
Interpolations and Fractional Sobolev Spaces in Carnot Groups

Ali Maalaoui(1), Andrea Pinamonti(2)

Abstract

In this paper we present an interpolation approach to the fractional Sobolev spaces in
Carnot groups using the K-method. This approach provides us with a different character-
ization of these Sobolev spaces, moreover, it provides us with the limiting behavior of the
fractional Sobolev norms at the end-points. This allows us to deduce results similar to the
Bourgain-Brezis-Mironescu and Maz’ya-Shaposhnikova in the case p > 1 and Dávila’s result
in the case p = 1. Also, this allows us to deduce the limiting behavior of the fractional
perimeter in Carnot groups.

1 Introduction

Carnot groups appear as the first level extension of the classical Euclidean spaces, in the sense

that they are modeled over Rn but with a different group structure. Nevertheless, they share

many analytical properties with the Euclidean case. The typical example of Carnot group is

the classical Heisenberg group. Lately, there have been a lot of interest in PDEs and fractional

PDEs in this group coming from a geometric background since it is the flat context of CR-

geometry, see for instance [22, 23, 34, 27] and the references therein. Moreover, Carnot groups

have also been largely studied in several respects, such as differential geometry [13], subelliptic

differential equations [11, 18, 17, 36] and complex variables [39]. For a general introduction to

Carnot groups from the point of view of the present paper and for further examples, we refer,

e.g., to [11, 18, 39].

It is natural then to investigate to which extent one can generalize to Carnot groups the

analytical tools that are well understood in the Euclidean case, see for instance [16, 28].

In this setting, we propose to study fractional Sobolev spaces from an interpolation point of

view. Fractional Sobolev spaces in the literature, are also called Aronszajn, Gagliardo or Slo-

bodeckij spaces, by the name of the ones who introduced them, almost simultaneously [2, 25, 37].

In Carnot groups fractional Sobolev spaces have been introduced and studied in [18, 17] and

many different characterizations are now present, such as the ones in [35]. In the present pa-

per we use the K-method for real interpolation, see for instance [4], to give an alternative

characterization of fractional Sobolev spaces in Carnot groups. As a consequence, we derive

a Bourgain-Brezis-Mironescu [5, 6, 7] (Theorem 5.1) and Ma’zya-Shapashnikova type limiting

behavior (Theorem 5.2) of the Sobolev norms similarly to the approach developed in [29]. We

point out that the exact limit of the fractional Sobolev norm (as the fractional parameter goes to
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1) was investigated in [3] using exact and technical computations. We also bring to the reader’s

attention the extensions of these type of results to other settings and to different functionals as

in [1, 7, 8, 9, 10, 30, 31, 32]. For p = 1 we provide a limiting behavior leading to the space of

BV -functions that are of great interest in geometric measure theory in the setting of Carnot

groups, see [19, 20, 21]. This will allow us to characterize the fractional perimeter in Carnot

groups and understand its limiting behavior when the fractional parameter goes to 1, as it was

done in the Euclidean setting in [15, 33].

This manuscript is structured as follows: First, in Section 2, we present the structure of

Carnot groups and define Sobolev Spaces and BV -Spaces in this setting. In Section 3, we

provide the necessary notations, definitions and properties of the K-interpolation, which will

be the main tool in our investigation. In Section 4, we provide another characterization of the

K function in Carnot groups. This allows us to deduce an alternative characterization of the

fractional Sobolev spaces. Finally, in Section 5, we provide applications of the characterizations

given in Section 3. Namely, we present the limiting behavior of the Fractional Sobolev norms in

the two end points, allowing us to obtain results similar to the ones already proved by Bourgain-

Brezis-Mironescu and by Ma’zya-Shaposhnikova in [5, 6, 7]for the case p > 1 and by Davila in

[15] for the case p = 1. Also, we provide an alternative definition and characterization to the

fractional perimeter and its limiting behavior at the end-points as in [15, 33].

