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Abstract In this paper we are concerned with two topics: the formulation and
analysis of the eigenvalue problem for the curl operator in a multiply-connected
domain, and its numerical approximation by means of finite elements. We prove
that the curl operator is self-adjoint on suitable Hilbert spaces, all of them be-
ing contained in the space for which curl v · n = 0 on the boundary. Additional
conditions must be imposed when the physical domain is not topologically trivial:
we show that a viable choice is the vanishing of the line integrals of v on suitable
homological cycles lying on the boundary. A saddle-point variational formulation
is devised and analyzed, and a finite element numerical scheme is proposed. It is
proved that eigenvalues and eigenfunctions are efficiently approximated, and some
numerical results are presented in order to test the performance of the method.
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1 Introduction

In electromagnetism, the Lorentz law states that the density of the magnetic force
is given by F = J × B , where J is the current density and B is the magnetic
induction. For eddy current approximation J = curlH , therefore the Lorentz law
reads F = curlH ×B .

For linear isotropic media a dependence of the form B = µH is assumed, the
scalar function µ being the magnetic permeability. In this case a magnetic field
satisfying curlH = λH , with λ a scalar function, produces a vanishing magnetic
force: F = J × B = λH × µH = 0. For this reason this kind of fields are called
force-free fields.

In fluid dynamics, force-free fields are often called Beltrami fields, and a Bel-
trami field u , when it is also divergence-free and tangential to the boundary, is
a steady solution of the Euler equations for incompressible inviscid flows (with

pressure given by p = − |u|
2

2 ).
A magnetic field satisfying the equation curlH = λH with a constant λ is

called a linear force-free field. These fields appear in important physical problems:
for instance, studying problems arising in plasma physics, in [23] it has been proved
that a magnetic field H which minimizes the magnetic energy with fixed helicity
has to satisfy the equation curlH = λH for some constant λ (and thus is a
linear force-free field). Moreover, in the presence of dissipation the linear force-
free fields in non-stationary magnetohydrodynamics are the natural asymptotic
configurations. In fact, as proved in [13], only linear force-free magnetic fields
remain force-free as time changes.

The reader interested in additional information about the physical problems
related to this kind of fields is referred, e.g., to [8,9] and the references therein.
From now on we focus on the mathematical aspects of this problem.

A linear force-free field is an eigenfunction of the curl operator:

curlu = λu .

Natural additional conditions, from both the mathematical and physical point of
view, are divu = 0 inside and u ·n = 0 on the boundary of the physical domain in
which the magnetic field is confined. It is also known that these conditions are not
sufficient to give a well-posed spectral problem if the physical domain has a non-
trivial topology (namely, it is not simply-connected). For arriving at a well-posed
spectral problem, the main mathematical point is to devise a domain of definition
of the curl operator such that its restriction to that domain is self-adjoint.

Let Ω ⊂ R3 be a bounded open connected set with Lipschitz continuous bound-
ary Γ (either smooth or polyhedral) and outer unit normal vector n. The way for
defining self-adjoint realizations of the curl operator and the analysis of the asso-
ciated eigenvalue problem have since many years attracted the attention of many
researchers. The starting point is clearly the following Green’s formula∫

Ω

(v · curlw − curl v ·w) =

∫
Γ

v × n ·w ,
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that is valid for any regular enough fields v and w . The choices of the domain of
definition of a symmetric realization of the curl operator are driven by the need
of obtaining

∫
Γ
v × n ·w = 0.

It is clear that the curl operator is symmetric when acting on vector fields
with vanishing tangential components on Γ , namely, satisfying v × n = 0 on Γ .
However, it is well-known that this condition is too strong for the spectral problem
(for a simple proof see Remark 1; see also [8, pp. 5638–5639], [24, Lemma 3]).

Instead, in a series of papers it has been shown that the curl operator is self-
adjoint when restricted to a suitable domain of definition (see [19], [20], [14], [25],
[21], [12]). Let us start describing the situation for a simply-connected domain Ω:
in this case it is sufficient to assume that the vector fields v in the domain satisfy
the boundary condition curl v · n = 0 on Γ . Since for an eigenfunction u of the
curl operator associated to a non-zero eigenvalue the condition u · n = 0 implies
curlu · n = 0, it is thus natural to consider the spectral problem

curlu = λu in Ω

div u = 0 in Ω

u · n = 0 on Γ .

(1)

Notice that in a simply-connected domain Ω the unique field satisfying curlu = 0,
div u = 0 and u ·n = 0 on Γ is u = 0, so λ = 0 is not an eigenvalue of this problem.
The numerical approximation of (1) for a simply-connected domain was analyzed
in [22].

When Ω is not simply-connected the condition curl v · n = 0 is not enough
to obtain a self-adjoint curl and it is necessary to consider a smaller domain of
definition of the curl operator. In particular, it is known that if Ω is not simply-
connected the set of eigenvalues of (1) is the whole complex plane (see [25, Theorem
2]).

In [19], [20], [14], [25], [21] it is proved that the curl operator is self-adjoint
when acting on vector fields v such that curl v ·n = 0 on Γ and curl v⊥KT , where
KT is the space of the so-called harmonic Neumann fields h satisfying curlh = 0 in
Ω, div h = 0 in Ω and h ·n = 0 on Γ (this space is finite dimensional, its dimension
being the first Betti number of Ω; in particular, it is trivial for a simply-connected
domain Ω). The numerical approximation of the eigenvalues and eigenfunctions of
this problem have been studied in [15].

Differently from what reported in [25, Remark 2], the condition curl v⊥KT is
not essential, but only sufficient for the proof that the curl operator is self-adjoint.
In this respect, an in-depth analysis has been recently presented in [12] using the
theory of unbounded operators in Hilbert spaces. The authors, by incorporating
in problem (1) additional conditions related to the first homology group of Γ and
by using the tools of differential forms, propose suitable choices of the domain of
definition that lead to self-adjoint realizations of the curl operator.

Following the analysis in [12], let us show how this family of well-posed eigen-
value problems can be described. We first need to recall some geometrical results
(see, e.g., [7, Sect. 6]; see also [4]). If the first Betti number of Ω is equal to
g > 0, then the first Betti number of Γ is equal to 2g and it is possible to consider
2g non-bounding cycles on Γ , {γj}gj=1 ∪ {γ

′
j}
g
j=1, that are (representative of) the

generators of the first homology group of Γ and such that:
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– {γj}gj=1 are (representative of) the generators of the first homology group of

Ω′ = B \ Ω, being B an open ball containing Ω (the tangent vector on γj is
denoted by tj);

– {γ′j}
g
j=1 are (representative of) the generators of the first homology group of

Ω (the tangent vector on γ′j is denoted by t′j);
– in Ω there exist g ‘cutting’ surfaces {Σj}gj=1, that are connected orientable

Lipschitz surfaces satisfying Σj ⊂ Ω and ∂Σj ⊂ Γ , such that every curl-free
vector in Ω has a global potential in the ‘cut’ domain Ω0 := Ω \

⋃g
j=1Σj ; each

surface Σj satisfies ∂Σj = γj , ‘cuts’ the corresponding cycle γ′j and does not
intersect the other cycles γ′i for i 6= j;

– in Ω′ there exist g ‘cutting’ surfaces {Σ′j}
g
j=1, that are connected orientable

Lipschitz surfaces satisfying Σ′j ⊂ Ω′ and ∂Σ′j ⊂ Γ , such that every curl-free

vector in Ω′ has a global potential in the ‘cut’ domain (Ω′)0 := Ω′ \
⋃g
j=1Σ

′
j ;

each surface Σ′j satisfies ∂Σ′j = γ′j , ‘cuts’ the corresponding cycle γj , and does
not intersect the other cycles γi for i 6= j.

In particular we can assume that γi ∩ γj = ∅ and γ′i ∩ γ
′
j = ∅ if i 6= j, while γi

intersects γ′i just at a point Pi. Moreover, Σj and Σ′j intersect the boundary Γ in

a transversal way, namely, the unit normal unit nj to Σj is not parallel to n on
∂Σj ⊂ Γ , and similarly for Σ′j .

Let us also note the statement concerning the ‘cutting’ surfaces Σj does not
mean that the ‘cut’ domain Ω0 is simply connected nor that it is homologically
trivial: an example in this sense is furnished by Ω = Q \K, where Q is a cube and
K is the trefoil knot (see [4]).

In [12] it has been shown that the curl operator turns out to be self-adjoint in
the space of vector fields v with curl v · n = 0 on Γ and such that

∮
γi

v · ti = 0

for 1 ≤ i ≤ g1 and
∮
γ′j

v · t′j = 0 for g1 + 1 ≤ j ≤ g, where 0 ≤ g1 ≤ g. (The

precise meaning of
∮
γ′j

v · t′j and
∮
γi

v · ti for vector fields satisfying the condition

curl v · n = 0 on Γ will be clarified in the next section.)

It is worth noting that, when curl v · n = 0 on Γ , the choice g1 = g, namely,∮
γi

v · ti = 0 for 1 ≤ i ≤ g1 = g, is equivalent to curl v⊥KT (see Remark 2).

We also underline that, as reported in [9], the most interesting physical case
is the one given by the choice g1 = 0, i.e., the additional conditions are given by∮
γ′j

v · t′j = 0 for 1 ≤ j ≤ g. In fact, in this case the eigenfunction associated to

the eigenvalue of minimum absolute value realizes the minimum of the magnetic
energy with fixed helicity.

