coefficients B;’s and C;’s will be “funed” in such a way that, principal asymp-

totics of wg p,c,n,kx on M,, will match exactly the “principal asymptotics™ of 827715,~,ﬁ/-,1€,» ’s on

X r. ;Lg ’s. More precisely, under suitable rescalings, the |z|>~2" terms of Gy p,c will match
bj
exactly the |x|>~%" terms of the potentials at infinity of n;’s and also |Z|*~2" terms will
match exactly the correction terms |x|*~2" that pop up transplanting potential of w on X r;.
The justification for this procedure will come at the moment of data matching. indeed, when
we will look at the metrics at the boundaries, it will be clear that the e-growths of the prin-
cipal asymptotics are the maximum among all terms constituting the family wg p ¢ n k and
are in fact too large to be controlled by the extensions of pseudo-boundary data (introduced
just below here). For general b, ¢ as in assumptions of Proposition 5.1 the data matching
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procedure becomes hence impossible. To overcome this difficulty we are forced to impose
relations on b, ¢ with the funing procedure, and in some sense we fix them, in order to have
that the extensions of pseudo-boundary data control all the components of wg p ¢ hk DOt
perfectly matched. The funing procedure, although it could appear as a merely technical
procedure, has strong geometric consequences indeed it yields to the right relations among
the coefficients b; and c; giving us a precise asymptotics of the metrics produced.

Extensions of pseudo-boundary data Using the notion of euclidean outer biharmonic exten-
sions of functions on the sphere we define for (h, k) € B (x, §),

N
Z
=1 it &

When we will look to this term at the boundary we will see that it has the second e-growth
after the principal asymptotics and it will become the highest e-growth after the “funing”
of principal asymptotics. We will have, hence, that extensions of pseudo-boundary data
dominate every other term with respect to e-growth. Moreover thanks to the arbitrariness of
(h, k), we can perform the Cauchy data matching procedure and glue the various metrics to
a unique one.

Transplanted potentials As Székelyhidi does in [25,26], we bring to M, the potentials of n;’s
suitably rescaled and cut off in order to have better estimates through algebraic simplifications.
Indeed, using the fact that n;’s are scalar flat we obtain some useful cancellations when
compute the magnitude of the error we commit adding to w “artificial” terms like the skeleton
and the transplanted potentials. In x-coordinates on Xr;’s we have,

0= Seuet (—c () IX*72" + ¥y, ()
1 1
= —EAZ [V, (O] + 5 Newer (—c (T)) 272" 4y, () (5.8)

with ¥, ’s potentials “at inifinity” of metrics 7;’s defined in Sect. 2 Proposition 2.3 formula
(2.5). With the rescaling,

where the coefficients B;’s are defined in formula (5.5), we consider the term,

N
Z
Phy =Y Biexjyn, (B]8> : (5.9)

j=1
We can rewrite identities (5.8) as follows,
0 = Seuct (—c (T;) " B> |z]*~2" + Py, )
1 1 _
= =5 A [Pog] 4 5 Newer (= (Tj) £ B[22 + Py ). (5.10)
Unfortunately, since we are not in the euclidean setting, we have,
1 1 _
= Lo [Pog] + 5No (= (1)) 2" B 7|72 + Py y) # 0.

and hence we produce an error that has to be corrected by the solution f of the Eq. (5.4).
The size of the solution f grows as the error grows and we need f to be small to be
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able to perform the Cauchy data matching procedure. So we want to minmize as much
as possible this error. Here two facts come into play, the first is that on a small ball centered
at p; € p the metric w osculates with order two to the euclidean one and the second is that
we substitute ¢ (I';) 62" B*"|z|>=2" with £2" Gy p,c whose principal asymptotic is exactly
c (F j) g2m B2 |7|2=2m - As we will see in the sequel we can use these two facts and relations
(5.10) to produce sharp estimates for the error S, (—esz(),b,c + Pb,,,) and verify that is
sufficiently small to allow us to perform the Cauchy data matching procedure and hence
conclude the gluing construction.

e Correction term It is the term that ensures the constancy of the scalar curvature of
the metric @g b,c.nk on M,, and it is a function fo}y .\ € Cg’a (Mp) @ Dp (b, )
if m > 3and fg4 € C¥ (Mp) ® & @ Dy (b,c) if m = 2, where the spaces
Cg *(Mp)®Dp (b, ¢) and Cg’“ (Mp) ®Ep@Dp (b, ¢) are defined in Sect. 3.3 by formulas
(3.11) and (3.11). As the notation suggests, the function f0 b.c.hkx depends nonlinearly
on (h, k) and b and we find it by solving a fixed point problem on a suitable closed and
bounded subspace of C;* (Mp) ® Dy (b, ¢) if m > 3and € Cy* (Mp) ® £, ® Dy (b, ©)
iftm=2.