2 Carnot groups

A connected and simply connected stratified nilpotent Lie group (G, ·) is said to be a Carnot

group of step k if its Lie algebra g admits a step k stratification, i.e., there exist linear subspaces

V1, ..., Vk such that

g = V1 ⊕ ...⊕ Vk, [V1, Vi] = Vi+1, Vk 6= {0}, Vi = {0} if i > k, (2.1)

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with X ∈ V1 and Y ∈ Vi.
Set mi = dim(Vi), for i = 1, . . . , k and hi = m1 + · · · + mi, so that hk = n. For sake of

simplicity, we write also h0 = 0, m := m1. We denote by Q the homogeneous dimension of G,

i.e., we set

Q :=
k∑
i=1

i dim(Vi).

We choose now a basis e1, . . . , en of Rn adapted to the stratification of g, i.e., such that

ehj−1+1, . . . , ehj is a basis of Vj for each j = 1, . . . , k. Moreover, let X = {X1, . . . , Xn} be the

family of left invariant vector fields such that Xi(0) = ei, i = 1, . . . , n. The exponential mapping

exp: g → G is a diffeomorphism. Given a basis X1, . . . , Xn of g adapted to the stratification,

any x ∈ G can be written in a unique way as

x = exp(x1X1 + . . .+ xnXn) = ex1X1+...+xnXn .

We identify x with (x1, . . . , xn) ∈ Rn and hence G with Rn. This is known as exponential

coordinates of the first kind

The sub-bundle of the tangent bundle TG that is spanned by the vector fields X1, . . . , Xm

is called the horizontal bundle HG; the fibers of HG are

HxG = span{X1(x), . . . , Xm(x)}, x ∈ G.
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We can endow each fiber of HG with an inner product 〈·, ·〉 and with a norm | · | that make

the basis X1(x), . . . , Xm(x) an orthonormal basis. For any λ > 0, the dilation δλ : G → G, is

defined as

δλ(x1, ..., xn) = (λξ1, . . . , λ
kξk), (2.2)

where x = (ξ1, . . . , ξk) ∈ Rm1 × . . .× Rmk ≡ G.

The Haar measure of G = (Rn, ·) is the Lebesgue measure in Rn. If A ⊂ G is Lebesgue

measurable, we write |A| to denote its Lebesgue measure.

Once an orthonormal basis X1, . . . , Xm of the horizontal layer is fixed, we define, for any

function f : G → R for which the partial derivatives Xjf exist, the horizontal gradient of f ,

denoted by ∇Hf , as the horizontal section

∇Hf :=

m∑
i=1

(Xif)Xi,

whose coordinates are (X1f, ...,Xmf). If ϕ = (ϕ1, . . . , ϕm) ∈ C1
c (G,Rm) we put

divGϕ =
m∑
i=1

Xiϕi.

Let | · | : G→ [0,∞) denote a symmetric homogeneous norm on G [11]. Since any two continuous

homogeneous norm are equivalent [11], from now on we denote by | · | any one of them. We

denote by

Br(x) = {y ∈ G : |y−1 · x| < r}

the ball centered at x ∈ G with radius r > 0 and by Br = B(0, r).

We are now in position to introduce Sobolev and BV functions in Carnot groups.

Definition 2.1 Let 1 ≤ p <∞. We define the horizontal Sobolev space W 1,p(G) as

W 1,p(G) = {f ∈ Lp(G) | Xif ∈ Lp(G), i = 1, . . . ,m}.

endowed with the norm

‖f‖W 1,p = ‖f‖Lp(G) + ‖∇Hf‖Lp(G).

We also define Ẇ 1,p(G) as the closure of C∞0 (G) in the norm

‖f‖1,p = ‖∇Hf‖Lp(G).

Finally, BV (G) denotes the set of functions f ∈ L1(G) such that

|DGf |(G) := sup

{∫
G
fdivGϕ dx | ϕ ∈ C1

c (G,Rm), ‖ϕ‖∞ ≤ 1

}
is finite. Moreover, if the characteristic function χE of the measurable set E ⊂ G belongs to

BV (G) we say that E has finite intrinsic perimeter and we write PerG(E) instead of |DGχE |(G),

The following results are well-known, we refer to [21, 24] for a proof.

