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Abstract Assessing the accuracy of gridded climate data sets is highly relevant to climate change impact
studies, since evaluation, bias correction, and statistical downscaling of climate models commonly use these
products as reference. Among all impact studies those addressing hydrological fluxes are the most affected
by errors and biases plaguing these data. This paper introduces a framework, coined Hydrological Coher-
ence Test (HyCoT), for assessing the hydrological coherence of gridded data sets with hydrological observa-
tions. HyCoT provides a framework for excluding meteorological forcing data sets not complying with
observations, as function of the particular goal at hand. The proposed methodology allows falsifying the
hypothesis that a given data set is coherent with hydrological observations on the basis of the performance
of hydrological modeling measured by a metric selected by the modeler. HyCoT is demonstrated in the
Adige catchment (southeastern Alps, Italy) for streamflow analysis, using a distributed hydrological model.
The comparison covers the period 1989-2008 and includes five gridded daily meteorological data sets:
E-OBS, MSWEP, MESAN, APGD, and ADIGE. The analysis highlights that APGD and ADIGE, the data sets with
highest effective resolution, display similar spatiotemporal precipitation patterns and produce the largest
hydrological efficiency indices. Lower performances are observed for E-OBS, MESAN, and MSWEP, especially
in small catchments. HyCoT reveals deficiencies in the representation of spatiotemporal patterns of gridded
climate data sets, which cannot be corrected by simply rescaling the meteorological forcing fields, as often
done in bias correction of climate model outputs. We recommend this framework to assess the hydrological
coherence of gridded data sets to be used in large-scale hydroclimatic studies.

1. Introduction

Accurate records of climate observations are a prerequisite for reliable analyses of present and past climate,
for evaluation of climate models, as well as for many other fundamental applications in climate impact stud-
ies in a wide range of fields, including hydrology, agriculture, renewable energy, and ecology. In particular,
gridded data sets of precipitation and temperature, obtained from the interpolation of in situ measure-
ments, satellite remote sensing, or atmospheric reanalysis (e.g., Michaelides et al., 2009 for precipitation and
Harris et al., 2014 for temperature) are increasingly used for quantifying the sensitivity of natural systems to
climate change (e.g., Cooper et al., 2016; Piccolroaz et al., 2018), for statistical downscaling and bias correc-
tion of climate models outputs (e.g., Mosier et al., 2014), as well as meteorological forcing of hydrological
models (e.g., Ahmadalipour & Moradkhani, 2017; Ledesma & Futter, 2017; Paul et al., 2018; Piccolroaz et al.,
2016).

The error associated with gridded data is often unknown, though it may be large depending on the type
and amount of information used to obtain the gridded product. Data sets obtained by interpolating meas-
urements taken at meteorological stations are affected by inaccuracies, which are spatially and, in case of
precipitation, temporally variable and difficult to quantify (Haylock et al., 2008; Isotta et al., 2015). Measure-
ment errors depend also on local conditions and increase with terrain elevation, as the operational condi-
tions become more extreme (Frei & Schar, 1998). In addition, precipitation and temperature fields are
undersampled at high elevations, because, for operational reasons, meteorological stations are preferen-
tially located at low elevations (Hofstra et al., 2010). Furthermore, the interpolation method is an additional
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source of error, even when sophisticated geostatistical spatial analysis techniques are adopted and auxiliary
predictors, such as terrain elevation and morphology, are included (e.g., Bénichou & Le Breton, 1987; Daly
et al, 1994). Similar conclusions were reached in recent studies on the Western United States (Henn et al.,
2017; Lundquist et al., 2015), where relative differences in the range between 5% and 60% in yearly precipi-
tation totals were observed in six gridded precipitation data sets. On the other hand, the accuracy of
gridded climate data derived by remote sensing techniques is closely linked to their spatiotemporal resolu-
tion (i.e., pixel size and acquisition frequency of satellite images), as well as to the inherent accuracy of the
retrieval algorithms applied to the raw data (Ciabatta et al., 2017). For example, satellite rainfall estimates,
either based on empirical calibration or physical modeling, are known to be prone to systematic biases,
insensitivity to light precipitation, and failure over snow and ice surfaces (Kidd et al.,, 2012). Atmospheric
reanalyses may also suffer from significant accuracy limitations, mainly due to their typically low spatial res-
olution and to the poor representation of subgrid processes (e.g., convection and associated precipitation)
by the selected model parameterization (Kidd et al., 2013; Prein et al., 2015), both issues being especially rel-
evant in complex terrain (Kotlarski et al., 2014).

A comprehensive review of studies investigating the uncertainty of gridded precipitation data sets at Euro-
pean scale can be found in Prein and Gobiet (2017). Uncertainty, under the form of differences between
data sets, was found to be of the same order of magnitude of the precipitation biases derived from an
ensemble of eight state-of-the-art Regional Climate Models (RCMs). Differently from the common practice
of neglecting this source of uncertainty by selecting a priori a given data set as observational reference,
Prein and Gobiet (2017) recommend considering the full ensemble of precipitation data sets in the RCM
evaluation process (see also Contractor et al., 2015; Sunyer et al., 2013).

It is well known that uncertainty in the spatial distribution of meteorological variables propagates through
the modeling chain adding uncertainty to the controlling variables in impact studies (the “uncertainty cas-
cade” concept introduced by Wilby & Dessai, 2010). In this respect, Sperna Weiland et al. (2015) observed
that the meteorological forcing is the major source of uncertainty, with hydrological parametric uncertainty
playing a minor role (see also Gosling & Arnell, 2011; Nasonova et al., 2011). At a global scale, the need for
accurate precipitation inputs, in order to obtain reliable water balance estimates, was highlighted by Fekete
et al. (2004). Nevertheless, many climate studies based their evaluations on a single observational climate
data set, without considering the effects of uncertainty possibly associated with that particular choice on
the hydrological response (e.g., Yang et al., 2014). On the other hand, with the increasing availability of com-
putational resources, one may be tempted to fully propagate the observational uncertainty, as well as all
other sources of uncertainty, along the modeling chain, with the immediate consequence of generating a
large ensemble of plausible projections. These projections may artificially inflate uncertainty by including
data sets not coherent with the observed hydrological response. The need for reducing uncertainty to gen-
erate a plausible range of hydrologic storylines in climate change impact assessments has recently been
highlighted in the review by Clark et al. (2016). Furthermore, we argue that the selection of observational
gridded data sets should not be “democratic” (using the definition introduced by Knutti, 2010), since not all
the data sets may be coherent with hydrological observations.