Notation For the rest of the paper we will denote with C a positive constant, that can vary
from line to line, depending only on w and n;’s

‘We can now state the main proposition for the base space, whose proof at this point follows
similar arguments as in [4,5] and is hence omitted:

Proposition 5.1 Let (M, g, w) a Kesc orbifold with isolated singularities and let p be the set
of singular points with non trivial orbifold group that admit a Kdhler Ricci flat resolution.

o Assume existb € (R"‘)N and ¢ € RY such that,

Zy:1bjAw(Pi (pj)+Cj§0i (pj)ZO i=1,...,d
(® (b, ¢)) 1<i<d has rank d
15N

where (© (b, ©)) 1<i<q is the matrix introduced in Sect. 3 formula (3.11). Let G p,c be
1Sj=N
the multi-poles solution of L, constructed in Sect. 3 Remark 3.1.
o Letd € (4—2m,5—2m). Givenany (h,Kk) € B («, §), where B (k, 8) is the space defined
in formula (5.3), let H"“’ be the function defined in formula (5.7).

z
Hy'y = ZXJ o(uff e (7) :
K\ e
o Let Py y be the transplanted potentials defined in formula (5.9),
N z
. 2.2
Pb’n = ZBJ{;‘ X]'(ﬂn/ (ng) .
j=1

Then there exists fg! .y 1 € C “(Mp) ® Dp (b, ¢) if m > 3 and Jobenk € C “(Mp) @
E®Dp(b,c)ifm= 2 such that

@obehk = ®+id0 (—e"Gop.c + Py + Hy'k + fobenk) -
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is a Kcsc metric on M,, and the following estimates hold

out < 2m+2 2—-2m—3§ -~
” ObChk“Cg’u(Mp)EBDp(b,c) = Ce re form > 3,

out 6..—2-68 _
”fO,b,c,h,k”cgﬂ(Mp)@gp@Dp(b,c) <Ce Te Jorm =12.

Moreover S, . x> the scalar curvature of wo b, b,k is a small perturbation of s, the scalar
curvature of the background metric w and we have,

2m
|Sw0.b.c,h,k — sw| < Ce™".

5.3 Kcsc metrics on the truncated model spaces

We now want to perform on the model spaces Xr;’s a similar analysis as in the previous
section.

Notation 7o keep notations as short as possible we drop the subscript j.
Our starting point is a Ricci-flat ALE Kihler manifold (X, n, #) where we want to find

Fén;; c€ che <XF &) with b € R* such that,
h, b

U b77+138 };i”;

is a metric on X g, and,
b

1
Siz ( b.i I?) =’ (sw + Eso,b,c,h,k> .

with S B2 the operator introduced in (2.1). The parameters l;, ﬁ, k will be chosen after the
construction of the familiy of Kcsc metrics on X[ e, in particular b will be chosen with
b

a “manual tuning” of the principal asymptotics while h, k with the Cauchy data matching
procedure. The function F!". . will be made of three blocks:

11,

in - in
Fl;ﬁ,/;_P +H~~+ l;ﬁ/;

P; , is the transplanted potential of w that keeps the metric near to a Kesc metric, H" i is

the extension of pseudo-boundary data that will allow us to perform the Cauchy data matchlng
procedure and a small perturbation b h - that ensures the constancy of the scalar curvature.

Since FI" _ has to be a small perturbation we can use the expansion in Proposition 3.1 to

look for the equation that 5”5 - has to satisfy and we have,

1 )
82Sa, + Egzsl),b,c,h,k = Sl;zn (Pl;,a) + H;;n/; + f)
1 . 1 .
50 © = 3Lz, [P, + B 7]+ SNz, (P, +HL + 1)
(5.11)
Remembering that Sézn (0) = 0 since 7 is scalar flat and,

L, — A2
bzr]_l;j n’
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because 7 is also Ricci-flat we can rewrite Eq. (5.11) in terms of the unknown f,
AT Lf1=—&*b* (250 + Sob.chk) — A7 [P,;yw + Han] +5'Np, (P,;.w +H + f) .
(5.12)

Transplanted potential Asin[25,26] we introduce the term P;  thatis a suitable modification
of the function v, defined in Proposition 2.1. We recall that i, satisfies,

Seuct (ww) = Sw»
and hence,

1

1
S = —EAZ (Vo] + 5 Newet (Vo)

in z coordinates on a small ball. Once we perform the rescaling,
z = bex,
we consider the function e_ztjfw (l;sx) and we have,

1 Yo (58}6) 1 Vo (l;sx>
e25y = ———A? | ——2 | + -N;, M NS
CT 2t &2 2°b

-eucl 82

The aim of the transplanted potential is, hence, to cancel the term g2s,, in Eq. (5.12).
Unfortunately the metric associated to 7 is not the euclidean one so remainder terms appear
and the solution f has to correct them, indeed we have,

~ 1 2 Ve (l;ex) 1 Ve (Eex)

. _N- = &2 remainder terms.
2b4 82 + 2 b2 w +

-eucl 82

Remark 5.3 If the remainder terms of the equation above are too large, then the solution f
to the Eq. (5.12) becomes too large and it becomes impossible to perform the Cauchy data
matching construction.

For simplicity we come back to the pre-rescaling expression of v, and we observe that
by Lemma 2.1

+o00
‘/fa) = Z ‘I}4+k s
k=0
—A[Wy] = 2s,,,
—A%[Ws] = 0.

We have to correct the linear error committed by terms W4, W5 and hence we look for
functions Wy, W5 solutions of,

A W + Wa] = =25,
A [Ws + Ws] =0.
We point out that it will be crucial to obtain a description as explicit as possible of W4, Ws.