Theorem 2.1 For any f ∈ BV (G), the following identity holds:

|DGf |(G) =

∫
R
PerG({x ∈ Ω | f(x) > t}) dt
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Theorem 2.2 Let f ∈ BV (G). Then there exists a sequence (fk)k∈N ⊂ C∞(G) such that

1. fk → f in L1(G);

2. |DGfk|(G)→ |DGf |(G).

We conclude this section recalling the definition of horizontal fractional Sobolev spaces

Definition 2.2 Let 0 < s < 1 and 1 ≤ p < ∞. We define Ẇ s,p(G) as the closure of C∞c (G)

under the norm

‖f‖Ẇ s,p =

(∫
G

∫
G

|f(x)− f(y)|p

|y−1x|Q+sp
dxdxy

) 1
p

3 Real Interpolation Theory and the K-method

In this section we recall some important notions in interpolation theory, we refer the interested

reader to [4] for a nice introduction to the subject.

We will use the following notations: given two quantities f and g,

• We say that f . g if there exists C > 0 such that f ≤ Cg.

• We say that f ≈ g if f . g and g . f .

For the rest of the paper, the constant C with only depend of the data of G and on 1 ≤ p <∞.

Let (A, ‖ ·‖A) and (B, ‖ ·‖B) be Banach spaces both continuously embedded in some Banach

space C. We refer to the couple (A,B) as an interpolation pair. Let us consider the Banach

spaces (A ∩B, ‖ · ‖A∩B) and (A+B, ‖ · ‖A+B) where

‖a‖A∩B := max{‖a‖A, ‖a‖B}

and

‖a‖A+B := inf
a=a1+a2

(‖a1‖A + ‖a2‖B) .

The space A+B can be equivalently renormed by Peetre’s K-functional,

K(t, a) = K(t, a, A,B) := inf
a=a1+a2

(‖a1‖A + t‖a2‖B) .

for any t > 0. A vector space D is called intermediate if A∩B ⊂ D ⊂ A+B and the inclusions

are continuous embeddings if D is topologized. An intermediate space D is an interpolation

space is all linear operator on A ∩ B which map A continuously into itself and B continuously

into itself also map D into itself.

Let (A,B) be an interpolation pair and let 0 < s < 1 and q ∈ [1,∞). We define the interpolation

space

(A,B)s,q := {f ∈ A+B | |f |s,q <∞}

where

|f |s,q := s
1
q (1− s)

1
q q

1
q

(∫ ∞
0

(
t−sK(t, f, A,B)

)q dt

t

) 1
q

.

Definition 3.1 We say that an interpolation pair (A,B) is normal if the following condition

holds:
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1. limt→0
K(t,f,A,B)

t = ‖f‖B, for f ∈ B;

2. limt→∞K(t, f, A,B) = ‖f‖A, for f ∈ A;

The equalities above can be relaxed to ≈.

The following Theorem has been proved in [29, Theorem 1]

Theorem 3.1 Let (A,B) be an interpolation pair. Then

1. For 1 ≤ q <∞ and f ∈ A ∩B we have lims→1[f ]s,q = ‖f‖B;

2. For 1 ≤ q <∞ and f ∈ A ∩B we have lims→0[f ]s,q = ‖f‖A;

3. For 1 ≤ q <∞ and f ∈ A ∩
⋃
s∈(0,1)(A,B)s,q we have lims→0[f ]s,q = ‖f‖A.

4 The Modulus of Continuity

Consider a Carnot group G of homogeneous dimension Q and let V = V1 be its first layer. Given

f ∈ Lp(G), where 1 ≤ p <∞ is fixed, we define the modulus of continuity ωp(f, t) by

ωp(f, t) = sup
X∈V ;|X|≤t

(∫
G
|f(eXx)− f(x)|pdx

) 1
p

= sup
y∈exp(V );|y|≤t

(∫
G
|f(yx)− f(x)|pdx

) 1
p
.

We set ∆Xf(x) = f(eXx)− f(x) and if h = eX then we write ∆hf(x) = f(hx)− f(x).

