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Abstract: In this work, we analyze the role of strain on a set of silicon racetrack resonators
presenting different orientations with respect to the applied strain. The strain induces a variation
of the resonance wavelength, caused by the photoelastic variation of the material refractive index
as well as by the mechanical deformation of the device. In particular, the mechanical deformation
alters both the resonator perimeter and the waveguide cross-section. Finite element simulations
taking into account all these effects are presented, providing good agreement with experimental
results. By studying the role of the resonator orientation we identify interesting features, such as
the tuning of the resonance shift from negative to positive values and the possibility of realizing
strain insensitive devices.
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OCIS codes: (130.0130) Integrated optics; (130.3060) Infrared; (130.3120) Integrated optics devices; (130.6010)
Sensors; (130.6622) Subsystem integration and techniques; (250.5300) Photonic integrated circuits.

References and links
1. K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and

durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016).
2. B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible

Electronics 1, 5 (2017).
3. C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports

3, 2244 (2013).
4. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi,

and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
5. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and

optics meet,” Optical Materials Express 3, 1313–1331 (2013).
6. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible

chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
7. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2,

622 (2012).
8. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot,

J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic,
“Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).

                                                                                                    Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4204 

#313440 https://doi.org/10.1364/OE.26.004204 
Journal © 2018 Received 21 Nov 2017; revised 23 Dec 2017; accepted 24 Dec 2017; published 8 Feb 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.26.004204&domain=pdf&date_stamp=2018-02-08


9. F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S.
Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli,
C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D.
Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix
in iris project,” 22, 155–168 (2016).

10. W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P.
Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected
Topics in Quantum Electronics 20, 1–10 (2014).

11. L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a
flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).

12. S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij,
“A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an
acoustical membrane,” Scientific reports 5, 14328 (2015).

13. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,”
Laser & Photonics Reviews 7, 303–328 (2013).

14. M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19,
093002 (2017).

15. Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese
Journal of Applied Physics 47, 2910 (2008).

16. M. Borghi,M.Mancinelli, F.Merget, J.Witzens,M. Bernard,M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency
electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).

17. COMSOL Multiphysics® v. 5.2. www.comsol.com. COMSOL AB, Stockholm, Sweden .
18. P. Segall, Earthquake and volcano deformation (Princeton University Press, 2010).
19. J. Wortman and R. Evans, “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” Journal

of applied physics 36, 153–156 (1965).
20. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of microelectrome-

chanical systems 19, 229–238 (2010).
21. This estimation is approximated because the spot displacement is determined not only by the sample deflection,

but also by the variation of the beam position on mirror M2. This is caused both by the sample movement ∆z in
the z direction, and by the distance z0 between the sample surface and the mirror M2. Since L = 3.73 m, we have
L � z0 = 0.1 m. Moreover ∆H � ∆z, being ∆H ∼ cm and ∆z < 150 µm. Thus, the approximation δ ∼ ∆H/L is
valid .

22. W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using
stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).

23. R. Edwards, G. Coles, andW. Sharpe, “Comparison of tensile and bulge tests for thin-film silicon nitride,” Experimental
Mechanics 44, 49–54 (2004).

24. M. Huang, “Stress effects on the performance of optical waveguides,” International Journal of Solids and Structures
40, 1615–1632 (2003).

25. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,”
Laser & photonics reviews 6, 145–177 (2012).

26. F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of Materials (McGraw-Hill, 2006).
27. In the evaluation of the effective refractive index, one should consider that the curved waveguide supports different

modes with respect to the straight waveguide. However, since the radius of curvature is much greater than the
wavelength and since we are interested in the strain-induced refractive index variation, we performed the simulations
considering straight waveguides .

1. Introduction

The role played by strain on the performance of integrated devices is of extreme interest. One
of the reasons for this comes from the development of flexible devices. Especially in the field
of flexible electronics, many material platforms have been demonstrated, providing high device
performance even when subjected to stretching or compression [1, 2]. Flexible optoelectronic
devices have also been realized, such as mechanically flexible photovoltaics [3], as well as efficient
polymer LEDs and photodetectors [4]. More recently, the integration of photonic structures
on flexible platforms has also been realized [5]. This demonstrates the possibility to realize
photonic devices such as waveguides, microresonators, add-drop filters and photonic crystals
on mechanically flexible supports [6]. Among these realizations, particularly attractive are the
ones relying on the transfer of devices realized on the Silicon-On-Insulator (SOI) platform to
polymeric flexible substrates [7]. The main reason is that SOI technology, originally developed for
electronics, has proved to be an interesting platform for the realization of high-density integrated
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optical structures [8, 9], and, thus, also offers interesting features for the realization of complex
flexible integrated devices.
In silicon photonics, the role of strain has also been investigated for other applications. For