More precisely these corrections will be made of explicit terms and rapidly decaying terms.
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The first ones will impose constraints on the parameters of the balancing condition while the
latter will be sufficiently small to be handled in the process of Cauchy data matching. The
correction Wy, more precisely precisely one of its components, will give an extra constraint in
the balancing condition and it is responsible for the requirement ¢; = s,,b; in Theorem 1.1.

Notation For the rest of the section x will denote a smooth cutoff function identically 0 on
Xr, ry and identically 1 outside Xr, Ry
3b 2b
Using Lemmas 4.1 and 2.1 it is easy to see that,
AZ [ W4l = =254 + (P2 + Bg) x|x| 72" + O (x| 7272")
A7 [xWs] = (34 ®s) x|x|' 72" + O (|x|71727).
If we set
Dy | Dy 4—2m
(A%+Aﬁ)xlx| form > 3,
Ugq ‘=

@ Dy _
(A2 + Ag) x log (|x]) form =2,
<I)3 CDS 5—2m
us = 2+2>X|X| .
<A3 AS

for a suitable choice of ®;, &4, ®3, ®5 eigenfunctions relative to the eigenvalues Aj, Ay,
A3z, As of Agom-1 , then,

AJTX Wy +ug] = =25, + O (Jx|7>72"),
A7 [xWs +us] = O (Ix|~'72").

Now we would like to find v4 € Cg’“ (Xr) with§ € 2 —2m,3 —2m) and v5 € Cg’a (Xr)
with § € (3 — 2m, 4 — 2m) such that,

AL X W4+ ug + val = =25,

AG X Ws + us +vs] = 0. (5.13)
Proposition 4.2 tells us that we can find such v4, vs if and only if the integrals,
/ (A% [xWsq + ug] + 25@) duy (5.14)
Xr
/ AT (X Ws + us] duy, (5.15)
Xr

vanish identically. To check whether those conditions are satisfied we have to compute the
two integrals above. The crucial tool for the calculations is Lemma 2.4. We start computing
integral (5.14). By means of divergence Theorem and Lemma 2.4 we can write,

) s |82mfl|
f (Af, [x W4 + usl + 2sw> dpy = lim / Ay (XWa)dpy + 2oL | |
Xr p—>+00 aXI‘.p m |F|

with v outward unit normal to the boundary. We point out that u4 doesn’t appear in the right
hand side of the equation above because the boundary term produced by the integration by
parts tends to zero as p tends to infinity, and this is an immediate consequence of Lemma 4.1
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and the fact that u4 has zero mean on every euclidean sphere. Then using Proposition 2.1 and
Lemma 4.1,

4exp (m — l)zsw

S
A, [Wa] du,,|aXr_p = |:_‘”p2m _

d m—
m m(m+l) :| I’L0|§2 l/r

1
+ |:O M) (P2 +Dy)+0 (;)] dMO|SZm—l/F ,

and integrating we obtain,

dexr (m—1)% 1S s,,
m(m+ 1) ||

/ (A% (X W4 + us] +2sw) ity = —
Xr

this shows that Eq. (5.13) cannot be solved in general for v4 € Cg’“ (Xr)withé € 2—2m, 3—
2m). To overcome this difficulty we add an explicit function which belongs approximately

to ker (A%), more precisely we can solve the equation,

cxp (m —1) 54
2m—=2)ym(m+1)
c

Af] |:X‘-IJ4 + uq4 + X|x|4_2m + v4:| = —2s, form=>3

A% [X\IJ4 + uyg — ngw x log (|x]) + v4] = —-2s, form =2
forvy € Cg’a (X) withd € (2—2m, 3—2m). In acompletely analogous way we can compute
integral (5.15) that vanishes identically and so we can solve the equation,

A7 [xWs +us + vs] = 0.

for vs € Cg'a (X) with § € (3 —2m,4 — 2m). Now we can write the explicit expression of
Wa,
exp (m—1)s,,

mx|x|4’2’”+u4+v4 form >3,

Wy = (5.16)

—%)(log(|x|)+u4+v4 form = 2.
The structure of the function Wy deserves a word of comment, the function v4 is what we call
the rapidly decaying term, u4 has a “critical” decaying rate but it has no radial components
with respect to Fourier decomposition reative to Ag2n—1 and hence it will be handled by
pseudo-boundary data in the Cauchy data matching, the remaning term is the one that will
constrain the coefficients of the balancing condition.

Remark 5.4 The term |x|*~2" (respectively log (|x|)) in formula (5.16) plays a crucial role
in our procedure, not only it is necessary for creating function on X that rapidly decays W4
at infinity, but also influence the balancing condition. It forces, indeed, to require condition
¢j = sybj in Theorem 1.1. In Sect. 6.1, we will see that, in order to be able to perform the
data matching procedure, we will have to match perfectly (funing procedure) the terms of the
potential at inifinity of U decaying as |x [*=27 and |x|>~2" with the principal asymptotics
of the potential of wg p.c.h.k that are the terms exploding as |z|>~>" and |z|*~>". We will do
this by making a specific choice for the parameters b and ¢ and as a consequence we will get
the key condition in Theorem 1.1.
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Contrarily to the case of W4 the correction of Ws is much easier indeed it is easy to see,
using Lemma 4.1 and the fact that us has no radial component with respect to the fourier
decomposition relative to Agam—1, that,

lim WA, [xW¥s +us] =0,
p—>+00 Berp

and hence it is sufficient to apply Proposition 4.2 to find vs. The function W5 is then,
Ws := us + vs,

and as for Wy the function vs is a rapidly decaying term and u4 has also a “critical” decaying
rate but it has no radial components with respect to Fourier decomposition reative to Agam—1
and hence it will be handled by pseudo-boundary conditions in the Cauchy data matching.
If we define,