Proposition 4.1 Given 1 ≤ p <∞, we have

K(t, f, Lp,W 1,p) ≈ ωp(f, t) + min(1, t)‖f‖Lp .

Proof: For the sake of notation we will write K(t, f) instead of K(t, f, Lp,W 1,p). Recall that

K(t, f) = inf{‖f0‖Lp + t‖f1‖W 1,p ; f0 ∈ Lp, f1 ∈W 1,p; f = f0 + f1}.

It follows then that

min(1, t)‖f‖Lp ≤ ‖f0‖Lp + t‖f1‖Lp ≤ ‖f0‖Lp + t‖f1‖W 1,p .

Thus,

min(1, t)‖f‖Lp ≤ K(t, f). (4.1)

Let X ∈ V with |X| ≤ t. One can easily see that

‖∆Xf‖Lp ≤ ‖∆Xf0‖Lp + ‖∆Xf1‖Lp ≤ 2‖f0‖Lp + ‖∆Xf1‖Lp .

Also we have that

∆Xf1(x) =

∫ 1

0

∂

∂r
f1(e

rXx)dr

=

∫ 1

0
(Xf1)(e

rXx)dr.

Hence,

‖∆Xf1(x)‖Lp ≤ |X|‖∇Hf1‖Lp ≤ t‖∇Hf1‖Lp . (4.2)
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Therefore, by (4.1) and (4.2)

ωp(f, t) + min(1, t)‖f‖Lp . K(t, f).

We move now to the proof of the reverse inequality:

We identify V to Rk via the Jacobian basis (X1, . . . , Xk) and let U be its unit square. That is

every vector X in V will be written as X =
∑k

i=1 aiXi for some ai ∈ R. if X is in the unit

square then 0 ≤ ai ≤ 1. Let t > 0 and consider the function

f0(x) = −
∫
[0,1]k

∆t
∑k

i=1 aiXi
f(x)da1 · · · dak.

Then one have

‖f0‖Lp ≤ ωp(f, t).

On the other hand, we have f1 = f − f0 =
∫
[0,1]k f(et

∑k
i=1 aiXix)da1 · · · dak. Therefore,

‖f1‖Lp ≤ ‖f‖Lp .

Next, we write X̂j =
∑k

i=1,h6=j aiXi. Notice that

∂

∂aj

(
f(e

∑k
i=1 taiXix)

)
= t(Xjf)(e

∑k
i=1 taiXix).

Hence,

Xjf1 =

∫
[0,1]k

(Xjf)(etXx)da1 · · · dak

=

∫
[0,1]k−1

∫ 1

0

1

t

∂

∂aj

(
f(etXx)

)
dajda1 · · · daj−1daj+1 · · · dak

=
1

t

∫
[0,1]k−1

f(etXx)− f(etX̂jx)da1 · · · daj−1daj+1 · · · dak

=
1

t

∫
[0,1]k−1

∆tXjf(etX̂jx)da1 · · · daj−1daj+1 · · · dak.

Hence,

‖∇Hf1‖Lp .
1

t
ωp(f, t),

leading to

K(t, f) . min(1, t)‖f‖Lp + ωp(f, t).

�
It is easy to see from the proof above that

K̇(t, f) = K(t, f, Lp, Ẇ 1,p) ≈ ωp(f, t).

Here the interpolation is to be understood for the pair (Lp, Ẇ 1,p) modulo constants, which makes

them two Banach spaces.
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Lemma 4.1 Define the total modulus ωp by

ωp(f, t) = sup
y∈G;|y|≤t

(∫
G
|f(yx)− f(x)|pdx

) 1
p
.

Then there exists A > 0 and C > 0 such that

ωp(f, t) ≤ ωp(f, t) ≤ Cωp(f,At).

In particular

K(f, t) ≈ ωp(f, t) + min(1, t)‖f‖Lp .

Proof: First notice that

ωp(f, t) ≤ ωp(f, t).

