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Abstract

Neuroimaging research has shown that different cognitive tasks induce relatively specific acti-
vation patterns, as well as less task-specific deactivation patterns. Here we examined whether
individual differences in Autonomic Nervous System (ANS) activity during task performance
correlate with the magnitude of task-induced deactivation. In an fMRI study, participants per-
formed a continuous mental arithmetic task in a task/rest block design, while undergoing com-
bined fMRI and heart / respiration rate acquisitions using photoplethysmograph and respiration
belt. As expected, task performance increased heart-rate and reduced the RMSSD, a cardiac
index related to vagal tone. Across participants, higher heart rate during task was linked to in-
creased activation in fronto-parietal regions, as well as to stronger deactivation in ventromedial
prefrontal regions. Respiration frequency during task was associated with similar patterns, but
in different regions than those identified for heart-rate. Finally, in a large set of regions, almost
exclusively limited to the Default Mode Network, lower RMSSD was associated with greater de-
activation, and furthermore, the vast majority of these regions were task-deactivated at the group
level. Together, our findings show that inter-individual differences in ANS activity are strongly
linked to task-induced deactivation. Importantly, our findings suggest that deactivation is a mul-
tifaceted construct potentially linked to ANS control, because distinct ANS measures correlate
with deactivation in different regions . We discuss the implications for current theories of cor-
tical control of the ANS and for accounts of deactivation, with particular reference to studies
documenting a ”failure to deactivate” in multiple clinical states.
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1. Introduction1

Understanding the computations that different brain regions perform during task performance2

continues being one of the main undertakings of modern cognitive neuroscience. In investigat-3

ing this issue, multiple studies show that task-evoked changes are not limited to brain networks4

∗Corresponding authors: Vittorio Iacovella, vittorio.iacovella@unitn.it; Uri Hasson, uri.hasson@unitn.it. This re-
search was supported by European Research Council Starting Grant ERC-STG #263318 NeuroInt to U.H.

Preprint submitted to Neuropsychologia January 30, 2018



strictly associated with task-related information processing. Specifically, engagement in differ-5

ent tasks (e.g., language, attention, memory) impacts activity and connectivity (e.g., Fransson6

& Marrelec, 2008; McKiernan, D’Angelo, Kaufman, & Binder, 2006; McKiernan, Kaufman,7

Kucera-Thompson, & Binder, 2003) of a ”default mode” network (DMN) that is thought to me-8

diate spontaneous, task-independent computations such as mind wandering (Mason et al., 2007).9

Another way by which tasks can perturb brain activity is by modulating brain networks in-10

volved in Autonomic Nervous System (ANS) monitoring and regulation, which are often found11

to be distinct from the DMN in terms of topology and function (as we review below). The ANS12

is strongly impacted by tasks that present arousing stimuli or that specifically employ emotional13

stressors (e.g., Thayer, Ahs, Fredrikson, Sollers, & Wager, 2012; Thayer, Hansen, Saus-Rose, &14

Johnsen, 2009). However, the ANS is also perturbed by affectively neutral tasks such as mental15

arithmetic or Stroop tasks (for review, see Beissner, Meissner, Bar, & Napadow, 2013). Such16

perturbations have been linked to fluctuations in task performance (see Critchley & Garfinkel,17

2015, for review).18

Our general aim in the current study was to establish how individual-differences in ANS ac-19

tivity relate, if at all, to BOLD deactivation during an affectively neutral task. Specifically, we20

examined whether there are brain networks where the magnitude of task-induced deactivation is21

associated with inter-individual differences (IID) in ANS reactivity during performance of a sim-22

ple continuous mental arithmetic task. Our study addresses two fundamental issues concerning23

the relation between IID in ANS activity and task-related deactivation (as well as task-related24

activation). First, as we review below, few prior studies have specifically taken on a systematic25

examination of whether IID in ANS activity are related to task-induced activation or deactivation.26

And second, those studies that examined this question had relied on a single autonomic measure.27

Consequently, whether the magnitude of task-related deactivation in different brain systems is28

associated with different ANS indices, is a topic simply not addressed to date.29

Interestingly, there exist marked IID in both ANS reactivity and task-induced deactivation,30

suggesting these may load on shared factors. Inter-individual differences in ANS reactivity are31

not only prevalent within non-clinical participant groups (Goldberger, Challapalli, Tung, Parker,32

& Kadish, 2001; Karemaker & Wesseling, 2008), but also vary with age (Pfeifer et al., 1983),33

and with personality features during development (Beauchaine, 2001). Altered ANS function is34

also associated with clinical states such as autism (Hirstein, Iversen, & Ramachandran, 2001)35

or depression (Carney, Freedland, & Veith, 2005). In tandem, IID in task-related (de)activation36

have also been reported, and these have been associated with similar factors to those that impact37

ANS. For instance, IID in activation/deactivation have been linked to stress level (Soares et al.,38

2013), age (Persson, Lustig, Nelson, & Reuter-Lorenz, 2007) meditation (Lutz, Brefczynski-39

Lewis, Johnstone, & Davidson, 2008) or clinical states such as autism and schizophrenia that40

have been linked to a ”failure to deactivate” during simple cognitive tasks (e.g., Kennedy, Red-41

cay, & Courchesne, 2006; Landin-Romero et al., 2015). Interestingly, IID in task-related ac-42

tivation/deactivation also correlate with differences in resting-state (baseline) fluctuation levels43

(Zou et al., 2013), which in turn are also linked to IID in ANS activity (Jennings, Sheu, Kuan,44

Manuck, & Gianaros, 2016). We therefore hypothesized that IID in ANS reactivity, as measured45

in a normal non-clinical group of participants, could be related to the extent of task-induced46

activation/deactivation.47

Several studies have reviewed the brain systems involved in regulation of the ANS, partic-48

ularly from the perspective of the psychology of emotion, or the involvement of ANS in inter-49

personal interactions (for reviews and meta-analyses, see, Beissner, Meissner, Bar, & Napadow,50

2013; Thayer, Ahs, Fredrikson, Sollers, & Wager, 2012). The relation between ANS function and51
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brain activity during simple cognitive tasks has received less investigation. Beissner et al. (2013)52

reported a meta-analysis of neuroimaging studies that used motor, emotional or cognitive stres-53

sors. The meta-analysis showed that affective, motor and cognitive tasks produce different rela-54

tions between ANS activity and brain activity (see also Thayer et al., 2012, for a meta-analysis55

focusing on parasympathetic correlates). Particularly relevant for our current inquiry, Beissner56

et al. showed that during cognitive-task stressors, parasympathetic responses were linked to the57

left amygdala and right anterior insula. Sympathetic activity was linked to mid-cingulate cortex,58

left anterior insula, left secondary somatosensory cortex, vmPFC, subgenual ACC, left superior59

parietal lobule, left surpramarginal gyrus, and left amygdala.60

We note that the relation between IID in ANS responses and task-related activation has been61

largely ignored in many prior neuroimaging studies, specifically because typical analyses col-62

lapse across these differences. As such, the bulk of prior work has focused on identifying63

brain regions where activity covaries with ANS fluctuations at the group level, and so between-64

participant differences were modeled as random effects. This was achieved, for example, by in-65

cluding time-series of ANS fluctuations as an explanatory variable (regressor) in single-subject66

BOLD-fMRI regression models (Critchley et al., 2003; Critchley, Tang, Glaser, Butterworth, &67

Dolan, 2005; Evans et al., 2009; Napadow et al., 2008), using block-mean ANS measures as68

parametric modulators in block designs (Fechir et al., 2010) or establishing ANS/PET-rCBF cor-69

relations on the single-participant level (Gianaros, Van Der Veen, & Jennings, 2004; Lane et al.,70

2009). Crucially, in all these analyses, the single-participant regression coefficients were used71

in second-level analyses to identify ANS-related activity at the group level, and IID were not72

quantified.73

Furthermore, some neuroimaging studies that did report BOLD correlates of IID in ANS,74

limited their analysis to brain areas strongly implicated in the experimental task studied. To75

illustrate, Matthews et al. (2004) identified clusters sensitive to congruence in a Stroop task,76

and only within those did they evaluate correlations between heart-rate variability (HRV) and77

response levels to congruent and incongruent trials. This approach may be less sensitive to iden-78

tifying activity-correlates of IID in ANS, as brain areas that are most strongly task-activated, or79

most strongly discriminative of two conditions at the group level may be those least impacted by80

arousal. In another fMRI study (Muehlhan et al., 2013) the authors examined IID in sympathetic81

responses as measured by salivary alpha amylase (sAA) while participants responded to validly-82

or invalidly-cued targets. The authors identified brain regions that satisfied two criteria: task-83

induced activity changes (either activation or deactivation) and significant BOLD/sAA correla-84

tions. Perhaps due to the motor-component of this task, the task-active regions that also showed85

correlations with sAA were not ones typically associated with the ANS. However, the authors86

identified several task-deactive regions including the left precuneus, angular gyrus bilaterally,87

vmPFC and left middle frontal gyrus. In all these regions, higher arousal was associated with88

greater deactivation. This and prior work (Nagai, Critchley, Featherstone, Trimble, & Dolan,89