Vo= e2b* Wy + 3B Ws.

then we can define the transplanted potential P~ as the function in che (X I ke ),

g%xtjfw (l;sx)—i—V form > 3,

1 ; - (5.17)
Lxwo (bex) +V+C form=2.

where C is the constant term in the expansion at By, (p) \ B, (p) of,
out 2m out out
Fobenk = =€ Gope+Poy +Hyy + folh cnk:

introduced in Proposition 5.1. As we will see in Sect. 6 the coefficient b is very important and
it will force the choice of particular values for the parameters b, ¢ we used on M to construct
Fé”f)’ .h x> and in particular of the skeleton G p,c.

Extensions of pseudo-boundary data Using euclidean inner biharmonic extensions of func-
tions on the sphere we want to build a function on Xr that is “almost” in the kernel of Af,.
We note that

Ay [xIxlP] = O (IxI7>7") .
A% [X|x|2q)2] =0 (|x|—2m—2) 7
A% [X|X|3q>3] = X|X|_1_2mq)3 10 (|x|—3—2m) )

As for the transplanted potential we want to correct the functions on the left hand sides of

equations in such a way they are in ker (A%) Precisely we want to solve the equations,
A% [X |x|2 + v(o)] =0,
A2 [X|x|2c1>2 n u<2>] -0,
A2 [xleP s +u® + 0] =0,
with v @, v® v® € 3 (Xr) for § € (2 —2m, 3 — 2m) and,

u® = x|x P2 @,
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for a suitable spherical harmonic ®3. The existence of v©@ v@ 3 follows from Proposi-
tion 4.1, Lemma 4.2 and,

/ A5 DI diay =/ A [l @2] dpy =/ A2 [xIxP @3] dpy =0,
Xr Xr Xr

as one can easily check using exactly the same ideas exposed for the transplanted potential.

We are ready to define the function HZ"k e Che (X I Re )
: b

in in in bx in kO p? (0)
HﬂJZ = Hﬁ,I? )+ x HE,IE = - Hﬁ,l? O )+ 74mR§U

o . - 53 (43 13
I LA WUt (O N S K (u® + %) (5.18)
4m+2)] R? 4(m +3) R}

Correction term It is the term that ensures the constancy of the scalar curvature of the metric
N5k o0 Xp ke and it is a function fl"~ . € C4’°‘ (Xr) where the space C4’°‘ (Xr) is a
b

weighted Holder space defined in Sect. 4. As in the base orbifold, the function f.". . depends
nonlinearly on (h, k) and b and we find it by solving a fixed point problem on a suitable

closed and bounded subspace of Cg'a (X1).
We are now ready to state the main result on the model spaces.

Proposition 5.2 Let (Xr, h, n) an ALE Ricci-Flat Kdhler resolution of an isolated quotient
singularity.
e Let$ € (4—2m,5—2m). Given any (ﬁ, 12) € B, such that ( 2p, g2 ) € B (x, 8), where
B (k, 8) is the space defined in formula (5.3), let Hi{‘/; be the function defined in formula
(5.18). ’

, (b , k©p2
Y= HI (0) + x (ng"g (") — HI" (0)) + v®

Re 4mR?
+ 7@ £\ 8o +(A® O\ B (u® +09)
4m+2)) R 40m +3) R

o Let PIS,a) be the transplanted potential defined in formula (5.17)

S%wa bex) +V form >3,
S%wa bex)+V +C form = 2.
Then there is fg”ﬁ i € C;’a (Xr) such that

Mg = b0+ 100 (Py, + HI" 4 £ ),

is a Kcsc metric on X . Rf and the following estimates hold.

< C (K) 82m+4 74m SR 2

|55l e
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with C (k) € R depending only on w and n;’s and k the constant appearing in the definition
of B (x, 8) (Sect. 5.1 formula 5.3). Moreover Snpi v the scalar curvature of N5k is,

Snpic = Swopnk = So T 530,1),11,1(-

Again, the proof follows from similar arguments as in [4,5] repeatedly using the Ricci-flat
condition.

6 Data matching

Now that we have the families of metrics on the base orbifold and on model spaces we want to

glue them. To perform the data matching construction we will rescale all functions involved

in such a way that functions on Xr ; are functions on the annulus B\ B; and functions on
2

M are functions on the annulus E\Bl. The main technical tool we will use in this section is
the “Dirichet to Neumann” map for euclidean biharmonic extensions that we introduce with
the following Theorem whose proof can be found in [4, Lemma 6.3].

Theorem 6.1 The map
P C4,a (S2m—l) % C2,(x (SZm—]) — C3,o( (SQm—l) % Cl,(x (SZm—])
P (k) = (91 (Hi = %) 0 (HEY = H]TL))

is an isomorphism of Banach spaces with inverse Q.

Proof of Theorem 1.1 We carry on the proof for the case m > 3, for m = 2 it is identical.