Next, we recall that, there exists A > 0 and N ∈ N such that for all y ∈ G, there exists

y1, · · · , yN ∈ exp(V ) such that y = y1y2 · · · yN and |yj | ≤ A|y| for 1 ≤ j ≤ N . Thus we write

|f(yx)− f(x)| ≤ |f(y1 · · · yNx)− f(y2 · · · yNx)|+ · · ·+ |f(yNx)− f(x)|.

Hence,

‖f(yx)− f(x)‖Lp ≤
N∑
j=1

‖f(yjx)− f(yj)‖Lp .

Passing to the sup in the previous inequality gives

ωp(f, t) ≤ Nωp(f,At).

�

Proposition 4.2 Given f ∈ Lp(G). then

ωp(f, t) ≈
( 1

tQ

∫
|h|≤t
‖∆hf‖pLpdh

) 1
p
.

Proof: Let η ∈ C∞c (B1) such that
∫
G η = 1. We write

f(x) =
1

tQ

(∫
Bt

f(yx)η(δt−1y)dy +

∫
Bt

(f(x)− f(yx))η(δt−1y)dy
)

= I1(x, t) + I2(x, t).

It follows that

|f(hx)− f(x)| ≤ |I1(hx, t)− I1(x, t)|+ |I2(hx, t)|+ |I2(x, t)|.

Now,

|I2(hx, t)|+ |I2(x, t)| .
‖η‖∞
tQ

∫
Bt

|∆yf(x)|+ |∆yf(hx)|dy.

On the other hand, we notice that

∇HI1(x, t) = − 1

tQ+1

∫
Bt(x)

f(y)∇Hη(yx−1)dy

= − 1

tQ+1

∫
Bt(x)

(f(y)− f(x))∇Hη(yx−1)dy.
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But, if h = eX and X ∈ V , we have

I1(hx, t)− I1(x) .
∫ 1

0
|h||∇HI1|(erXx, t)dr

. |h|‖∇Hη‖∞
tQ+1

∫ 1

0

∫
Bt(erXx)

|f(y)− f(erXx)|dydr

. |h|‖∇Hη‖∞
tQ+1

∫ 1

0

∫
Bt

|f(yerXx)− f(erXx)|dydr.

Taking |h| ≤ t, we get

|u(hx)− u(x)| . 1

tQ

(∫
Bt

|∆yf(x)|+ |∆yf(hx)|dy +

∫ 1

0

∫
Bt

|∆yf(erXx)|dydr
)
.

Using Minkowski’s inequality and Hölder inequality, we have(∫
G
|u(hx)− u(x)|pdx

) 1
p
.

1

tQ

∫
Bt

‖∆yf‖Lpdy

.
t
Q
p′

tQ

(∫
Bt

‖∆yf‖pLpdy
) 1

p

.
( 1

tQ

∫
Bt

‖∆yf‖pLpdy
) 1

p
.

This yields to

ωp(f, t) .
( 1

tQ

∫
|h|≤t
‖∆hf‖pLpdh

) 1
p
.

Thus,

ωp(f, t) .
( 1

tQ

∫
|h|≤t
‖∆hf‖pLpdh

) 1
p
.

The reverse inequality is straight forward. �

Corollary 4.1 Given 0 < s < 1 and 1 ≤ p <∞, then

(Lp(G), Ẇ 1,p(G))s,p = Ẇ s,p(G).

Proof: Recall that the norm in (Lp(G), Ẇ 1,p(G))s,p is defined by

‖f‖s,p =
(∫ ∞

0

(
t−sK̇(t, f)

)pdt
t

) 1
p
.

Therefore, from the previous propositions, we have that

‖f‖s,p ≈
(∫ ∞

0

1

tQ+sp

∫
|h|≤t

∫
G
|f(hx)− f(x)|pdxdhdt

t

) 1
p

≈
(∫

G

∫
G

∫
t≥|h|

1

tQ+sp+1
|f(hx)− f(x)|pdtdhdx

) 1
p

≈
( 1

Q+ sp

∫
G

∫
G

|f(hx)− f(x)|p

|h|Q+sp
dhdx

) 1
p

=
1

(Q+ sp)
1
p

‖f‖Ẇ s,p .