2004; Wong, Mass, Kimmerly, Menon, & Shoemaker, 2007) suggests that increased arousal is90

associated with greater disturbance of the ‘default‘ process mediated by these regions.91

To our knowledge, two studies have specifically treated the issue of IID in ANS as the fo-92

cus of investigation. Wager et al. (2009) found that during responses to social threat, rostral93

and pregenual ACC showed a positive correlation between heart rate reactivity and task-induced94

activation. The right orbitofrontal cortex was deactivated by the task and showed an inverse95

correlation, so that heart rate reactivity was associated with greater deactivation. Importantly,96

in both regions, rapid BOLD fluctuations tracked fluctuations in heart rate, indicating that de-97

activated regions may track ANS fluctuations on a fine temporal scale. Gianaros et al. (2012)98

3



examined IID in beat-to-beat blood pressure and interbeat intervals (measurements obtained in99

mock fMRI scanner). They correlated a mental effort index of the task (effect size for diffi-100

cult task - easy task) with IID in ANS reactivity. Across participants, stronger effect sizes were101

associated with stronger suppression of baroreflex sensitivity [BRS], an ANS index reflecting102

the short-term homeostatic control of blood pressure. This was found across the cingulate cor-103

tex but also in the insula and midbrain. The study considered however a single physiological104

index (BRS), which is also difficult to measure within a scanning environment thus reducing its105

applicability for everyday neuroimaging studies.106

To summarize, there is limited understanding of how task-induced deactivation is related to107

IID in different autonomic measures. This holds particularly for emotionally-neutral cognitive108

tasks and for ANS-related metrics that can be established from typical cardiac and respiratory109

in-scanner recordings. To examine this issue, we established the magnitude of task-induced ac-110

tivation (or deactivation), and evaluated it against several ANS measures. We selected measures111

that differentially load on sympathetic and parasympathetic sources, and that can be derived from112

physiological signals collected concurrently with task performance in an fMRI scanner. Impor-113

tantly, because we wanted to know whether IID correlations between ANS and task-induced114

effects are mainly found in areas linked to task-induced deactivation, our analytic approach de-115

parted from prior work: we first identified areas where task-related activity correlated with IID116

in ANS measures, and then determined whether these areas were associated with task-related117

activation or deactivation.118

We employed a silent mental arithmetic (MA) subtraction task, in absence of any exoge-119

nous behavioral performance. The task was conducted in a blocked manner to allow model-120

ing task-induced changes in activity. Then, as a first step, we used a group-level voxel-wise121

robust-regression approach to identify brain areas where IID in ANS indices correlated with task-122

induced signal change. These regions then constituted functional regions of interest (fROIS). In123

a last step, for each fROI, we conducted group-level tests to determine whether it showed sta-124

tistically significant task-induced activation or deactivation. In this way, our approach did not125

limit the Brain/ANS investigation to regions that were necessarily strongly (de)activated by the126

task, while still offering the possibility to determine which ANS-related clusters were activated127

or deactivated. We used the MA subtraction task because it produces systematic fronto-parietal128

activations as well as significant deactivations (Grabner, Ansari, Koschutnig, Reishofer, & Ebner,129

2013). MA tasks also perturb both heart rate and respiratory rate (Widjaja et al., 2015). Further-130

more, IID in ANS responses during MA tasks (heart rate or HRV) correlate with magnitude of131

EEG or NIRS indicators (Tanida, Sakatani, Takano, & Tagai, 2004; Yu, Zhang, Xie, Wang, &132

Zhang, 2009).133

We examined several independent ANS measurements, ranging from standard indices of134

heart rate and respiratory variability (Task Force, 1996) to a recently developed information-135

theoretic measure conditional self-entropy (Widjaja et al., 2015) that quantifies the amount of136

information (variance) in the cardiac time series after accounting for the effects of respiration,137

thus allowing more precise characterization of the sympathetic contribution to the cardiac activ-138

ity.139

2. Methods140

2.1. Participants141

Thirteen participants (9 males, Age = 24.6±3.5) participated in the study. Physiological data142

of two participants were excessively noisy and so these were not included in the analysis.143
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2.2. Brain imaging acquisitions144

We acquired a single structural scan per participant at the beginning of the experimental145

session, using a 3D T1-weighted Magnetization Prepared RApid Gradient Echo (MPRAGE)146

sequence (TR/TE = 2700/4.18 ms, flip angle = 7◦, voxel size = 1 mm isotropic, matrix = 256 ×147

224, 176 sagittal slices). We acquired several functional imaging scans. The first consisted of148

115 volumes (TR/TE = 2200 / 33 ms, flip angle = 75◦, voxel size = 3 × 3 × 3 mm, 0.45 mm149

slice spacing, matrix = 64 × 64, 37 axial slices covering the entire brain). During this scan an150

on/off mathematical task was carried out by participants, and this scan is the focus of the current151

report. The other scans consisted of long resting state scans or long scans where participants152

continuously engaged in mathematical computations in absence of rest periods. These are not153

discussed here.154

2.3. Task and procedure155

During the fMRI session, participants engaged in a mental arithmetic Continuous Perfor-156

mance Task (CPT), which had a 4-cycle on/off structure, where the durations of task and rest157

cycles was 28 and 16 seconds respectively. During the rest periods participants were asked to158

observe a fixation cross. The run began with 45sec of rest and then continued into the 4 on/off159

cycles. Each cycle began with a written ‘start‘ prompt accompanied by an arithmetic expression,160

and ended with ‘stop‘ prompt. The start cue consisted of an arithmetic expression such as ”510161

11 = 499” indicating to begin subtracting ”11” from the starting number ”510”. After two sec-162

onds the cue disappeared and participants were instructed to continue subtracting covertly until163

a STOP instruction appeared on the screen. To avoid excessive practice effects there were 4 dif-164

ferent versions of the subtraction task: continuous subtraction of 11, 7, or 13, and another block165

where participants subtracted 2 and 3 repetitively (e.g., 510 -2 -3 -2 -3...). The task was self166

paced. The last ‘on‘ cycle was followed by an additional 45sec of rest. Thus, the overall duration167

of the rest and task periods considered consisted of 4×28 = 112 seconds and 45+3×16+45 = 138168

seconds, respectively.169

2.4. Recording and processing of physiological data170

We acquired physiological data during all functional scans. Cardiac and respiration data171

were acquired using the scanner‘s built-in equipment at an acquisition rate of 50Hz and stored172

for offline analysis. Cardiac sequences were recorded via a photoplethysmograph (PPG) device173

placed on participants‘ left forefinger. Respiration data were collected using the displacement of174

a sensor placed on a belt around participants‘ chests.175

To derive autonomic indices, we started by extracting cardiac beat-to-beat intervals (BBI)176

time-series from the PPG data (see Fig. 1a,b). BBIs were initially identified using an unsuper-177

vised procedure and these were inspected by visual superimposition of the cardiac events onto the178

original cardiac time-series. In order to detect the correct sequences of heartbeat events, artifacts,179

missing and ectopic beats were manually annotated and time-series modified accordingly.180

The first two indices we derived were mean BBI and RMSSD, standard indices commonly181

used to assess the autonomic function from heart rate data:182

1. The mean Beat-to-Beat-Interval (BBI): this is simply the average of the BBIs during the183

task period. Lower BBI values mean faster heart rate.184
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2. Root Mean Square of Subsequent Differences (RMSSD) of the BBIs: a time-domain mea-185

sure (see Berntson, Lozano, & Chen, 2005, for review) that reflects a mainly vagal HRV186

component, and is thought to capture respiratory sinus arrhythmia. It correlates with power187

in higher frequencies of the heart period. It was computed as in Eq. 1 where N is the num-188

ber of measured BBIs. RMSSD measures over short time periods (as low as 10sec) have189

been shown to be good surrogates of much longer recordings (Wang & Huang, 2012). 1
190

RMS S D =

√√√
1

N − 1

N−1∑
i=1

(BBIi+1 − BBIi)2 (1)

The BBI and respiration time series were interpolated and resampled uniformly at 2 Hz (Task191

Force Of The European Society of Cardiology, 1996) using cubic spline interpolation. Prior to192

further analysis, the two time series were de-trended using a zero-phase high-pass filter (IIR,193

order 2, cutoff frequency=0.0215 Hz) in order to foster the fulfillment of stationarity criteria.194