While the numerical approximation of the eigenvalues and eigenfunctions of (2)
in the case g1 = g was already studied in [15], up to now a complete analysis of the
variational formulation of the eigenvalue problem and its numerical approximation
for g1 = 0 were not available, and are presented in our paper for the first time.

Summing up, we consider the following eigenvalue problem:
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Problem 1. Find λ ∈ C and u ∈ L2(Ω)3, u 6= 0, such that

curlu = λu in Ω ,

divu = 0 in Ω ,

u · n = 0 on Γ ,∮
γi

u · ti = 0 1 ≤ i ≤ g1 ,∮
γ′j

u · t′j = 0 g1 + 1 ≤ j ≤ g ,

(2)

where 0 ≤ g1 ≤ g.
Notice that, from the first and third equations, a solution of Problem 1 satisfies

curlu · n = 0 on Γ , hence the last two conditions have a meaning.

Aim of this work is to furnish a sound variational formulation of this general
problem and to devise an efficient finite element numerical approximation method.
In the next section we present some preliminaries results in order to give a precise
meaning to the additional topological conditions. In Section 3 we prove the well-
posedness of a mixed variational formulation of this spectral problem. Then in
Section 4 we study the finite element approximation of the eigenvalues and the
eigenspaces. Finally in Section 5 we present some numerical experiments which
allow us to check the theoretical results and to assess the performance of the
method.

Remark 1 It is easy to show that the curl operator with the boundary condition
u ×n = 0 has no eigenvalues λ 6= 0. In fact, suppose that we have u 6= 0 such that

curlu = λu in Ω ,

u × n = 0 on Γ

for λ 6= 0. Let a > 0 be a number so large that Ω ⊂ Qa = [−aπ2 , a
π
2 ]3, and let ũ

be the extension of u in Qa by setting value 0 outside Ω. Since u × n = 0 on Γ ,
it follows that curl ũ is globally defined in Qa; moreover curl ũ = λũ in Qa, and
therefore div ũ = 0 in Qa. Due to the relation −∆ = curl curl−∇div we also obtain
−∆ũ = curl curl ũ = λcurl ũ = λ2ũ in Qa. Noting that ũ = 0 on ∂Qa, we see
that λ2 is an eigenvalue of the Laplace operator in the cube Qa with homogeneous
Dirichlet boundary condition. These eigenvalues are well-known, and are given by
N/a2 for suitable positive integers N . Repeating the same argument for the cube
Q21/4a, it follows that λ2 is also equal to M/(

√
2a2) for a suitable positive integer

M , and this is not possible as
√

2 is not a rational number.

2 Preliminary results

We consider the space L2(Ω) with its corresponding norm ‖·‖0,Ω . For convenience,
we denote ‖ · ‖0,Ω the norm of L2(Ω)3, too. Let D(Ω) be the space of infinitely
differentiable functions with compact support in Ω and D(Ω) := {φ|Ω : φ ∈
D(R3)}.
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Let us introduce the Hilbert spaces

H1(Ω) :=
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)3

}
,

H1
0 (Ω) :=

{
v ∈ H1(Ω) : v = 0 on Γ

}
,

H(div;Ω) :=
{
v ∈ L2(Ω)3 : divv ∈ L2(Ω)

}
,

H(div0;Ω) := {v ∈ H(div;Ω) : divv = 0 in Ω} ,
H0(div;Ω) := {v ∈ H(div;Ω) : v · n = 0 on Γ} ,
H0(div0;Ω) := H(div0;Ω) ∩H0(div;Ω) ,

H(curl;Ω) :=
{
v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3

}
,

H(curl0;Ω) := {v ∈ H(curl;Ω) : curlv = 0 in Ω} ,
H0(curl;Ω) := {v ∈ H(curl;Ω) : v × n = 0 on Γ} .

The spaces H(div;Ω) and H(curl;Ω) are respectively endowed with the norms
defined by

‖v‖2div,Ω := ‖v‖20,Ω + ‖divv‖20,Ω and ‖v‖2curl,Ω := ‖v‖20,Ω + ‖curlv‖20,Ω .

We recall the classical Helmholtz decomposition (cf. [11, Theorem I.2.7]):

L2(Ω)3 = H0(div0;Ω)
⊥
⊕ ∇H1(Ω). (3)

Let H1/2(Γ ) be the space of traces on Γ of functions in H1(Ω), with dual space
H−1/2(Γ ). For the ease of notation, the duality pairing will be simply denotes by
the integral on Γ ; this simplification will be also adopted for other duality pairings,
for instance the duality pairing between the space of tangential traces of H(curl;Ω)
and the space of tangential components of H(curl;Ω). Notice that the conditions
v · n = 0 and v × n = 0 on Γ must be understood in the sense of H−1/2(Γ ) and
H−1/2(Γ )3, respectively.

We will also consider the Hilbertian Sobolev space Hs(Ω) (0 < s < 1) with
norm ‖ · ‖s,Ω , which is well-known to satisfy

H1(Ω) ↪→ Hs(Ω) ↪→ L2(Ω) ,

both inclusions being compact (see, for instance, [11, Sect. I.1.1]), and the space

Hs(curl;Ω) := {v ∈ Hs(Ω)3 : curlv ∈ Hs(Ω)3}.

Let us remark that, according to [2, Theorem 2.9 and Proposition 3.7] there
exists s > 1/2 such that

H(curl;Ω) ∩H0(div;Ω) ↪→ Hs(Ω)3, (4)

the inclusion being continuous.
Having fixed a unit normal vector nj on each Σj , we denote its two faces by

Σ+
j and Σ−j , with nj being the ‘outer’ normal to ∂Ω0 on Σ+

j . For any ψ ∈ H1(Ω0),

we denote by [[ψ ]]Σj := ψ|Σ+
j
−ψ|Σ−j the jump of ψ across Σj along nj . The tangent

unit vector tj is oriented counterclockwise with respect to Σ+
j . A similar notation

is used on each Σ′j .
We have the following Green’s identity (proved in [2, Lemma 3.10]).
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Fig. 1 Toroidal domain. Σ1 and Σ′
1 represent the ’cutting’ surfaces of Ω and Ω′, respectively.

Lemma 1 For all v ∈ H0(div;Ω), v·nj |Σj ∈ H
1/2(Σj)

′, 1 ≤ j ≤ g, and the following

Green’s formulas hold true:∫
Σj

v · nj [[ψ ]]Σj =

∫
Ω\Σj

v · ∇ψ +

∫
Ω\Σj

(divv)ψ ∀ψ ∈ H1(Ω \Σj).

Note that, in general, the functions ψ ∈ H1(Ω0) do not admit an extension to
the whole Ω that lies in the space H1(Ω). However, any extension of ∇ψ obviously
belongs to L2(Ω)3. We denote such an extension ∇̃ψ.

Let us consider the space of the so-called harmonic Neumann fields:

KT := H(curl0;Ω) ∩H0(div0;Ω) . (5)

This is a finite-dimensional space, its dimension being equal to the first Betti
number g of Ω, namely, the number of the ‘cutting’ surfaces. The following lemma
gives a representation of the basis ρj of the space KT .

Lemma 2 A basis of the spaceKT is given by
{
ρj
}g
j=1

where ρj := ∇̃φj , j = 1, . . . , g,

and φj ∈ H1(Ω \Σj)/R is the unique solution of

∆φj = 0 in Ω \Σj ,

∂nφj = 0 on ∂Ω ,

[[ ∂nφj ]]Σj = 0 ,

[[φj ]]Σj = 1 .

Proof The result follows by noticing that, for j = 1, . . . , g, φj is the unique solution
of the following problem: find w ∈ H1(Ω \Σj)/R such that [[w ]]Σj = 1 and∫

Ω

∇w · ∇v = 0 ∀v ∈ H1(Ω).

For details see, for instance, [10, Lemma 1.3]. ut

A similar construction can be done also for the harmonic Neumann vector fields
ρ′j defined in Ω′ with tangential component equal zero on ∂Ω′ = ∂B ∪ Γ , where

we recall that B is an open ball containing Ω and Ω′ := B \Ω.
The following result will be helpful in the subsequent analysis.
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Lemma 3 There holds

H(curl0;Ω) = KT
⊥
⊕ ∇H1(Ω).

Proof As consequence of the Helmholtz decomposition (3), the fact that ∇H1(Ω) ⊂
H(curl0;Ω) and the definition (5) of KT , we obtain that

H(curl0;Ω) = H(curl0;Ω) ∩ [H0(div0;Ω)
⊥
⊕ ∇H1(Ω)] = KT

⊥
⊕ ∇H1(Ω)

which concludes the proof. ut

As we already remarked, we need to give a precise meaning to the additional
conditions

∮
γi

u · ti = 0 and
∮
γ′j

u · t′j = 0. For functions u ∈ H(curl;Ω) with

curlu · n = 0 on Γ this can be done as follows: since curlu ∈ H0(div0;Ω), as an
analogy to Stokes Theorem, by using Lemma 1 we can write, for each 1 ≤ i ≤ g1,∮

γi

u · ti :=

∫
Σi

curlu · ni =

∫
Ω\Σi

curlu · ∇ψ ,

with ψ ∈ H1(Ω \ Σi), [[ψ ]]Σi = 1. In particular, we can take as ψ the function φi
introduced in Lemma 2, and we find∫

Ω\Σi
curlu · ∇φi =

∫
Ω

curlu · ∇̃φi =

∫
Ω

curlu · ρi ,

an alternative definition of
∮
γi

u ·ti. Moreover, since curlρi = 0 in Ω, by integration
by parts we have ∫

Ω

curlu · ρi =

∫
Γ

n× u · ρi ;

in conclusion, for a vector field satisfying curlu · n = 0 on Γ we can also write∮
γi

u · ti =

∫
Γ

n× u · ρi =

∫
Ω

curlu · ρi . (6)

Finally, we clearly have that∣∣∣∣∮
γi

u · ti
∣∣∣∣ ≤ C‖u‖curl,Ω , for 1 ≤ i ≤ g1.