example, silicon-based strain sensors have been realized on standard SOI substrates [10] and on
polymeric flexible substrates [11]. Moreover, ultrasound sensors have been realized by a silicon
device on a silicon oxide membrane [12]. In addition, straining layers have been deposited on SOI
components to control the photoelastic variation of the waveguide refractive index, balancing the
geometric birefringence and realizing polarization insensitive devices [13]. Straining layers have
also been used to break the centrosymmetric crystalline structure of silicon, introducing second
order nonlinear optical effects [14].
In this work, we analyze the role of strain on silicon racetrack resonators, where loading is

applied in a controlled way by using a micrometric screw to cause the sample to bend. Extending
the study proposed in [10] and [15], we discuss the role played by the resonator orientation with
respect to the applied strain, showing that the strain-induced resonance wavelength shift can be
tuned from positive to negative values by changing the orientation angle. This offers interesting
applications in the field of strain sensors, since different orientations of the resonators on the same
sample can provide information on the strain direction. Moreover, choosing the orientation angle
to manufacture a strain-insensitive resonator is of extreme interest in the field of flexible photonics,
where it is necessary to produce devices insensitive to the applied strain. In this framework, we
describe the experimental results, taking into account the different effects responsible for the
resonance shift. Our model considers both mechanical deformation of the device, which affects
the resonator perimeter and the waveguide cross-section, and the strain-induced refractive index
variation, due to the photoelastic effect.

The paper is organized as follows. In Sec. 2 we describe the experimental setup and the
analyzed devices, as well as the macroscopic simulation describing the sample bending. In Sec. 3
the experimental results on the strain-induced resonance shift are presented, while in Sec. 4 we
describe their simulation. Finally, in Sec. 5 we summarize the results and draw conclusions.

2. The experiment

2.1. Experimental setup and devices

The experimental setup used during this work is sketched in Fig. 1(a). The input and the output
channels of the analyzed structures are accessed via edge coupling using tapered lensed fibers,
passing in a polarization stage before entering into the input waveguide. The sample is mounted
on a screw-equipped sample holder, magnified in Fig. 1(b). The source is a continuous-wave
laser, tunable around the wavelength of 1600 nm. The detection is performed using an InGaAs
amplified detector coupled to a multimeter. Using the screw, a displacement is applied to the
central point of the sample along the direction orthogonal to its main plane (z direction), while
the displacement on the sides is inhibited along z, causing the bending of the sample. The point
load generates a 2-D strain field in the sample, whose components are principally directed along
the longest dimension of the chip. A more complete description of the screw-equipped sample
holder can be found in [16].
Figure 1(b) shows our typical test structure. This was designed to assess the strain-induced

electro-optic effect in silicon (see more in [16]). The device consists of a racetrack resonator in
an add-drop filter configuration designed to work in the Transverse-Magnetic (TM) polarization.
It is realized with a 365 nm UV lithography on a 6’ SOI wafer, whose cross-section is sketched
in Fig. 1(c). Over a 600 µm thick silicon substrate, a 3 µm thick Buried Oxide (BOX) layer
forms the lower cladding. All the resonator waveguides have a 243 nm × 400 nm cross-section,
guaranteeing the single mode operation at wavelengths around 1600 nm. On the waveguide top,
a 140 nm thick silicon nitride layer is conformally deposited via low-pressure chemical vapor
deposition. A 900 nm thick plasma-enhanced chemical vapor deposition silica layer forms the
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upper cladding. The resonators perimeter is 416 µm, with a straight coupling region length of
12.91 µm, a curvature radius of 15 µm and a 400 nm gap between the resonator and the bus
waveguide.

The resonators are fabricated with five different orientations with respect to the silicon
crystallographic axes, expressed by the angle α indicated in Fig. 1(b). For α = 0◦ the resonator
longest dimension is oriented along the [110] crystallographic direction. The maximum angle
is α = 90◦, corresponding to a resonator oriented along the [110] direction. Other resonators
oriented at angles of α = 30◦, 45◦ and 60◦ are present on the sample.

