
©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

Authors: Loris Dal Lago, Orlando Ferrante, Roberto Passerone and
Alberto Ferrari

Title: Dependability Assessment of SOA-Based CPS With Contracts and
Model-Based Fault Injection

This paper appears in: IEEE Transactions on Industrial Informatics
vol. 14, no. 1, pp. 360-369, Jan. 2018.

DOI: 10.1109/TII.2017.2689337.

TRANSACTIONS ON INDUSTRIAL INFORMATICS, DOI: 10.1109/TII.2017.2689337 1

Dependability Assessment of SOA-based CPS with
Contracts and Model-Based Fault Injection

Loris Dal Lago, Orlando Ferrante, Roberto Passerone, Member, IEEE, and Alberto Ferrari

Abstract—Engineering complex distributed systems is chal-
lenging. Recent solutions for the development of Cyber-Physical
Systems (CPS) in industry tend to rely on architectural designs
based on Service Orientation (SOA), where the constituent com-
ponents are deployed according to their service behavior and are
to be understood as loosely-coupled and mostly independent. In
this paper, we develop a workflow that combines contract-based
and CPS model-based specifications with service orientation, and
analyze the resulting model using fault injection to assess the
dependability of the systems. Compositionality principles based
on the contract specification help us make the analysis practical.
The presented techniques are evaluated on two case studies.

Index Terms—SOA, dependability, cyber-physical, contract-
based, model-based, fault injection.

I. INTRODUCTION

ASSESSING the dependability of large-scale distributed
Cyber-Physical Systems (CPSs) is a difficult task that

involves understanding the systems dynamics both in terms of
functionality and of network interaction and communication.
The study of dependability can be interpreted as the identi-
fication of the possible manners under which the system can
break down. This is usually expressed in terms of failures,
i.e., as paths leading the system to a violation of a given
desired property. For industrial practice, it is useful to have
these paths laid down using Fault Trees (FT) and Failure Mode
and Effect Analysis (FMEA) tables. Yet, elaborating these by
hand is costly in terms of both time and budget and often
prone to human error, especially as the system scale grows,
the architecture gets more distributed, and diverse engineering
teams work on different system features.

One natural solution is to adapt techniques from the do-
main of requirement verification to requirement robustness
checking, as most commonly achieved using Model-Based
Fault Injection, or Model Extension [1]. When a CPS is
deployed over a network, the analysis requires that individual
components be distributed in a modular way, precisely defining
their role in the architecture and their failure possibilities. This
is commonly achieved through the Service Oriented Architec-
tures (SOA) paradigm [2], [3]. This, however, normally lacks
a fully parallel recognition at the modeling level, where the

L. Dal Lago, O. Ferrante and A. Ferrari are with ALES S.r.l., Piazza
della Repubblica 68, 00185 Rome, Italy (e-mail: loris.dallago@utrc.utc.com,
orlando.ferrante@utrc.utc.com, alberto.ferrari@utrc.utc.com).

R. Passerone is with the Department of Information Engineering and
Computer Science, University of Trento, via Sommarive 9, 38123 Trento,
Italy (e-mail: roberto.passerone@unitn.it).

DOI: 10.1109/TII.2017.2689337
Copyright (c) 2017 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

fault modalities of the single components are not available on
an individual basis and where hardly ever are there explicitly
stated dependability dependencies liable to the network.

In this paper, we address the issue of dependability by inte-
grating methods from the SOA paradigm, CPS techniques, for-
mal verification and model based software engineering prac-
tice. In particular, we adopt a contract-based approach [4] to
specify properties offered by single services when participating
in a compatible environment, and use Model-Based Fault
Injection [1] to take care of the dependability aspects. Our
formal assume-guarantee model leads naturally to modularity.
We therefore exploit the principle of compositionality [5] to
make the analysis practical and avoid the state explosion
problem. We show how the formalism consistently supports
non-functional properties, such as timing and availability, and
quantify the validity of our techniques by practical imple-
mentations on two use cases. Dependability assessment in our
context is a rigorous study of resilience to faults, diagnosability
and fault event analysis, that span from physical, to functional,
to time delays and network availabilities. Resilience refers to
the ability of the system to preserve its nominal properties.
The safety analysis tool xSAP [6] is used for the assessment of
dependability using Model-Based Fault Injection, an approach
that has already be proven itself effective on industry scale
systems [7]. Our contribution in this sense is showing its
application on systems other than digital.

The paper is organized as follows. We first give an account
of related work in Section II. Then, Section III discusses
modeling dependability for CPS using SOA and contracts
on a thermostat example. Dependability analysis is discussed
in Section IV. Finally, Section V illustrates an emergency
response case study, extends the approach and discusses per-
formance metrics.

II. RELATED WORK

There is a long history of validating systems against de-
pendability, often with techniques based on the intentional
injection of faults. One example of dependability analysis is
presented by Looker et al. [8], where the fault injection is
performed at the network level on the exchanged packets of
a finalized system in place. The use-case is a feedback-based
thermostat that exchanges messages over a Service-Oriented
Architecture. Our reference example is inspired by that work
and, besides a great deal of adaptation and rethinking, it has
a conceptual resemblance in the fault injection procedure,
displaying faults as delays at the network level. The model-
based view that we propose, however, takes advantage of the

2 TRANSACTIONS ON INDUSTRIAL INFORMATICS, DOI: 10.1109/TII.2017.2689337

integration between the formal system and the dependability
view to make a comprehensive early awareness of the available
system dynamics, before deployment.

Xu et al. propose a set of techniques to verify compliance
of services against a service workflow specification [9], [10].
Their model is based on a variant of Petri Nets and require-
ments are specified using formulas similar to Computation
Tree Logic (CTL). Our approach differs, in that we are
interested in finding minimal sets of faults that make the
system violate the requirements in the context of a CPS.
Thacker et al. enrich the traditional Petri Net formalism with
continuous dynamics, however the approach is reconcilable
to automata for both expressiveness and algorithmic tech-
niques [11]. Rosenkrantz et al. [12] propose a graph-based
model for service-oriented networks to quantify the resilience
of the system under node and edge failures. The authors
develop an algorithm to compute the maximum number of
node or edge failures that the network can tolerate. Our
objectives are similar, and we employ flags over dedicated
extra ports to model availability. However, our model is more
general, and is able to deal with more complex properties
and the actual service behavior, rather than only with the
topology of the system. More recently, Mehnni et al. have
introduced SafeSysE, a safety profile and dedicated algorithms
for the generation of dependability artifacts from a SysML
specification [13]. Our modeling approach is richer, and makes
use of model checking tools that guarantee minimality, al-
though at the expense of higher computational complexity.
Our use of compositionality and contracts helps to address
these problems.