Stationarity of each time series was carefully checked through visual inspection. Then, the two195

time series were analyzed in the framework of autoregressive (AR) modeling, a well-known196

method for the time- and frequency-domain description of cardiorespiratory time series (Task197

Force, 1996), widely employed also in cognitive studies (Lane et al., 2009; G. Park, Van Bavel,198

Vasey, & Thayer, 2013; Williams et al., 2015). Specifically, the time series of respiration (series199

X) or BBI (series Y) were first described individually using the univariate AR models in Eq200

2 where Xn and Yn are the n-th samples of the time series, p is the model order, Ak, Bk are201

linear regression coefficients defined for each k = 1, ..., p, and U,V are the time series of the202

model residuals. Note that the order p was estimated separately for each participant using a BIC203

criterion (Mean = 6.4 ± 0.8; see Schwarz, 1978).204

Xn =

p∑
k=1

Ak Xn−k + Un; Yn =

p∑
k=1

Bk Yn−k + Vn (2)

We used a well-established procedure for deriving the frequency content of the cardiac and205

respiration time series from the estimated AR parameters (Baselli, Porta, Rimoldi, Pagani, &206

Cerutti, 1997). Exploiting the frequency-domain representation of the models in Eq. 2 we com-207

puted the power spectral density of each series, denoted as PX( f ) and PY ( f ), quantifying the208

power of X and Y as a function of frequency (Baselli et al., 1997). As also seen in the example209

in Fig. 1, this representation was used to compute indices related to the total power of the time210

series, the power confined to specific frequency bands, or the frequency of specific oscillatory211

components, as we detail below.212

To identify the part of heart rate variability that was unrelated to respiration we performed213

joint analysis of the cardiac and respiration time series using the two bivariate models in Eq. 3,214

respectively describing the dependence of the current cardiac BBI on the past respiration values215

(upper model) and its dependence on both its own past values and the past respiration values216

(lower model). The differential predictive ability of the two models in Eq. 3 is expressed by the217

variance of the model residuals W and Z, denoted respectively as ΣW and ΣZ . In this formulation,218

an index of the ability of the past BBIs to predict the present interval above and beyond the219

1Given the low sampling rate of the PPG, we interpolated that signal to 200hz, re-estimated the location of the fiducial
peaks, and recalculated the RMSSD indices. The resulting set of values was very highly correlated (Pearsons R > .995)
with RMSSD values estimated from the 50Hz series.
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predictability provided by the past respiration samples is seen in the conditional self-entropy220

(cSE), an information-theoretic measure defined as S Y |X = 0.5 ln(ΣW/ΣZ) (Faes, Porta, & Nollo,221

2015). The cSE captures the predictability of the time series Y based on its own past, and is222

unaffected by the strength of the influences exerted on Y by the other modeled series X.223

Yn =

p∑
k=1

Ck Xn−k + Wn

Yn =

p∑
k=1

Dk Xn−k +

p∑
k=1

Ek Yn−k + Zn

(3)

The methodology described above was applied, separately, to the portions of the BBI and224

respiration time series corresponding to the ‘on‘ and ‘off‘ periods of each participant‘s task (by225

censoring time points from the regression model). Specifically, by assuming stationarity across226

periods belonging to the same condition (i.e., task vs. rest), we obtained realizations of Eqs 2227

and 3 drawing on present and past points of the two time series separately from the rest periods228

or the task periods. We finally considered, respectively, the 276 and 224 time series samples229

for each participant derived as described in Section 2.3. From these realizations, univariate and230

bivariate AR models were identified using the standard least squares approach, and estimating231

the model order according to the Bayesian Information Criterion (Faes, Erla, & Nollo, 2012).232

The estimated model coefficients were used to derive, for each participant, two values (one for233

the ‘off‘ periods and one for the ‘on‘ periods) for three frequency - related autonomic indices (see234

Fig. 1 for an example): Peak Frequency and Power of Respiration and Low-to-high frequency235

power ratio of heart rate variability.236

In all, using these procedures we derived the following six autonomic indices: the first three237

extracted from time-domain analyses and the last three from frequency domain analyses.238

1. (Time Domain) Mean beat-to-beat interval (BBI): The average of the BBIs during the239

task-ON period240

2. (Time Domain) Root Mean Square of Subsequent Differences (RMSSD) of the BBIs: to241

identify high-frequency signatures of the cardiac periods, reflecting a mainly vagal HRV242

component;243

3. (Time Domain) Conditional Self Entropy (cSE): this measure is computed as explained244

above from the error variances of the bivariate AR representation of BBI and respiratory245

time series;246

4. (Frequency Domain) Power of respiration (PRES P): the measure is obtained as the total247

power of the respiratory time series computed as the area under the spectral profile PX( f );248

5. (Frequency Domain) peak Frequency of respiration ( fRES P): the measure corresponds to249

the frequency of the main oscillatory component of respiration, assessed for the main250

spectral peak;251

6. (Frequency Domain) Low-to-high frequency ratio of heart rate variability (PLF/PHF): this252

measure is computed as the ratio between the power of low (LF, 0.04-0.15 Hz) and high253

frequency (HF, 0.15-0.4 Hz) components of the BBIs, where each power is assessed as the254

area under the profile of the spectral components located in the LF or HF band.255

The first two indices constitute a basic approach to autonomic acquisitions. Moreover, given256

that heart rate variability also reflects respiration patterns, we introduced cSE to characterize257

the extent to which the BBI series is uniquely predicted by its own past, as described above258
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(see also, Widjaja et al., 2015). We derived indices 4 and 5 because mental stress impacts the259

amplitude (spectral power) and frequency of respiration (Masaoka & Homma, 1997). Index 6,260

the LF/HF ratio computed for the BBI series, is a common measure for assessing the sympatho-261

vagal balance (Task Force Of The European Society of Cardiology, 1996), which is also known262

to be affected by stress (Pagani et al., 1991). In addition, to maintain consistency with prior263

literature we calculated the non-normalized power in high and low frequencies of the cardiac264

series. The correlations of these with RMSSD and LF/HF ratio were 0.27 and 0.15 for PHF and265

0.06 and 0.71 for PLF. Results for these measures are shown in supplementary materials.266

Figure 1: Computation of autonomic indices through univariate parametric spectral analysis. (a) Respiration
signal; (b) photoplethysmographic signal and measurement of consecutive cardiac beat-to-beat intervals; (c) respiration
series resampled to 2 Hz; (d) series of the cardiac BBIs [higher values indicate a longer break between two successive
beats] resampled to 2 Hz; (e,f) power spectral densities of the portions of the respiration and cardiac time series measured
during task (i.e., these are the portions of the time series depicted in red in (c,d)), evidencing respiratory frequency and
power, as well as low and high frequency power of BBI. Note that the estimation of autoregressive parameters allows
to characterize in terms of frequency and power the spectral content of the cardiac series, with strong power in low
frequencies (gray), and a spectral peak centered exactly at the respiration frequency (yellow).

2.5. Neuroimaging analysis267

2.5.1. Pre-processing268

We implemented the following neuroimaging pipeline. We discarded the first 14 acquired269

volumes (30.8 seconds) to allow for steady-state magnetization delay. Pre-processing was per-270

formed using AFNI (Cox, 1996). Time series were de-spiked, corrected for slice-timing dif-271

ferences and spatially aligned to a reference acquisition. We applied spatial smoothing using a272

tridimensional Gaussian with fwhm of 6mm3
273

2.5.2. Deriving task-related activation at the single participant level274

On the single-subject level, time series analysis was performed using multiple-regression275

methods implemented via AFNI‘s 3dDeconvolve utility. There were three regressors related to276

the experimental design: one capturing the on/off task structure, and two capturing the Start/Stop277

prompts at the beginning and end of each block. These timings were convolved with a boxcar278

hemodynamic response function. Additional regressors were the 6 motion parameters estimated279

from the alignment procedure. The Beta estimate of the regressor for the on/off task structure280

was the one of theoretical interest and propagated to a group-level analysis as described below.281
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We projected the single-participant statistical maps into 2D-surfaces using a Freesurfer (Fis-282

chl, Sereno, Tootell, & Dale, 1999) and SUMA (Saad & Reynolds, 2012) processing pipeline283

as follows: the single participants‘ structural images were aligned to the first image of the first284

functional run (to maximize T1 effect in the EPI data) and alignment was manually checked285

and adjusted when needed. The next steps were implemented using FreeSurfer‘s procedures.286