�

The following Corollary is well known in the Euclidean case [14, p. 216-217] or [29, Remark

2]. We add it here in our setting.
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Corollary 4.2 Given 0 < s < 1, then

(L1(G), ˙BV (G))s,1 = Ẇ s,1(G).

Proof: Let A0 = Ẇ 1,1(G) and A1 = L1(G). Following [14], we define

A0 +∞ ·A1 = {a ∈ A0 +A1 | ‖a‖A0+∞·A1 = lim
t→∞

K(t, a;A0, A1) <∞}

and

A1 +∞ ·A0 = {a ∈ A0 +A1 | ‖a‖A1+∞·A0 = lim
t→0

1

t
K(t, a;A0, A1) <∞}.

By [14, Lemma 1] and Theorem 2.2 we immediately get

A0 +∞ ·A1 = BV (G) ∩ L1(G) and A1 +∞ ·A0 = L1(G),

and by [14, Lemma 2] we have

K(t, f, L1, Ẇ 1,1) = K(t, f, L1, ˙BV )

and the thesis follows by Corollary 4.1. �

Lemma 4.2 The pair (Lp(G), Ẇ 1,p(G)) is normal.

Proof: First we show that

lim
t→∞

K̇(f, t) ≈ ‖f‖Lp .

Indeed, consider a function fε compactly supported such that ‖f −fε‖Lp < ε. Clearly for t large

enough, we have that

ωp(fε, t) = 2‖fε‖Lp ≥ 2‖f‖Lp − 2ε.

Also, for all f ∈ Lp,
ωp(f, t) ≤ 2‖f‖Lp .

Now notice that for h outside the support of fε

‖∆hf‖Lp ≥ ‖∆hfε‖Lp − ‖∆h(f − fε)‖Lp

≥ 2‖f‖Lp − 4ε,

which yields to our conclusion.

Next we need to show that

lim
t→0

K̇(f, t)

t
≈ ‖∇Hf‖Lp .

First, we have, if h = etX , X ∈ V then

∆hf(x) =

∫ 1

0
(Xf)(erXx)dr.

It follows that

ωp(f, t) ≤ t‖∇Hf‖Lp .

Now, let fε ∈ C∞c (G) such that ‖∇H(f − fε)‖Lp < ε. Notice that

fε(hx)− fε(x)−Xfε(x) =

∫ 1

0
(Xfε)(e

rXx)− (Xfε)(x)dr.
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Hence, one can see that

µε(t) = sup
|X|=t,h=eX

‖fε(hx)− fε(x)− (Xfε)(x)‖Lp

t
→ 0, t→ 0.

In particular, there exists tε small, so that µε(t) < ε for 0 < t < tε. Moreover, we have that

ωp(fε, t) ≤ ωp(fε) + tε.

Hence, for 0 < t < tε we have that

‖∇Hf‖Lp ≤ ‖∇Hfε‖Lp + ε ≤ µε(t) +
ωp(fε, t)

t
+ ε ≤ ωp(f, t)

t
+ 2ε.

and this finishes the proof. �

The following result immediately follows from Lemma 4.2 and the fact thatK(t, f, L1, Ẇ 1,1) =

K(t, f, L1, ˙BV ).

Corollary 4.3 The pair (L1(G), ˙BV (G)) is normal.

5 Applications

Applying Lemma 4.2 and Corollary 4.3 we get various interesting limiting formulas. Theorems

5.1 and 5.2 can be proved exactly as in [29] whereas Theorem 5.3 has its roots in [5, 15, 33].

5.1 Limit Behavior of Fractional Sobolev Spaces

Theorem 5.1 (Bourgain-Brézis-Mironescu) Let f ∈ Ẇ 1,p(G), then

lim
s→1

(1− s)
1
p

(∫
G

∫
G

|f(x)− f(y)|p

|y−1x|Q+sp
dxdy

) 1
p ≈ (Q+ p)

1
p p
− 1

p ‖∇Hf‖Lp .