In the present work we use a formalism based on automata,
and adapt its inputs to encompass the non-functional aspects
relative to the introduction of the network in the system,
following a multiple-viewpoint approach [14], founded on
model-based fault injection [1]. Model-based fault injection
consists in extending the model-abstraction semantics of the
system with additional faulty behaviors, in a controlled way,
to investigate the reliability of the system in terms of the
occurrence of faults that plausibly trigger those behaviors.
One example is given by Ezekiel and Lomuscio [15] where
modal epistemic logic is used to represent knowledge of
cooperation in multi-agent scenarios, combined with modal
temporal logics to analyze complex systems in terms of their
tolerance to faults. Our approach follows that proposed in [1],
using xSAP [6] to study of dependability in terms of tolerance,
diagnosability and fault event analysis, with automatic model
extension and automatic construction of fault event artifacts
such as Fault Trees or FMEA tables. The tool is mature and has
already been used on industrial case studies [7]. Among the ap-
proaches related to xSAP or its predecessors, the closest to our
work are Networked Event-Data Automata, which use model-
based fault injection techniques to study the dependability of
systems, taking into account the interconnections of automata
in a network [16]. In our work we exploit a similar level of
formalism to model cyber-physicality of system components,
but in addition focus on the service interactions typical of
SOA and their compositional nature. Besides the mentioned
Petri Nets, alternatives to the use of automata include models

based on discrete events [17], [18]. For instance, Vyatkin et al.
propose an approach based on the PTIDES model, which is of
interest given the distributed nature of services [18]. Timing
is modeled by time-stamping messages, which is shown to
help the stability of the system using simulation. We prefer
the use of automata, which are more easily handled by formal
verification tools.

Our dependability analysis considers the functional system
level and its dependency to network contingencies in a cohe-
sive, yet separated, way. Derler et al. [19] suggest an approach
where different viewpoints are developed independently and
with mutual guarantees of correct working in the form of
design contracts between, for example, control and software
engineers. Our work is along the same lines but contextualizes
the cyber-physical modeling over SOA. Regarding the effec-
tual modeling of faults and contingencies in SOA, our work
follows the model proposed by Broy et al. [20], extending it
with the use of contracts. Farcas et al. [21] also extend that
model and use the Service Architecture Definition Language
(SADL), which includes primitives to express service un-
availability or connection drops, thus accounting for failures.
After modeling, the system is verified to check the validity of
temporal properties in presence of faults in the architecture,
triggered non-deterministically by the SPIN model checker.
Unlike our work, SADL can only express the architectural
interactions, as Message Sequence Charts (MSCs), but not
the functional dynamics of the single components. Also,
our dependability assessment is based on the establishment
of dependability artifacts, such as Fault Trees and FMEA
tables, that are constructed alongside to violations of invariant
propositional properties in the model. In addition to that, the
support technology that we chose for the artifact construction
can handle verification of temporal properties on the extended
model with non-deterministic faults.

Gössler et al. [22] propose a formal framework for reasoning
about logical causality in contract violation, to establish rela-
tions between a fault (violation of a component contract) and a
damage (violation of the overall system contract). The analysis
is conducted a posteriori on the system execution traces. Their
approach is complementary to ours, which can be used during
system design to analyze the conditions under which a contract
violation may occur. The combination of the two approaches
could lead to a seamless analysis framework from design to
deployment.

III. MODELING DEPENDABILITY

In this and the next sections, we discuss the steps that we
use in our methodology to make the dependability analysis
of SOA-based CPS systematic, so that it can be translated
to a usable tool automation process. We propose an inclusive
approach that treats the SOA aspect and the cyber-physical
aspect at the same level, and talk about Service-Oriented
Cyber-Physical Systems (SOCPS) to stress their peer-level
modeling. Our approach, shown in Figure 1, begins with a
formal specification of the service-oriented architecture of the
system, using a combination of the modeling standards SysML
and SoaML. This is followed by the specification of properties

DEPENDABILITY ASSESSMENT OF SOA-BASED CPS 3

Translation to xSAP input language

SysML+SoaML
specification

Contracts
specification

Faults
specification

Contract
Patterns

Fault
Library

xSAP
Analysis

FT
FMEA
tables

Fig. 1. Overall steps of the methodology

Sensing	 Device	
(Thermocouple)

Control	 Device
(Controller)

Actuator
(Heater)

Environment

Current
Temperature

(T)

Control
Signal
(u)

Heat
Supply
(heat)

Fig. 2. Thermostat system

as contracts, each composed of an assumption and a guarantee,
which are expressed using a pattern-based language to simplify
the design entry. Faults are introduced as additional ports
of components based on a suitable selection from a library
and prepared to be analyzed, carrying information on their
presence and degree of impact. The model is then translated
into the SMV language and analyzed using the xSAP tool [6],
which returns the dependability artifacts of interest, such as
Fault Trees (FT) and FMEA tables.

We illustrate our approach by means of an example, a
service-oriented thermostat controller that regulates the tem-
perature in a room. The example is adapted from the depend-
ability analysis of Looker et al. [8], including the fault injec-
tion based on latencies. The thermostat controller is a feedback
system composed of a Thermocouple (the sensor), a Controller
(the control device) and a Heater (the actuator), shown in
Figure 2. The three components exchange SOA messages of
current temperature, control and heat supply. As in the original
paper, the thermocouple takes as input the heat supply and
internally computes the change in temperature, thus abstracting
the provision of heat to the environment and its effect as a
SOA communication between actuator and sensor. We let this
computation happen once per second, so that the estimate is
not exceedingly far from reality. The space embedding the
devices is surrounded by walls, where the outside environment
is large enough to neglect any temperature variation due to
heat transfer. The maximum heat dissipation of the room is
a parameter of our model. Interestingly, while the example
may look simple, its feedback structure is characteristic and
representative of many systems of interest. As we shall see,
the feedback and the introduction of fault injection make even
this example difficult to analyze.

A. Specification Language

Our problem definition language of choice is a combination
of the UML standards SysML and SoaML that we hereafter
call SysML+SoaML. There exist a wide range of languages
that are available to model SOA systems, although many
are not prone to the modeling of SOCSPs. WS-BPEL and
WS-CDL are XML-based static process execution languages,

respectively used for modeling orchestration and choreography
in web services. OWL-S and WSMO on the other hand are
ontology-based process execution languages whose behavior
is dynamic and defined during execution [23]. We are not
interested in process execution languages, because we do not
need the level of detail that they offer, especially on the im-
plemented service composition. We need a sufficiently abstract
language to yield favorably to verification, able to capture both
the architecture of the system and its cyber-physical dynamics.
SysML+SoaML, which also features the previously advocated
separation between the functional structure of the system and
its architecture, is a good option for that. Familiarity of system
engineers to UML is also a point that is not shared with other
abstract languages to model SOA.

Besides the system dynamics, we need to track the non-
functional aspects, such as timing issues relative to the net-
work service availabilities. One technique is to extend the
expressiveness of the language with additional constraints
and annotations [24]. Our approach, instead, is to enrich the
models with additional ports, interpreted as functional by the
verification and dependability analysis engines, and as non-
functional parameters in the interpretation of the system as a
whole, as will be described in the next sections.