Here, the anatomical volumes were processed using a pipeline in which they were registered to287

a reference space, segmented, skull stripped, cortex-extracted and inflated to a 2-dimensional288

cortical-fold representation. This cortical representation was registered to common space us-289

ing FreeSurfer‘s registration procedures. It was in this 2D cortical domain where all statistical290

analyses were conducted.291

2.5.3. Group-level analysis292

Before proceeding to our main analysis of ANS correlates, we first examined whether, at293

the group level, the task produced activity patterns similar to those found in prior studies. We294

projected activation maps from the single-participant level to each participants cortical surface295

representation, and all group level analyses were performed on the cortical surface. We con-296

structed typical activation maps by testing participants Beta values at each vertex against 0. In297

this analysis, statistical significance was set at p < .005 (uncorrected single-voxel cluster form-298

ing threshold), and corrected for family-wise error (p < .05) via cluster-wise thresholding, which299

identifies contiguous clusters of statistically significant voxels (FWE p < .05 using cluster ex-300

tent).301

We implemented cluster-based correction on the 2D cortical surface rather than the 3D vol-302

ume, as all analyses were conducted on the surface. The general framework was as follows. We303

generated random data from a normal distribution, smoothed those with the input-based spatial-304

autocorrelation estimate as detailed below, identified the top 1% of voxels (our uncorrected single305

vertex level), clustered those and stored the value of the largest cluster. Storing the top 1% was306

done to match our analysis procedure, which identified clusters where all correlation values had307

to have the same sign (i.e., we split the correlation map into positive and negative values prior308

to clustering). We derived the smoothness estimates for the Monte-Carlo simulation from the309

single-participant spatial auto-correlation of the task-based residuals, after projecting those to310

the surface. This procedure might over-estimate the ‘null‘ spatial autocorrelation, as the task-311

analysis regression that produces those likely fails to remove all task-related activation. This312

will maintain structure in the residuals, thus increasing spatial autocorrelation. This produced an313

estimate of 9mm smoothness on the surface.314

Our main analysis was focused on identifying areas where the Beta values correlated with315

inter-individual differences in autonomic measures. To this end we conducted a robust regres-316

sion analyses on the single vertex level (using the lmrob function of the robustbase package in317

R) where the set of Beta values for the vertex was the predicted variable and the autonomic318

measure the predicting variable. This regression returned a significance value for each regressor.319

Family-wise error correction was implemented as described above (single voxel p < .01 uncor-320

rected; FWE controlled using cluster extent, p < .05). We could thus identify clusters where all321

vertices showed a significant correlation between the Beta values and the autonomic measure (a322

significant brain/behavior correlation).323

In a last step, we treated each cluster in which the brain/behavior correlation was signifi-324

cant as a functional region of interest (fROI). For each fROI we determined if it was associated325

with task-related activation or deactivation, by calculating the mean β in the cluster per partici-326

pant, and then submitting these values to a group-level T-test against 0. These latter tests were327
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FDR-corrected within each autonomic measure, effectively controlling for the number of clusters328

showing significant Beta/ANS correlations.329

3. Results330

3.1. Autonomic indices during task periods and between-task intervals331

The values for the different ANS indices during task performance were as follows: BBI:332

M = 0.86s ± 11, range: 0.68 − 1.06; RMSSD: M = 47ms ± 17, range: 26 − 71; pRESP:333

M = 381805± 83514, range: 271451− 548121; fRESP: M = 0.32Hz± 0.07, range: 0.18− 0.43;334

LF/HF: M = 2.19 ± 1.96, range: 0.3 − 7.08; cSE: M = 1.01 ± 0.31, range: 0.49 − 1.49.335

Prior to analyzing the autonomic indices we evaluated all pair-wise correlations between the 6336

measures during task performance. As shown in Figure 2, correlations were relatively moderate,337

with the maximal correlation holding between cSE and BBI, Pearson‘s R = 0.55. For this338

reason we correlated each measure separately against BOLD activity, rather than using partial339

correlations. We also evaluated the correlation of these measures with age of our participants340

(in months). For BBI, RMSSD and cSE, the absolute correlation value was lower than 0.1.341

For pRESP it was 0.16, for fRESP it was -0.35 and for LF/HF it was 0.52. None approached342

significance.343

To evaluate task effects we examined differences in autonomic activity during the task-on and344

task-off periods. We replicated prior results (e.g., Taelman, Vandeput, Vlemincx, Spaepen, & Van345

Huffel, 2011) showing reduced RMSSD values during the math task as compared to rest (two-346

tailed T-tests); RMSSD: t(10) = −2.20, p = .05. This points to lower vagal modulation during347

task performance. The LF/HF ratio also differed significantly, in the same direction reported in348

prior work; t(10) = −2.69, p = .02. The difference in BBI was not significant. For fRESP,349

pRESP and cSE the results were marginal: For fRESP: t(10) = 1.60, p = .07, with slightly350

higher values for on than off period (M = 0.32 ± 0.02 vs. 0.28 ± 0.02); for pRESP values were351

conversely greater for the off period, t(10) = 1.49, p = .083; cSE was marginally higher during352

the off than on period, CSE: t(10) = 1.69, p = .06.353

We could not directly address the reproducibility of the different ANS measures via common354

test-retest procedures, because the ANS indices are likely to vary across blocks due to practice355

or attention-related effects. However, we could perform another type of analysis. Specifically,356

because we derived these measures for the rest periods between blocks we could quantify to what357

extent inter-individual differences in the ANS measures maintained across task and rest epochs.358

The resulting (Pearsons) correlations were as follows: BBI (R = 0.98, p < .001); RMMSD359

(R = 0.87, p < .001); LF/HF (R = 0.96, p < .001); pRESP (R = 0.57, p = .067); fRESP360

(R = 0.66, p = .027); cSE (R = 0.92, p < .001).361

3.2. Task-induced activation and deactivation362

Consistent with prior studies of mental arithmetic, we found task-related activation in areas363

involved in attention and verbal rehearsal (e.g., left inferior frontal gyrus), and fronto-parietal364

regions. The distribution of deactive regions formed a good match the topology of the Default365

Mode Network (Figure 3).366
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Figure 2: Strength of correlations between autonomic measures computed for each individual participant during task
execution.
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Figure 3: Task-induced activation and deactivation during the 4-block mental arithmetic task. The task consisted of four
task-on (28s)/task-off (16s) cycles.

3.3. Correlations between task-invoked activity and autonomic indices367

3.3.1. Beat-to-Beat Interval (BBI)368

Prefacing the specific findings, we found that individuals with lower heart rate (higher BBI)369

showed more moderate task-induced activation in fronto-parietal regions, as well as more mod-370

erate task-induced deactivation in vmPFC.371

Specifically, we found positive BOLD/BBI correlations in the left occipitotemporal cortex372

(Figure 4A). On the right (Figure 4C), we identified three clusters consisting of the STS (#1)373

and ventro-medial prefrontal cortex (#2, 3). For the more inferior vmPFC cluster (#3) we found374

significant deactivation on the group level (FDR corrected for 6 tests). Taken together with375

the positive correlation, this means that individuals with a higher-value BBI (slower heart rate)376

showed less deactivation in vmPFC.377

Negative BOLD/BBI correlations were found in two clusters on the right (Figure 4B). These378

were found around IPS (#1) and SFS (#2). In both clusters mean group-level activity was signifi-379

cantly above baseline (FDR corrected for 6 tests). This means that individuals with a higher BBI380

(slower heart rate) showed weaker above-baseline activation in these regions. Note that these381

clusters match regions that were identified as particularly strong above-baseline activity in the382

initial task analysis (Figure 3).383

3.3.2. Conditional self-entropy (cSE)384

Several brain regions showed a negative BOLD/cSE relationship (Figure 5). These were385

located, bilaterally, in the superior frontal gyrus (SFG) and the superior anterior insula. A fifth386

cluster was found in the central cingulate gyrus. Higher cSE reflects better predictability of387

the BBI based on its recent past after discounting for the respiratory effect, which is generally388

associated with the rise of more regular HRV oscillations related to higher sympathetic tone.389

3.3.3. RMSSD390

We found an extended bilateral network of regions showing positive correlations between391

task-induced activity and RMSSD (Figure 6). No negative correlations were found (Figure392

6A,B). In 18 of the 29 identified clusters, task-related changes were associated with significant393

deactivation (FDR corrected for 29 tests; see Figure 6C), and none showed significant activation.394

In summary, increased RMSSD in these regions, which overlapped substantially with the Default395

Mode Network, was associated with less marked deactivation patterns.396
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Figure 4: Interindividual differences in BBI. Panel A: Left hemisphere region showing positive BBI/BOLD correla-
tions. Panel B: Right hemisphere regions showing negative BBI/BOLD correlations. Panel C: Right hemisphere regions
showing positive BBI/BOLD correlations. Here and in all subsequent figures, Yellow circles mark correlation clusters
that showed statistically significant taskrelated activation and Blue circles mark correlation clusters that showed statisti-
cal significant task-related deactivation. Note that negative correlation indicates that greater activity was linked to higher
heart rate (shorter BBI).