The idea of using hydrological modeling to assess the accuracy of gridded meteorological data sets has
received attention in applications using satellite-based precipitation products over relatively short time peri-
ods in the context of flood forecasting applications (see, e.g., Quintero et al., 2016; Wang et al., 2017; Wu
et al, 2017), with only a few applications dealing with long-term data sets derived from measurements at
meteorological stations (see, e.g., Voisin et al., 2008). A common strategy used in these studies is to avoid
the calibration of the hydrological model, since such a procedure may mask biases in the forcing input. In
addition, the aim of these studies is to evaluate the sensitivity of streamflow to changes in the forcing,
rather than to identify and exclude data sets with large errors. On the other hand, Bitew and Gebremichael
(2011) observed that calibrating the model directly to satellite data improves the accuracy of the simula-
tions, with respect to those obtained with a model calibrated by rain gauges data only, at the cost of an
erroneous reproduction of evapotranspiration. Not to say that rain gauge data may be themselves affected
by significant errors (cf. Estévez et al.,, 2015).

We contribute to this research topic by proposing an efficient methodology to test the hydrological coher-
ence of gridded meteorological data sets with observed data and possibly reject them when their coher-
ence is judged too low. Coherence is evaluated by benchmarking the hydrological variable of interest
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(streamflow, in the case study examined here) computed with a hydrological model fed by the selected
data set and applied in an inverse modeling framework against available measurements. We call this proce-
dure Hydrological Coherence Test (HyCoT). The advantage of this approach is that it condenses in a simple
and easy-to-grasp metric the complex benchmarking process of observational meteorological data sets.

We emphasize that the selection of the hydrological model, its level of complexity and the metric to be
employed for the comparisons depend on the particular goal at hand (e.g., prediction of streamflow, water
content, groundwater flow, or of any other hydrological quantity of interest); hence, the suggested approach
is by definition “goal-oriented,” as for instance recently discussed by Fiori et al. (2016), Savoy et al. (2017), and
Guthke (2017) in the context of subsurface hydrology. In the example provided here we focus on the predic-
tion of streamflow at the basin scale. Thus, our contribution is a methodological framework that can easily be
extended to other hydrological conceptual models, hydrological quantities, and efficiency metrics.

In our view, inferring the optimal (with respect to the selected metric) set of parameters by comparing the
modeling output with available measurements is a necessary step in the procedure. It is in fact impossible,
for a specific data set, to provide a better metric by using a set of parameters different from the optimal
one, the only bias being in the limits of the metric itself that cannot be exhaustive and grasp all the hydro-
logical processes. On the other hand, considering all the gridded data sets, including those performing
poorly in the inversion, would inflate uncertainty, with any possible gain being offset by the poorer repro-
duction of observational data. In this sense, the metric is used to falsify the hypothesis that a given gridded
product is coherent with hydrological observations and not to perform any sort of data sets ranking. In
other words, we claim that the best way to marginalize data sets that, despite calibration, are not compati-
ble with streamflow observations is to discard them. The proposed methodology is also flexible enough to
allow exploring separately uncertainty associated with precipitation and temperature data sets. This may be
particularly relevant in mountain regions, where snow dynamics influence streamflow seasonality, with tem-
perature being the main driver.

The paper is organized as follows: section 2 presents a concise description of the study area, the climate
data sets available and the streamflow data used for benchmarking the gridded data sets of climatic forc-
ing; the hydrological modeling framework and the simulation setup are summarized in section 3. Concern-
ing results, section 4 describes the differences among the selected gridded climate data sets, section 5
reports the main results of the hydrological benchmarking exercise, and section 6 analyzes the results from
the application of a simple correction scheme to precipitation forcing. The main findings are discussed in
section 7, whereas conclusions are finally drawn in section 8.

2, Study Area and Data Sets

2.1. Study Area

The area of interest for this study is the upper portion of the Adige river basin (ltaly), in the southeastern
Alpine region (see Figure 1), closed at the gauging station of Vo Destro (10°57'27.2"E, 45°44' 06.7”N), account-
ing for 88% of the 12,100 km? total contributing area. Adige is the third largest Italian river basin: it originates
close to the Alpine divide, in the Resia Pass area, and ends its course after 410 km in the northern Adriatic Sea.
The river has a typical Alpine watershed, with terrain elevations ranging from 185 m a.s.l. in Trento to 3,500 m
a.s.l. at the Italian-Austrian border. Morphology is dominated by deep valleys and high-mountain crests.