B. Contracts for SOCPS

We employ the framework of contracts [4], [25] for the
specification of design requirements on the services of the
architecture, in the form of assumptions and guarantees from
and to the rest of the system. When put together in the
same system, services are required to satisfy a given top-level
collaborative goal. In this scenario, the dependability problem
studies the circumstances that can prevent the system from
reaching the goal upon the violation of one or more of the
services guarantees, under validity of the assumptions. The
benefits of adopting a contract-based approach are manifold
and include design modularity, separation of tasks across
working teams and separation of responsibilities. In case of
SOA, it is a perfect fit to grasp its natural interface interaction.
This will be instrumental to making the analysis of the system
effective, as described below in Section IV-A.

Formally, a contract is a pair of properties (A,G) that
specify the assumption and the guarantee of the object to
which it is attached [4], [25]. Contract implementation makes
the semantic of contracts explicit: a component M is said
to implement a contract C, written M |= C, whenever the
guarantees hold in the scope of the assumptions.

A contract C1 = (A1, G1) refines C2 = (A2, G2), denoted
C1 ⪯ C2, whenever the set of implementations of C1 is
subsumed by the set of implementation of C2. This happens
if the assumptions of C1 are at least as broad as those
of C2 and the guarantees of C1 are at least as strict. The
refinement relation over the class of contracts is a partial order,
and forms a distributive lattice with (A1, G1) ∧ (A2, G2) =
(A1 ∨A2, G1 ∧G2) the pairwise conjunction. Conjunction of
contracts is commonly used to combine different viewpoints
of the same component [4]. To combine contracts of different
systems constituents, we rather need the operator of parallel

4 TRANSACTIONS ON INDUSTRIAL INFORMATICS, DOI: 10.1109/TII.2017.2689337

Id Requirement A/G Comp.
r1 The reference temperature is given in ◦C and ranges in [15, 25] A System
r2 The system reaches the reference temperature within 10 minutes

and never deviates by more than 1◦C thereafter
G System

r3 The thermocouple can work against power levels no higher than
70 KW

A Sensor

r4 If the heater supplies energy at 2.1 KW more than the maximum
dissipation (7.5 KW), the temperature increases by a rate of
0.06◦C per second

G Sensor

r5 If the heater supplies energy at exactly the maximum dissipation
(7.5 KW) or up to 10 W more, the temperature sensed by the
thermocouple increases by a rate of no more than 0.0003◦C per
second

G Sensor

r6 The heat controller is able to bring the temperature of the room
up to steady 14◦C - 28◦C

A Controller

r7 The temperature value sent to the controller is assumed never
to be below zero, nor higher than 30◦C

A Controller

r8 The output of the heat controller ranges continuously between
-1 and 1: negative values signal to lower the temperature level,
positive values to increase it and 0 to keep it steady

G Controller

r9 The heater can supply energy from 0 to 10 KW G Heater
r10 For the heater to work properly, input signals must range within

[-1, 1]
A Heater

r11 Positive values on the input signal always imply positive heat
supplies by the heater

G Heater

TABLE I
REQUIREMENTS FOR THE THERMOSTAT SYSTEM TAGGED WITH THE

ASSUMPTION/GUARANTEE LABEL AND COMPONENT

composition, denoted ∥, that allows for the assumptions of one
contract to be partially satisfied by what the other contract
offers as a guarantee. In formulas [4]:

(A1, G1) ∥ (A2, G2) = ((A1 ∧A2) ∨ (G1 ∧G2), G1 ∧G2).

It can be shown that under these assumptions parallel composi-
tion preserves both refinement and implementations [25]. This
property, which we call compositional refinement, guarantees
that if a composition of contracts C1 ∥ · · · ∥ Cn refines a
top-level contract C, then a composition of implementations
M1 ∥ · · · ∥ Mn implements the top-level contract C as long
as each component Mi implements its individual contract Ci.

In addition to refinement and implementation, the theory we
adopt supports the notion of contract consistency (existence of
an implementation) and contract compatibility (consistency of
the assumptions) [4]. Because we are interested in dependabil-
ity under fault injection, we assume that the system is fully
functional in nominal mode. Therefore, the premise is that
aspects of consistency and compatibility have been dealt with
using appropriate techniques [26], [27].

C. Thermostat specification

The three thermostat components of Figure 2 represent inde-
pendent services that interact at the interface level. We specify
the input/output behavior of the services using contracts.

Table I shows an informal set of requirements for the overall
system and its independent services. Each requirement is la-
beled as Assumption or Guarantee, and is attached to the over-
all system or a specific component. For instance, the system
must receive a reference temperature in the range [15, 25]◦C
(r1), and stabilize in 10 minutes (r2). For the Thermocouple,
we require that the heat supply does not get too intense (r3),
in which case the sensor is not functional. The Thermocouple
ensures a time-proportional rise in the temperature of the

System contract
A [15 ≤ Tref ≤ 25]

G [T ′ = Tref within [600s]] and [T ′ = Tref implies [[Tref −1 ≤
T ′ ≤ Tref + 1] always] always

Sensor contract
A [0 ≤ heat ≤ 70000] and [T [0] = 0]

G [heat > 7500 + 2100] implies [T ′ > T + 0.06] within [1s]

G [7500 ≤ heat ≤ 7510] implies [T ≤ T ′ ≤ T + 3 ·
10−4] within [1s]

Control Device contract
A [14 ≤ Tref ≤ 28] and [0 ≤ T ′ ≤ 30]

G [T ′ < Tref] implies [0 ≤ u ≤ 1]

G [T ′ > Tref] implies [−1 ≤ u ≤ 0]

Heater contract
A [−1 ≤ u ≤ 1]

G [u > 0] implies [heat > 0]

G [0 ≤ heat ≤ 10000]
TABLE II

CONTRACTS FOR THE SYSTEM AND THE SERVICES

room, according to how much the heat supply outdoes the
maximum dissipation of the room. Requirements r4 and r5 are
particular demands on temperature increase per second. The
Control Device has a constant reference temperature threshold
as input between 14◦C and 28◦C (r6), plus the temperature
feedback from the Thermocouple is assumed never to be lower
than 0◦C nor higher than 30◦C (r7). The output is given by
a control signal that takes values in the continuous interval
[−1, 1], specifying whether the temperature should be lowered,
kept constant or increased (r8, r10). The Heater can supply
energy from 0 to 10 KW (r9). The actual value is internally
calculated by the Heater, accounting for the input signal, and
then actuated (r11).