In the left hemisphere (Figure 6A) these regions included (in 13 clusters) the SMG, anterior397

STG extending into the supratemoral plane (STP), SFG, anterior left IFG, midline regions in-398

cluding the precuneus, the central part of cingulate gyrus, rostral part of ACC and vmPFC. There399

was also an extensive cluster in the occipitotemporal cortex. On the right (Figure 6B), these400

areas included (in 16 clusters) the STS extending posteriorly to the SMG, but also to the MTG,401

the anterior insula and the right IFG. Correlations were also found in the most anterior part of402

vmPFC, the precuneus, the central part of the cingulate gyrus, and parahippocampal gyrus.403

3.3.4. Low-frequency to High-frequency ratio404

Positive BOLD/LF-HF correlations were found in the insula bilaterally, along the posterior,405

middle and anterior cingulate gyrus, and in a few additional fronto-parietal clusters (Figure 7).406

No negative clusters were found. In left occipto-temporal cortex, left STS and left orbitofrontal407

cortex there was statistically-significant deactivation, indicating that participants with greater408

LF/HF ratio showed weaker deactivation. No cluster showed statistically significant activation.409

3.3.5. Respiration frequency (fRESP)410

Respiration frequency (fRESP) was associated with task-induced responses both positively411

and negatively (22 clusters in all; Figure 8). Generally, increased fRESP was linked to greater412

activation in task-active regions and greater deactivation in task-deactive regions.413

Positive BOLD/fRESP correlations were found, on the right (Figure 8B), in the calcarine414

sulcus and nearby cuneus, and the posterior parietal-occipital fissure, and within the calcarine415

sulcus on the left (Figure 8A). This latter cluster showed significant above-baseline activation416

meaning that greater fRESP was associated with greater activation. Indeed, as can be seen in the417
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Figure 5: Interindividual differences in CSE. Panel A, B: Left and Right hemispheres. Inset: cingulate gyrus on medial
surface of right hemisphere.

task-activation map (Figure 3), the occipital regions identified here formed a good match with418

the posterior midline clusters showing significant task-activation in the whole-brain analysis.419

Negative BOLD/fRESP correlations (Figure 8C) were found, bilaterally, in central insula,420

and posterior cingulate regions. On the left, other clusters were found in SFS. On the right,421

clusters were found in posterior PoCG and anterior PHG. Several of these clusters showed sig-422

nificant task-induced deactivation (FDR corrected for 27 tests). There was no indication for423

above-baseline activation in any of the clusters showing negative correlations.424

3.3.6. Respiration power (pRESP)425

Respiration power (pRESP) was associated with task-evoked responses mainly in sensori-426

motor and midline regions. These clusters largely excluded the lateral frontal cortex, and very427

few were found in parietal and occipital cortices. With one exception, correlations were positive,428

but as shown in Figure 9, in many of these clusters, the task produced significant deactivation429

(activations were not found). Thus, generally, greater respiration power was associated with less430

deactivation.431

In both hemispheres we found correlations in the superior temporal plane and insula (pos-432

terior and central). Additional correlations were found in left STS and the right central sulcus.433

Statistically significant deactivations (FDR corrected for 5 tests) were found in midline regions,434

and left parietal operculum. A single cluster in the right posterior insula (not presented in Figure435

9) showed a negative correlation with task-induced activity.436

3.4. Summary of results437

The above-presented findings can be summarized by considering the relationship between438

areas showing BOLD/ANS relations and those that show task-related activation or deactivation439

at the group level (i.e., regions shown in Figure 3). It is also possible to quantify, for each440

autonomic index, the distribution of areas that were significantly task-activated or deactivated, as441

evaluated separately within the functional ROIs showing BOLD/ANS correlations.442

Figure 10 shows the overlap between task-related effects and BOLD/ANS effects. As can be443

seen, BOLD/ANS correlations were found in core nodes of the DMN, but sparing the PCC. There444

was less overlap with task-active regions, most notably for those in left dorsolateral prefrontal445

cortex.446

Table 1 shows, for each autonomic measure, the proportion of brain surface area linked to447

statistically significant task-related activation, task-related deactivation, or no difference from448
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Figure 6: Interindividual differences in RMSSD. Panels A, B: Left and Right hemisphere regions where task-related
activity correlated with RMSSD. In all cases the correlations were positive. Panel C: depiction of separate clusters
marking those clusters that showed significant deactivation (FDR corrected for 29 tests) at the group level. No cluster
showed significant activation.

baseline (proportions sum to 100% within row). This analysis shows that by and large, inter-449

individual differences in ANS activity were more related to task-related deactivation than to450

activation. (These proportions hold for the particular single-voxel cluster-forming threshold we451

used, and different results may be obtained for other cluster-forming thresholds.)452

Positive BOLD/ANS correlation Negative BOLD/ANS correlation
Measure % Act. % Deact. % Null % Act. % Deact. % Null
BBI 0 9 46 45 0 0
cSE 0 0 0 0 0 100
RMSSD 0 63 37 0 0 0
fRESP 4 0 35 0 26 35
LF:HF 0 11 87 0 0 2
pRESP 0 72 25 3 0 0

Table 1: Task effects in areas identified by BOLD/ANS analyses. For each measure, the relative area of significantly
active, significantly deactive and other clusters is shown (each row sums to 100%)

4. Discussion453

In the current study, participants performed a continuous mental arithmetic task known to454

induce mental effort (Tanida et al., 2004; Widjaja et al., 2015; Yu et al., 2009). We replicated455

task-related activation and deactivation patterns previously reported for this task (e.g., Grabner,456

Ansari, Koschutnig, Reishofer, & Ebner, 2013). We also replicated prior findings of reduced457

cardiac RMSSD during task execution (e.g., Duschek, Muckenthaler, Werner, & del Paso, 2009).458
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Figure 7: Interindividual differences LF/HF ratio. Panels A, B: Left and Right hemisphere regions where task-related
activity correlated with LF/HF ratio. In all cases the correlations were positive. Blue circles mark clusters showing
significant deactivation at the group level (FDR corrected for 18 tests).

In tandem, we found that inter-individual differences (IID) in ANS measures were associated459

with task-induced deactivation. In particular, the strength of task-induced deactivation was sig-460

nificantly negatively correlated with indicators of the vagal parasympathetic ANS control, such461

as the mean and RMSSD of the cardiac BBIs and the respiratory power and frequency. Equally462

important, different ANS measures were associated with deactivation in different regions, sug-463

gesting they load on different latent constructs underlying deactivation. Finally, ANS measures464

were less-extensively linked to task-induced activation.465

In what follows we address potential accounts for these correlations, particularly for the re-466

lation between IID in ANS measures and deactivation. We do so in relation to what is currently467

known about the computations that these regions mediate during mental arithmetic. We then468

discuss the implications of these findings for research documenting a ”failure to deactivate” in469

certain populations, and for studies interested in quantifying task-related activations (or deacti-470

vations) more generally.471

4.1. Activation during mental arithmetic472

As a result of several neuroimaging studies of mental subtraction, there exists a good basis473

for interpreting functions associated regions that are activated or deactivated during this task.474

As opposed to numerical multiplication, which involves extensive access to episodic knowledge,475

subtraction appears to rely on numerosity comparison mechanisms (Prado et al., 2011), and may476

load on both phonological working memory and spatial representations (Cavdaroglu & Knops,477

2016; Kallai, Schunn, & Fiez, 2012). A set of fronto-parietal and few occipitotemporal regions478

have been consistently implicated in this task. For instance, parietal regions (right superior),479

prefrontal regions and the fusiform bilaterally have been linked to abstract-level arithmetic com-480

putations in a paradigm where arithmetic expressions were followed by visual dot patterns whose481
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Figure 8: Interindividual differences in respiration frequency (fRESP). Panels A, B: Left and Right hemisphere
regions where task-related activity correlated positively with fRESP. One region (yellow circle) showed significant task-
related activation (FDR corrected for 27 tests). Panel C: regions where task-related activity correlated negatively with
fRESP. Blue circles mark clusters with statistically significant task-related deactivation (FDR corrected).

numerosity matched or did not match the correct sum of the expression (Kallai et al., 2012), sug-482

gesting these regions code for abstract numerical quantities. Others have documented similar483

fronto-parietal activations (Grabner et al., 2013; Vansteensel et al., 2014). For instance, using484

ECoG and fMRI, Vansteensel et al. (2014) implicated an area straddling the junction of the485

precentral gyrus and middle-frontal gyrus in the implementation of subtraction. They presented486

one problem at a time and found that this region showed a continuous response throughout the487

trial including the period following the removal of the arithmetic problem from the screen. The488

fusiform gyrus similarly showed a strong initial response (corresponding to processing the vi-489

sual stimulus), which continued to be elevated during the computation time. Thus, frontal and490

occipital task-related activation appears to be related to the subtraction computation itself.491