IN

THROUGH DROP

(a)

(b)

140 nm
243 nm

400 nm
3 μm

600 μm

900 nm

SiO2

SiNSi

SiO2

Air

Si

x

y
z

(c)

Laser source

Alignment stage

Photodetector

Sample

Alignment stage

Polarization controller

holder

Fig. 1. (a) Sketch of the experimental setup. It is formed by a tunable laser source, a fiber
polarization controller, an input-output alignment stage, a screw-equipped sample holder
and an InGaAs photodetector. (b) Zoom-in picture of the screw-equipped sample holder. On
the sample it is depicted a resonator whose main axis is rotated of an angle α with respect to
the y direction. The resonator dimensions are deliberately out of scale. (c) Off-scale picture
of the waveguide cross section with nominal dimensions.

2.2. Description of the local strain: macroscopic simulation of the device

To compare numerical and experimental results, it is necessary to correctly estimate local strains
in the structures due to the sample bending. This estimation is performed with a 3D Finite
Element Method (FEM) simulation of the entire sample subjected to a point load using the
COMSOL Multiphysics software [17]. The waveguides, BOX and cladding layers are 200 times
thinner than the 600 µm thick silicon substrate, so that the latter is mainly responsible for the
overall mechanical behavior of the whole sample. As a consequence, in order to reduce the
computational burden, the simulation is limited to the silicon substrate. The simulation boundary
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conditions are represented in Fig. 2(a). The effect of the screw is considered as a prescribed
displacement along z applied to the center of the sample, while the two supports are modeled by
a fixed line constraint and by a prescribed zero z displacement line, which prevents the sample
being blocked.
The volumetric strain εv is defined as the trace of the strain tensor ε, and it is invariant with

respect to rotations of the reference system [18]. In Fig. 2(a) we report the volumetric strain
relative to a mechanical displacement of 150 µm applied by the screw. This strain is larger in the
center, while approaching the boundaries it decreases and vanishes. The use of the volumetric
strain is legitimized by the fact that, from the simulation, it results that the shear components of
the stress tensor are at least one order of magnitude smaller than the principal components. The
elastic parameters of silicon needed for this simulation, as well as the other material parameters
used in this work, are reported in Tab. 1. The stiffness matrix describing the elastic properties of
silicon is derived from the elastic parameters corresponding to the crystallographic directions of
the sample [19, 20].
The degree of accuracy of the 3D macroscopic simulation is validated via experimental

measurements. The sample curvature (as a function of the z-displacement) is experimentally
measured as illustrated in Fig. 2(b). Similarly to the method proposed in [15], a HeNe laser
impinges on the sample surface and is reflected on a screen. Using the micrometer screw, the
sample curvature is modified, causing a movement of the spot position on the screen. The reflected
beam is deflected by an angle δ. By using simple geometric considerations, it can be shown
that δ = 2θ, where θ is the rotation of the normal to the sample surface. We determine δ as
δ ∼ ∆H/L, being ∆H the spot displacement on the screen and L the distance between the mirror
M2 and the screen [21]. In Fig. 2(c) we show the bending angle as a function of the position
on the sample surface for three different applied displacement values. The experimental results
and the simulation show a good agreement, both varying the position on the sample and the
displacement applied by the screw.

Table 1. Material parameters used in this work.

Silicon Silicon Oxide Silicon nitride

Refractive index n (@ 1600 nm) 3.474 a 1.443 a 1.995 a

Young modulus E (GPa) 130 [20]b 76.7 [22] 255 [23]
Poisson ratio ν 0.28 [20]b 0.186 [22] 0.23 [23]
Shear modulus G (GPa) 79.6 [20]b 32.3 c 118.6 c

Photoelastic coefficient p11 −0.0997 d 0.19 e - f

Photoelastic coefficient p12 0.0107 d 0.27 e - f

Photoelastic coefficient p44 −0.051 g −0.04 h - f

a Measured with ellipsometry technique.
b Referred to the reference system with the axes directions [100], [010], [001]. In [19] and [20] the
method used to derive the stiffness matrix along arbitrarily directed axes is shown.

c Evaluated using G = E/[2(1 + ν)] (valid for isotropic crystals) [24].
d Interpolated from measurements taken at λ =1.15 µm and λ =3.39 µm [24].
e Interpolated from measurements taken at λ =0.633 µm [24] and λ =1.15 µm [22].
f No data in literature. Since silicon nitride forms a thin cladding, no relevant effective index variations
can be obtained varying its photoelastic coefficients. Therefore, we use the same values as silica.