The techniques described in this work are to some ex-
tent independent of the particular formalism used to express
contracts, as long as it supports temporal constraints. Here,
we adopt the pattern-based contract framework embodied by
the Block-based Contract Language BCL [28]. The reason
underlying our choice is the simplicity of a pattern-based
approach combined with the Simulink front-end that the lan-
guage makes available, which could integrate property proving
and simulation in the early phases of development. In BCL,
contracts are expressed using patterns and expressions over
the system variables. Patterns are built in layers to express
invariants in terms of events and their time and logical rela-
tions. In particular, the keyword implies introduces a logical
implication, while within introduces a timing constraint. The
keyword always specifies that a timing constraint must be
satisfied at every instant. The primed version of a variable is
used to denote its value in the following evaluation step, using
a synchronous underlying model.

Table II shows the BCL contract specification, obtained as
the combination of individual requirements. Without pointing
out it explicitly in the formal specification, we assume that the
reference temperature is kept constant throughout evolution.
Also, we require the initial temperature of the room and the
environment temperature to be 0◦C.

The natural requisite for correctness of the system is that

DEPENDABILITY ASSESSMENT OF SOA-BASED CPS 5

the contract attached to the three component services compose
up to refine the overall system contract. The problem is that,
according to requirement r2, the system (top-level) contract
is expressed using a range of 600 seconds (10 minutes),
whereas the single components are defined by 1 second
increments (e.g., requirement r4). Our approach to address this
difference is to unfold the composite contract specification
by constructing a contract of incremental granularity up to
reaching the needed 600 s. Following this direction, we start
from the definition of the contract Thermostat0 as the parallel
composition of the three service contracts at t = 0, when the
temperature is 0◦C, according to contractual specification. The
composite contract will have the reference temperature Tref

as the input variable and the temperature after 1 second (T [1])
as the output. Similarly, we can devise one Thermostatk
contract for each k value up to 600, each having the reference
temperature Tref and the temperature T [k] as input, and the
temperature T [k+1] as the output. Taking the composition of
all of these contracts gives

Thermostat = ∥ {Thermostatk}k∈[0...599]

that takes the constant reference temperature Tref as the input
and has the temperature after 600 seconds T [600] as the
output. This new contract can then be shown to refine the
top-level contract of the overall system by boolean algebraic
manipulations of the involved formulas. Once this step of
checking the compositional refinement is done, the single
services of the architecture can be implemented individually
without further connections to the others.

D. Service Implementation

We specify each service implementation as a set of equa-
tional laws that can be shown to satisfy the corresponding
service contracts. The Thermocouple is formally implemented
by acting on the internal energy of the system, accounting for
dissipations using the differential equation:

dQout

dt
= αcond ·A · (T − Ta). (1)

Here, Qout measures the heat natural dissipation in homo-
geneous conditions, αcond = [5, 20] W/(m2·K) is the heat-
transfer coefficient of the wall, A = [50, 500] m2 is the surface
of the room exposed to the outside, T is the temperature of the
room and Ta is the ambient temperature facing the wall on the
outside, set to 0◦C constant, and assume no other dissipations.

The heat supply from the actuator contributes positively to
the internal energy of the room, whereas the dissipation is
wasted energy. By inverting the heat equation ∆Q = Cs ·m ·
(T ′−T) we obtain the new temperature of the room, T ′, under
a heat derivative supply of heat for ∆t seconds, as

T ′ =
∆Qroom

Cs ·m
+ T =

∆t · heat−∆Qout

Cs ·m
+ T (2)

where Cs = [1000, 1015] J/(Kg·K) is the (isobaric) specific
heat of air and m = [35, 400] Kg is the mass of air in the room.
The value ∆t is set to 1 s in the functional implementation.

The system actuator is implemented by a 10 KW Heater
module that increases power based on the control signal u,
according to the following rule:

heat = min(heat+ 200 · u, 10000).

A PID controller implements the control for the system with
parameters Kp = 0.02, Ki = 0 and Kd = 1.5, tuned by
simulation on different values of the reference temperature
and guaranteeing the satisfaction of the controller contract.

IV. ASSESSING DEPENDABILITY

Faults in our systems of interest can happen in relation to the
functional aspects of the system or to the delivered Quality-
of-Service. Functional issues can be studied using standard
model extension techniques [1] or, faithful to our contractual
view, as contract violation [29]. The situation is different if
we want to analyze Quality-of-Service requirements, i.e., non-
functional properties. Those mainly relate to time properties
of communication (e.g., latencies, jitter, round-trip time) and
are paramount for the correct serving of distributed Cyber-
Physical Systems. In the case under analysis, delays in com-
munications can stream out-of-date messages in the network,
making the internal partial representation of the system of each
participant inconsistent, possibly leading the system itself to
a crash, and with poor diagnostic information.

An effective way to inject faults as latencies, or other quan-
tities, is thus essential for the system dependability assessment.
Our approach is to reduce it to a functional problem, introduc-
ing for each input and output variable of each participant an
associated fictional port carrying the non-functional values, in
a similar style of [14]. If these ports are related to the timing
viewpoint, we call them latency ports. We attach one latency
port for each service input signal (input latency port) and one
latency port for each service output signal (internal latency
port). Values for the internal latency ports are produced by
the service, and specify the amount of time needed for the
corresponding signal to be emitted once all dependent inputs
are available. On the other side, input latency ports express
the time difference from the last arrival of their relative input
signal to the considered current arrival event. For instance, the
Thermocouple has an additional input port ilpheat (for input
latency port) and an output port intT (for internal latency
port), bound to communicate the time that the message needs
to reach the receiver from the moment it is created.

Latency ports are allowed to interact exclusively with a
Network participant component, that we introduce anew (see
Figure 3). The role of the Network agent is to forward latency
port values from one component to another, based on network
interconnections, integrating those values with delays coming
from commonplace communication. Furthermore, in order to
keep coherence in the model, we let all functional signals
pass through the Network, so that services never directly
communicate with each other in any way.

An abstract SysML+SoaML picture related to our use case
example is represented in Figure 3, where input latency ports
are represented in green and internal latency ports in red.
For instance, the Thermocouple needs 1 second between one

6 TRANSACTIONS ON INDUSTRIAL INFORMATICS, DOI: 10.1109/TII.2017.2689337

heat
Thermocouple
-‐ sensor	 contract
-‐ room	 heat
dynamics

Network Heater
-‐ heater	 contract
-‐ heat	 supply
equation

Controller
-‐ control	 contract
-‐ PID	 specification

ilpheat

T

intT

T ilpT uintu

Injection	 of	 	
network	
delays

u

ilpu

heat
intheat

Fig. 3. Thermostat model including the network

sensing and the next, therefore it has on its temperature internal
latency port intT the time needed to reach the 1 second,
conditional to the time that already has elapsed since the
sensing previous to the current one. In formula, the value on
intT will be given by intT = 1s− ilpheat.