We proceed similarly for
∮
γ′j

u · t′j for g1 + 1 ≤ j ≤ g. Thanks to [17, Theorem

3.34] (see, alternatively, [5, Theorem 1], [6, Theorem 7.1]) we know that there
exists a bounded extension ũ of u to R3, with support contained in B, and such
that

‖ũ‖curl;B ≤ C‖u‖curl;Ω .

By using Lemma 1 again and the previous inequality, we have that for g1+1 ≤ j ≤ g∮
γ′j

u · t′j :=

∫
Σ′j

curlũ · nj =

∫
Ω′\Σ′j

curlũ · ∇ψ′
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with ψ′ ∈ H1(Ω′ \ Σ′j), [[ψ′ ]]Σ′j = 1. As before, we can also write
∮
γ′j

u · t′j =∫
Ω′

curlũ · ρ′j or ∮
γ′j

u · t′j = −
∫
Γ

n× u · ρ′j (7)

(the sign due to the fact that n on Γ is the inward normal with respect to Ω′).
We also have∣∣∣∣∣

∮
γ′j

u · t′j

∣∣∣∣∣ ≤ C‖ũ‖curl,B ≤ C‖u‖curl,Ω , for g1 + 1 ≤ j ≤ g.

Remark 2 It is straightforward to check that, when curl v ·n = 0 on Γ and g1 = g,
the conditions

∮
γi

v · ti = 0 for 1 ≤ i ≤ g1 = g are equivalent to curl v⊥KT . In

fact, by (6) we have ∮
γi

v · ti =

∫
Ω

curl v · ρi .

On the other hand, we have also seen that, using the Stokes theorem, there holds∮
γi

v · ti =
∫
Σi

curl v · ni, therefore the vanishing of the line integrals on γi can
also be expressed as the zero-flux conditions∫

Σi

curl v · ni = 0, 1 ≤ i ≤ g .

The former point of view is adopted in [19], [20], [21]; the latter in [14], [25], [15].

3 Mixed variational formulation, well-posedness and spectral analysis.

Let us start by recalling the following result, that is easily obtained by integration
by parts:

Lemma 4 For each ξ ∈ H1(Ω) and ω ∈ H(curl;Ω) or ω ∈ H(curl;Ω′) there holds∫
Γ

∇tξ · (ω × n) = −
∫
Γ

ξ curlω · n ,

where ∇tξ = n×∇ξ × n. Hence, if curlω · n = 0 on Γ , it follows∫
Γ

∇tξ · (ω × n) = 0 .

Proof If ω ∈ H(curl;Ω) then∫
Γ

∇tξ · (ω × n) = −
∫
Ω

∇ξ · curlω = −
∫
Γ

ξ curlω · n .

On the other hand if ω ∈ H(curl;Ω′), let ξ̃ ∈ H1
0 (B) be an extension of ξ; then∫

Γ

∇tξ · (ω × n) =

∫
Ω′
∇ξ̃ · curlω = −

∫
Γ

ξ curlω · n ,

the minus sign coming from the fact that n is the unit normal vector outer to Ω.
ut
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We also recall the following result (see [12], Lemma 6.11 and Lemma 6.12 )
that will be helpful in the sequel, and for which we furnish a complete proof under
our assumptions.

Lemma 5 There holds∫
Γ

(ρj×n)·ρk = 0 ,

∫
Γ

(ρj×n)·ρ′k = δj,k = −
∫
Γ

(ρ′k×n)·ρj ,

∫
Γ

(ρ′j×n)·ρ′k = 0

for 1 ≤ j, k ≤ g.

Proof The first equation follows easily by integration by parts:∫
Γ

(ρj × n) · ρk =

∫
Ω

(ρj · curlρk − curlρj · ρk) = 0 .

The proof of the third equation is similar to that of the first one but working in
Ω′ instead of Ω.

Concerning the second equation, for any j = 1, . . . , g let us consider a function
ψj ∈ H1(Ω\Σj), such that [[ψj ]]Σj = 1 and ∇̃ψj is regular enough to give a meaning

to
∮
γ′k
∇̃ψj · t′k for each k = 1, . . . , g in the classical sense. Then, by proceeding as

done to obtain (7), we have∫
Γ

(∇̃ψj × n) · ρ′k =

∮
γ′k

∇̃ψj · t′k = δj,k

for 1 ≤ k ≤ g, the last equality stemming from the fact that [[ψj ]]Σj = 1 and
[[ψj ]]Σk = 0, k 6= j.

However the function ρj = ∇̃φj is not regular enough on Γ to define the line
integral in a classical sense (see its definition in Lemma 2). Since ρj is regular in Ω,
one could replace γ′k with an internal cycle in the same homology class; however,
a proof of the result is possible even without modifying γ′k.

Now we consider the curl-free vector field Tj = ∇̃ψ?j , where ψ?j ∈ H
1(Ω \Σj) is

a smooth function in Ω \Σj having [[ψ?j ]]Σj = 1 (and [[ψ?j ]]Σk = 0 for k 6= j, being ψ?j
in H1(Ω\Σj)) (see [15, Lemma 3.12] for an example in a toroidal domain). Clearly,
for Tj the line integrals

∮
γ′k

Tj · t′k are well-defined and take the values δj,k. For

these vector fields, that are regular, we can also write
∮
γ′k

Tj · t′k =
∫
Γ

(Tj ×n) ·ρ′k,

thus
∫
Γ

(Tj × n) · ρ′k = δj,k.

We define ϕj ∈ H1(Ω) \ R such that
∫
Ω
∇ϕj · ∇φ =

∫
Ω

Tj · ∇φ for all φ ∈
H1(Ω) \ R. Thus, from the proof of Lemma 2, it follows that ρj = Tj − ∇ϕj .
Moreover, by using Lemma 4 we obtain∫

Γ

(ρj × n) · ρ′k =

∫
Γ

[(Tj −∇ϕj)× n] · ρ′k =

∫
Γ

(Tj × n) · ρ′k = δj,k .

The result
∫
Γ

(ρ′k × n) · ρj = −δj,k follows at once by exchanging the order of the
factors. ut
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Let us define some function spaces that we will use to give a convenient varia-
tional formulation of Problem 1:

X := {v ∈ H(curl;Ω) : curlv · n = 0 on Γ} ,

X 0 := {v ∈ X :
∮
γi

v · ti = 0 for i = 1, . . . , g1} ,

X ? := {v ∈ X :
∮
γ′j

v · t′j = 0 for j = g1 + 1, . . . , g} ,

Z := X 0 ∩X ? ,

H := ∇H1(Ω)⊕ span {ρ1, . . . ,ρg1
} ,

where 0 ≤ g1 ≤ g.

Lemma 6 The following equality holds true

H = X ? ∩H(curl0;Ω) = Z ∩H(curl0;Ω) .

Proof Clearly H ⊂ H(curl0;Ω), and Lemmas 4 and 5 assure that H ⊂ X ?.
Conversely, from Lemma 3, a vector field v ∈ H(curl0;Ω) can be written as
v = ∇ψ +

∑g
l=1 αlρl, with

∮
γ′l

v · t′l = αl; therefore, as a consequence of the

constraints
∮
γ′j

v · t′j = 0 for j = g1 + 1, . . . , g, a vector field v ∈ X ? ∩H(curl0;Ω)

can be written as v = ∇ψ +
∑g1

i=1 αiρi.
It remains to show that H(curl0;Ω) ⊂ X 0, and this is clear as, by definition

(6),
∮
γi

v · ti =
∫
Ω

curl v · ρi, i = 1, . . . , g, and the last integral vanishes for v ∈
H(curl0;Ω). (In homological language, we could say that the result is clear since
the cycles γi are bounding in Ω.) ut

Now we introduce the following commuting property, that will be the basis
for the spectral characterization of the problem, and that also will lead us to the
choice of the space Z as suitable space for a viable variational formulation.

Lemma 7 For all v, w ∈ Z,∫
Ω

(curlw · v−w · curlv) = 0.

Proof Let v , w ∈ Z. We know that∫
Ω

curlw · v −
∫
Ω

w · curlv = −
∫
Γ

(w × n) · v .

We recall from [5], [12] that v , w ∈ X can be written on Γ as

n× v × n = ∇tπ +

g∑
k=1

ζkρk,t +

g∑
l=1

ηlρ
′
l,t .

n×w × n = ∇tϑ+

g∑
j=1

δjρj,t +

g∑
i=1

εiρ
′
i,t ,



12 A. Alonso Rodŕıguez et al.

where we are using the notation zt = n × z × n for all z ∈ H(curl;Ω) or z ∈
H(curl;Ω′). From Lemma 4 we have, for 1 ≤ k ≤ g,∫

Γ

(∇tϑ× n) · ∇tπ = 0 ,

∫
Γ

(∇tϑ× n) · ρk = 0 ,

∫
Γ

(∇tϑ× n) · ρ′k = 0 ,

and the same holds for ∇tπ. Therefore, from Lemma 5∫
Γ

(w × n) · v =

g∑
j=1

δjηj −
g∑
i=1

εiζi .