The climate of the area is characterized by relatively dry and cold winters, followed by humid summers and
autumns. Rainfall is abundant in the pre-Alpine reliefs (especially in spring and fall) and over the most ele-
vated peaks in the northern part of the basin (especially in summer, when rainfall is chiefly convective; cf.
Panziera et al.,, 2015, 2016; Weissmann et al., 2005). Streamflow is minimum in winter, when snow falls over
most of the catchment, and shows two maxima: one occurring early in summer, due to snowmelt, and the
other in autumn, triggered by intense cyclonic storms. Recent analysis of hydroclimatic trends revealed that
the Adige river basin is less sensitive to climate changes than other areas in Europe (Lutz et al., 2016). In par-
ticular, the projected reduction of snowfall in winter and anticipation of snow-melting, essentially due to ris-
ing temperatures associated with global warming (Gampe et al.,, 2016; Gobiet et al., 2014), will likely affect
Adige streamflow regime by the second half of twenty-first century (Bard et al., 2015; Majone et al., 2016).
This may have relevant consequences on a range of activities, e.g., hydropower production, which is particu-
larly abundant in this region of the Alps (Zolezzi et al., 2009), especially for those located at the most
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Figure 1. Map of the Adige river basin, representing the Digital Elevation Model (DEM), the river network, the computa-
tional grid cells (“macrocells”), the streamflow gauging stations, and the associated subbasins (cf. section 3). The inset
shows the location of the Adige river basin within the Italian territory.

elevated sites (Bellin et al.,, 2016; Majone et al., 2016). See also Chiogna et al. (2016) for a comprehensive
review of the hydrological stressors acting in the Adige basin, as well as of its ecological status.

2.2, Climatic Gridded Data Sets

Five gridded climate data sets were selected for the analysis. They are characterized by relatively high nomi-
nal spatial resolutions (grid spacing <25 km) and a daily temporal aggregation, and are briefly presented in
the ensuing paragraphs (see Table 1 for a summary of their specifications). AlImost all data sets have been
extensively described in the literature. In particular three of them have been included in the assessment of
precipitation data over the Alpine region by Isotta et al. (2015). Based on data availability (cf. Table 1), the
1989-2008 period was identified as common time frame for the analysis. Note that temperature data are
not available for MSWEP and APGD data sets.

2.2.1. E-OBS Data Set

E-OBS (Haylock et al., 2008) is a pan-European gridded data set of daily mean, minimum and maximum tem-
perature and total precipitation, available starting from 1950. Interpolation to a 0.25° (~22 km) latitude-
longitude regular grid (Hofstra et al., 2009) was performed using observational gauge data from the ECA&D
data set (Klok & Klein Tank, 2009). The product was originally developed under the ENSEMBLES EU-FP6 pro-
ject (www.ensembles-eu.org) and continuously updated under the EURO4M project (www.euro4m.eu) (here
v. 13.0 is used). Since its publication, E-OBS represents the state-of-the-art reference data set and has been
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Table 1
Characteristics of Climatic Gridded Data Sets
E-OBS MSWEP MESAN APGD ADIGE
Variables P, T P P, T P P, T
Type of data set Interpolated Reanalyses, satellite  Downscaled Interpolated Interpolated
station data and station reanalyses, assimilated station data station data
data combination station data
Type of grid Regular long.-lat. Regular long.-lat. Rotated-pole long.-lat. ETRS89-LAEA  UTM zone 32
Grid spacing ~23 km ~23 km ~5 km 5 km 1 km
No. of stations 26 Not available 26 185 165
Time resolution  Daily 3 hourly Daily Daily Daily
Time coverage 1950-2016 1979-2015 1989-2010 1971-2008 1956-2014

Note. “P” and “T" stand for “precipitation” and “temperature,” respectively. “No. of stations” indicates the number of
stations within the Adige river basin used to produce the data set, which is an indicator of the overall observational
density (i.e., effective resolution).

widely used for Regional Climate Model evaluation and climate monitoring over Europe (see recent exam-
ples in Turco et al., 2013; Kotlarski et al., 2014; Smiatek et al., 2016).

2.2.2. MSWEP Data Set

The recently released Multi-Source Weighted-Ensemble Precipitation (MSWEP) data set (Beck et al., 2017) is
a global precipitation data set specifically designed for hydrological modeling, covering the period 1979-
2015 on the same grid of E-OBS. Gridded precipitation is obtained as a weighted combination of data from
seven data sets: two from interpolated gauge observations, three based on satellite remote sensing and
two reanalysis products from numerical weather prediction models. The database includes an a-posteriori
correction for gauge under-catch and orographic effects.

2.2.3. MESAN Data Set

The MESoscale ANalysis system (MESAN; Landelius et al., 2016) was developed by the Swedish Meteorologi-
cal and Hydrological Institute. ERA-Interim global reanalyses (Dee et al., 2011) are first dynamically down-
scaled to a 0.22° grid to obtain HIRLAM regional reanalyses (Dahlgren et al., 2016), that are further
downscaled to a 0.05° (~5 km) grid and then used as first-guess field for the assimilation of surface station
measurements from the ECA&D data set to finally produce the gridded product. For the present work, daily
values of temperature (mean, minimum, and maximum) and precipitation, available for the years 1989-
2010, have been considered.

2.2.4. APGD Data Set

The Alpine Precipitation Grid Data set (APGD; Isotta et al., 2014) estimates the distribution of daily precipita-
tion over the greater Alpine region for the period 1971-2008, on the basis of measurements from more
than 8,500 rain gauges. The unprecedentedly high density of input observations (cf. Table 1) contributes to
its very high effective spatial resolution, estimated by the authors in approximately 10-20 km (Isotta et al.,
2014, 2015). APGD data (RapdD 1.2 version) are provided on a grid with a nominal resolution of 5 km.

2.2.5. ADIGE Data Set

A regional precipitation and temperature data set (hereafter named ADIGE) has been independently
developed for the Adige river basin, on the basis of meteorological station data provided by the Austrian
Zentralanstalt flir Meteorologie und Geodynamik (www.zamg.ac.at) and the meteorological offices of the
Autonomous Provinces of Trento (www.meteotrentino.it) and Bolzano (www.provincia.bz.it/meteo). The
data set results from 244 time series of precipitation and 350 of temperature recorded since 1956. The data,
whose spatial density (and hence effective resolution) is comparable with that of APGD (cf. Table 1), were
interpolated over a 1 km grid at a daily time step by means of a kriging with external drift algorithm (Goo-
vaerts, 1997; Journel & Huijbregts, 1978; Journel & Rossi, 1989). The average absolute errors of the daily esti-
mates were 1.32 mm for precipitation and 0.02°C for the temperature. Note that Isotta et al. (2014) reported
a cross-validation error larger than 1 mm for APGD precipitation estimates (calculated only for wet days),
value that is comparable with the error estimates of ADIGE precipitation fields.