The network decides, following a schema independent from
anything attached to the network, how to feed the single
participant latency ports. In our specific example, let S stand
for Sensor, C for Controller and H for Heater, and tX→Y

for the communication time. Assuming a communication
nominal latency of 0.01 s between any two participants and
negligible internal latency for the Controller and the Heater
(i.e., intu = 0 and intheat = 0), the network will pass on the
Controller ilpT port the value (in the nominal case):

ilpT = tC→H + tH→S + intT + tS→C

= 0.01s+ 0.01s+ 0.97s+ 0.01s = 1.00s

This machinery gives the network the prerogative to decide
the communication times with input latency ports and leaves
to components to decide their own running times, using
internal latency ports. Since all the network-dependent non-
functionality of the architecture has been relegated to func-
tional ports, the dependability assessment can proceed for
the non-functional side just in the same way as traditional
techniques would do for the functional side.

The nominal version of the thermostat model can be shown
to satisfy the top-level thermostat contract. The latency ports
only end up being short negligible delays for the system, in
nominal mode. Now, injections can happen on latency ports
as system delays. For example we can inject faults on internal
latency ports. Those would mimic accidental computation
delays. We can inject faults on input latency ports. These
would mimic network-related delays. After injection, the Ther-
mocouple will use a new value for ∆t in its computations, this
time acquired from the network through the tainted latency
ports. For example, if the heat message was so delayed to
hit the Thermocouple after 1 second, then the Thermocouple
would return a value sensed exactly after that time, and the
whole system safety would be at stake, because the contract
satisfactions of the single sub-components would no longer
be guaranteed. We would like, eventually, to study the system
under these sorts of degraded conditions.

MODULE Heater(u, LP_u)
VAR
heat : real;

DEFINE
max_heat := 10000;
der_heat := heat + 200 * u;

DEFINE
comp_time := 0.0;
ILP := ((comp_time >= LP_u) ? comp_time - LP_u : 0.0);

ASSIGN
init(heat) := 0; -- start from no heat supply
next(heat) := (der_heat < max_heat) ? der_heat : max_heat;

Fig. 4. nuXmv code for the Heater

A. Fault injection

The tool used for the dependability analysis in the present
study is xSAP [6]. xSAP is a safety analysis platform devised
to carry out model-based fault injection and dependability
artifact construction over digital systems. It is built on top of
the tool nuXmv [30] and inherits all of its model checking
features. Functionally, xSAP takes a nuXmv specification
of a correctly behaved system in the SMV language, an
adverse top-level event nominally prevented by the system
in normal conditions and a structured specification of the
ways faults may trigger therein, providing, as a result, de-
pendability artifacts such as Fault Trees and FMEA tables.
The computation may use four different engines: exhaustive
BDD model checking (bdd), incremental SAT-based (bmc)
and SMT-based (msat) bounded model checking (BMC), and
IC3 (ic3). We will employ the most convenient for each case.

To use xSAP, we need to translate our specification into
nuXmv. Feasibility of translation from UML-like languages
to verification engines has already been established in the
literature [31]. For our specific work, we did not use any
form of automation for this, but directly implemented the
three services of the thermostat into nuXmv modules defined
by the equations of Section III-D. We then introduced the
network participant and latency ports as per the previous
section. Figure 4 shows a (simplified) fragment of the code
for the Heater, including the command u with its latency port
LP_u and the output heat with the internal latency ILP.
To be analyzed, the code must be further discretized (not
shown). The complete source code, including the steps for
discretization for the entire system is available in our technical
report [32].

The first phase for dependability assessment is to inject
faults in the model. This is done in xSAP by dedicating spe-
cialized hook variables to the occurrence of faults and starting
nominal or faulty models correspondingly. Importantly, hooks
for the timing view are all put on the network component and
the functional view remains intact as it were before the fault
injection. In the case at study, we will assume that the faults
are transient and consist in a gradual increase in the network
times of communication between participants, from 1 to 22,
25 and 210 hundredth of a second (centiseconds).

In order to specify the Top-Level property around which the
dependability analysis is established, we introduce a simple

DEPENDABILITY ASSESSMENT OF SOA-BASED CPS 7

monitor whose task is to supervise the system and, in this
particular case, trigger a timeout event if 600 seconds have
elapsed without the reference temperature of the room being
reached. We can ask xSAP to inject the model with faults and
construct the fault tree for the property timeout. The aim is
to select all minimal sets of hook variables (the so called cut
sets) that can lead the Top-Level Event to occur.

The discretized model consists of a finite state machine with
approximately 90 bits of state variables. By running xSAP
out of the box, the analysis never terminates, no matter which
engine is used. This is because, as in contract verification,
the single modules have the time granularity of one second,
whereas the top-level contract has coarser requirements, ex-
pressed over 600 seconds of time. Injections on such a system
are performed at every feedback loop of evolution, thereby
blowing up the search space exponentially at every loop. More
specifically, the hook variables activate extra state machines
that model the faults, contributing additional bits (from 6 to
9 in our case) to the state space for every iteration, quickly
becoming the dominant factor. We nonetheless retrieved a
partial result bounding the computation using bmc to the first
100 seconds only. We were able to get a fault tree in 9 minutes
for Tref = 1◦C, showing that a delay of 210 centiseconds leads
to the violation of the contract. For comparison, increasing the
bmc limit to 110 seconds, the execution time increases to 16
minutes. Beyond this, computation becomes impractical.

Fortunately, by exploiting compositionality in refinement
checking, we can avoid extending the analysis up to 600
seconds and focus instead on the single components, on
the timing viewpoint. In fact, under a correct contract com-
positional refinement, the only way to break the top-level
contract is by breaking one of the component contracts.
Notice that the converse is not true, therefore the approach
that we propose is conservative. We therefore developed a
model for the Thermocouple, the only component specifying
timing restrictions on its contract, with the precise intention of
studying its timing view with respect to its contract. The point
now will not be to simulate the entire system evolution, but
rather check that every possible implementation deriving from
the Thermocouple satisfies the contract of the Thermocouple.
Compositional refinement checking (see Section III-B) then
guarantees that the top-level goal is satisfied.

The application of the analysis to the Thermocouple takes
practically no time. We therefore enriched the model with all
delay injections on the input latency port of the Thermocouple
service, ranging from 22 to 210 centiseconds. Figure 5 shows
the resulting fault tree, which demonstrates that the system
is safe as long as the heat message reaches the heat port of
the Thermocouple in less than or equal to 27 centiseconds.
This is consistent with the partial result obtained using bmc,
and perfectly in line with the model: up to a delay of 27

centiseconds - which is our approximation of 1 second in
base 2 logarithmic scale - the system behaves as if no delay
was there, i.e., it is resilient. However, as delays go from 27

to 28, so that the system experiences a delay of 27 beyond
the Thermocouple computation time, the system starts to
malfunction. The effect of delays on the other services is null
because they have no functional dependency on time, which

!([heat > 7500 + 2100]
implies [T’ > T + 0.06]

within [1s])

net._heat_.model_isdelay8

E7

P = 0.0

net._heat_.model_isdelay9

E8

P = 0.0

net._heat_.model_isdelay10

E9

P = 0.0

Fig. 5. Fault tree for delay injections over the Thermocouple latency ports

implies their fault trees are empty (and thus not shown).
Our interpretation suggests that the system can be read

very easily and its resiliency to faults determined. This is yet
another evidence that the approach that we used is valuable
to our aims. In particular, the output of xSAP tells us how
possible combinations of unfavorable events contribute to the
loss of the nominal functionality, and therefore to the violation
of the system properties. This result is useful also during the
design process: different implementations of a control system
can be shown to be more or less resilient to unfavorable events
(for instance to the likelihood and duration of network delays),
and therefore help in architectural decisions.