4.2. Deactivation during mental arithmetic492

Particularly relevant to our investigation are brain areas that show deactivation during men-493

tal arithmetic. Prior work suggests that during mental arithmetic, areas showing deactivation494

are implicated in the arithmetic computations themselves. Grabner et al. reported deactivation495

patterns extremely similar to the ones we found. Notably, they found that the magnitude of deac-496

tivation in some of these areas (angular gyrus [AG] bilaterally and ACC) was stronger for larger497

problems. In addition, both the left AG and anterior left SFG/MFG showed overall deactivation,498

while accompanied by relatively greater activity for more confusing problems. The latter find-499

ing suggests that during mental arithmetic, deactive regions are less deactive for more complex500

contexts, and most generally indicate that deactive-regions may be involved in relevant computa-501

tions. This possibility is also supported by EEG and EEG/fMRI studies. In an EEG/fMRI study502
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Figure 9: Interindividual differences in respiration power (pRESP). Panels A, B: Left and Right hemisphere regions
where task-related activity correlated with pRESP. In all cases the correlations were positive. Blue circles mark clusters
with statistically significant task-related deactivation (FDR corrected).

using source-localization (Sammer et al., 2007), theta activity during mental arithmetic corre-503

lated with BOLD responses in many brain regions showing deactivation in our study, including504

the superior temporal plane and nearby perisylvian regions bilaterally, and both posterior and an-505

terior cingulate gyrus (see also Grabner et al.‘s Figure2B, p. 797). This suggests that deactivation506

during mental arithmetic cannot be explained in terms of shutting down of a ”default” process,507

but that activity in these regions tracks rapid fluctuations in working memory demands during508

the task (see also Wager et al. 2009 for link between deactivation and rapid ANS fluctuations).509

An MEG study (Ishii et al., 2014) also examined sources of theta activity during mental arith-510

metic and identified frontal midline regions as generators, suggesting that they are linked to the511

task‘s working memory demands. Meltzer et al. (2007) reported that IID in task-evoked frontal-512

midline theta during working maintenance correlate with IID in task-evoked BOLD during the513

same task. In that study, participants with higher theta showed lower BOLD activity in anterior514

medial prefrontal cortex, inferior parietal lobule and left MFG. As discussed by Meltzer et al.,515

one of the puzzling aspects of the theta/BOLD relationship is that it is negative (i.e., stronger516

theta accompanied by lower BOLD), even though theta is typically considered to be meaning-517

fully related to neural activity. One possibility they mention is that theta activity is inhibitory in518

nature, so that increased theta is associated with reduced metabolic demands. Altogether, prior519

work suggests that (at least some) deactivations during mental arithmetic are linked to increased520

theta, which in turn is specifically linked to rapidly fluctuating working memory demands of the521

task.522

Less is known on the sources of deactivation of auditory cortex and the superior temporal523

plane during mental arithmetic. Zarnhofer et al. (2012) found that a multiplication task was524

associated with deactivation of the left transverse temporal gyrus, a, with greater deactivation525

associated with less self-reported use of verbalization in that task. There is also some evidence526

that working memory demands produce deactivation of both auditory and visual sensory cortices527

(Azulay, Striem, & Amedi, 2009), but we note that in the current study, deactivations were largely528

limited to auditory cortex.529
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Figure 10: The figure shows in yellow and blue areas of activation and deactivation during the mental arithmetic task.
Areas showing BOLD/ANS correlations for any of the autonomic measures, are shown in white.

4.3. Task-induced changes and inter-individual differences in ANS metrics530

In the current study, task execution was associated with changes to ANS cardiac profiles531

identified in prior work, most notably producing a reduction in the fast short-term variability of532

the heart rate, here seen in a significant reduction in the RMSSD values (as shown previously,533

e.g., Duschek et al., 2009). In addition, we found that task-related activity was significantly cor-534

related with RMSSD in many regions considered part of the DMN. Given that the most extensive535

pattern of inter-individual effects was seen for RMSSD, and given that it was robustly impacted536

by task performance (Section 3.1), we first discuss the RMSSD results, and then address the537

other measures.538

4.3.1. Deactivation and RMSSD539

RMSSD is an autonomic index that largely loads on the high frequency fluctuation of the car-540

diac BBI, and is related to vagal parasympathetic contribution; i.e., relatively short-term, rapidly541

fluctuating effects (though also influenced by sympathetic activity; Berntson et al., 2005). Dur-542

ing cognitive tasks, cardiac complexity reduces as a result of a sympathetic activation generally543

associated with vagal deactivation (Vrijkotte, van Doornen, & de Geus, 2000; Widjaja et al.,544

2015). This cardiovascular reaction is also documented in our study by a reduction of indices re-545

flecting vagal ANS control (cardiac RMSSD, respiratory power) for participants showing larger546

task-related BOLD deactivation. In particular, we found that lower RMSSD was associated with547

lower activation in posterior, central and anterior cingulate gyrus as well as the angular gyrus548

bilaterally, STS, left SFG, the central insula bilaterally (Figure 6). Almost all these regions549
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showed significant task-related deactivation at the group level. This suggests that maintenance550

of baseline activity in these regions indicates a weaker cardiovascular response to the task.551

Lower cardiovascular involvement may be beneficial for task performance. For instance, in a552

study (Duschek et al., 2009) of the relationship between task performance and respiratory sinus553

arrhythmia (RSA; quantified as spectral power in the higher 0.14 to 0.40Hz frequency bands),554

lower on-task RSA was linked to better performance. The authors suggested that, ”reduced555

cardiac vagal tone during task execution helps establish an ergotopic [sympathetic-dominant]556

physiological condition, which contributes to optimizing mental functioning” (p. 115). More-557

over, while our task did not require an overt response, prior work has indeed shown that greater558

DMN deactivation (here associated with lower RMSSD) associates with better task-performance,559

including improved memory (Daselaar, Prince, & Cabeza, 2004) or reduced prevalence of task-560

unrelated thoughts (McKiernan et al., 2006).561

The analysis of BOLD correlates of RMSSD identified both the central and rostral cingu-562

late gyrus bilaterally. The central part of the cingulate gyrus has been implicated in autonomic563

control. In particular, Critchley et al. (2003) found that ACC activity correlated with fluctua-564

tions in HRV during task performance. In addition, ACC-lesioned individuals did not show the565

typical task-related reduction in heart-rate variance shown by controls (and found in our cur-566

rent study). The RMSSD analysis also identified a very ventral part of vmPFC extending into567

medial orbitrofrontal cortex on the left and the subgenual ACC (sgACC). These regions have568

been linked to autonomic/emotional responses by Amodio and Frith (2006), and to sympathetic569

and parasympathetic activity in several studies (Nagai et al., 2004; Wong et al., 2007; Ziegler,570

Dahnke, Yeragani, & Br, 2009). Wager et al. (2009) reported that the magnitude of deactivation571

in the right orbitofrontal cortex (and putamen) was linked to higher heart rate (lower BBI) across572

individuals. We found a similar pattern for BBI though in a somewhat more rostral section (see573

Figure 4C), where increased heart rate was associated with greater activity. Thus, in this region,574

lower activity was linked to both lower heart rate and lower RMSSD.575

As a whole however, the regions we identify for RMSSD overlap with the topological distri-576

bution of the Default Mode Network, a set of regions often associated with task-induced deacti-577

vation. This means that individuals who maintained higher vagal tone during task performance578

showed weaker task deactivation. Importantly, greater RMSSD did not correlate with stronger579

activation in any of the task-activated regions. Taken together this suggests that the link between580

deactivation and RMSSD is not associated with general attention, as in that case RMSSD should581

have also correlated with increased activation. Rather, less complex cardiovascular dynamics in582

response to task performance (i.e., reduced RMSSD) are specifically related to greater deactiva-583

tion of the DMN.584

It may be that individuals showing greater RMSSD during task performance are less engaged585

in task-related computations, which is accompanied by weaker task-induced deactivations in the586

DMN. As mentioned in the introduction, Wager et al. (2009) found that rapid fluctuations in the587

DMN correlate with autonomic state, which is consistent with a link to rapid shifts in attentional588

or homeostatic states. Apart from this, there is a separate literature linking the DMN to ANS589

function on short temporal scale. Using MEG, Park et al. 2014 showed that neural activity in the590

two main nodes of the DMN, the ventral ACC and right inferior parietal lobule, varied with the591

magnitude of the heart evoked response (HER) and predicted performance in a visual perception592

task. In addition, Babo-Rebelo et al. (2016) found that the proportion of self-focused thoughts593

during rumination covaried with HER amplitude and could be localized to the vicinity of the left594

precuneus. This suggests that the DMN mediates both physiological and cognitive functions.595