2.3. Streamflow Data
Daily streamflow data collected at eight gauging stations were provided by the Hydrological Offices of the
Autonomous Provinces of Trento (www.floods.it) and Bolzano (www.provincia.bz.it/hydro). Stations were
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selected according to the following criteria: (i) observational period including the 1989-2008 time frame
adopted for the comparison of gridded climate data sets; (i) limited number of gaps; (iii) high distance from
storage reservoirs located in headwater catchments; and (iv) broad spatial coverage including the major
tributaries of Adige river. The selected gauging stations along the Adige main stem are Trento, Bronzolo
and Tel. The other gauging stations are found along the tributaries: Noce at Malé, Avisio at Soraga, Passirio
at Saltusio, Gadera at Mantana, and Rienza at Vandoies (see Figure 1). These nodes of the network corre-
spond to subcatchments of different size, elevation, and hydrological regimes (see supporting information
Table S3). In particular, the southernmost station (Trento) drains almost the entire study domain
(9,852 km?), while Bronzolo (6,891 km?) collects all streamflow contributions from the northern portion of
the basin.

3. Methods

Before using them as input in hydrological simulations, the gridded data sets were resampled to the same
computational grid with 5 km spacing, covering the Adige river basin (see the grid shown in Figure 1). This
was needed because the grids of the data sets were slightly shifted and was done by first resampling the
data sets to the same grid used in Adige (1 km spacing), followed by interpolation with the nearest neigh-
bor method, followed by aggregation to the reference 5 km grid resolution by areal averaging. Hydrological
inversion (i.e., identification of the optimal parameters) has been performed with each gridded product
composed by precipitation and temperature data sets. Since APGD and MSWEP do not include a tempera-
ture data set they have been integrated with that of ADIGE. In a second set of simulations, ADIGE and APGD
precipitation data sets were paired with temperature from E-OBS and MESAN, in order to explore how dif-
ferences in the temperature field alone affect the simulation results. The first set of simulations is presented
in details in section 5 whereas the remaining simulations are synthetically described in section 7. We antici-
pate here that no significant differences are observed when exchanging temperature data sets.

Hydrological simulations were performed at a daily time scale with the HYPERstream routing scheme
(recently proposed by Piccolroaz et al., 2016), coupled with a continuous SCS-CN module for surface flow
generation (Michel et al., 2005) (see Figure 2 for a conceptual scheme of the model). The HYPERstream rout-
ing scheme is specifically designed to be used in combination with gridded climate data sets and climate
models. In fact, HYPERstream inherits the computational grid from the overlaying meteorological forcing,
still preserving geomorphological dispersion caused by the river network (Pilgrim, 1977; Rinaldo et al., 1991,
1995; Rodriguez-lturbe & Rinaldo, 1997) irrespectively of the grid resolution. This “perfect upscaling” (cf. Pic-
colroaz et al., 2016) can be achieved by application of suitable transfer functions derived from a high-
resolution Digital Elevation Model of the study area. The continuous soil moisture accounting model for sur-
face flow generation, based on the SCS-CN methodology (U.S. Soil Conservation Service, 1964), is here cou-
pled with a nonlinear bucket model for soil moisture depletion (Majone et al.,, 2010; see also Hargreaves &
Samani, 1982; Hock, 2003; Rango & Martinec, 1995). Note that this surface flow generation module was
already successfully applied in two previous studies conducted in the Noce (Bellin et al., 2016) and Vermigli-
ana (Piccolroaz et al., 2015) catchments, both subcatchments of the Adige. A detailed description of the
hydrological modeling framework is provided in supporting information.

The hydrological model was calibrated against daily streamflow observations with the combination of
meteorological forcing described above. The parameters space was explored for optimality, as defined by
the Nash-Sutcliffe (NSE) (Nash & Sutcliffe, 1970) and the Kling-Gupta (KGE) (Gupta et al., 2009) efficiency
indices, by using the Particle Swarming Optimization algorithm (Kennedy & Eberhart, 1995) in the imple-
mentation used by Castagna and Bellin (2009). In doing that, Bronzolo and Trento gauging stations were
used in a multisite calibration framework (i.e., NSE and KGE are defined as the average of individual efficien-
cies obtained at the two stations), whereas the remaining six stations were used only for validation pur-
poses. The first 2 years of the time series, 1989 and 1990, were used as spin up period for the simulations
and therefore were excluded from the computation of both NSE and KGE.

NSE and KGE metrics were selected since they are customarily used in hydrological applications to assess
the performance of a model in reproducing the observed streamflow. The NSE index ranges from —oo to 1,
with the upper limit indicating perfect reproduction of observations, while NSE = 0 indicates that the model
does not perform any better than the mean of the observational data. According to Moriasi et al. (2007),
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Figure 2. Conceptual scheme of the hydrological modeling framework, coupling the surface flow generation module (left) with the HYPERstream routing scheme
(right) applied at each cell (“macrocell”) of the computational grid.

NSE can be considered as satisfactorily good when it is larger than 0.5. KGE index computes the Euclidian
distance of correlation, bias, and variability between simulated and observed time series. Similarly to NSE,
KGE ranges from —oo to 1, with a value of 1 indicating the best accuracy. According to Gupta et al. (1999), a
KGE value greater than 0.5 is considered as satisfactory. KGE is in general a better indicator than NSE for
bias and variability, but leads to a reduction of the correlation between observations and simulations (Gupta
et al,, 2009).