V. AVAILABILITY AND DUALITY

In a similar fashion to latency ports, it is possible to sup-
plement the service components with ports concerning service
availability. These are boolean ports whose nominal value is
positive, before injections, and are responsible for enabling
the functional activity of the components. We illustrate this
on a simplified version of the CAE emergency response sys-
tem [33], representative of a number of case studies aimed at
the organization of safety plans for the recovery from alarming
situations. We use this example to model the evolutionary
development of SOA-based systems in terms of participants
arbitrarily leaving the playboard.

The scenario is that of an urban area, a District, that relies
on a Fire Station to prevent unexpected fire explosions to burn
over. The Fire Station has a number of Fire Fighting Cars
available, 5 in our specific case, that it can send to mitigate
the fire. We assume that one car is always enough to mitigate
one fire explosion, and that cars are dispatched in order of
their index, from 1 to 5.

The SOA structure is that of the 7 participants (the District,
the Station and the 5 Cars) communicating with each other
according to the agreed modes. Upon fire, the District sends a
help request to the Fire Station. The Fire Station immediately
gathers its available resources and sends a signal to one of
its Cars to reach the place. The selected Car moves on the
district, extinguishes the fire and sends an acknowledgment to
the district. Then it goes back to the Fire Station sending a
message of mission accomplished. This makes the Fire Station
acknowledge that the car is back operative once it gets to the

8 TRANSACTIONS ON INDUSTRIAL INFORMATICS, DOI: 10.1109/TII.2017.2689337

On	 fireNormal	
behavior

OnFire Fire	
extinguished

Wait

Nominal	
behavior

Go!Emergency	
response

Go	 back

Wait

Waiting
car

On	 fire

Car
going

Go! Car working
(on	 place)

Fire	
extinguished

Go	 back

Going	
back

Di
st
ric

t:
Fi
re
St
at
io
n:

Fi
re
Fi
gh
tin

gC
ar
:
Ac
tiv
ity
:

Fig. 6. Emergency response system activity diagram

station. We assume that a car needs to go back to the station
whenever it quenches one fireburst (e.g., to refuel, alternate
firemen). The activity diagram of the CAE (with one car) is
presented in Figure 6.

A. CAE injection

As opposed to the thermostat, which assumed everything
was fixed in the topology, here there are parts of the sys-
tem, either connections or components, whose presence is
not to be taken for granted. The fault modalities that this
system is subject to are sudden, not necessarily permanent,
disappearances of services (boolean unavailability). As for the
thermostat, we first create our nominal model, inject faults and
see the results. Unlike the thermostat, here we do not need
a specific network agent for the interactions because we do
not need to attach non-functional behaviors such as timing.
The introduction of the network or a similar conception is
anyhow possible and would have the advantage of having all
fault modalities gathered together in one entity.

We derive the nominal SMV model of the CAE from the
SOA specification, assuming no faults and that everything goes
smoothly according to plans. Using nuXmv, we verify that
the system is always able to eventually quench all fires, with
a positive result. As possible instances of system faults, cars
can for instance disappear, simulating their unavailability. Car
unavailability is modeled as the Fire Station failing to connect
with the car to tell it to go. Another fault is the case of a car
moving but never reaching the destination. Finally, we model
the case of a car losing connection with the Fire Station once
the fire is quenched. We represent the faults as extensions on
the Car module and on the Fire Station module: unavailabilities
are modeled as connections stuck at inactive.

Since Top-Level Events can only be expressed by invariant
formulae in xSAP, we will need some workaround to guarantee
that fires will always be extinguished, eventually, which is
expressed in temporal logic. To do that we implement a
monitor, which operates as a supervisor on the district. The
purpose of the monitor is to let the system know when a fire
is not extinguished in a fixed amount of time, by triggering
a timeout variable set to 10 time units. This will provide a
bounded guarantee and is expressed in our Top-Level Event
specification as non-occurrence of the timeout event.

The xSAP analysis finds 10 minimal cut sets. The first
8 indicate that the failure of any one of the cars labeled in
{1, 2, 3, 4} can lead to a failure of the desirable property. For
the fifth car this is not enough: the first car has to be non

8

16

32

64

128

256

512

1,024

2,048

4,096

11 12 13 14 15 16 17 18 19 20 21 22 23 24

tim
e	
(s
)	 -‐

lo
g	
sc
al
e

k

bdd
bmc
ic3
msat

Fig. 7. Performance of xSAP on the CAE model using different engines

operative also, otherwise it could supply for Car 5 once back
to the Fire Station. Two cut sets identify this scenario. Other
failure scenarios are omitted, since the fault tree construction
automatically excludes those subsumed by the minimal ones.

As indicated in Section IV-A, there are four engines avail-
able to xSAP for the Fault Tree construction, namely bdd,
bmc, msat and ic3. The CAE example is simple enough (the
state is composed of 38 bits) to let us highlight some aspects
regarding performance without incurring into intricacies and
model complexities as we had for the thermostat use case
example. Figure 7 shows the different performance of xSAP
using different engines, as a function of the BMC bound k.
Here, the timeout in the monitor is set to 10 time units. The
bdd and ic3 methods do not depend on the bound, thus their
performance is constant. For this model, the fastest algorithm
up to k = 24 is SAT-based bmc, while ic3 is the slowest.

After the bound k = 11 we expect fault trees to be all
equivalent, because the monitor is defined using a timeout of
10, which entails executions that all monotonically subsume
the first. Notice that if we did not have domain knowledge
about the system, we could not claim satisfaction for any k
at all. This delineates a trade-off between the use of bounded
model checking and complete methods. For the CAE example,
if less than k = 23 steps were not enough to hold confidence
in the model, then it would be better to use the plain bdd
procedure, because it would take less time.

Unfortunately, the cut-off value where choosing one method
is preferable to the other cannot be known in advance, thus the
trade-off can exploit little or no black-box guidance. Consider
for example that increasing the timeout from 10 to 12 increases
the computation time from 8 to 53 minutes for bdd, whereas
the bmc computation time is still lower than 14 minutes even
for a timeout of 23 (setting k = 24). Similar to what is usual in
model checking, a BMC procedure can be used in the earlier
phases of development to find Fault Trees in a very fast way
and think about completeness later for self-assurance.