g Evaluated from [24].
h Calculated using the relationship p44 = (p11 − p12)/2, that is valid for isotropic crystals [24].
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Fig. 2. (a) On the left: 3D simulation boundary conditions for beam bending. The prescribed
displacement and the fixed constraint on the top represent the supports, while the arrow
describes the screw displacement. On the right: volumetric strain εv superimposed in color
scale over the beam deformation evaluated applying a displacement of 150 µm to the sample
center. Displacements are emphasized by a factor of 10. (b) Setup used to measure the sample
curvature. The black line describes the HeNe laser path when the sample is undeformed,
while the gray path corresponds to the deformed sample. (c) Rotation of the normal to
the surface θ as a function of the position on the sample surface for three different screw
displacement ∆z values. The experimental data (points) are compared with simulations
(straight lines).

3. Experimental results

3.1. Effect of strain on the resonance wavelength

The output spectrum recorded on the drop port of an analyzed resonator is shown in Fig. 3(a).
The Free Spectral Range (FSR) is about 1.5 nm. The quality factor varies from resonator to
resonator in the range 5000 − 10000 due to fabrication variations. In Figs. 3(b)-3(c) we show
the transmission spectra of two resonators with different orientation angles α as a function of
the displacement ∆z applied by the screw in the sample center. In the case of α = 0◦ the strain
induces a blue-shift of the resonance, while it is red-shifted when α = 90◦. The same fact can
be observed from Figs. 3(d)-3(e), where the resonance wavelength dependence on ∆z is shown.
However, the difference between the two measurements is not only the orientation of the resonator,
but also its position on the sample. As it can be seen from Fig. 2(a), even if the displacement
applied by the screw at the center of the sample is the same, the strain varies considerably in
the sample. Therefore, the local strain level experienced by each resonator can be different. For
this reason, the resonance shift must be normalized with respect to the local strain acting on
each resonator. The local strain is quantified using the 3D FEM simulation described previously
and evaluating the volumetric strain εv at the location of the resonator. On the top axes of Figs.
3(d)-3(e) we show the volumetric strains corresponding to the displacements ∆z reported on
the bottom axes. The slope of the linear fit curve represents the resonance shift per unit strain.
Once this normalization is applied, comparable results can be found from identically oriented
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resonators located in different positions on the sample (for example, −0.39±0.09 pm/microstrain
and −0.32 ± 0.05 pm/microstrain for two identical resonators oriented with α = 0◦ situated at
about 4.2 mm and 1.9 mm from the center of the sample). We then analyze the resonance shift
per unit strain as a function the orientation angle α, reported in Fig. 3(f). The normalized shift
increases monotonically with the orientation angle, demonstrating that, tuning the orientation of
the resonator on the sample, it is possible to tune the resonance shift from negative to positive
values, as well as to design a strain insensitive resonator.

(a)

(c)(b) (f)

(e)(d)

Fig. 3. (a) Drop port spectrum of one analyzed resonator. (b-c) Drop port spectra of two
resonators oriented with different angles α. The different colors refer to measurements taken
with different screw-applied displacements ∆z. (d-e) Dependence on ∆z of the resonance
wavelength evaluated from a Lorentian fit of the spectra. The top axes report the corresponding
volumetric strain evaluated from the 3D macroscopic simulation. The gray lines are linear
fits of the experimental points. (f) Resonance shift per strain unit for resonators oriented with
different angles α. Errorbars represent 95% confidence bounds resulting from the linear fits.

3.2. Role of the waveguide deformation and determination of the waveguide width

In Fig. 4(a) we show the wavelength dependence of the group index ng for one analyzed resonator.
The experimental values are evaluated from the experimental FSR using ng = λ2

mP−1FSR−1,
being λm the m−th resonant wavelength and P the resonator perimeter [25]. The group index is
evaluated for different strain levels applied by the screw. The group index variation induced by
the applied strain is below the measurement error level, revealing that in this way we are not able
to detect any deformation of the waveguide cross section caused by strain. A similar observation
derives from Fig. 4(b), where the experimental wavelength dependence of the quality factor is
reported. Any variation of the quality factor caused by strain (such as the variation of the gap
between the resonator and the bus waveguide) is below the experimental error.
The comparison between the experimental group index and the simulation can provide an