In order to verify whether a simple rainfall correction procedure may improve the performance of biased
data sets a Linear Scaling (LS) (Lenderink et al., 2007) transformation of the gridded precipitations was also
employed. LS is a simple multiplicative correction method generally applied to correct biases in meteoro-
logical forcing as derived from Regional Climate Models (RCMs) simulations. Despite its simplicity, this
method is among those used on regular basis in hydrological climate change impact assessments studies
(see, e.g., the reviews by Teutschbein & Seibert, 2012; Chen et al., 2013). The LS method consists in rescaling
a precipitation data set by a constant multiplicative factor given by the ratio between the precipitation
amounts of an observational benchmark data set and those of the data set to be rescaled, both cumulated
over the same time interval. In our case, we applied the rescaling by using both annual and monthly accu-
mulation. The resulting multiplicative correction factors were then applied to the entire daily time series,
such that the two aggregated time series (i.e., yearly or monthly) were the same. Corrections were applied
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Figure 3. Maps of mean annual precipitation totals (1989-2008 average) according to the five different climate data sets.

directly to the computational 5 km grid, and the modified precipitation input was then fed into HYPER-
stream in order to carry out new calibration runs. Results of this analysis are presented in section 6.

4, Comparison of Climatological Patterns

Spatial patterns of annual mean precipitation resulting from the five data sets are rather different one from
each other, except for APGD and ADIGE, which use similar observational data sets within the study area
(Figure 3). Overall, ADIGE shows smaller annual mean precipitation than APGD (Figure 4). According to
APGD the mean annual rainfall within the Adige catchment ranges from 550 to 2,300 mm. The largest
annual totals are observed in the pre-Alpine reliefs (i.e., southernmost river basin), due to orographic lifting
of moist air masses approaching from South (Frei & Schar, 1998), and over the mountains close to the main
Alpine divide in the northernmost basin, where summer convective activity is most intense (Weissmann
et al., 2005). Instead, the driest areas are the interior of the catchment and, especially, the major valley floors
of the upper basin. Despite its high nominal spatial resolution (~5 km), MESAN reveals rather coarse
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Figure 4. Annual cycle of monthly mean precipitation totals (1989-2008 average), averaged over the entire study area,
according to the five different climate data sets (color bars). The associated evolution of cumulated precipitation totals is
also shown (color lines).
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precipitation field structures. Also, differently from APGD and ADIGE, its annual pattern only slightly resem-
bles the underlying topography (Figure 3). On the one hand, this may be due to the limited number of
ground stations used for data assimilation in MESAN, on the other to the grid spacing resolution and
smoothed topography adopted in the regional climate modeling (cf. Prein et al.,, 2015). In general, both
~23 km resolution maps (E-OBS and MSWEP) are much smoother than the others. However, despite its
coarse grid, MSWEP shows spatial patterns closer to APGD and ADIGE than E-OBS.

Catchment-averaged monthly precipitation, shown in Figure 4, exhibits a clear bimodal distribution in all
data sets, with a primary peak in summer (mainly associated with intense convection over mountain tops
(Weissmann et al., 2005) and a secondary peak in autumn. The largest discrepancies among the analyzed
data sets are generally observed in the wetter months (i.e., from May to November), when the range of vari-
ation of monthly estimates is within 17-35 mm, while in drier and colder months it typically ranges
between 10 and 17 mm. As expected, monthly estimates from APGD and ADIGE agree very well, since they
are obtained with a similar density of observations. MESAN estimates are also rather close, except for the
lower values (by about 20 mm) observed in October and November. A similar pattern is observed for E-OBS.
On the other hand, E-OBS shows higher precipitations (~10 mm) in winter (i.e., January, February, March,
and December). As for MSWEP, its annual cycle is similar to that of APGD and ADIGE with monthly totals
being systematically higher. The long-term mean of annual precipitation totals averaged over the Adige
basin for the five data sets range between 883 and 1,052 mm (see right y axis in Figure 4). In particular,
MSWEP cumulates the highest totals, APGD ranks second and ADIGE third, with MESAN and E-OBS provid-
ing the lowest rainfall totals.

The added value of using higher-resolution grids is more evident for mean annual air temperature than for
annual precipitation, with the spatial distribution of the former following closely the terrain topography
(see Figure 5). This is an expected result for the ADIGE data set, since the interpolation scheme considers
explicitly the elevation-temperature relationship (i.e., the vertical gradient of temperature) and thus the
major morphological features of the catchment are visible in the resulting field. This topographic effect is
also accounted for, although to a lesser extent, in MESAN, while it is almost absent in E-OBS, due to the
smoothing effect of a lower resolution. In the northwestern part of the basin, ADIGE shows systematically
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Figure 5. Maps of mean annual temperature (1989-2008 average) according to the three climate data sets including temperature.
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Figure 6. Monthly mean temperature (1989-2008 average), averaged over the entire study area, according to the three
climate data sets including temperature.

warmer temperatures at high elevation (cf. in particular the northern and northwestern edges of the basin
in Figure 5), which are evident despite small-scale discrepancies between the three temperature maps (i.e.,
both positive and negative local differences up to 5°C). This can be partially attributed to the different grid
resolutions and/or to the different topographic data used in the interpolation scheme adopted in the data
sets, as well as to different densities of the meteorological stations used to produce the gridded data sets
(cf. Table 1).

Annual cycles of catchment-averaged monthly mean temperatures are shown in Figure 6. Differences
among the data sets are between 1.5 and 2.3°C, and are typically larger in summer. Note that ADIGE is the
warmest data set, except in late spring and summer (May, June, and July), when MESAN shows slightly
higher temperatures.

5. Testing the Hydrological Coherence of the Datasets

In this section, hydrological coherence of the gridded climate data sets is assessed according to their ability
to reproduce the observed streamflow time series in the Adige river basin, evaluated in the period 1991-
2008 by computing both NSE and KGE indices (see section 3) at all gauging stations (Figure 7).