Theorem 5.2 (Maz’ya-Shaposhnikova) Let f ∈ ∪s∈(0,1)Ẇ s,p, then

lim
s→0

s
1
p

(∫
G

∫
G

|f(x)− f(y)|p

|y−1x|Q+sp
dxdy

) 1
p ≈ Q

1
p p
− 1

p ‖f‖Lp .

Theorem 5.3 (Davila) Let f ∈ ˙BV (G), then

lim
s→1

(1− s)
∫
G

∫
G

|f(x)− f(y)|
|y−1x|Q+s

dxdy ≈ (Q+ 1)|DGf |(G).

5.2 Fractional Perimeter and its Limiting Behavior

We recall here the definition of the fractional perimeter Pers in a Carnot group G, namely

Pers(A) =

∫
A

∫
G\A

1

|y−1x|Q+s
dydx for A ⊂ G.

A similar definition has been proposed in [16], moreover if G = Rn the previous definition boils

to the one proposed by Caffarelli-Roquejoffre and Savin in [12].
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Clearly, Pers(A) = ‖χA‖Ẇ 1,s and from the results above, we have that

lim
s→1

(1− s)Pers(A) ≈ PerG(A)

and

lim
s→0

sPers(A) ≈ |A|.

In order to provide a more exact convergence, as in [33], we define the following perimeter:

P̃ers(A) = s(1− s)
∫ ∞
0

t−sK(t, χA, L
1, ˙BV )

dt

t
.

Then we have

Theorem 5.4 Let A ⊂ G, then the we have

P̃ers(A) ≤ |A|1−sPerG(A)s.

Moreover,

i) lims→0 P̃ers(A) = |A|.

ii) lims→1 P̃ers(A) = PerG(A).

Proof: For short we will write K(t, χA, L
1, BV ) = K(t, A). Notice that i) and ii) follow from the

interpolation limits as above. So we propose to establish the first statement. By the definition

of K, we have that

K(t, A) ≤ |A| and K(t, A) ≤ tPerG(A).

Therefore, ∫ ∞
0

t−sK(t, A)
dt

t
=

∫ r

0
t−sK(t, A)

dt

t
+

∫ ∞
r

t−sK(t, A)
dt

t

≤ PerG(A)

∫ r

0
t−sds+ |A|

∫ ∞
r

t−s−1dt

≤ PerG(A)
r1−s

1− s
+ |A|r−ss.

Minimizing over r ∈ (0,∞) we get the desired inequality. �.

Following [33], we provide another quantitative form of K using the symmetric difference of

sets.

Proposition 5.1 Let A ⊂ G, then

K(t, A) = inf
U⊂G
|A∆U |+ tPerG(U).

Proof: Let g(t, A) = infU⊂G |A∆U | + tPerG(U). First, we write χA = χA − χU + χ(U). Since

‖χA − χU‖L1 = |A∆U | and |DGχU |(G) = PerG(U), it follows from the definition of K that

K(t, A) ≤ g(t, A).
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On the other hand, we claim first that

K(t, f) = inf{‖f1‖L1 + t‖∇Hf2‖L1 ; f = f1 + f2, f1 ∈ L1(G); f2 ∈ C∞c (G)}.

Indeed, we already have from the definition itself that

K(t, f) ≤ inf{‖f1‖L1 + t‖∇Hf2‖L1 ; f = f1 + f2, f1 ∈ L1(G); f2 ∈ C∞c (G)}.

Now given f = f1 + f2 such that f1 ∈ L1 and f2 ∈ ˙BV with

‖f1‖L1 + t|DGf2|(G) ≤ K(t, f) + ε,

then by Theorem 1.2, we can always find gε ∈ C∞c (G) such that |DG(f2 − gε)|(G) < ε
t and

‖f2 − gε‖L1 < ε. Hence, writing f = f1 + f2 − gε + gε we get

‖f1 + f2 − gε‖L1 + t|DGgε|(G) ≤ ‖f1‖L1 + t|DGf2|(G) + 2ε ≤ K(t, f) + 3ε.

Therefore,

inf{‖f1‖L1 + t‖∇Hf2‖L1 ; f = f1 + f2, f1 ∈ L1(G); f2 ∈ C∞c (G)} ≤ K(t, f).