Let V' 0.b.c.n.k e Kihler potential of w b c b,k at the annulus By, (pj)\Br, (p;) under the
homothety

Z=TeW.
We have then the expansion
w
1
V;,Mo,b.c,h,k = |w| + Ve (rew) + ¢ wn, <B 8)
 (88eas)’
b.c,h,k
+ o (_ xr, B?mSZmr(ngmlwlZonl + Cj82mr:3172m|w|472m)
HULU
+ hy),kf)

_ |:82mG0,b4,c _e (Fj) BZmSZmr§—2m|w|2—2m +Cj g2my 4 2m|w|4—2m]
[fo benk T (fobenk) (CXr sz'mrsz_zm\w\z_zm - erf_2m|w|4_2m)} .
For the sake of notation we set,
'Rj-ut P I:SszO,b,c _ Cer B?mSZInr3—2m|w|2—2m + CjSZmr§—2m|w|4—2mi|

t t 2m . 2—2i 2-2 4-2 4-2
[ OIi{)chk+(f6)If)Chk) <Cx1- Bjmr‘g 7 C,r "w| m)]
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We recall that, using notations of Theorem 3.4, fi'/ .} \ € Cg’“ (Mp) ®D (b, ¢) and we
have,

J
fobenk = f()bchk"'z fobenx) Wb,c
Jj=1
J
with f‘;"l‘)’c hk € C4 * (Mp) for § € (4 —2m,5 — 2m) and the numbers (fo b e.h k) s
are the coefficients of the deficiency components of f0 b.c.hk- In writing the expansion of

V;’”OZ b.chk’ prec1sely in the second and fourth lines , we used the only principal asymptotics of

( f(;”f,’ ch k) Wl{, ¢ €xposed in formula (3.10) while the remaining part falls in the remainder

term R”’”

in ~ o~
Let also VJ B be the Kihler potential of £2 bk atthe annulus X . g, r; ng \X r. 21:9
under the homothety,
R.w
X =—".
bj

We have the expansion

2 p2
in _ERD o a0 Rew
VJ,E/,]},,EJ = T|w| + & B an < Bl + I//Cl) (SRSw)

14 .4 pd—2m
- cxp. (m —1)s,b"e"R;
—c (1’*/) b?m82R§72m|w|272m + j |w|472m

2(m—2)ym(m+1)

25 . o2F .
&-hj,e%k;

T4 4 pd—2
exr, (m —1)s,b e R, m| |4_2m
2m—=2)ym(@m+1)

~ R.w R.w . .
272 € 2 p2 € in in
! {8 e ( bj ) A ( B; )} i [Hszﬁwz’?j a Hszﬁ.fﬁ%,/]

2 rin
+e2fin
bj.hj.k;

+ {sZP,;,w — Vo (eRew) —

For the sake of notation we set,

4.4 pd—2
CXr, (m — 1) sub*e" R ’”| . 2m:|

2m—=2)ym(@m—+1)

~ R.w R.w . .
272 € 2 p2 & in in
! [8 Kk ( b ) —e < Bj )} i [Hszﬁf’sz’%j a Hszﬁjss%]

2 rin
ey

ALY

R = [&Pgw — Yo (ERew) —

We want to find b, c, B, h, Kk, ﬁ, Kk such that the functions,

Vi,n- ~ = on Bl B
V= Jibj.hj.kj 7\ 2
V;'),u()l,b,c,h,k on By\ By
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are smooth on B>\ B ! forevery j = 1, ..., N. Wehave written the expansions of V0“0 b.c.hk ’S
and V;”b - ’s in such a way we can see immediately perfectly matched terms in the first
J» /’ I

rows, principal asymptotics in the second rows, biharmonic extensions of pseudo-boundary
data in the third rows, and “remainder” terms.

6.1 Tuning procedure

We would like to have that also the principal asymptotics match perfectly and biharmonic
extensions of pseudo-boundary data dominate all the “remainder terms” in e-growth. More-
over we need to recover a degree of freedom in biharmonic extensions since we have have
taken meanless functions h(”, k™ as parameters. To overcome these problems we have to
perform a “funing” of the principal asymptotics i.e. we have to set,

(e

CXl-j E?mSZRg—Zm |u) |2_2m = 82m - sz'mgzmrg—Zm |w|2—2m

kO
+ (hS‘O) + 4mJ_ 8) |w|2—2m’ (61)

T J
_ 2m 4 p4—2m out
CX]‘]. (m 1)Sa)b & RS b - M o e
lwl = 3 Cie™"r, |w|
2(m—2)m(m—|—1) g2m
(0)
k.

- gl 6.2)

With the specialization above we regain the means of functions /; and k;. In fact, as we
can see from formula (5.1), choosing meanless functions we were missing exactly the radial
terms in the Fourier expansion of ,‘;’2’ that incidentally have exactly the same growth of
the principal asymptotics. So perturbing a bit the coefficients b;’s we can recover these
missing asymptotics in the biharmonic extensions but Eq. (6.1) imposes us to set the value
of parameter b Moreover, we point out that once we have set the value of b the Eq. (6.2)
imposes us to choose a particular value for the parameter c; and hence we see, as anticipated
in Sect. 5.3, how the nonlinear analysis on Xr;’s constrains the parameters of balancing
condition. We recall that coefficients B; and C; are defined in Sect. 5.2 respectively by