Moreover, given that v , w ∈ Z, from (7), Lemma 4 and Lemma 5 it follows

0 =

∮
γ′k

v · t′k = −
∫
Γ

n× v · ρ′k = ζk for k = g1 + 1, . . . , g

and, analogously, δj = 0 for j = g1 + 1, . . . , g. Using (6) instead of (7) we obtain

0 =

∮
γl

v · tl =

∫
Γ

n× v · ρl = ηl for l = 1, . . . , g1 .

and εi = 0 for i = 1, . . . , g1. Thus we have
∫
Γ

(w × n) · v = 0, which concludes the
proof. ut

Now, we introduce a mixed formulation of Problem 1.
Problem 2. Find λ ∈ C and (u , q) ∈ Z ×H, u 6= 0, such that∫

Ω

curlu · curlv +

∫
Ω

q · v = λ

∫
Ω

u · curlv ∀ v ∈ Z , (8a)∫
Ω

u · p = 0 ∀p ∈H. (8b)

Remark 3 It is worthy to note that an eigenvalue in Problem 2 must be different
from 0 and real. In fact, taking v = q ∈H ⊂ Z in (8a) it follows q = 0. Hence, if
we suppose λ = 0, we obtain curlu = 0 in Ω, and consequently u ∈H by Lemma
6. Choosing p = u in (8b) it follows u = 0, and we conclude that λ = 0 is not
admissible. Moreover, as a consequence of Lemma 7 it is standard to prove that
λ ∈ R.

The following result establishes the equivalence between this variational for-
mulation and Problem 1.

Lemma 8 If (λ,u), λ 6= 0, is a solution to Problem 1, then (λ,u,0) is a solution to

Problem 2. If (λ,u, q) is a solution to Problem 2, then q = 0 and (λ,u) is a solution

to Problem 1.

Proof If (λ,u), λ 6= 0, is a solution to Problem 1, then clearly (8a) is satisfied with
q = 0. Since u ∈ H0(div0;Ω), it follows that u is orthogonal to the gradients.
Therefore, recalling that p ∈ H can be written as p = ∇ψ +

∑g1

i=1 αiρi, we have
only to prove that

∫
Ω
u · ρi = 0 for i = 1, . . . , g1. Due to the definition

∮
γi

u · ti =∫
Ω

curlu · ρi, the condition
∮
γi

u · ti = 0 can be interpreted as λ
∫
Ω
u · ρi = 0, and

the thesis follows as λ 6= 0.
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If (λ,u , q) is a solution to Problem 2, we have already seen in Remark 3 that
q = 0. Moreover, taking in (8b) p ∈ ∇H1(Ω) ⊂ H it follows divu = 0 in Ω and
u · n = 0 on Γ .

Therefore, we only need to prove that curlu = λu in Ω. Choosing v ∈ D(Ω)3

and integrating by parts (8a) we find curl(curlu − λu) = 0 in Ω. Repeating the
previous computation, but now for v ∈ Z, we obtain∫

Γ

(curlu − λu) · n× v = 0 .

Since curlu − λu is curl-free, thanks to Lemma 3 we can write curlu − λu =
∇ϕ +

∑g
s=1 βsρs. Moreover, for v ∈ Z and following the arguments in the proof

of Lemma 7, on Γ we have

n× v × n = ∇tπ +

g1∑
k=1

ζkρt,k +

g∑
l=g1+1

ηlρ
′
t,l .

Thus

0 =

∫
Γ

(curlu − λu) · n× v

=

∫
Γ

(
∇tϕ+

g∑
s=1

βsρs

)
· n×

∇tπ +

g1∑
k=1

ζkρt,k +

g∑
l=g1+1

ηlρ
′
t,l


=

g∑
l=g1+1

βlηl .

Since ηl are arbitrary, it follows that βl = 0 for l = g1 +1, . . . , g. As a consequence,
we can write curlu − λu = ∇ϕ+

∑g1

i=1 βiρi ∈H.
Therefore by (8b) u is orthogonal to λu − curlu and we have

0 =

∫
Ω

λu ·(λu − curlu) =

∫
Ω

(λu−curlu)·(λu − curlu)+

∫
Ω

curlu ·(λu − curlu) ;

the last integral vanishes due to (8a), and we have proved that curlu = λu in Ω.
ut

In order to obtain a spectral characterization of problem (8) we introduce the
following solution operator:

T : Z −→ Z ,
f 7−→ Tf := w ,

with w ∈ Z such that there exist q ∈H satisfying∫
Ω

curlw · curlv +

∫
Ω

q · v =

∫
Ω

f · curlv (9a)∫
Ω

w · p = 0 (9b)

for all (v ,p) ∈ Z ×H.
The well-posedness of this problem is a consequence of the following lemmas.
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Lemma 9 In Y := X ∩H0(div;Ω) the seminorm

‖|w‖| :=

‖curlw‖20,Ω + ‖divw‖20,Ω +

g1∑
i=1

∣∣∣∣∫
Ω

w · ρi

∣∣∣∣2 +

g∑
j=g1+1

∣∣∣∣∣
∮
γ′j

w · t′j

∣∣∣∣∣
2


1/2

is equivalent to the norm

‖w‖Y := {‖w‖20,Ω + ‖divw‖20,Ω + ‖curlw‖20,Ω}
1/2.

Proof Since |
∫
Ω
w ·ρi| ≤ C1‖w‖0,Ω , for i = 1, . . . , g1, and

∣∣∣∮γ′j w · t′j∣∣∣ ≤ C2‖w‖curl;Ω ,

for j = g1 + 1, . . . , g, it is clear that ‖|w‖|2 ≤ C‖w‖2Y .
The other inequality will be proved by contradiction. We suppose that for all

C > 0, there exists vC ∈ Y such that ‖vC‖Y > C ‖|vC‖|. In particular, for all
n ∈ N, there exists vn ∈ Y such that ‖vn‖Y > n ‖|vn‖|. Let un := vn/‖vn‖Y . It
follows that ‖un‖Y = 1 and

‖curlun‖20,Ω+‖divun‖20,Ω+

g1∑
i=1

∣∣∣∣∫
Ω

un · ρi

∣∣∣∣2+

g∑
j=g1+1

∣∣∣∣∣
∮
γ′j

un · t′j

∣∣∣∣∣
2

<
1

n2
, ∀n ∈ N.

(10)
We know from (4) that Y is compactly included in L2(Ω)3; hence, since the
sequence {un}n∈N is bounded in Y, there exists a (not relabeled) subsequence
{un}n∈N and u ∈ Y such that un → u in L2(Ω)3. Thus from (10) we obtain that

‖un − um‖2Y ≤ C
{
‖un − um‖20,Ω + ‖divun‖20,Ω + ‖divum‖20,Ω

+ ‖curlun‖20,Ω + ‖curlum‖20,Ω
} n,m−−−−−→ 0.

Then, {un}n∈N is a Cauchy sequence in the complete space Y which implies that
un → u in Y with ‖u‖Y = 1. Notice that from (10) we obtain that divu = 0 and
curlu = 0 in Ω. So, u ∈ KT , say, u =

∑g
k=1 αkρk. In addition, from (10) we also

obtain that
∫
Ω
u ·ρi = 0 for i = 1, . . . , g1, and

∮
γ′j

u · t′j = 0 for j = g1 + 1, . . . , g. In

particular, by (7) and Lemma 5, for j = g1 + 1, . . . , g we have

0 =

∮
γ′j

u · t′j =

∫
Γ

u × n · ρ′j =

g∑
k=1

αk

∫
Γ

ρk × n · ρ
′
j = αj .

Then we also have, for i = 1, . . . , g1,

0 =

∫
Ω

u · ρi =

g1∑
k=1

αk

∫
Ω

ρk · ρi ;

this implies αk = 0 for k = 1, . . . , g1, as the g1× g1 matrix with entries
∫
Ω
ρk ·ρi is

symmetric and positive definite, due to the fact that ρi are linearly independent.
In conclusion, we have found u = 0 in Ω and a contradiction is produced. ut

Lemma 10 (ellipticity in the kernel) There exists α > 0 such that∫
Ω

|curlv|2 ≥ α‖v‖2curl,Ω ∀v ∈ V,

being

V =H⊥Z =

{
v ∈ Z :

∫
Ω

v · q = 0, ∀q ∈H
}
.
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Proof It is easy to check that V can be characterized as

V =

{
v ∈ Z ∩H0(div0;Ω) :

∫
Ω

v · ρi = 0, for i = 1, . . . , g1

}
.

Then the ellipticity in the kernel V follows from the fact that ‖v‖curl,Ω ≤ C‖curlv‖0,Ω
for all v ∈ V (see Lemma 9). ut

Lemma 11 (inf–sup condition) There exists β > 0 such that

sup
v∈Z
v 6=0

∣∣∣∣∫
Ω

v · p
∣∣∣∣

‖v‖curl,Ω
≥ β ‖p‖0,Ω , ∀p ∈ H.

Proof The inf–sup condition follows by taking v = p ∈H ⊂ Z. ut

By virtue of Lemmas 10 and 11, problem (9) is a well-posed problem, as the
Babuška–Brezzi conditions for saddle-point problems are satisfied. Moreover, clearly,
Tu = µu , with µ 6= 0, if and only if (λ,u ,0) is a solution of Problem 2, with
λ = 1/µ. Thus, we focus on characterizing the spectrum of T . To this end, we
start by introducing the following result.