estimation of the actual dimensions of the analyzed resonator waveguide. Fabrication uncertainties
affect mainly the waveguide width rather than the height. Therefore, we set the waveguide height
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to its nominal value of 243 nm (evaluated from interferometric measurements) and we evaluate
the group index dependence on the waveguide width. This is calculated with a 2D mode solver
from the effective refractive index dispersion, and is shown in black in Fig. 4(c). The blue line
represents the experimental value of the group index, evaluated from the data shown in Fig. 4(a).
From the intercept between the experimental and the theoretical group index we can estimate that
the actual waveguide width of the resonator is 391 ± 7 nm, slightly smaller than the nominal
value of 400 nm. Any variation of the waveguide width caused by strain is below the error of this
estimation. In Fig. 4(d) we show the waveguide width evaluated from the experimental group
index for all the resonators analyzed in this work, providing a mean width of 384 ± 2 nm.

(a) (b)

(c) (d)

Fig. 4. (a) Wavelength dependence of the group index of the resonator with an orientation
angle α = 60◦. The experimental value is evaluated from the FSR, while the simulated result
derives from a FEM simulation of a waveguide with a cross section of 390 nm × 243 nm.
(b) Wavelength dependence of the quality factor of the same resonator. (c) Comparison
between the simulated dependence of the group index on the waveguide width (black) and
the experimental value (blue), from which the actual width of the waveguide is determined
(red). The light colors represent the errorbars. (d) Waveguide width evaluated from the
experimental group index for the resonators analyzed in this work.

4. Modeling the strain-induced resonance shift

In all the simulations we use the mean experimental group index value (ng = 4.08) and we
consider the mean waveguide width determined in Sec. 3.2 (w = 384 nm).

4.1. Theoretical model

Here, we generalize the model proposed in [10] by taking into account the role of strain not only
on the straight parts of the racetrack resonator, but also on the curved ones. The starting point is
the racetrack resonator resonance condition:

mλm = 2Lns + 2πRnc, (1)

where m is an integer number, λm the m-th resonant wavelength, ns the effective refractive index
of the straight waveguide, L the length of the straight part of the resonator and R the resonator
radius (as it is sketched in Fig. 5(a)). The quantity nc is the mean effective refractive index in the
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curved section, which is related to the effective refractive index nc(γ) at a generic angle γ on the
curve according to the relationship:

nc =
1
π

∫ π

0
nc(γ) dγ . (2)

When dealing with photoelasticity this dependence is important because the refractive index
components in the different directions depend on the strain value in the different directions. If the
resonator is subjected to an external strain, the general resonance condition (1) can be derived
with respect to the applied volumetric strain εv . Eq. (1) can be used again to replace the value of
m. In doing this, we must consider that the effective refractive indices depend both on the local
strain and on wavelength, and so we must write:

d
dεv

ns(εv, λ) =
∂ns
∂εv
+
∂ns
∂λ

∂λ

∂εv

d
dεv

nc(εv, λ) =
∂nc
∂εv
+
∂nc
∂λ

∂λ

∂εv
. (3)

Moreover, we need to consider that the strain has a dual effect on the effective refractive index: on
the one hand it modifies the material refractive index due to the photoelastic effect, on the other
hand it deforms the waveguide cross-section. These two contributions are separated as follows:

∂ns
∂εv
=
∂ns
∂εv

����
ph
+
∂ns
∂εv

����
def

∂nc
∂εv
=
∂nc
∂εv

����
ph
+
∂nc
∂εv

����
def
. (4)

Finally, the following equation is derived:

∂λm
∂εv

=
∂λ

per
m

∂εv
+
∂λ

ph
m

∂εv
+
∂λdef

m

∂εv
, (5)

where we introduced the resonance shift due to the perimeter variation ∂λper
m /∂εv , the resonance

shift due to the photoelastic-induced refractive index variation ∂λph
m /∂εv and the resonance shift

due to the waveguide deformation ∂λdef
m /∂εv . These quantities are given by:

∂λ
per
m

∂εv
=
λmns
Png

∂P
∂εv

, (6a)

∂λ
ph
m

∂εv
=

λm
Png

(
2L

∂ns
∂εv

����
ph
+ 2πR

∂nc
∂εv

����
ph

)
, (6b)

∂λdef
m

∂εv
=

λm
Png

(
2L

∂ns
∂εv

����
def
+ 2πR

∂nc
∂εv

����
def

)
. (6c)