Now, we can decompose the characteristic function of A as follows: χA = χA − f + f where

f ∈ C∞c (G). Let U = {|f | > r}, then we have

A∆U ⊂
(
{|χA − f | ≥ r} \A

)
∪
(
{|χA − f | ≥ 1− r} ∩A

)
.

Using Theorem 1.1, we have∫ ∞
0
|{|χA − f | ≥ r}|dr + t

∫ ∞
0

PerG({|f | > r})dr = ‖χA − f‖L1 + t|DGf |(G).

Next, we notice that∫ 1

0

(
|{|χA−f | ≥ r}\A|+|{|χA−f | ≥ 1−r}∩A|

)
dr =

∫ 1

0
|{|χA−f | ≥ r}|dr ≤

∫ ∞
0
|{|χA−f | ≥ r}|dr.

Hence,∫ 1

0

(
|{|χA−f | ≥ r}\A|+|{|χA−f | ≥ 1−r}∩A|+tPerG({|f | ≥ r})

)
dr ≤ ‖χA−f‖L1+t|DGf |(G).

Therefore, by the mean value theorem, there exists r ∈ [0, 1], depending on t such that(
|{|χA− f | ≥ r} \A|+ |{|χA− f | ≥ 1− r}∩A|+ tPerG({|f | ≥ r})

)
≤ ‖χA− f‖L1 + t|DGf |(G).

In particular,

g(t, A) ≤ |A∆U |+ tPerG(U) ≤
(
|{|χA − f | ≥ r} \A|+ |{|χA − f | ≥ 1− r} ∩A|+ tPerG({|f | ≥ r})

)
≤ ‖χA − f‖L1 + t|DGf |(G).

Leading to

g(t, A) ≤ K(t, A).

�.

12



References

[1] Ambrosio, L., De Philippis, G., Martinazzi, L.: Γ−convergence of nonlocal

perimeter functionals, Manuscripta Math. 134 (2011), 377–403.

[2] Aronszajn, N.: Boundary values of functions with finite Dirichlet integral, Techn. Report

of Univ. of Kansas 14 (1955), 77–94.

[3] Barbieri, D.: Approximations of Sobolev norms in Carnot groups, Comm. Contemp.

Math. 13 (2011), 765–794.

[4] Bennett, C., Sharpley, R.:Interpolation of Operators, Pure and Applied Mathematics,

vol.129, Academic Press, Boston, MA, USA. 1988.

[5] Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces, in Opti-

mal Control and Partial Differential Equations. A Volume in Honor of Professor Alain

Bensoussan’s 60th Birthday (eds. J. L. Menaldi, E. Rofman and A. Sulem), IOS Press,

Amsterdam, 2001, 439–455.

[6] Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for W s,p

when s ↑ 1 and applications, J. Anal. Math. 87 (2002), 77–101.

[7] Brezis, H.: How to recognize constant functions. Connections with Sobolev spaces, Vol-

ume in honor of M. Vishik, Uspekhi Mat. Nauk 57 (2002), 59–74 (in Russian). English

translation in Russian Math. Surveys 57 (2002), 693–708.

[8] Brezis, H. New approximations of the total variation and filters in imaging, Rend Accad.

Lincei 26 (2015), 223–240.

[9] Brezis, H., Nguyen, H. M.: Non-local functionals related to the total variation and con-

nections with Image Processing, http://arxiv.org/abs/1608.08204. To appear in Annals of

PDE.

[10] Brezis, H., Nguyen, H. M.: The BBM formula revisited, Rend. Accad. Lincei 27 (2016),

515–533.

[11] Bonfiglioli, A., Lanconelli, E., Uguzzoni, U.: Stratified Lie groups and potential

theory for their sub-Laplacians. Springer, 2007.

[12] Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Comm.

Pure Appl. Math. 63 (2010), no. 9, 1111–1144.

[13] Capogna, L., Danielli, D., Pauls, S. D., Tyson, J. T.: An introduction to the

Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhäuser, 2007.
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