We note that this account is somewhat independent from explanations of ACC involvement596
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in modulation of sympathetic activity, as RMSSD loads predominantly on higher cardiac fre-597

quencies related to the parasympathetic system. With respect to sympathetic activity, it has598

been suggested (Critchley et al., 2003) that during normal function, ACC (dorsal part) controls599

the sympathetic system, and that reduced ACC activity is associated with lesser ANS control.600

Thayer et al. (2009) similarly suggested that disinhibition of prefrontal regions produces dis-601

inhibition in the central nucleus of the amygdala, producing a cascade of activations resulting602

in increased heart rate and decrease in HRV. Our findings are generally consistent with this as603

individuals with higher RMSSD showed weaker deactivation in these regions.604

The areas identified in this analysis are more extensive than those documented by Beissner605

et al.‘s (2013) meta-analysis. For cognitive tasks, that analysis identified high-frequency HRV606

(parasympathetic) activity in the anterior insula, and in addition, sympathetic indices in a few607

other regions including vmPFC. That distribution is quite different from what we find. While it608

is difficult to relate any single set of findings (such as ours) to those of a meta analysis, perhaps the609

clearest difference is that the analysis method in our study may identify areas not be identified610

by typical reports. Typical analyses identify, by and large, areas where ANS activity tracks611

the task demands in a way that holds quite consistently at the group level. In contrast, the612

regions we identify are ones that can have a different feature these regions may show task-613

related activation/deactivation for some participants; those with the strongest ANS indices. This614

may be the main point of difference between our findings and those reported in Beissner et al.s615

meta-analysis.616

4.3.2. Correlation of other ANS measures with task-induced activation and deactivation617

All ANS measures we examined identified brain systems for which ANS/BOLD correlations618

were either positive or negative. For the heart rate regressor (BBI) we found that faster heart rate619

correlated with task-induced activation in right fronto-parietal regions, which were strongly task-620

activated at the group level (compare Figure 4B and Figure 3). Faster heart rate was also linked621

to greater deactivation in right vmPFC (Figure 4C). Increases in heart rate are mainly caused by622

increased sympathetic activity, and are consequently related to a decrease in the vagal regulation623

(Hainsworth, 1995).624

These findings for the BBI regressor are very consistent with several studies that have docu-625

mented inverse correlations between vmPFC activity and arousal, either during task performance626

or the resting state. In a study of resting-state, Zeigler et al. (2009) found that faster heart periods627

were accompanied by lower activity only in the vmPFC (no area showed a positive correlation)628

Shmueli et al. (2007) found that fluctuations in HR tracked activity in several regions of the629

DMN (showing a negative correlation), mainly within ±6 sec of the measured BOLD response,630

but interpreted these as effects of physiological artifacts (but see Iacovella and Hasson, 2011, for631

a discussion on whether such correlations should be treated as physiological noise). Wong et632

al. (2007) found that engagement in a physical task produced changes in heart rate, which were633

negatively correlated with vmPFC activity. Furthermore, while the physical task used by Wong634

et al. deactivated both the vmPFC and the posterior cingulate cortex (PCC), which are both635

central DMN nodes, only vmPFC activity tracked heart rate, which is broadly consistent with636

our findings as the PCC was noticeably a region that did not show BOLD/ANS correlations for637

any of our autonomic measures. Nagai et al. (2004) examined correlations of skin conductance638

levels (SCL) with BOLD activity during a biofeedback task and found that increased SCL was639

associated with greater vmPFC deactivation. Taken together with those results, we suggest that640

the observed BBI-IID pattern of a positive ANS/BOLD correlation in task-active regions and a641

negative ANS/BOLD correlation in task-deactive regions is consistent with an attentional fac-642
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tor, and reflects a shift of the sympatho-vagal balance towards sympathetic activation and vagal643

deactivation.644

Notably, the decrease of parasympathetic activity in task-deactive regions to an extent pro-645

portional to the degree of deactivation was also observed for respiration power. This ANS mea-646

sure, which closely reflects the tidal volume, is an index of parasympathetic activity that has an647

impact, among other factors, on the respiratory sinus arrhythmia (Brown, Beightol, Koh, & Eck-648

berg, 1985). Thus, the positive correlation found between the BOLD activity and the respiratory649

power in task-deactive regions (Figure 9) suggests that stronger deactivation occurred in subjects650

in whom a lower tidal volume was indicative of a weaker involvement of the parasympathetic651

control.652

Interestingly, another ANS regressor – respiration frequency (fRESP) – also showed positive653

correlations for task-active regions and negative correlations for task-deactive regions, but for a654

different set of regions than identified by BBI. It is known that fRESP increases with task stress655

(Nilsen, Sand, Stovner, Leistad, & Westgaard, 2007) and that cognitive tasks including mental656

arithmetic increase respiration frequency (Wientjes, Grossman, & Gaillard, 1998). In our study,657

increased fRESP positively correlated with task-induced activation in visual cortices, and was658

negatively correlated with task-induced deactivation in temporal regions of the superior temporal659

plane as well as midline regions. The physiological mechanism behind this behavior may be660

again a decrease in the parasympathetic nervous activity: since higher breathing rates are usually661

associated with weaker respiratory sinus arrhythmia (Brown et al. 1985), the strong correlation662

between fRESP and the magnitude of task-induced (de)activation is likely related to the decrease663

in the vagal tone during successful responses to the task. The temporal regions in which deac-664

tivations correlated with fRESP are not generally linked to task related deactivation, but have665

been linked to modulation of auditory attention (Petkov et al., 2004), and their magnitude of ac-666

tivation follows the magnitude of pupil dilation during effortful listening (Zekveld, Heslenfeld,667

Johnsrude, Versfeld, & Kramer, 2014). Taken together with the positive correlation between668

fRESP and task-evoked activity in visual cortex, we suggest that BOLD/fRESP correlations may669

be linked to visual imagery processes that might be invoked during mental arithmetic. Amedi et670

al. (2005) showed that visual imagery is accompanied by activation of visual cortex and deac-671

tivation of auditory cortex, similar to the pattern we document. Amedi et al. also reported that672

increased activity in visual cortex correlated with decreased activity in auditory cortex, which673

is exactly the IID pattern found here. It is also possible that lateral temporal regions are more674

directly linked to the ANS. Duggento et al. (2016) reported a Granger-causality analysis between675

brain and cardiac activity and found that activity in several brain regions preceded fluctuations676

in the higher-frequency cardiac band, with 3 of these regions being lateral temporal ones (left677

MTG, right transverse temporal gyrus, right superior temporal pole).678

As can be seen in Figure 2, there was no correlation between fRESP and BBI across partici-679

pants (Pearsons R = −0.086), suggesting they load on different factors. This could explain why680

both were related to activation and deactivation but in different systems. It may be that the BBI681

measure loads on a more general attention-related factor, whereas the fRESP loads on cognitive682

components more strongly linked to working memory operations and imagery. Clearly such an683

account is speculative, but it suggests interesting directions for future research.684

For cSE, we found that lower values, indicating less predictable cardiovascular variability,685

were linked to higher task-related activity in SFS bilaterally, central insula and central cingulate.686

The SFS areas showing these correlations were adjacent to those that showed task-related activa-687

tion in the group-level analysis (the cluster on the right showed significant activation prior to FDR688

correction). The absence of any DMN region in these statistical maps, nor any area showing sig-689
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nificant deactivation, suggests that cSE tracks BOLD activity in areas that show above-baseline690

activation for some participants, and may be generally related to attentional differences. The cSE691

reflects the complexity (unpredictability) of the portion of heart rate variability that is unrelated692

to respiration (Faes et al., 2015). Hence, the fact that the regions showing BOLD/cSE correla-693

tions exclude the DMN suggests that ANS indices accounting for vagally-mediated respiratory694

effects and respiration-unrelated (mainly sympathetic) effects load on different regions. This695

also provides further support to the role played by the respiration-related vagal ANS modulation696

documented by RMSSD (Figure 6) and pRESP (Figure 9).697

The LF/HF ratio was relatively weakly correlated with all other measures. It identified only698

positive correlations with task-induced changes in two regions (left AG and vmPFC), which were699

task-deactive. Higher LF/HF values could be related to increased power in LF, perhaps due to700

sympathetic increase with stress (Bernardi et al., 2000), or alternatively, a slower breathing rate701

(thought in the current study, correlations with respiration frequency were moderate, Pearsons702

R = −0.37).703

4.4. Implications for theories of individual-differences in deactivation704

Certain populations show weaker-than-normal task-linked deactivation, particularly in the705