We introduced here the racetrack resonator perimeter P = 2L + 2πR and the straight waveguide
group index ng = ns − λ(∂ns/∂λ). Deriving this, we considered the curved group index equal to
the straight group index, based on the fact that the radii of the resonators analyzed in this work
are much larger than wavelength. For the same reason, we considered also the curved effective
refractive index the same of the straight waveguide (nc = ns). On the other hand, the applied
strain can act differently on the straight and on the curved waveguides, and therefore we kept
∂ns/∂εv , ∂nc/∂εv .
The following sections are dedicated to the separate study of these contributions. Finally, the

global contribution will be compared to the experimental measurements.
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4.2. Contribution of the perimeter variation

Equation (6a) shows that the evaluation of the resonance wavelength shift induced by the
resonator perimeter variation ∂λper

m /∂εv requires the knowledge of two quantities. The first one
is the effective index ns, and is evaluated by a 2D mode solver. The second one, the perimeter
dependence on the local volumetric strain ∂P/∂εv , is calculated from the macroscopic 3D
simulation of the sample deformation described in Sec. 2.2.
The local strain experienced by each resonator is evaluated from the macroscopic simulation of
the sample. For a generic resonator oriented at an angle α, the strain tensor components along the
main resonator axes (εx′x′ and εy′y′) are evaluated from the strain components along the original
axes (εxx and εyy) and from the shear strain element (εxy) using [26]:

εx′x′ = εxx cos2 α + εyy sin2 α + 2εxy sinα cosα, (7a)

εy′y′ = εxx sin2 α + εyy cos2 α − 2εxy sinα cosα. (7b)

As it is sketched in Fig. 5(a), the new length of the straight part of the resonator L ′ is:

L ′ = L(1 + εy′y′), (8)

while the resonator curved part assumes an ellipsoidal shape whose semi-axes Ra and Rb are:

Ra = R(1 + εy′y′) Rb = R(1 + εx′x′). (9)

The new perimeter P′ of the resonator is then:

P′ = 2L ′ + 2π

√
R2
a + R2

b

2
. (10)

Equations (8) and (9) show that the local volumetric strain is the relevant parameter to calculate
the perimeter variation, it gathers by itself alone the resonator position on the sample and the
global strain induced by the screw. As a consequence, also the results shown in the following
section regarding the refractive index variation effects are independent from the position on
the macroscopic simulation surface as long as the resonance shift is normalized on the local
volumetric strain. This fact agrees with the experimental observation that the resonance shift per
strain unit does not depend on the location on the sample but only on the orientation angle.
In Fig. 5(b) we show the simulated perimeter variation dependence on the local volumetric

strain εV for different resonator orientations α. Increasing the strain, the perimeter increases.
This effect is maximized when the orientation of the resonator main axis approaches the main
axis of the sample (α = 90◦), where the elongation effect on the straight part of the resonator is
maximum. In Fig. 5(c) we show the perimeter variation per unit of volumetric strain (∂P/∂εv)
as a function of the resonator orientation angle α. This quantity is calculated from a linear fit
of the results shown in Fig. 5(b). Eventually, the resonance shift due to the perimeter variation
∂λ

per
m /∂εv is calculated from Eq. (6a) and is shown on the right axis of Fig. 5(c). A positive

variation of the volumetric strain εV induces a red-shift of the resonance, and the magnitude of
this shift increases as the resonator orientation approaches the main direction of the sample.

4.3. Contribution of the effective refractive index variation

The evaluation of the strain effect on the effective refractive index requires the knowledge of
the stress/strain distribution inside the resonator waveguides. Then the photoelastic matrix is
used to connect the stress map to the stress-induced refractive index variation map, from which
the new effective refractive index of the propagating mode is calculated using the usual mode
solver. Similarly, the waveguide deformation is determined from the strain distribution inside the
waveguide, determining then the effective refractive index in the deformed waveguide.
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(a) (b)

(c)

Fig. 5. (a) Out of scale model showing the effect of strain on the resonator. The unstrained
resonator shape (in black) is modified by strain into the magenta shape. (b) Simulated
dependence of the resonator perimeter P on the applied volumetric strain εV for different
resonator orientation angles. (c) Dependence of the perimeter variation per unit of volumetric
strain on the orientation angle. The corresponding resonance shift is shown on the right axis.