Egs. (5.5) and (5.6). Conditions above force us to set:

out J )
- ( 0.b.c.h k) 1 k; m=2
b =B |1 + (h(.‘” + L1 ) e 6.3)

82m

1 ) swlgﬁm £4R§_2m

CXr,(m
Cj=- R out j ( m(m + 1)
2(m—2) em—( )

+ kj.‘”) (6.4)

0,b,c,h.k

and hence we must set

cj = waj (6.5)
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Remark 6.1 At this point, the presence of |x|*~2" term in the correction Wy, introduced in
Sect. 5.3 formula (5.16), shows its effects. That term indeed, introduced as a technical tool
for obtaining better estimates, puts now strong geometric constraints on our construction
defining the correct form of non degeneracy condition and balancing condition forcing us to
impose Eq. (6.2) and giving as consequence relations (6.3), (6.4) and the key condition (6.5).

‘We can see also that,

)
out
H (r")

=0 (54m+2r—6m+4—8) (66)

— - &
Cha (B]\Bl)
2

=0 (82m+4r2—4m—5) , (67)

() (T)
out out
H(RJ ) (r) ") (5, ‘
C**| B1\B
2
therefore the biharmonic extensions dominate all remainder terms in e-growth indeed,

-0 (82m+4r82—4m—6) )

)

Cc4u @\Bl)

)
out
(r")

and,

)

C**(B2\B1)

W] 4+ KO = O (¥ +2r 67 +4-%)  and Hhm’km ”5( 5)
K,

6.2 Cauchy data matching procedure

Now we want to find the correct parameters such that at S*"~! there is a C> matching

: out in : : 3 :
of potentials 5.0.b,c.h.k and Vj‘ B As proved in [4] there is the C” matching at the
boundaries if and only if the following system is verified,

out — Vin~ B
VJ,O,b,c,h,k Jjibjhjk;

out _ in
s O [Vf""b’cﬁh’k] = Owi [Vjﬁ,i,ﬁf,lz/]
(])' Al:qut ]:A Vin~~~
J,0.b,c.h .k jibjhjk;
out _ in
i & [V ens] = i [Vj,zzj,ﬁj,zzj]

After choices (6.3),(6.4), (6.5) and some algebraic manipulations, systems (X ;) become,

ehj=hj—§&
82];/' = kj — A [?;'j]
O] [Hzi’,'-‘fkj - H;i_'f,k,-] = Byu [51‘ - Hélf,Asj]

Ol & [Hg/mkj B th./"kj:l = A [Ej B HéﬁAéJ]

(%)) :

with &; a function depending linearly R‘;”’ and R;". Using Theorem 6.1 we define the
operators,

S; (g%, 2851, kj) = (hj — &k — A&}, Q [a|w| (sj - Hé;”Aéj) B A (gj - HgﬁAsj)])
and then the operator S : B («k, 8)? — B2,

SZ=($1,...,$N).
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Note also that biharmonic extensions, seen as operators,
Hout Hin . C4,a (Smel) % C2,ot (Smel) — C4,a (Smel)
and the operator,
Q . C3,ot (Smel) % Cl,a (Smel) s C4,ot (Smel) % CZ,O{ (S2m71)

defined in Proposition 6.1, preserve eigenspaces of Agan—1. Thanks to the explicit knowledge
of the various terms composing R‘J’.“t ’s and R’j” ’s, in particular estimates (6.6) and (6.7), we
can find ¥ > 0 such that,

S: Bk, 8% — Bk, 5)>.

Now the conclusion follows immediately applying a Picard iteration scheme and standard
regularity theory. O

7 Examples

In this Section we list few examples where our results can be applied. We have confined
ourselves to the case when M is a toric Kdhler—Einstein orbifold, but there is no doubt that
this is far from a comprehensive list.

Theorem 7.1 Consider (IP’] x P1, miwrs + 3 a)ps) and let Z; act in the following way,

([xo = x11, [yo : y1D) —> ([xo0 : —x11, [yo : —y1D) .

It is immediate to check that this action is in SU (2) with four fixed points,
p1=([1:0],[1:0])
p2=([1:0],[0:1])
p3=([0:1],[1:0]
pa=([0:1],[0:1]).

The quotient space X» := P! x P!/Z, is a Kihler—Einstein, Fano orbifold and thanks to the
embedding into P*

(Ixo = x11, yo = yi1) = [xgyg = Xo¥7 © X735 X{ 1 = Xox1yoyl,
it is isomorphic to the intersection of singular quadrics
{2023 — 21 = 0} N {z120 — 2 = 0}

that by [2] is a limit of Kéhler—Einstein surfaces, namely the intersection of two smooth
quadrics. Since itis Kdhler-Einstein, conditions for applying our construction become exactly
the conditions of [5], so we have to verify that the matrix,

N
O (Lsol) = (50 (P)) yir
1<j=4

has full rank and there exist a positive element in ker ® (1, s,1). It is immediate to see that
we have,

HO (xz, T(I’O)Xz) —H° (]P’I/Zg, 710 (IP’l/Zz)> @ H° (PI/ZZ, 700 (Pl/zz)) .
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Moreover,
HO (IP’I/Zz, 7010 (1?1/22))
is generated by holomorphic vector fields on P! that vanish on points [0 : 1], [1 : 0] so,
dime H° (P! /22, 700 (P! /25)) = 1
and an explicit generator is the vector field,
V=29
We can compute explicitly its potential ¢y with respect to wrg that is,

_ lzozl 1
120> + 211> 27

and it is easy to see that it is a well defined function and,

/1 pywrs = 0.
P

Summing up everything, we have that the matrix ® (1, s,,1) for X» is a 2 x 4 matrix and can

be written explicitly,
So (—1 =1 1 1
O, sol) = — (—1 1 -1 1)

that has rank 2 and every vector of type (a, b, b, a) for a, b > 0 lies in ker ® (1, s,,1).

v ([z0:z1]) =

Theorem 7.2 Consider (P?, wrs) and let Z3 act in the following way,

[z0:21:22] — [xo: Gax1 i 03] G #1,03 = 1.