Lemma 12 The operator T is continuous and satisfies T(Z) ⊂ V. Moreover, there

exists s > 1/2 and C > 0 such that, for all f ∈ Z, w = Tf ∈ Hs(curl;Ω) and

‖w‖s,Ω + ‖curlw‖s,Ω ≤ C‖f‖curl;Ω . (11)

Consequently, T is compact in Z. In addition, there holds (curlw− f) ∈H.

Proof Let f ∈ Z then w = Tf ∈ Z and from (9b), w ∈ V. The same arguments
used in the proof of Lemma 8 apply to the problem defining T and thus we
can prove that q = 0 and curl(curlw − f ) = 0 in Ω. Hence, curlw ∈ H(curl;Ω)∩
H0(div0;Ω). Thanks to (4), there exists s > 1/2 such that H(curl;Ω)∩H0(div0;Ω)
is continuously embedded in Hs(Ω)3. So, w ∈ Hs(curl;Ω) and the estimate (11)
holds true. The compactness of the inclusion Hs(curl;Ω)∩Z ↪→ Z is a consequence
of the fact that the inclusion Hs(Ω) ↪→ L2(Ω) is compact. Finally, we have to prove
that (curlw − f ) ∈H; this result is obtained by proceeding similarly to Lemma 8.
ut

Lemma 13 The operator T : Z → Z is self-adjoint.

Proof Given f , g ∈ Z, let w := Tf and v := Tg . From Lemma 12, we know that
curlw − f and curlv −g belong to H. Using that w , v satisfy the second equation
of the problem defining T (cf. (9b)) and Lemma 7, we have that∫

Ω

Tf · g =

∫
Ω

w · g +

∫
Ω

w · (curlv − g)

=

∫
Ω

w · curlv

=

∫
Ω

curlw · v

=

∫
Ω

(f − curlw) · v +

∫
Ω

curlw · v

=

∫
Ω

f ·Tg .
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On the other hand, from (9a) and Lemma 7 again, we obtain that∫
Ω

curl(Tf ) · curlg =

∫
Ω

f · curlg =

∫
Ω

curlf · g =

∫
Ω

curlf · curl(Tg),

and we conclude the proof. ut

Now, we are in a position to establish a spectral characterization of T .

Theorem 1 The spectrum of T decomposes as follows: sp(T)={µn}n∈N ∪ {0}. More-

over,

– µ0 = 0 is an infinite-multiplicity eigenvalue and its associated eigenspace is H;

– {µn}n∈N is a sequence of finite-multiplicity eigenvalues (repeated according to their

respective multiplicities) which converges to 0 and there exists a Hilbertian basis of

associated eigenfunctions {un}n∈N of V (i.e., such that Tun = µnun, n ∈ N).

Proof Since T : Z → Z is compact, self-adjoint and T (Z) ⊂ V, we only need to
prove that KerT=H. We have

KerT :=

{
f ∈ Z :

∫
Ω

f · curlv = 0 ∀ v ∈ Z
}
⊂H

because D(Ω) ⊂ Z and, by Lemma 6, H = Z ∩ H(curl0;Ω). Conversely, if f ∈
H, we have curlf = 0 in Ω and, thanks to Lemma 7, for all v ∈ Z it holds∫
Ω
f · curlv =

∫
Ω

curlf · v = 0, hence f ∈ KerT . ut

4 Finite element approximation

In this section we introduce and study a Galerkin approximation of Problem 2 and
prove convergence and error estimates for the computed eigenvalues and eigenfunc-
tions. To that end, we assume that Ω is a polyhedron and we choose the “cutting”
surfaces Σi, i = 1, · · · , g1, also polyhedral. Let {Th}h>0 be a regular family of
tetrahedral partitions of Ω. We denote by Eh the set of all the edges of Th. It
is not restrictive to assume that there exist sets Eγih ⊂ Eh, for i = 1, . . . , g1, and

E
γ′j
h ⊂ Eh, for j = g1 + 1, . . . , g such that

γi =
⋃

e∈ E
γi
h

e , for i = 1, . . . , g1, and γ′j =
⋃

e∈ E
γ′
j
h

e , for j = g1 + 1, . . . , g. (12)

The mesh parameter h denotes the maximum diameter of all the tetrahedra
T ∈ Th. For any T ∈ Th and k ≥ 1, let N k(T ) := Pk−1(T )3 ⊕ {p ∈ P̃k(T )3 :
p(x) · x = 0}, where Pk is the set of polynomials of degree not greater than k

and P̃k is the subset of homogeneous polynomials of degree k. The corresponding
global space to approximate H(curl;Ω) is the well-known Nédélec space defined
as follows:

N kh := {vh ∈ H(curl;Ω) : vh ∈ N k(T ) , ∀T ∈ Th}.
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Whence, the natural approximation space for Z is

Zh := Z ∩N kh

=

{
vh ∈ N kh : curlvh · n = 0 on Γ,

∮
γi

vh · ti = 0 , for i = 1, . . . , g1

and

∮
γ′j

vh · t′j = 0 , for j = g1 + 1, . . . , g

}
.

Let IRh be the divergence-conforming Raviart–Thomas interpolant (see, for in-
stance, [17, Sect. 5.4] for its definition and properties). This interpolant is well-
defined for functions in Hs(Ω)3 with s > 1/2 ([17, Lemma 5.15]). In addition, we
denote by INh the curl-conforming Nédélec interpolant. We refer to [17, Sect. 5.5]
for its precise definition and the properties that we will use in the sequel. This
interpolant is well-defined for function in Hs(curl;Ω) provided s > 1/2, so that
INh : Hs(curl;Ω) → N kh is a bounded linear operator. Moreover, as it is shown in
the following lemma, the Nédélec interpolant of functions from Z remains in this
space.

Lemma 14 For all v ∈ Z ∩Hs(curl;Ω) with s > 1/2, INh v ∈ Zh.

Proof Let v ∈ Z ∩Hs(curl;Ω) with s > 1/2. Then, according to the definition of
Z, curlv ·n = 0 on Γ ,

∮
γi

v · ti = 0, i = 1, . . . , g1 and
∮
γ′j

v · t′j = 0, j = g1 +1, . . . , g.

Therefore,
curl(INh v) · n = (IRh curlv) · n = 0 on Γ,

where the first equality follows from [17, Lemma 5.40] and the second one from the
fact that the Raviart–Thomas interpolant preserves vanishing normal components
on the faces of the tetrahedra of the mesh (which follows from the definition of
this interpolant). On the other hand, thanks to (12) and [17, Sect. 5.5], we obtain∮

γi

INh v · ti =

∮
γi

v · ti = 0, for i = 1, . . . , g1

and, analogously,∮
γ′j

INh v · t′j =

∮
γ′j

v · t′j = 0, for j = g1 + 1, . . . , g.

Thus, INh v ∈ Zh. ut

To discretize the Lagrange multiplier q ∈H we use the finite element space

Hh := Zh ∩H(curl0;Ω) .

Note that

Hh =

{
vh ∈ N kh : curlvh = 0 in Ω,

∮
γ′j

vh · t′j = 0 , for j = g1 + 1, . . . , g

}
,

since, by definition (6),
∮
γi

vh ·ti =
∫
Ω

curl vh ·ρi, i = 1, . . . , g, and the last integral

vanishes as curl vh = 0 in Ω (as above, we could say that the result is clear since
the cycles γi are bounding in Ω).
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Now, we are in position to introduce a finite element discretization of Prob-
lem 2.
Problem 3. Find λh ∈ C and (uh, qh) ∈ Zh ×Hh, uh 6= 0, such that∫

Ω

curluh · curlvh +

∫
Ω

qh · vh = λh

∫
Ω

uh · curlvh ,∫
Ω

uh · ph = 0

for all (vh,ph) ∈ Zh ×Hh.
Notice that, also in this case, for any solution (λh,uh, ϕh) of Problem 3, qh

vanishes. In fact, since Hh ⊂ Zh, this result follows by taking vh = qh. Moreover,
one easily obtains that λh 6= 0 and λh ∈ R.

As for the continuous problem, we consider the corresponding discrete solution
operator:

Th : Z −→ Z ,
f 7−→ Thf := wh ,

with wh ∈ Zh such that there exist qh ∈ Hh satisfying∫
Ω

curlwh · curlvh +

∫
Ω

qh · vh =

∫
Ω

f · curlvh ,∫
Ω

wh · ph = 0

(13)

for all (vh,ph) ∈ Zh ×Hh. In what follows, we check that the Babuška–Brezzi
conditions are satisfied for problem (13).

Lemma 15 (discrete ellipticity in the kernel) There exists α > 0, independent

of h, such that ∫
Ω

|curlvh|2 ≥ α‖vh‖2curl,Ω ∀vh ∈ Vh,

where

Vh :=

{
vh ∈ Zh :

∫
Ω

vh · ph = 0 ∀ph ∈Hh
}
.

Proof We define the following operator:

R : Vh −→ H(curl;Ω) ,
vh 7−→ Rvh := vh −Φvh ,

with Φvh ∈H is such that∫
Ω

Φvh · p =

∫
Ω

vh · p ∀p ∈H .