B. Exploiting duality

When constructing the fault tree, it is instinctive to set
the Top-Level Event as an unwanted hazard. Dually, we can
think of the Top-Level Event as a desirable state, rather than

DEPENDABILITY ASSESSMENT OF SOA-BASED CPS 9

a bad one. The extension of the model are then performed
by introducing welcoming positive events, and the fault tree
represents desirable configurations. We apply this procedure to
the CAE example. The question that we would like to answer
is whether we can find a non-faulty configuration of cars that
can manage a maximum of 5 fires in less than 10 time units.
To answer this question, we need to lay out a nominal empty
system of one District, one Fire Station and no cars. The
injections in this case are not faults, but cars. The fault tree
construction generates all possible minimal cut sets leading
the system to the satisfaction of the desired formula. We call
the dual fault tree a suggestion tree.

Because xSAP is allowed to pick any arbitrary value for its
variables, for the result to be minimal, the tool will prefer those
configurations with no fires ever bursting out in the scene.
In this case, suggestion trees are of no use. We therefore
need to enforce some sort of fairness by asking that in the
final state — corresponding to the property violation — the
district experiences all the possible fire explosions and that
the monitor reaches a time count equal to the timeout. The
construction finds 4 minimal cut sets. In particular, we need
any two cars among those in {2, 3, 4, 5}, arbitrarily, based on
when fires burst plus Car 1. Car 1 is special and needs to
be there in all minimal configurations: since failures are not
admitted, all cars in {2, 3, 4, 5} are instructed to go only if
Car 1 is not at the Fire Station.

The suggestion tree could be found using BMC methods
with bound k = 11. It took 3.173 s using the SAT-based bmc
procedure and 25.812 s using msat. Then we tried to feed the
problem to the bdd and ic3 engines. Not without surprise,
xSAP was able to find smaller cut sets using those procedures,
respectively in 4.668 s and 38.069 s. The reason for this new,
different suggestion tree lays in the completeness of the bdd
and ic3 methods: xSAP can look at the whole state space and
explore more options to make the existential paths minimal. A
path could be generated such that the single car Car 1 could
make its way back and forth from the FireStation to extinguish
all fires independently, in 24 steps. The same fault tree could
then be found using BMC-based techniques with a bound of
k = 24. This time, however, it took much more time: around
16 s for the bmc procedure and more than 300 s for msat.

VI. CONCLUSIONS

In this paper we proposed a contract-based approach for
SOCPS modeling, that combines service orientation and cyber-
physicality to track both the dynamics of systems and their
SOA-related non-functional aspects, such as timings and avail-
ability. Our methodology is founded on the enhancement of the
service implementations with additional ports of interaction,
whose value is either determined by a network participant or
by the single services themselves, internally. We have shown
how this is compatible with the decomposition of contracts in
viewpoints and how traditional techniques for the construction
of dependability artifacts can exploit this decomposition and
be used for diversifying assessments.

We advised the utilization of SysML+SoaML as a problem
description language, but our methodology is independent

from the actual language of choice. For model-based fault
injection we used xSAP, which is currently state-of-the-art
in the field and has great potential beyond the illustrative
examples used in this work. Moreover, it comes with the
model-checking algorithms of nuXmv that can be applied on
the nominal model extended with faults, supporting verifica-
tion/preservation of temporal formulae before and after the
model extension. Our future work includes automating the
translation into SMV, combining the existing technologies into
a comprehensive flow. As part of the process, we plan to
extend the network with asynchronous communication and a
more detailed model of faults, that may be found in SOA-
specific interactions between participants in the network, and
integrate suggestion trees to support the choice of components
and parameters in dynamic system reconfiguration.

REFERENCES

[1] M. Bozzano and A. Villafiorita, “The FSAP/NuSMV-SA safety analysis
platform,” International Journal on Software Tools for Technology
Transfer, vol. 9, no. 1, pp. 5–24, 2007.

[2] P. Vrba, V. Mařı́k, P. Siano, P. Leitão, G. Zhabelova, V. Vyatkin, and
T. Strasser, “A review of agent and service-oriented concepts applied
to intelligent energy systems,” IEEE Trans. on Indus. Inform., vol. 10,
no. 3, pp. 1890–1903, Aug 2014.

[3] W. Dai, V. Vyatkin, J. H. Christensen, and V. N. Dubinin, “Bridging
service-oriented architecture and IEC 61499 for flexibility and interop-
erability,” IEEE Trans. on Indus. Inform., vol. 11, no. 3, June 2015.

[4] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-based design for cyber-physical systems,”
European Journal of Control, vol. 18, no. 3, pp. 217–238, 2012.

[5] S. Tripakis, “Compositionality in the science of system design,” Pro-
ceedings of the IEEE, vol. 104, no. 5, pp. 960–972, May 2016.

[6] B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio,
C. Mattarei, A. Micheli, and G. Zampedri, “The xSAP safety analysis
platform,” in Proceedings of the 22nd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
Eindhoven, The Netherlands, April 2-8 2016.

[7] M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly,
T. Petri, R. Robinson, and S. Tonetta, “Formal design and safety analysis
of AIR6110 wheel brake system,” in Proceedings of the 27th Interna-
tional Conference on Computer Aided Verification, San Francisco, CA,
July 18-24 2015.

[8] N. Looker, M. Munro, and J. Xu, “A comparison of network level fault
injection with code insertion,” in Proceedings of the 27th International
Computer Software and Applications Conference, July 2005.

[9] W. Viriyasitavat, L. D. Xu, and W. Viriyasitavat, “Compliance checking
for requirement-oriented service workflow interoperations,” IEEE Trans.
on Indus. Inform., vol. 10, no. 2, pp. 1469–1477, May 2014.

[10] L. D. Xu and W. Viriyasitavat, “A novel architecture for requirement-
oriented participation decision in service workflows,” IEEE Trans. on
Indus. Inform., vol. 10, no. 2, pp. 1478–1485, May 2014.

[11] S. Little, D. Walter, C. Myers, R. Thacker, S. Batchu, and T. Yoneda,
“Verification of analog/mixed-signal circuits using labeled hybrid Petri
nets,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 30, no. 4, 2011.

[12] D. J. Rosenkrantz, S. Goel, S. S. Ravi, and J. Gangolly, “Resilience
metrics for service-oriented networks: A service allocation approach,”
IEEE Trans. on Serv. Comput., vol. 2, no. 3, pp. 183–196, July 2009.

[13] F. Mhenni, N. Nguyen, and J. Y. Choley, “SafeSysE: A safety analysis
integration in systems engineering approach,” IEEE Systems Journal,
vol. PP, no. 99, pp. 1–12, 2016.

[14] A. Benveniste, B. Caillaud, and R. Passerone, “Multi-viewpoint state
machines for rich component models,” in Model-Based Design for
Embedded Systems. CRC Press, November 2009, ch. 15, p. 487.

[15] J. Ezekiel and A. Lomuscio, “Combining fault injection and model
checking to verify fault tolerance in multi-agent systems,” in Proceed-
ings of The 8th International Conference on Autonomous Agents and
Multiagent Systems - Volume 1, ser. AAMAS ’09, Budapest, Hungary,
2009, pp. 113–120.