4.3.1. Evaluation of the strain distribution inside the waveguide

Since there are three orders of magnitude between the size of the waveguide and that of the
sample, it is impossible to use the global 3D simulation presented in Sec. 2.2 to determine the
strain distribution inside the waveguide. Therefore, only a limited area sketched in Fig. 6(a),
constituted by the oxide substrate, the waveguide and the cladding layers is modeled. Nevertheless,
the global strain induced by the screw is taken from the macroscopic simulation, properly rotated
in the xy−plane using Eq. (7) and applied in terms of prescribed displacements at the bottom of
the oxide substrate.
The size of the reduced simulation is properly chosen to avoid unwanted boundary effects in

the waveguide core. Apart from silicon, all the involved materials are amorphous, and so their
elastic properties do not depend on the orientation of the analyzed structures. On the contrary,
for silicon it is important to consider the crystallographic direction along which the structure is
grown, and its stiffness matrix must be rotated according to the crystallographic direction along
which the waveguide is directed [19, 20]. As an example, in Fig. 6(b) we report the normal x ′

component of the stress tensor in the waveguide cross-section plane. The simulation refers to the
resonator oriented at α = 0◦ when a displacement ∆z = 150 µm is applied.

This method can also be used to evaluate the strain distribution in the resonator curved section.
In this case, the strain distribution in the waveguide curve at an angle γ is evaluated applying a
rotation of α + γ to both the boundary conditions and the silicon stiffness matrix. In principle,
the evaluation of this quantity should consider that the waveguide is curved. However, since the
radius of curvature is large (15 µm), the strain distribution in the waveguide is well approximated
without accounting for curvature.
In this framework, one should also take into account the residual stresses introduced during the
deposition of the cladding materials, which must be considered in the simulation as initial stress
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conditions. However, in our case we are interested in the study of the strain-induced refractive
index variation, which is a differential quantity related to the strain variation rather than to the
absolute strain inside the waveguide. Therefore, since we are using a linear model, the presence
of residual stresses can be omitted. To verify the validity of the approximation, all the simulations
described in the following have been performed with and without considering residual stresses,
finding negligible differences in terms of the predicted resonance wavelength shift.

εx'x'

x'

z

(b)

(a)

y'
z

x'

Fig. 6. (a) Simulation domain of the local 3D strain simulation of the waveguide. (b) Color
scale strain distribution in the waveguide cross-section in the simulation domain center.

4.3.2. Photoelastic variation of the effective refractive index

Once the stress distribution inside the waveguide cross-section is evaluated as described in the
previous point, the photoelastic matrix can be used to calculate the strain-induced refractive index
variation [24]. It is worth noting that this matrix also needs to be rotated according to silicon
crystallographic directions. Once the new refractive indexes of all the involved materials are
evaluated, the new effective refractive index is evaluated using a FEM mode solver [22]. While
doing this in the straight part of the resonator is straightforward, in the evaluation of the curved
index nc(γ) one should consider that the cross-section plane in the curve rotates with an angle
described point-by-point by γ. However, as a further approximation, we assume that the effective
refractive index varies continuously from the straight index ns to the effective refractive index
evaluated in the halfway point of the curved section n⊥ (corresponding to the angle γ = 90◦) [27].
Thus, our estimation of nc(γ) is:

nc(γ) = ns cos2(γ) + n⊥ sin2(γ), (11)

from which the mean index in the curved nc is calculated using Eq. (2). Through this approach,
for a given resonator orientation and for a given applied strain, the effective refractive index is
evaluated in the straight part (ns) and in the halfway point of the curve (n⊥). In Fig. 7(a) we
show the simulated effective refractive index variation per strain unit for both ns and nc . Eq. (6b)
allows then to evaluate the photoelastic contribution to the resonance wavelength shift ∂λph

m /∂εv ,
that is shown in Fig. 7(b). This plot shows that the shift increases with the resonator orientation
angle, moving from negative to positive values.

4.3.3. Contribution of the waveguide deformation to the effective refractive index

The deformation-induced effective refractive index variation is evaluated using the same approach
proposed for the photoelastic effect. For the straight part of the resonator, the new effective
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Fig. 7. (a) Photoelastic variation of the effective refractive index in the straight and in the
curved part of the resonator as a function of the resonator orientation. (b) Photoelastic
contribution to the resonance wavelength shift. (c-d) Waveguide width and height in the
straight part of the resonator as a function of the applied strain and for different orientations.
(e) Waveguide deformation effect on the effective refractive index in the straight and in the
curved part of the resonator. (f) Contribution of the waveguide deformation to the resonance
wavelength shift.