From the inclusions H ⊂ Z and Zh ⊂ Z we have at once Rvh ∈ Z, and from
the definition of Φvh it follows Rvh⊥H. Consequently, Rvh ∈ V ⊂ H(curl;Ω) ∩
H0(div0;Ω) ⊂ Hs(Ω)3 for s > 1/2 (see relation (4)). In addition, curl(Rvh) =
curlvh ∈ curl(N kh ). Hence, thanks to [17, Theorem 5.41], we have that INh (Rvh)
is well-defined, curl INh (Rvh) = curlvh, and

‖Rvh − INh (Rvh)‖0,Ω ≤ C
{
hs‖Rvh‖s,Ω + h‖curl(Rvh)‖0,Ω

}
. (14)
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Notice that from relation (4), Lemma 9 and the fact that Rvh ∈ V, we obtain

‖Rvh‖s,Ω ≤ C‖Rvh‖Y ≤ C̃‖curl(Rvh)‖0,Ω . (15)

Employing the previous result and (14), we have

‖Rvh − INh (Rvh)‖0,Ω ≤ C(hs + h)‖curl(Rvh)‖0,Ω . (16)

The Nédélec interpolant INh Φvh is defined by INh Φvh = INh vh − INh (Rvh) =
vh−INh (Rvh) and, since curl INh (Rvh) = curlvh, it follows that curl(INh Φvh) = 0

in Ω. Furthermore,
∮
γ′j

INh Φvh ·t′j =
∮
γ′j
Φvh ·t′j = 0 for j = g1+1, . . . , g, as Φvh ∈H.

In conclusion, INh Φvh ∈Hh.
Employing this result and the fact that INh vh = vh, we obtain

‖vh‖20,Ω =

∫
Ω

vh · INh vh =

∫
Ω

vh ·
(
INh (Rvh) + INh Φvh

)
=

∫
Ω

vh · INh (Rvh) ,

as vh ∈ Vh. Using inequalities (16) and (15), and the fact that curl(Rvh) = curlvh
in Ω, we obtain

‖vh‖0,Ω ≤ ‖INh (Rvh)‖0,Ω ≤ ‖Rvh − INh (Rvh)‖0,Ω + ‖Rvh‖0,Ω

≤ C(hs + h)‖curlvh‖0,Ω + C̃‖curlvh‖0,Ω

≤ Ĉ‖curlvh‖0,Ω ,

which concludes the proof. ut

Lemma 16 (discrete inf-sup condition) There exists β > 0, independent of h,

such that

sup
vh∈Zh
vh 6=0

∣∣∣∣∫
Ω

vh · ph

∣∣∣∣
‖vh‖curl;Ω

≥ β ‖ph‖0,Ω , ∀ph ∈ Hh.

Proof As in the continuous case, the inf–sup condition is easily checked by taking
vh = ph ∈Hh ⊂ Zh. ut

Clearly, as a consequence of Lemma 15 and Lemma 16, Th is a well-defined
bounded linear operator. Moreover, Thuh = µhuh, with µh 6= 0, if and only if
(λh,uh,0) is a solution of Problem 3, with λh = 1/µh.

In order to prove that the eigenvalues and eigenfunctions of Problem 2 are
well-approximated by those of Problem 3, we use the classical theory for compact
operators from [3]. To this end we will prove that Th converges in norm to T . In
fact, from Lemma 12, we know that Tf ∈ Hs(curl;Ω) for a suitable s > 1

2 and
the following result is easy to prove :

Lemma 17 There exists C > 0, independent of h, such that for all f ∈ Z

‖(T−Th)f‖curl;Ω ≤ Chmin{s,k}‖f‖curl;Ω .
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Proof Given f ∈ Z, let w := Tf and wh := Thf . The following Céa-type estimate
follows from the definitions of T and Th and the fact that the Lagrange multipliers
vanish:

‖w −wh‖curl;Ω ≤ C inf
vh∈Zh

‖w − vh‖curl;Ω . (17)

By using [17, Theorem 5.41] and Lemma 12, we obtain

‖w − INh w‖curl;Ω ≤ Chmin{s,k} (‖w‖s,Ω + ‖curlw‖s,Ω
)
≤ Chmin{s,k}‖f ‖curl;Ω .

(18)
Therefore, from (17) and (18) we conclude the proof. ut

As a consequence of the previous lemma, according to [3], we have that the
eigenvalues and eigenspaces of T are well-approximated by those of Th. More
precisely, let λ be an eigenvalue of Problem 2 with multiplicity m and E ⊂ Z the

corresponding eigenspace; then, there exist exactly m eigenvalues λ
(1)
h , . . . , λ

(m)
h of

Problem 3 (repeated according to their respective multiplicities) which converge to
λ as h→ 0. Furthermore, let Eh be the direct sum of the eigenspaces corresponding

to λ
(1)
h , ..., λ

(m)
h and let us introduce the so-called gap between the continuous and

discrete eigenspaces, given by

δ̂(E,Eh) := max{δ(E,Eh), δ(Eh,E)} ,

with δ(M,N) := sup x∈M
‖x‖=1

dist(x,N); then, it follows that δ̂(E,Eh) → 0 as h goes

to zero. Finally, the following estimates hold true:

Theorem 2 Let r > 0 be such that E ⊂ Hr(curl;Ω). There exist constants C1, C2 >

0, independents of h, such that, for small h,

δ̂(E,Eh) ≤ C1h
min{r,k} , (19)

and

|λ− λ(i)h | ≤ C2h
2min{r,k}, i = 1, ...,m . (20)

Proof First note that, by proceeding as in the proof of Lemma 17, we have that,
for all f ∈ E,

‖(T −Th)f ‖curl;Ω ≤ Chmin{r,k} (‖Tf ‖r,Ω + ‖curlTf ‖r,Ω
)

≤ Chmin{r,k} sup
g∈E

‖Tg‖r,Ω + ‖curlTg‖r,Ω
‖g‖curl;Ω

‖f ‖curl;Ω

≤ C′hmin{r,k}‖f ‖curl;Ω ,

(21)

where we have used the fact that E is finite dimensional for the last inequality.
Therefore (19) follows from (21) and [3, Chap. II, Theor. 7.1].

To prove (20) we will resort to [3, Chap. II, Theor. 7.3]. To this end, let f , g ∈
E ⊂ V be two eigenfunctions. Then, in particular, g satisfies

curlg = λg in Ω . (22)
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If we define u := Tf and uh := Thf , then the following identities are satisfied∫
Ω

curlu · curlv =

∫
Ω

f · curlv ∀v ∈ Z∫
Ω

curluh · curlvh =

∫
Ω

f · curlvh ∀vh ∈ Zh .

Subtracting both identities, we obtain∫
Ω

curl(u − uh) · curlvh = 0 ∀vh ∈ Zh. (23)

In addition, let w := Tg and wh := Thg . Then we have analogous identities for
g and, in particular,∫

Ω

curlw · curlv =

∫
Ω

g · curlv ∀v ∈ Z. (24)

Thus, thanks to (22), the fact that u , uh, g ∈ Z, Lemma 7, (23) and (24), we
obtain ∫

Ω

(T −Th)f · g = λ−1

∫
Ω

(u − uh) · curlg

= λ−1

∫
Ω

curl(u − uh) · g

= λ−1

∫
Ω

curl(u − uh) · curl(w −wh)

= λ−1

∫
Ω

curl((T −Th)f ) · curl((T −Th)g) .

Using Cauchy–Schwarz inequality and (21) we get∣∣∣∣∫
Ω

(T −Th)f · g
∣∣∣∣ ≤ λ−1‖(T −Th)f ‖curl;Ω‖(T −Th)g‖curl;Ω

≤ Cλ−1h2min{r,k}‖f ‖curl;Ω‖g‖curl;Ω .
(25)

On the other hand, thanks to (23), Cauchy–Schwarz inequality, (21), Lemma 12
and [17, Theorem 5.41], we obtain∣∣∣∣∫
Ω

curl(T −Th)f · curlg

∣∣∣∣ =

∣∣∣∣∫
Ω

curl(u − uh) · curlg

∣∣∣∣
=

∣∣∣∣∫
Ω

curl(u − uh) · curl(g − INh g)

∣∣∣∣
≤ Chmin{r,k} ‖f ‖curl;Ω hmin{r,k}(‖g‖r;Ω + ‖curlg‖r,Ω)

≤ C′h2min{r,k} ‖f ‖curl;Ω ‖g‖curl;Ω .
(26)

Thus, from (25) and (26) we conclude that

sup
f ,g ∈E

∣∣∣∣∫
Ω

(T −Th)f · g +

∫
Ω

curl(T −Th)f · curlg

∣∣∣∣
‖f ‖curl;Ω‖g‖curl;Ω

≤ Ch2min{r,k} .
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Estimate (20) follows from [3, Chap. II, Theor. 7.3] and the fact that T is self
adjoint. ut

Remark 4 The theorem above always holds for r = s as in Lemma 12. However, if
E ⊂ Hr(curl;Ω) with r > s, the theorem yields estimates in terms of r.

4.1 Finite element implementation

In this section we will describe how to impose in N kh the constraints defining Zh
and Hh. To begin with, let us denote by T Γh the triangulation induced on Γ by
Th. We recall that Eh is the set of edges of Th and denote by Vh and Fh the set
of vertices and faces of Th. We also denote by VΓh , EΓh and FΓh the set of vertices,
edges and faces of T Γh .

Our first aim is to construct a basis of Zh. Let {wh,m}Mm=1 be a basis of N kh ;

we assume that {wh,m}M
′

m=1(M < M ′) is a basis of N kh ∩H0(curl;Ω). We denote

by Lkh the space of Lagrange finite elements of degree k and by {ϕh,l}Ll=1 a basis

of Lkh. We also choose these basis functions so that the first L′ of them correspond
to a basis of Lkh ∩H

1
0 (Ω).