[16] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri, “Safety, dependability and performance analysis of extended
AADL models,” The Computer Journal, vol. 54, no. 5, May 2011.

10 TRANSACTIONS ON INDUSTRIAL INFORMATICS, DOI: 10.1109/TII.2017.2689337

[17] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “METROII: A design envi-
ronment for cyber-physical systems,” ACM Transactions on Embedded
Computing Systems, vol. 12, no. 1s, pp. 49:1–49:31, March 2013.

[18] V. Vyatkin, C. Pang, and S. Tripakis, “Towards cyber-physical agnosti-
cism by enhancing IEC 61499 with PTIDES model of computations,” in
Proceedings of the Annual Conference of the IEEE Industrial Electronics
Society, Yokohama, November 2015.

[19] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren, “Cyber-physical
system design contracts,” in Proceedings of the ACM/IEEE 4th Interna-
tional Conference on Cyber-Physical Systems, 2013, pp. 109–118.

[20] M. Broy, I. H. Krüger, and M. Meisinger, “A formal model of services,”
ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1, February 2007.

[21] C. Farcas, E. Farcas, I. H. Krueger, and M. Menarini, “Addressing
the integration challenge for avionics and automotive systems — from
components to rich services,” Proceedings of the IEEE, vol. 98, no. 4,
pp. 562–583, April 2010.

[22] G. Gössler, D. Le Métayer, and J.-B. Raclet, “Causality analysis in
contract violation,” in Proceedings of the First International Conference
on Runtime Verification, ser. RV’10, St. Julians, Malta, 2010.

[23] J. Puttonen, A. Lobov, and J. L. M. Lastra, “Semantics-based compo-
sition of factory automation processes encapsulated by web services,”
IEEE Trans. on Indus. Inform., vol. 9, no. 4, pp. 2349–2359, Nov 2013.

[24] D. Cancila, R. Passerone, T. Vardanega, and M. Panunzio, “Toward
correctness in the specification and handling of non-functional attributes
of high-integrity real-time embedded systems,” IEEE Trans. on Indus.
Inform., vol. 6, no. 2, pp. 181–194, May 2010.

[25] S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Ny-
man, and A. Wasowski, “Moving from specifications to contracts in
component-based design,” in Fundamental Approaches to Software
Engineering, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7212, pp. 43–58.

[26] M. Comerio, H.-L. Truong, F. De Paoli, and S. Dustdar, “Evaluating
contract compatibility for service composition in the SeCO2 framework,”
in Proceedings of the 7th International Joint Conference on Service-
Oriented Computing, Stockholm, Sweden, November 24-27 2009.

[27] T. T. H. Le, R. Passerone, U. Fahrenberg, and A. Legay, “Contract-based
requirement modularization via synthesis of correct decompositions,”
ACM Transactions on Embedded Computing Systems, vol. 15, no. 2,
pp. 33:1–33:26, 2016.

[28] O. Ferrante, R. Passerone, A. Ferrari, L. Mangeruca, and C. Sofronis,
“BCL: a compositional contract language for embedded systems,” in
Proceedings of the 19th International Conference on Emerging Tech-
nologies and Factory Automation, Barcelona, Spain, September 2014.

[29] M. Bozzano, A. Cimatti, C. Mattarei, and S. Tonetta, “Formal safety
assessment via contract-based design,” in Proceedings of the 12th
International Symposium on Automated Technology for Verification and
Analysis, Sydney, Australia, November 3-7 2014.

[30] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in Computer Aided Verification, 2014.

[31] R. Eshuis, “Symbolic model checking of UML activity diagrams,” ACM
Trans. Softw. Eng. Methodol., vol. 15, no. 1, pp. 1–38, Jan. 2006.

[32] L. Dal Lago, O. Ferrante, and R. Passerone, “Dependability assessment
of SOA-based cyber-physical systems with contracts and model-based
fault injection,” Dipartimento di Ingegneria e Scienza dell’Informazione,
University of Trento, Technical Report DISI-17-003, February 2017.

[33] A. Arnold, B. Boyer, and A. Legay, “Contracts and behavioral patterns
for SoS: The EU IP DANSE approach,” in Proceedings of the 1st
Workshop on Advances in Systems of Systems, ser. EPTCS 133, Rome,
Italy, March 16 2013.

Loris Dal Lago received his Master degree summa
cum laude in Computer Science from the University
of Trento, Italy, in March 2015. He researched as
an intern at the FBK foundation in 2012, where he
gained confidence with the tool family of NuSMV.
He joined ALES S.r.l. in April 2015 as an Engineer,
where he has been working on model-based tech-
niques for systems design and on safety certification.
He has a background in formal logic, safety and
model-based design.

Orlando Ferrante received his PhD degree summa
cum laude in Electronic Engineering at “Sapienza”
University of Rome, Italy, in February 2012. In April
2008 he joined ALES S.r.l. His research interests
are in formal verification techniques for Embed-
ded systems. He was involved in several European
Projects (SPEEDS, SPRINT, MBAT, DANSE, MIS-
SION) and DARPA METAII project covering formal
requirements analysis. His current position in ALES-
United Technologies Research Center is group lead
for the area of formal methods.

Roberto Passerone (S’96-M’05) is an Assistant
Professor at the Department of Information Engi-
neering and Computer Science at the University of
Trento, Italy. He received his MS and PhD degrees
in EECS from the University of California, Berkeley,
in 1997 and 2004, respectively. Before joining the
University of Trento, he was Research Scientist
at Cadence Design Systems. Prof. Passerone has
published numerous research papers on international
conferences and journals in the area of design
methods for systems and integrated circuits, formal

models and design methodologies for embedded systems, with particular
attention to image processing and wireless sensor networks. He was track chair
for the Real-Time and Networked Embedded Systems at ETFA from 2008 to
2010, and general and program chair for SIES from 2010 to 2015. He has
participated to several European projects on design methodologies, including
SPEEDS, SPRINT and DANSE, and was local coordinator for ArtistDesign,
COMBEST, and CyPhERS.

Alberto Ferrari received his Dr.Eng. degree summa
cum laude in Electrical Engineering from the Uni-
versity of Bologna, Italy. In 1994, he obtained a
Ph.D. degree on integrated systems for image and
speech recognition from the same university. From
1995 to 1996, he was a visiting scholar at the
Electrical Engineering Department of the Univer-
sity of California at Berkeley. In 1998 he joined
PARADES, working on design methodology and
hardware software architecture for safety critical
embedded systems. He taught embedded systems at

the “Sapienza” University of Rome and has also been part of the ARTIST
II, ArtistDesign and Hycon European Networks of Excellence on embedded
system design. In 2008, he co-founded ALES s.r.l., that later becomes part
of United Technologies Research Center, and he is currently serving as
its General Manager. His main research interests are distributed embedded
systems design and verification with focus on formal methods for safety and
security.