As specified in section 3, the parameters of the hydrological model were inferred for each data set by maxi-
mizing separately the average NSE and KGE at Trento and Bronzolo gauging stations. The data sets Adige
and APGD produced the highest NSE values (NSE > 0.81), followed by MSWEP, while E-OBS and MESAN pro-
vide smaller NSEs at both gauging stations. The ranking does not change if KGE is considered instead of
NSE, as can be seen by comparing Figures 7a and 7b, though differences between the data sets and loca-
tions are smaller. As a general rule, by definition KGE values are higher than NSE counterparts. Breakdown
of the two metrics obtained at the calibration stations into the three components evidenced that KGE favors
parameters providing a better reproduction of variability and slightly smaller bias at the cost of a slight
reduction of correlation, with respect to NSE. In particular, variability (defined as the ratio between the stan-
dard deviations of simulated and observed streamflows) increased on average from 0.87 in the case of NSE
to 0.99 for KGE, bias (defined as the ratio between the mean simulated and mean observed streamflows)
decreased on average from 1.03 (for NSE) to 1.02 (for KGE) and correlation (defined as the linear correlation
coefficient between simulated and observed streamflows) decreased on average from 0.86 (for NSE) to 0.85
(for KGE). Note that the above values are obtained as average of the individual components among the five
independent hydrological inversions (one for each data set).
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Figure 7. (a) Map of the NSE values calculated at the gauging stations of the Adige river basin. (b) As in Figure 7a but for KGE values. Simulated streamflows are
obtained with HYPERstream model’s parameters selected such as to maximize the average NSE and KGE at the gauging stations of Trento and Bronzolo. The
model has been calibrated separately for each data set and performance metric.

At the validation stations, APGD and ADIGE generally provide the best performance in terms of NSE, with
APGD performing slightly better than ADIGE. Conversely, the other data sets produce significantly smaller
values in almost all the validation subcatchments (Figure 7a). In particular, MESAN and E-OBS produce the
worst results in small subcatchments (i.e., lower than 2,000 km?, see supporting information Table $3), with
low and even negative NSE found in the northeastern part of the simulation domain. Conversely, MSWEP
shows a single negative value at a gauging station in the northwestern part of the basin (Tel), where also
APGD and ADIGE are not satisfactory (i.e., NSE < 0.5). Investigation of KGE at validation stations confirms the
generally better performances of ADIGE and APGD in reproducing observed data (KGE > 0.5 threshold
everywhere), though MSWEP performs better than ADIGE at the gauging stations of Malé, Mantana, and
Soraga (see Figure 7b). The reduction of performances from calibration to validation sites is more pro-
nounced in simulations performed by using NSE as metric with respect to KGE, which assumes values
smaller than 0.5 only at Mantana and Soraga with MESAN. At most locations, these two metrics are in agree-
ment, though at a few gauging stations values of NSE < 0.5 are paired with values of KGE > 0.5 (see, e.g., Tel
for four out of five data sets), accordingly to the fact that KGE values are generally higher than NSE
counterparts.

6. Analysis of a Simple Correction Scheme Applied to Precipitation Forcing

Here we assess the role of spatiotemporal patterns in shaping the hydrological response and analyze
the impact of the differences between the data sets. In particular, we applied a simple LS correction (cf.
section 3) to the MESAN data set, here selected as representative of underperforming data sets, using APGD
as observational benchmark due to its higher accuracy in reproducing the observed streamflow (see
section 5). These data sets were also chosen because they are characterized by almost the same nominal
resolution (see Table 1), thereby avoiding possible scale effects due to the original grid size. Note that cali-
brations were performed only with reference to NSE efficiency and that modified precipitation inputs were
coupled with unmodified MESAN temperature data. This correction was applied by matching annual and
monthly totals of the mean precipitation computed over the entire river basin (identified with MESAN_1
and MESAN_2 scenarios for the annual and monthly rescaling factors, respectively) and separately at each
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Figure 8. Comparison of NSE indices associated with the four LS scenarios (MESAN_1 to MESAN_4, in red scale), together with the values obtained from the cali-
bration of the hydrological model using original APGD (black) and MESAN (light pink) as input meteorological forcing.

cell (identified with MESAN_3 and MESAN_4 scenarios, respectively), thereby resulting in a total of four pos-
sible rescaling scenarios. In MESAN_1 and MESAN_2 scenarios, the rescaling coefficients are constant in space
(uniform) and vary temporally at monthly time scale only in the latter case. On the other hand, in MESAN_3
and MESAN_4 scenarios, the matching is imposed at single cell level, such that the rescaling coefficients are
variable in space and are constant in time in MESAN_3 while they vary monthly in MESAN_4. The numbering
of the scenarios increases with the degree of alteration with respect to the original time series.

Due to the coherent results obtained using alternatively NSE or KGE (see section 5 and Figure 7), for simplic-
ity we performed this exercise by using the former. The comparison of NSE indices at all calibration and vali-
dation points is shown in Figure 8 in the four LS scenarios described above. We emphasize here that
HYPERstream has been calibrated on each one of the four scenarios, such that the resulting model parame-
ters are optimal for each of them. For the sake of clarity, we also show again the NSE indices obtained using
APGD and MESAN as input meteorological forcing. The most striking result is that none of the LS scenarios
is able to match or even get close to the performance of APGD. This is valid for all the investigated loca-
tions. A general and moderate improvement of NSE index with respect to the original MESAN simulation is
however achieved, although not for all the LS scenarios. In particular, scenarios MESAN_1 and MESAN_2
(i.e., those not altering the spatial distribution of the precipitation) often lead to a small deterioration of the
NSE index with respect to the original MESAN data set (e.g., at Tel, Vandoies, and Malé). On the other hand,
scenarios MESAN_3 and MESAN_4, i.e., cell-by-cell corrections, lead to a general improvement of the accu-
racy, which is a reasonable result, given the pronounced spatial variability of the precipitation field in the
study area (cf. section 4), which is an important determinant of the differences in the unitary contribution
(i.e., the water discharge divided by the area of the catchment) at the stream gauges. At some locations
such improvement is extremely relevant: for instance, at Mantana and Soraga NSE indices shift from nega-
tive (i.e., complete model failure) to small positive values (0.20-0.35 range), while at Vandoies NSE increases
from 0.3 to 0.65. As a general result, corrections applied at the monthly scale (scenarios MESAN_2 and
MESAN_4) perform slightly better than at corrections applied at the annual scale (scenarios MESAN_1 and
MESAN_3), as they allow a better reproduction of the seasonal rainfall pattern of the benchmark data set.
As expected, the scenario MESAN_4 shows the largest improvement in performance, with the exceptions of
Malé, Bronzolo, and Trento stations. In particular, at Malé NSE does not show any appreciable improvement
with respect to the original MESAN performance. We attribute this fact to the balancing and smoothing
effects entailed by both the hydrological model calibration process (independently carried out for each
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data set) and the spatiotemporal averaging effect of the catchment, which intensifies as the size of the
catchment increases.