DMN. A good example is seen in research on schizophrenia, where several studies had reported706

a ”failure to deactivate” (FTD) in schizophrenic populations (see Pomarol-Clotet et al., 2008).707

However, the interpretation of this finding has been unclear – deactivation in schizophrenia is708

not linked to task performance (Pomarol-Clotet et al., 2008) and for this reason, FTD in this709

population has been suggested to be generally related to the disease itself, perhaps indicating use710

of different computations, or less efficient cognitive performance. Similarly, landmark work in711

the study of autism (Kennedy, Redcay, & Courchesne, 2006) documented FTD throughout the712

DMN, which was interpreted in terms of abnormal internally directed processes at rest. However,713

later work on autism documented similar FTD patterns in behaviorally non-affected siblings of714

autistic individuals (Spencer et al., 2012), which suggests that FTD in autism may be related715

to a heritable feature that loads on a non-cognitive aspect related to deactivation. Chronic pain716

is associated with weaker deactivation in key nodes of the DMN (Baliki, Geha, Apkarian, &717

Chialvo, 2008), while accompanied by similar levels of task-based activation. Qin et al. (Qin,718

Hermans, van Marle, Luo, & Fernandez, 2009) reported that stress can impact the magnitude719

of deactivation in key DMN regions, with higher stress (as measured by cortisol concentration)720

accompanied by reduced deactivation. This has been interpreted in terms of a deficit in the721

typical of reallocation of resources induced by extrinsic tasks. The magnitude of deactivation722

reduces with maturation from childhood to early adulthood (Sun et al., 2013). Finally, reduced723

deactivation is also found in minimally conscious state (Crone et al., 2011).724

As is evident from all these examples, reduced deactivation or FTD is found across the cogni-725

tive and clinical spectrum. However, the possibility that these failures are linked to, or are a result726

of abnormal autonomic responses under task demands has not been considered to date. Our find-727

ings suggest that a more complete understanding of failures to deactivate could be obtained by728

relating those to group or individual differences in maintenance of ANS activity. A parsimonious729

explanation is that these clinical states are associated with what amounts to a maladaptive main-730

tenance of higher-complexity ANS states during task performance, which is reflected in reduced731

deactivation.732

Finally, beyond accounting for inter-individual differences, such explanations may also ac-733

count for interesting intra-individual differences in deactivation. A recent study (Meshulam &734

Malach, 2016) found that the progression of practice during a simple visual categorization task735
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was accompanied by increased deactivation over time in the DMN. As mentioned by the au-736

thors, this may reflect task-related computations such as more successful silencing of competing737

information. Alternatively, as suggested by our findings, it may reflect lower cardiovascular in-738

volvement with practice. Relating such effects to ANS fluctuations within each participants scan739

is an interesting direction for future work.740

4.5. Limitations and considerations for future work741

Our study contains some limitations that could be annulled in future work. The small num-742

ber of participants could result in lower power and subsequent misses relative to a larger cohort.743

However, we used robust regression so that the small number of participants would not necessar-744

ily increase the rate of false positives, as this type of regression method specifically down-weights745

univariate outliers. This regression procedure, while useful for allowing determination of the sign746

of the relationship and its statistical significance, does not allow precise estimation of effect sizes747

or confidence intervals (particularly for such a small sample), and future work using larger sam-748

ple sizes would be necessary for these purposes (see Supplementary Materials for estimate of749

effective group size based on data from the current study).750

There are also some technical limitations related to the acquisition of the physiological sig-751

nals in our fMRI environment. The first is the utilization of the surrogate measure of HRV yielded752

by the plethysmogram (PPG). The BBI series that are the basis for mean-BBI, RMSSD, and753

LF/HF measures can differ when measured via ECG and PPG as a consequence of noise/artifacts754

and of the physiological variability of the transit time of the pressure wave from the heart to the755

peripheral location of PPG recording (Allen, 2007). As documented by Schafer et al. (Schafer756

& Vagedes, 2013), the extensive literature about the agreement between PPG- and ECG-based757

measures of HRV is not unequivocal. However, there does seem to be a consensus on the usabil-758

ity of PPG-derived measures of HRV in healthy subjects monitored in stable resting conditions759

(Selvaraj, Jaryal, Santhosh, Deepak, & Anand, 2008). It is unclear if this agreement maintains760

during physical or mental stress (Giardino, Lehrer, & Edelberg, 2002).761

Another technical issue relates to the low sampling rate (50Hz) at which we acquired the762

PPG signal. This was determined by the scanner hardware, but is below that typically rec-763

ommended for ECG-based HRV analysis (Task Force Of The European Society of Cardiology,764

1996). Specifically, A low sampling rate reduces the accuracy in the detection of the fiducial765

points of cardiac events, which may cause changes in the subsequent derived autonomic in-766

dices. However, although sampling rate impacts the accuracy of HRV indices (Garcia-Gonzalez,767

Fernandez-Chimeno, & Ramos-Castro, 2004), traditional time, frequency and nonlinear indexes768

can be computed with a reasonable estimation error for low ECG sampling rates (Voss, Wessel,769

Sander, Malberg, & Dietz, 1996; Ziemssen, Gasch, & Ruediger, 2008), and even a sampling770

rate as low as 50 Hz can be used without irreparably degrading accuracy (Mahdiani, Jeyhani,771

Peltokangas, & Vehkaoja, 2015). Importantly, when we interpolated the PPG signal to a higher772

frequency, and recalculated RMSSD based on re-estimated peak locations, we found that the re-773

sulting RMSSD values were highly correlated with the original calculations suggesting that very774

similar BRAIN/ANS correlations would maintain under a higher sampling rate.775

A separate issue relates to differentiating potential physiological effects on task-induced ac-776

tivation. In the current study, task performance had systematic impacts on autonomic measures,777

with two indices showing statistically significant effects, and three others statistically marginal778

ones. For this reason, we did not perform a procedure that partials out autonomic covariates from779

the BOLD signal. This procedure is typically referred to as ‘physiological noise correction‘, and780

often used to account for ANS-induced fluctuations in BOLD resting state paradigms. However,781
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as we have noted in prior work (Iacovella & Hasson, 2011), this procedure should not be auto-782

matically applied in task-related paradigms, particularly when it is known that the task produces783

ANS perturbations. In such cases, inserting ANS data as time-series regressors would result784

in regressing out meaningful activity patterns from exactly those regions involved in task-related785

computations. To evaluate this issue, we implemented such a correction on the BOLD time series786

collected in the current data (implementing a RETROICOR + RVT correction; see supplemen-787

tary result) and re-calculated the group level activation patterns (analogous to those shown in788

Figure 3 in the main text). Implementing RETROICOR produced a clear pattern: it reduced the789

spatial extent of both activation and deactivation clusters as compared to basic findings, but at790

the same time it did not lead to identifying any new significant clusters.791

While we capitalized on inter-individual differences in multiple aspects of heart rate variabil-792

ity, the current study does not address their causes. Explanations for inter-individual differences793

in HRV-related quantities are multi-factorial. They may be related to cognitive ability or strategy,794

physiology, or both (one factor underlying both physiology and cognition). Sampling participants795

in a way that provides sufficient data on such factors could allow understanding which factors un-796

derlie the relationship observed between HRV and brain activity. To this end, future work should797

consider controlling for such factors such as stress (Dishman et al., 2000) anxiety (Thayer, Fried-798

man, & Borkovec, 1996), body mass (Karason et al., 1999), smoking habits (Hayano et al., 1990)799

and other factors known to vary with HRV.800

Finally, the current study examined correlations between task-induced BOLD activity and801

IID in ANS indices during task performance. A comparable but separate question could probe for802

relations between BOLD activity and a ‘delta‘ measure capturing the difference in ANS activity803

between task and rest. As opposed to this latter measure, the ANS measure we used likely reflects804

a combination of a tonic inter-individual factor related to overall function of the ANS system, as805

well as a phasic factor time-locked to task-induced ANS perturbation. Future work could focus806

solely on measures that capture task-induced perturbation to the ANS. In addition, our covert task807

did provide an indicator of participant’s effort or task performance. Future work could achieve808

this in different ways, including asking participants to press a key with each calculation step,809

recording the final number arrived at, at the end of all subtractions (to estimate the number of810

subtractions made) or employing of an independent behavioral task where participants produce811

verbal reports during the task.812

4.6. Summary813

We find that a meaningful proportion of IID in task induced deactivation correlate with IID814

in multiple autonomic constructs. Interestingly, different ANS measures correlated with task-815

induced deactivation (and to lesser extent, task-induced activation) in different brain systems.816

This shows that task-induced deactivation is multifaceted construct that can be better understood817

through its relation to different ANS measures. Finally, from the perspective of neuroimaging818

studies of ANS activity, our work shows the utility of deriving multiple ANS measures, as these819

load on different constructs related to task execution.820
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