Proceeding as in [16, Sect. 4] it can be proved that the set {wh,m}M
′

m=1 ∪
{∇ϕh,l}L−1

l=L′+1 is a basis of X̂ ∩N kh , where

X̂ =

{
v ∈ X :

∮
γi

v · ti =

∮
γ′j

v · t′j = 0 for 1 ≤ i, j ≤ g

}
.

The idea is to complete this set to a basis of Zh by adding g linearly independent
functions in span

{
wh,m , m = M ′ + 1, . . . ,M

}
not belonging to X̂ .

We consider the curves γ+i := ∂Σ+
i , γ−i := ∂Σ−i , γ′j

+
:= ∂Σ′j

+
and γ′j

−
:=

∂Σ′j
−

. Then, for i = 1, . . . , g1 we denote by ξh,i ∈ C(Γ \ γi) the function such that

ξh,i|f ∈ P1(f) ∀f ∈ FΓh , ξh,i|γ+
i

= 1, ξh,i|γ−i = 0 and ξh,i(P ) = 0 if P ∈ VΓh \ γi.
Analogously for j = g1+1, . . . , g we denote by ξ′h,j ∈ C(Γ \γ

′
j) the function such that

ξ′h,j |f ∈ P1(f) ∀f ∈ FΓh , ξ′h,j |γ′+j
= 1, ξ′h,j |γ′−j

= 0 and ξ′h,j(P ) = 0 if P ∈ VΓh \ γ
′
j .

Let {en}M1
n=1 be the set of oriented edges Eh. Again we assume that {em}M1

m=M ′1+1

are the edges in EΓh . Since we are considering oriented edges we will use also
the following notation: em = [P (em), Q(em)], where P (em) and Q(em) denote
the initial and final vertices of em, respectively. We denote by tem the unit tan-
gent vector pointing from P (em) towards Q(em). Moreover we denote by e̊m :=
em \ {P (em), Q(em)}.

Let {w (1)
h,m}

M1
m=1 be the canonical basis of N 1

h , namely,
∫
en

w
(1)
h,m · ten = δn,m.

For each edge em ∈ EΓh , we define

cm(ξh,i) :=

 lim
s → Q(em)
s ∈ e̊m

ξh,i(s)− lim
s → P (em)
s ∈ e̊m

ξh,i(s), if e̊m ⊂ Γ \ γi ,

0, if em ⊂ γi ,
(27)
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for i = 1, ..., g1 and

c′m(ξ′h,j) :=

 lim
s → Q(em)
s ∈ e̊m

ξ′h,j(s)− lim
s → P (em)
s ∈ e̊m

ξ′h,j(s), if e̊m ⊂ Γ \ γ′j ,

0, if em ⊂ γ′j ,

for j = g1 + 1, ..., g. Now we define the following functions:

ŵh,i :=

M1∑
m=M ′1+1

cm(ξh,i)w
(1)
h,m ,

for i = 1, ..., g1 and

ŵ ′h,j :=

M1∑
m=M ′1+1

c′m(ξ′h,j)w
(1)
h,m ,

for j = g1 + 1, ..., g.
It is readily seen that the g functions {ŵh,i}

g1

i=1∪{ŵ
′
h,j}

g
j=g1+1 belong to Zh. In

fact, for all T ⊂ Γ there holds
∫
T

curlŵh,i ·n =
∮
∂T

ŵh,i · t∂T = 0, the latter being

a consequence of (27). Analogously, there holds
∫
T

curlŵ ′h,j ·n = 0. Moreover, for
1 ≤ k, l ≤ g, one has∮

γk

ŵh,i · tk = 0 ,

∮
γ′l

ŵh,i · t′l = δi,l for 1 ≤ i ≤ g1 ,∮
γk

ŵ ′h,j · tk = δj,k ,

∮
γ′l

ŵ ′h,j · t
′
l = 0 for g1 + 1 ≤ j ≤ g .

Hence, the g functions {ŵh,i}
g1

i=1 ∪ {ŵ
′
h,j}

g
j=g1+1 do not belong to X̂ , and are

linearly independent. Finally for vh ∈ Zh we see that

vh −
g1∑
i=1

(∮
γ′i

vh · t′i

)
ŵh,i −

g∑
k=g1+1

(∮
γj

vh · tj

)
ŵ ′h,j ∈ X̂ ∩N

k
h .

So, we have proved the following result.

Proposition 1 {wh,m}M
′

m=1 ∪ {∇ϕh,l}L−1
l=L′+1 ∪ {ŵh,i}

g1

i=1 ∪ {ŵ
′
h,j}

g
j=g1+1 is a basis

of Zh.

For the lowest-order elements, the constraints curlvh · n = 0 on Γ ,
∮
γi

v · ti =

0 , i = 1, . . . , g1 and
∮
γ′j

v · t′j = 0 , j = g1 + 1, . . . , g, in the definition of Zh can be

imposed by means of a static condensation from the matrix of the classical Nédélec
elements. To this end, we follow a similar approach to the one used in [15]. In what
follows, by simplicity, we assume that the boundary Γ is connected (otherwise, the
same procedure should be repeated for each of its connected components).

We denote as above {e1, . . . , eM} the set of all edges in Th and {wh,m}Mm=1 the
associated nodal basis of N 1

h . Then, for any uh ∈ N 1
h ,

uh =
M∑
m=1

αmwh,m
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where αm :=
∫
em

uh · tem , m = 1, . . . ,M . We recall that the edges lying on Γ are
the last ones : eM ′+1, . . . , eM . According to Proposition 1, for uh ∈ Zh, there exist

numbers α′1, . . . , α
′
M ′ , β1, . . . , βK−1, β̂1, . . . , β̂g1 and β̂′g1+1, . . . , β̂

′
g such that

uh =
M ′∑
m=1

α′mwh,m +
K−1∑
l=1

βl∇ϕh,l +

g1∑
i=1

β̂iŵh,i +

g∑
j=g1+1

β̂′jŵ
′
h,j .

Then, from the definition of αm and the above relation, we obtain that there exists
a matrix K ∈ RM×(M ′+K−1+g) such that α = Kα̂, where α = (α1, . . . , αM )t,
α̂ = (α′1, . . . , α

′
M ′ , β1, . . . , βK−1, β̂1, . . . , β̂g1 , β̂

′
g1+1, . . . , β̂

′
g)
t and

K =

D
∣∣∣∣∣∣E
∣∣∣∣∣∣F
∣∣∣∣∣∣F′
 ,

with

Dm,n :=

∫
em

wh,n · tem = δm,n ; Em,l :=

∫
em

∇ϕh,l · tem =

{
±1 if Pl ∈ em,
0 elsewhere,

where Pl ∈ Vh is such that ϕh,l(Pl) = 1;

Fm,i :=

∫
em

ŵh,i · tem =

{
1 if em ∩ γ+i = {P},
0 elsewhere,

for i = 1, ..., g1 and

F′m,j :=

∫
em

ŵ ′h,j · tem =

{
1 if em ∩ γ

′+
j = {P},

0 elsewhere,

for j = g1 + 1, ..., g.
On the other hand, the spaceHh is generated by the linear combinations of the

gradients of the Lagrange nodal basis functions and g1 curl-free Nédélec elements
Ti, i = 1, . . . , g1, satisfying for j = 1, . . . , g∮

γ′j

Ti · t′j = δi,j .

The construction of Ti can be done as in [15], considering a Lagrange nodal func-
tion φ?i ∈ H

1(Ω \ Σi) having [[φ?i ]]Σi = 1 and taking Ti = ∇̃φ?i . This is what we
have used to construct a basis of the space Hh. An alternative can be found in [1,
Theorem 3].

After assembling the matrices corresponding to Problem 3, under the previous
considerations, we obtain the following algebraic generalized eigenvalue problem:(

A Bt

B 0

)(
u

q

)
= λh

(
C 0

0 0

)(
u

q

)
,

where u and q are the components in the above given basis of uh and qh, re-
spectively. We observe that both matrices are real symmetric, but none is positive
definite. Thanks to the fact that q = 0 and adapting the same argument used in
[15], we obtain that the above problem is equivalent to

(A + BtB)u = λhCu

with a real symmetric and positive definite left-hand side matrix. This allows us
to conclude that Problem 3 is well posed.
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5 Numerical experiments

In this section we present some numerical examples which confirm the theoretical
results proved in Section 4. We have developed a MATLAB code based on lowest-
order Nédélec elements (k = 1) to solve Problem 3.

5.1 Test 1: Domain with first Betti number g = 1 and g1 = 1

In order to validate the numerical implementation and to check the performance
and convergence properties of the scheme, we consider a problem with a known
analytical solution. When the domain Ω is an annular cylindrical domain of finite
z-length, i.e., a toroidal domain of rectangular cross section 0.005 ≤ R ≤ 1 and
−1/2 ≤ z ≤ 1/2, the least positive eigenvalue is λ = 1.73457π = 5.449312 and
corresponds to the solution to Problem 2 with g = g1 = 1. Moreover, λ is an
eigenvalue of multiplicity two (see [18]).

We have used meshes Th with different levels of refinement; we identify each
mesh by the corresponding number Nh of tetrahedra. We have compared the com-
puted eigenvalues λh,1 and λh,2 with the analytical eigenvalue λ. Table 1 shows the
results obtained. The table also includes an estimate of the order of convergence
and the extrapolated more accurate approximation λex for each eigenvalue.