7. Discussion

In the present work, we propose a procedure, coined as HyCoT, which allows to identify gridded data sets
not coherent with hydrological observations. Their inclusion in hydrological simulations should be carefully
evaluated, since they may inflate uncertainty. The procedure falsifies the hypothesis that a gridded data set
is hydrologically coherent if, after calibration, the reproduction of hydrological observational data are not
satisfying according to a selected metric, compensation effects of hydrological models, notwithstanding. In
other words, we are not trying to identify here the best data set, rather exclude those that after calibration
are still not able to reproduce observational data, while other data sets do. Hydrological modeling has been
performed with HYPERstream routing scheme coupled with a continuous SCS-CN module for surface flow
generation (see supporting information for a detailed description), but any other hydrological model can be
used, better if it is the one that will be used in the applications.

We found that applying the hydrological model at several streamflow gauging stations within the study
area (in particular those not included in the computation of efficiency metrics) allowed verifying how the
hydrological coherence of the data sets varies in space. This is particular evident for stations with small
drainage areas (see, e.g., NSE and KGE efficiencies at Tel, Mantana, and Soraga in Figures 7a and 7b) where
the limited averaging effect of the catchment highlights the importance of accurate and spatially well
resolved precipitation and temperature fields (Heistermann & Kneis, 2011). This entails that the accuracy in
the reproduction of the spatiotemporal patterns of precipitation and temperature inputs, which is especially
hard to achieve in the domain of analysis and in regions with complex terrain, is crucial for obtaining accu-
rate estimates of local-scale hydrological processes (see also Tuo et al., 2016). The much smaller reduction
of NSE and KGE metrics obtained for APGD and ADIGE moving from the gauging stations used for calibra-
tion (i.e., Trento and Bonzolo) to the nested stations (not used in the calibration) shows that the compensat-
ing effects between not fully constrained hydrological fluxes does not influence the identification of
hydrologically noncoherent data sets.

Simulation results evidenced that the HyCoT response does not change by considering two alternative effi-
ciency metrics, though at a few locations NSE and KGE suggest different level of accuracy. This is not sur-
prising and is in accordance with the general understanding that different alternative metrics have their
own peculiarities, limitations, and trade-offs (see, e.g., Gupta et al.,, 2009; Schaefli & Gupta, 2007). Ultimately,
our point of view is that the selection of the conceptual model itself, its level of complexity, and the effi-
ciency criteria (as well as the definition of suitable thresholds) should be made in a “goal-oriented” frame-
work, as stated in section 1.

In addition, HyCoT allows for investigating the possible interactions of biases in precipitation and tempera-
ture data sets, which to our best knowledge has not been investigated so far. To this end, precipitation data
sets from ADIGE and APGD, which provided globally the better coherence with streamflow observations,
were paired with the temperature extracted from E-OBS and MESAN data sets. Similarly to the previous
analysis, these inversions were performed in a multisite framework adopting NSE as efficiency metric. The
analysis revealed that at the calibration sites of Trento and Bronzolo NSE obtained with these combinations
of precipitation and temperature data sets present negligible differences among each other (results not
shown here), and are practically identical to the values obtained using the precipitation data set of the
gridded product. At the validation sites, small deviations were observed depending on the selected temper-
ature data set. In this application, HyCoT is insensitive to switching temperature data sets chiefly because of
the marginal differences in temperature distribution among the selected data sets, in relation to their influ-
ence in hydrological processes. However, HyCoT is not limited to particular conditions and can be used to
evidence inconsistencies in the temperature distribution as well.

Results of this analysis are also relevant for climate change impact assessments in regions characterized by
low observational density (i.e., low effective spatial resolution and accuracy of gridded climate data sets; cf.
also Duan et al., 2016; Tuo et al.,, 2016). In particular, the framework allows to highlight the deficiencies of
hydrological simulations driven by inaccurate input meteorological forcing, i.e., data sets which do not pass
hydrological validation at relevant spatial scales. Following the concept introduced by Knutti (2010), we
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argue that the selection of gridded data sets should not be “democratic,” since not all are equally perform-
ing. In general, we agree with the recommendations of Prein and Gobiet (2017) not to neglect this source
of uncertainty by selecting a priori a single data set as reference. However, we disagree when it is suggested
to consider the full ensemble of precipitation data sets in both RCM evaluation process and climate-
hydrology modeling chain. HyCoT can be seen in the wider Bayesian Model Averaging (BMA) framework
(Duan et al., 2007; Hoeting et al., 1999; Roy et al., 2017; Vrugt et al., 2006) aimed at providing a probabilistic
weighted average of alternative models and meteorological forcing. However, the negative impact of a
hydrologically incoherent data set, i.e., a data set not able to provide an acceptable reproduction of stream-
flow when coupled with a hydrological model, is only reduced, yet not eliminated, by any kind of Bayesian
weighting, being preferable its elimination from the collections of data sets. From a Bayesian point of view,
this elimination can be considered as part of prior information to be included in the updating process
(Majone et al., 2016; Sadegh & Vrugt, 2014).