It’s immediate to check that this action is in SU (2) with three fixed points,

p1=1[1:0:0],
p2=1[0:1:0],
p3=[0:0:1].

The quotient space X3 := IP2/Z3 is a Kihler—Einstein, Fano orbifold and it is isomorphic,
via the embedding,

. . 3..3..3.
[xo : x1 :x2] = [xg X7 1 x5 xpx1x2],

to the singular cubic surface in P3,
{20212 — 23 = 0}

that by [27] we know to be a point of the boundary of the moduli space of Fano Kihler—
Einstein surfaces, namely smooth cubic hypersurfaces. Again we have to verify that the
matrix,

254
O, s,1) = (ij (m))

l<i<2’
1<j<3
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has full rank and there exist a positive element in ker ® (1, s,,1). It is immediate to see that
we have,

dime H° (x3, T<‘~0>x3) _2.

because H° (X 3, T1Ox 3) it is generated by holomorphic vector fields on P2 vanishing at
points p1, p2, p3. Explicit generators are the vector fields,

Vi =z'0 4+ 220,

Vo =29 +z'a1.

We can compute explicitly their potentials ¢y, , ¢y, with respect to wrg that are,

év, (1 D il ;!
20212 = — -
R P+ P+ 2R 3
v, ([ ) il e
20212 = — -,

Va 0 1 2 |ZO|2+|ZI|2+|Z2|2 3

and it is easy to see that are well defined functions and
2 2
1) 1)
FS FS
= = 0’
/ﬂ»z " /u» "

01 =—3(¢1 +2¢2)
02 =—3Q2¢1 + ¢2)

is a basis of the space of potentials of holomorphic vector fields vanishing somewhere on
X3. Summing up everything, we have that the matrix ® (1, s, 1) for X3 is a2 x 3 matrix and

can be written explicitly,
250 (1 =10
O (Ls,1) = = (o > 1),

One can check that,

that has rank 2 and every vector of type (a, a, a) for a > 0 lies in ker ® (1, s5,1).

Theorem 7.3 Let XV be the toric Kihler—Einstein threefold whose 1-dimensional fan Efl)
is generated by points

2 = (1,3, =1), (=1,0, =1), (=1, =3, 1), (=1,0,0), (1,0,0), (0,0, 1), (0,0, —1), (1,0, 1)}
and its 3-dimensional fan Z;l) is generated by 12 cones

Cr:={=10,-1),(=1,=3,1),(=1,0,0)
Cr:=((1,3,-1),(=1,0,—1), (—1,0,0))
Cs:=((~1,-3,1),(~1,0,0), (0,0, 1))
Cyq:={((1,3,-1),(=1,0,0), (0,0, 1))
Cs:=((1,3, 1), (~1,0, =1), (0,0, = 1))
Co :=((=1,0.=1),(=1.=3.1).(0,0. -1))
C7:=((—1,-3,1),(1,0,0), (0,0, —1))
Cg ==((1,3,—1),(1,0,0), (0,0, =1))
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Co :=((1,3,-1),(0,0, 1), (1,0, 1))
Cio :=((—1,-3,1),(1,0,0), (1,0, 1))
Ci:=((1,3,-1),(1,0,0), (1,0, 1))
Ci2 :=((—1,-3,1),(0,0, 1), (1,0, 1))

All these cones are singular and Cy, Cy4, Cs5, C7, C11, C13 are cones relative to affine open
subsets of X containing a SU (3) singularity, while the others are cones relative to affine
open subsets of X! containing a U (3) singularity.

The 3-anticanonical polytope P_3 Ky is the convex hull of vertices

Pﬁ}Kx(l) = <(05 _25 _3)3 (_37 07 0)7 (_37 17 3)7 (03 07 3)7 (37 _25 O)a
0,2,3),(0,0,-3),(-3,2,0),(-3,3,3),(3,0,0), 3, -1, =3), (3, =3, =3))
With 2-faces

Fy :=(0, -2, -3), (3, -3, -3),(-3,0,0), (-3, 1, 3), (0,0, 3), (3, =2, 0))
> :=((-3,1,3),(0,0,3),(0,2,3), (-3,3,3))

F3:=((0,0,3), (3, -2,0),(0,2,3),(3,0,0))
Fy :=((0,-2,-3),(-=3,0,0), (0,0, =3), (-3, 2,0))
Fs:=((3,—-1,-3),(0,2,3),(0,0,-3),(-3,2,0), (=3,3,3), (3,0, 0))

(
(
(
(
{
Fg :==((-3,0,0), (=3,1,3),(-3,2,0), (-3,3,3))