refractive index is determined once that the deformed waveguide cross-section in the straight part
is known. Similarly, once the effective refractive index of the deformed waveguide is evaluated in
the middle of the curve, the index at a generic angle γ of the curve is calculated using Eq. (11).
Both in the straight part and in the middle of the curve, the waveguide deformation is estimated
calculating the mean strain values in the waveguide cross-section directions (εx′x′ and εzz) from
the 3D simulation of the waveguide. Assuming that the deformed waveguide again maintains its
rectangular cross-section, its new height h′ and width w′ are related to the unstrained parameters
h and w by:

h′ = h(1 + εzz) w′ = w(1 + εx′x′). (12)

The dependence on the applied volumetric strain of the waveguide height and width in the straight
part of the resonator are shown in Fig. 7(c-d). First, we notice that the waveguide width variation
is below the typical errorbar of the estimation given in Sec. 3.2. Moreover, for all the resonator
orientations, the waveguide height decreases as the volumetric strain increases, showing a larger
effect on the resonators oriented along the main direction of the sample (α = 90◦). On the other
hand, an increase of the volumetric strain causes an increase of the waveguide width, whose
magnitude progressively reduces from α = 0◦ to α = 90◦. Due to this fact, for the resonator
oriented at α = 0◦ the effect of the height reduction is balanced by the increase of the waveguide
width, determining a small effective refractive index variation. On the contrary, the waveguide
of the resonator oriented at α = 90◦ is mainly influenced by the height reduction and by only a
small width increase, thus displaying a larger effective refractive index variation. This fact can
be observed in Fig. 7(e), where the effective refractive index variation caused by the waveguide
deformation is shown. In Fig. 7(f) we show the waveguide deformation contribution to the
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resonance wavelength shift ∂λdef
m /∂εv evaluated using Eq. (6c).

4.4. Comparison with experiments

Figure 8 shows, as a function of the resonator orientation angle, the three contributions to the
resonance shift calculated so far: the one from the perimeter variation, the photoelastic effect
and the transverse waveguide deformation. Moreover, according to Eq. (5), the sum of these
contributions gives the global resonance wavelength shift resulting from a strain applied to the
microresonator. Finally, the experimental points from Fig. 3(f) are added. A good agreement is
observed, which legitimizes the approximations made in the model.
For small angles, i.e. when the resonator is perpendicular to the direction of the elongation

imposed to the sample, the photoelastic effect is the main contribution. The contributions related
to the mechanical deformation of the device, such as the one due to the perimeter variation and
the one related to the transverse waveguide deformation, are smaller and balance themselves.
On the contrary, for large angles, the perimeter variation plays the dominant role. Besides,
this contribution is the one that has the largest variation amplitude with respect to the sample
orientation, roughly twice the ones of the two others.
Varying the orientation angle, the global resonance wavelength shift changes sign, passing

from a negative to a positive shift. The angle where the shift approaches 0 is at about 34.5◦,
where all the contributions balance giving rise to a strain insensitive resonator.

Resonance shift due to:
perimeter variation

      photoelastic effect
      waveguide deformation
      all the contributions

      Experiment

Fig. 8. Resonance shift as a function of the resonator orientation angle. The experimental
data are shown as black dots. The simulated contributions to the resonance shift of perimeter
variation (blue), photoelastic effect (light blue) and waveguide deformation (green) add
up providing the total simulated resonance shift (magenta). The dashed lines show the
orientation angle corresponding to the strain insensitive resonator.

5. Conclusion

In this work, we analyzed the role of strain on a set of elongated SOI racetrack resonators
presenting different orientation angles. We proposed a 3D simulation of the whole deformed
chip, through which the resonance wavelength shift was normalized to the local strain value
experienced by each resonator. Moreover, we proposed an analysis featuring a macroscopic
simulation model able to take into account all the effects causing the shift of the resonance
wavelength. The strain-induced perimeter variation was considered, as well as the strain-induced
variation of the material refractive index and the deformation of the waveguide cross-section.
The simulated results are in good agreement with the experimental resonance shifts, which vary
from positive to negative values when changing the resonator orientation angle. The possibility
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of tuning the resonance shift value by changing the resonator orientation offers interesting
applications in the field of strain sensors, since the presence of many resonators with different
orientations on the same sample can provide information on the strain direction. Moreover, the
resonator orientation angle can be tuned in order to realize strain-insensitive resonators, offering
interesting applications in the field of flexible photonics.
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