Table 1 Annular cylindrical geometry. Computed eigenvalues, experimental rates of conver-
gence, extrapolated eigenvalues, exact eigenvalues.

Nh 10286 18993 38304 60758 order λex λ
λh,1 5.623953 5.562451 5.517461 5.499519 2.12 5.451849 5.449312
λh,2 5.625268 5.563706 5.518249 5.499739 2.12 5.449423 5.449312

It can be seen from the previous table that the obtained results show an esti-
mated order of convergence close to the theoretical one.

5.2 Test 2: Domain with first Betti number g = 1 and g1 = 0

As a second numerical test, we have applied our MATLAB code to compute the
smallest positive eigenvalues in a toroidal domain as that shown in Figure 2, with
r1 = 1 and r2 = 0.5. Given that the first Betti number of Ω is 1, we can solve
Problem 1 by imposing either the condition on γ1 or γ′1. Here we focus in the
condition on γ′1, namely, case g = 1 and g1 = 0. Notice that the case g = 1 and
g1 = 1 has been already studied in [15]. In both cases, to the best of the authors
knowledge, no analytical solution is available.

Similarly as in [15], for each computed eigenvalue we have estimated the order
of convergence and a more accurate value by means of a least square fitting of the

model λh,k ≈ λex +Chα with h = N
−1/3
h . As in the previous example, Nh denotes

the corresponding number of tetrahedra. In Table 2 we summarize the convergence
history of the five smallest eigenvalues. We can see that the rate of convergence
predicted by Theorem 2 is attained in all the cases. In addition, we observe that the
first eigenvalue converge to an eigenvalue of the continuous problem of multiplicity
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Fig. 2 Test 2. Half of the toroidal domain for the numerical test.

Nh λh,1 λh,2 λh,3 λh,4 λh,5
15554 5.06643 6.63317 6.63631 6.70975 6.71578
24442 5.00805 6.49316 6.49505 6.55949 6.56238
33901 4.98580 6.43767 6.44054 6.50477 6.50574
47002 4.97127 6.40315 6.40724 6.46507 6.46619
65720 4.95832 6.37204 6.37570 6.43240 6.43321
80889 4.94705 6.34597 6.34966 6.40506 6.40614
114433 4.93518 6.31961 6.32088 6.37689 6.37744
129187 4.93139 6.31095 6.31176 6.36688 6.36760
147576 4.92779 6.30321 6.30384 6.35839 6.35889
195745 4.91944 6.28180 6.28230 6.33597 6.33606
211162 4.91801 6.27859 6.27886 6.33242 6.33279
247239 4.91511 6.27175 6.27241 6.32557 6.32565
λex 4.89561 6.23065 6.22763 6.27980 6.28107

order 2.22 2.31 2.25 2.28 2.31

Table 2 Test 2. Smallest positive eigenvalues computed on different meshes.

one. The next two, to a double-multiplicity eigenvalue of the continuous problem
and the last two, to another eigenvalue of multiplicity two. In Figure 3 we display
a log-log plot of the computed errors for the eigenvalue λ1 versus the number
of tetrahedra. We observe once more that the quadratic order of convergence is
attained.

We have compared the results obtained by the authors in [15] for the case g = 1
and g1 = 1 (see Table 2). It can be seen that, except for λh,1, we obtain similar
eigenvalues. This interesting similitude, for which we do not have an explanation,
could be a subject of study. Note that the first eigenvalue does not appear if one
considers the case g1 = 1 (see the numerical experiments presented in [15]). We
recall that, as already remarked the smallest eigenvalue is the most interesting from
the physical point of view, as the associated eigenfunction realizes the minimum
of the magnetic energy with fixed helicity.

Figure 8 shows the eigenfunction corresponding to the smallest positive eigen-
value λh,1.
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Fig. 3 Test 2. Error curve for the smallest positive eigenvalue: loglog plot of the computed
error |λh,1 − λex| versus the number of tetrahedra Nh.

Fig. 4 Test 2. Beltrami field corresponding to the smallest positive eigenvalue.

5.3 Test 3: Domain with first Betti number g = 2 and different values of g1

Although theory has been constructed by using finite elements on tetrahedra, it
is easy to check that all the previous results hold true for hexahedral meshes with
edges parallel to the coordinate axes. In fact, it is enough to observe that all the
analysis done in Section 4 is does not change if the Lemmas 5.15, 5.40 and Theo-
rem 5.41 in [17] are replaced by the Theorems 6.3, 6.7 and 6.6 in [17], respectively.
Thus, we have implemented a MATLAB code based on lowest–order Nédélec ele-
ments on hexahedra (k = 1) to solve Problem 3. We have chosen a toroidal domain
with two handles as that shown in Figure 5. As in the previous tests, we have used
several regular meshes and we identify each mesh by the corresponding number
Nh of hexahedra. Given that g = 2, on each mesh we have solved Problem 3 in
three different cases: g1 = 0, g1 = 1 and g1 = 2. Since for the three cases we
do not have an analytical solution of the problem, we have estimated the order
of convergence by means of least-squares fitting like in Test 2. Tables 3, 4 and 5
show the seven, six and five smallest positive eigenvalues computed in the same
meshes, respectively. For each eigenvalue, the tables also include the extrapolated
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Fig. 5 Test 3. Toroidal domain for the numerical test.

Nh λh,1 λh,2 λh,3 λh,4 λh,5 λh,6 λh,7
1280 9.3452 9.4559 11.4706 11.5594 12.2086 12.2378 12.4137
4320 8.9464 9.0467 10.7835 10.8426 11.4064 11.4227 11.5675
10240 8.8152 8.9123 10.5607 10.6107 11.1490 11.1617 11.2969
20000 8.7558 8.8514 10.4599 10.5059 11.0332 11.0444 11.1754
34560 8.7238 8.8187 10.4055 10.4494 10.9710 10.9814 11.1102
λex 8.6578 8.7543 10.2968 10.3417 10.8496 10.8578 10.9883

order 2.13 2.16 2.16 2.19 2.19 2.19 2.22

Table 3 Test 3. Smallest positive eigenvalues computed on different meshes for the problem
corresponding to the case g = 2, g1 = 0.

more accurate approximation λex and the estimated order of convergence obtained
with this fitting. The optimal order of convergence predicted by Theorem 2 are
obtained in the three tables although the geometry contains some reentrant cor-
ners. In Figure 6 we display a log-log plot of the computed errors for the three
smallest eigenvalues corresponding to the case g = 2, g1 = 0 versus the number of
hexahedra. We observe again that the quadratic order of convergence is achieved.

Additionally, if we compare the three tables we notice that there exists a cor-
relation between the last five eigenvalues in Tables 3, 4 and 5. If we compare the
extrapolated eigenvalues of each table, we observe that there are cases in which
they are exactly the same in the three tables (see λex corresponding to λh,4 or
λh,7 in Table 3) and there are cases in which they seem to converge to the same
values in the three tables, but we do not observe the same extrapolated eigenvalues
(see λex corresponding to λh,3, λh,5 and λh,6 in Table 3). We have observed nu-
merically that, in the cases in which the eigenvalues are almost exactly the same,
the associated eigenfunctions have the four possible circulations very close to zero
(around 10−5 in the finest mesh). In addition we have compared the eigenfunc-
tions associated to the eigenvalues in the three tables. We have observed that the
eigenfunctions associated to λh,3 in Table 3, λh,2 in Table 4 and λh,1 in Table 5
have a similar behaviour. The same holds true for the eigenfunction associated to
λh,4 in Table 3, λh,3 in Table 4 and λh,2 in Table 5, and so on up to the last column
of the tables. In Figure 7 we show four eigenfunctions corresponding to the four
smaller eigenvalues in Table 3 and in Figure 8 the eigenfunction associated to the
smallest eigenvalue in Table 4.
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Fig. 6 Test 3. Error curve for the three smallest positive eigenvalue for the problem corre-
sponding to the case g = 2, g1 = 0: loglog plot of the computed error |λh,1 − λex| versus the
number of tetrahedra Nh.

Nh λh,1 λh,2 λh,3 λh,4 λh,5 λh,6
1280 9.4121 11.4653 11.5594 12.2060 12.2337 12.4137
4320 9.0070 10.7792 10.8426 11.4033 11.4207 11.5675
10240 8.8739 10.5568 10.6107 11.1456 11.1603 11.2969
20000 8.8136 10.4561 10.5059 11.0297 11.0432 11.1754
34560 8.7812 10.4018 10.4494 10.9675 10.9803 11.1102
λex 8.7140 10.2933 10.3417 10.8459 10.8571 10.9883

order 2.13 2.16 2.19 2.19 2.19 2.22

Table 4 Test 3. Smallest positive eigenvalues computed on different meshes for the problem
corresponding to the case g = 2, g1 = 1.

Nh λh,1 λh,2 λh,3 λh,4 λh,5
1280 11.4617 11.5594 12.2025 12.2307 12.4137
4320 10.7764 10.8426 11.3989 11.4190 11.5675
10240 10.5541 10.6107 11.1409 11.1589 11.2969
20000 10.4536 10.5059 11.0247 11.0419 11.1754
34560 10.3993 10.4494 10.9623 10.9791 11.1102
λex 10.2910 10.3417 10.8407 10.8561 10.9883

order 2.16 2.19 2.19 2.19 2.22

Table 5 Test 3. Smallest positive eigenvalues computed on different meshes for the problem
corresponding to the case g = g1 = 2.
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