F7 :=(@3,-1,-3),(0, -2, -3), (3, -3, -3), (0,0, =3))
Fg :=((3,-1,-3),(3,-3,-3),(3,-2,0), (3,0, 0))

We have the following correspondences between cones containing a SU (3)-singularity and
vertices of P_j3 Ky

Ci «— F3NFsnN Fg={3,0,0)}

Cy «— FINF N Fg={3,-3,-3)}

Cs «—— FINF,NF3={0,0,3)}

C; <— L NFsNF;={(-3,3,3)}

Ciy <— FINFyN Fg ={(=3,0,0)}

Cpp <— FyNFsN F7; ={(0,0, -3)}
Since in complex dimension 3 every SU (3)-singularity admits a Kihler crepant resolution
it is then immediate to see that all assumptions of Theorem 1.1 are satisfied to get a partial
resolution of this orbifold. We do not know whether we can also resolve the other 6 U (3)
singularities since at the moment we do not know if a good local model for these groups
exists.

Theorem 7.4 Let X be the toric Kihler—Einstein threefold whose 1-dimensional fan X is
generated by points

Z; =1{(0,3,1),(1,1,2),(1,0,0), (-1,0,0), (-2, =1, =2), (1, =3, =)}
and its 3-dimensional fan X3 is generated by 8 cones

C1:=(0,3,1),(1,1,2),(—1,0,0))
Cy :=((0,3,1),(1,1,2),(1,0,0))
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C3:=((0,3,1),(—1,0,0), (-2, -1, =2))
C4:=((0,3,1),(1,0,0), (=2, -1, =2))

Cs :=((1,0,0), (-2, -1, =2), (1, =3, —1))
Ce :=((1,1,2),(—1,0,0), (1, =3, =1))
C7:=((-1,0,0), (=2, -1, =2), (1, =3, —1))
Cs:=((1,1,2),(1,0,0), (1, =3, —1))

The cones C1, C4, C7, Cg are relative to affine open subsets of X containing a SU (3) singu-
larity and the other cones are relative to affine open subsets of X containing a U (3) singularity.
The 5-anticanonical polytope P_sk, is the convex hull of vertices

P_sk, :=((5,-1,-2),(5,0,=5), (=5, -2,1),(-5,0,0),
(5,5, -5), (=5,-5,10), (=5, -3,9), (5,6, =8))

With 2-faces

F1 :={((5,0,-5),(=5,-2,1),(=5,0,0), (5,6, =8))
F=(5,-1,-2),(5,0,=-5), (=5, -2,1), (=5, =5, 10))
F3:=((5,—-1,-2),(5,0,-5), (5,5, -5), (5,6, =8))
Fy:=((5,—-1,-2),(5,5,-5), (-5, =5, 10), (-5, =3,9))
Fs5 :=((-5,-2,1),(=5,0,0), (=5, =5, 10), (=5, =3, 9))
Fs :=((-5,0,0), (5,5, -5), (=5,-3,9), (5,6, =8))

We have the following correspondences between cones containing a SU (3)-singularity and
vertices of P_sk,

Ci<«— FiINFkHNFs={(-5-2,1)}

Cy<— FrbNF3NFy={(5,—1,-2)}

C7 <— F4NF5N Fg = {(—5,-3,9)}

Cs «— FiNF3N Fg={(5,6,—8)}
Since in complex dimension 3 every SU (3)-singularity admits a Kihler crepant resolution
it is then immediate to see that all assumptions of Theorem 1.1 are satisfied to get a partial

resolution of this orbifold. Whether we can also resolve the other 4 U (3) singularities we do
not know since at the moment we do not know if a good local model for these groups exists.

Theorem 7.5 Let Y be the toric Kédhler—Einstein threefold whose 1-dimensional fan X is
generated by points

¥ =1{2,-1,0),(1,3,1),(0,0,1), (-3, =2, =2)}

and its 3-dimensional fan X3 is generated by 6 cones

Cy:=((1,3,1),(0,0,1), (=3, -2, -2),)
Cy:=((2,-1,0),(0,0,1), (-3, -2, =2))
C3:=((2,-1,0), (1,3, 1), (=3, -2, =2))

Cy:=((2,-1,0),(1,3,1),(0,0, 1))

The cone C is relative to affine open subsets of ¥ containing a SU (3) singularity and the
other cones are relative to affine open subsets of ¥ containing a U (3) singularity.
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The 7-anticanonical polytope P_7k , is the convex hull of vertices
P_7kx(6) = ((1, 95 _7)3 (_37 13 _7)5 (95 _33 _7)7 (_77 _77 21))
With 2-faces

F:=((-3,1,-7),0,-3,=-7), (=7, -7, 21))
F=((1,9,-7), 09, =3, =-7), (=7, =17, 21))
F:=((1,9,-7),(=3,1,-7), (=7, =7, 21))
Fy :=((1,9,-7),(=3,1,=7), (9, =3, =7))

We have the following correspondences between cones containing a SU (3)-singularity

and vertices of P_7 Ky

Ci<«— FiINFHNFy={09,-3,-7)}

It is now clear that this example does not satisfy either the balancing condition on the
SU(3) point, nor the one found in [3] on the remaining 3 U (3) singularities. Ito would
be very interesting to know whether this examples can be actually desingularized by Kcsc
manifolds.
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