Results obtained with the LS approach discussed in section 6 show that the correct reproduction of the spa-
tiotemporal distribution of the precipitation field is fundamental for an accurate reproduction of hydrologi-
cal processes in climate change impact studies. Such finding is particularly relevant when assessments are
performed at small spatial scales and in areas characterized by complex topography, where the spatiotem-
poral variability of the precipitation field is increased by topographic uplift (see, e.g.,, Majone et al,, 2012,
2016). The LS exercise revealed how bias correction methods used in climate change impact assessment
studies may not be able to counterbalance the inadequate representation of spatial patterns in meteorolog-
ical forcing that are crucial for hydrological application. In this sense, we show that, besides the exclusion of
incoherent data sets, also the selection of the most appropriate bias correction approach can be achieved
through hydrological benchmarking. We limited our analysis here to the simplest possible bias correction
methodology, which is often used in applications, and did not analyze more sophisticated approaches (see,
e.g., Berg et al., 2012; Teutschbein & Seibert, 2012), because testing the effectiveness of a number of bias
correction techniques is beyond the scope of the present work.

In addition to the general results illustrated above, additional remarks on specific data sets can also be
drawn. The first is that embedding high-resolution model reanalyses in MESAN does not bring much
improvement in the region of interest. In fact, hydrological simulations driven by MESAN show performan-
ces similar to those of the hydrological model driven by E-OBS, which shares the same observational data-
base but on a coarser grid (see section 2.2). The density of observational points (i.e., the meteorological
stations) is a crucial factor in determining the effective resolution (i.e., the accuracy) of a gridded data set.
The second consideration concerns the MSWEP data set. According to the present study, which represents
one of the first hydrological applications of such data set in the Alpine region, MSWEP is suboptimal with
respect to products obtained exclusively with interpolation of ground observations (i.e,, APGD and ADIGE).
This may be due to its low resolution, which blurs relevant spatial patterns of the precipitation field. On the
other hand, MSWEP performs better than E-OBS and MESAN, despite the higher nominal resolution of the
latter. This indicates that the merging of multiple data sources might be a convenient approach for improv-
ing the accuracy of gridded climate products. Note, however that, differently from the other data sets,
MSWEP already includes a correction for precipitation under-catch based on streamflow observations (cf.
section 2.2.2 and Beck et al., 2017).

8. Conclusions

We proposed a method, coined here as Hydrological Coherence Test (HyCoT), that consists in the use of a
physically based hydrological model as a tool to test the “hydrological coherence” of precipitation and tem-
perature data sets, i.e., their compatibility with the physical processes and the hydrological variables of
interest.

In the present study, HyCoT is applied to the analysis of streamflow at the basin scale, comparing high-
resolution gridded daily data sets of precipitation and temperature available in the Alpine catchment of the
Adige river (northeastern ltaly) for the period 1989-2008. Given the large variability of the precipitation pro-
vided by these data sets, we evaluated their accuracy with an integrated approach through numerical simu-
lation of hydrological processes within the basin. This was done by applying a distributed hydrological
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model with climate inputs extracted from each data set and by validating the results against streamflow
observations.

The main results of this work are the following:

1. The proposed screening method allowed for testing the coherence of the five gridded climate data sets
according to their accuracy in simulating hydrological processes in the study area. The results identified
APGD and ADIGE as the best candidates for hydrological applications in the Adige catchment. On the
contrary, despite acceptable results at the larger basin scale, E-OBS, MESAN, and MSWEP were found
unable to correctly reproduce the observed streamflow at the smaller nested subcatchments, notwith-
standing the compensating effect introduced by calibration; we showed that HyCoT is a powerful tool to
exclude poorly performing data sets.

2. The results show sensitivity to the particular efficiency metric adopted (i.e.,, NSE and KGE in our case); this
somehow expected result is consistent with the goal-oriented nature of HyCoT.

3. The fundamental role of observational density in determining the effective accuracy of gridded climate
products was thus clearly confirmed, emphasizing the key importance of an accurate representation of
spatiotemporal patterns of precipitation and temperature (cf. also Hofstra et al., 2010; Isotta et al., 2015).
This is especially true in complex-topography areas, which typically show large spatiotemporal variability
of the meteorological forcing.

4. The temperature data sets associated to the selected gridded products can be used interchangeably,
since their differences have a negligible impact on the simulation results and the data set selection, thus
reinforcing the conclusion that biases in precipitation are responsible for most of the biases in modeling
results, at least in the mountain environment considered here.

5. It was found that correction methods based on linear rescaling of rainfall data, which are conceptually
similar (although not identical) to simple bias correction approaches, may not be able to alleviate the
aforementioned problems plaguing the coarser data sets. More sophisticated bias correction approaches
may perform differently; still we surmise that the proposed HyCoT benchmarking procedure can be
effectively employed also for assessing the performances of such approaches.

Summarizing, the proposed HyCoT methodology is a useful tool to screen available gridded meteorological
data sets to be used as climatic forcing in hydrological applications. The method is particularly powerful in
the identification of climatic data sets that are not coherent with hydrological observations, suggesting their
exclusion in hydrological analyses. HyCoT is also useful in the identification of biases and inaccuracies of cli-
mate data in regional climate studies, e.g., to consistently reduce the uncertainty of projections that employ
multiple data sets.

The HyCoT methodology is neither model nor metric dependent, and any modeling approach can be used,
as well as any type of metric to assess modeling accuracy. The selection of the hydrological model, its level
of complexity, and the metric to be employed for the comparisons depend on the particular goal at hand
(e.g., prediction of streamflow, water content, groundwater flow, or of any other hydrological quantity of
interest). Under such conditions, the method relies on the judicious model and metric selection by the
modeler.
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