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ABSTRACT
Evolutionary algorithms are increasingly being applied to
problems that are too computationally expensive to run on a
single personal computer due to costly fitness function evalu-
ations and/or large numbers of fitness evaluations. Here, we
introduce the Seamless Peer And Cloud Evolution (SPACE)
framework, which leverages bleeding edge web technologies
to allow the computational resources necessary for running
large scale evolutionary experiments to be made available to
amateur and professional researchers alike, in a scalable and
cost-effective manner, directly from their web browsers. The
SPACE framework accomplishes this by distributing fitness
evaluations across a heterogeneous pool of cloud compute
nodes and peer computers. As a proof of concept, this frame-
work has been attached to the RoboGenTM open-source
platform for the co-evolution of robot bodies and brains,
but importantly the framework has been built in a mod-
ular fashion such that it can be easily coupled with other
evolutionary computation systems.

CCS Concepts
•Mathematics of computing → Bio-inspired optimiza-
tion; •Computing methodologies → Distributed algo-
rithms; •Software and its engineering → Distributed
systems organizing principles;
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Evolutionary Computation; Distributed Computing

1. INTRODUCTION
Evolutionary algorithms (EAs) are increasingly being ap-

plied to problems that are too computationally expensive
to run on a single personal computer due to costly fitness
function evaluations and/or large numbers of fitness eval-
uations. For example, the experiments behind one recent
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Evolutionary Robotics paper were stated to have taken over
100 CPU-years of compute time, and hence were carried out
on a 7.1 teraflop supercomputing cluster [4]. Unfortunately,
many people who would like to take advantage of evolu-
tionary computation techniques for these kinds of problems,
usually do not have access to such clusters, and therefore
it is unfeasible for them to achieve meaningful results in a
reasonable amount of time. Next to that, the majority of
existing EA systems are either only available for a specific
platform and/or require time-consuming and possibly diffi-
cult installation procedures.

Being relevant to several application domains, these is-
sues have attracted a certain attention in the Evolutionary
Computation research community for over 15 years, and a
number of systems which distribute EAs among peers (or
to the cloud) have been proposed. From an implementation
point of view, we can identify three main ways in which such
systems have been previously realized:

1) The first includes volunteer peer-to-peer (P2P) sys-
tems, where each peer installs a client application to com-
municate the data of the evolutionary algorithm over the
Internet (typically over TCP/IP). A pioneering work in this
area was performed by Chong and Langdon [6], who imple-
mented a P2P Genetic Programming (GP) framework. A
P2P Genetic Algorithm (GA) was then proposed in [2, 25,
26]. All of these platforms share a similar architecture: they
use a deme-structured population (i.e., an island-model GA
with occasional migration of elite individuals) distributed
over multiple computing resources. Each peer runs a Java
client encapsulating an application layer (made of an evolver
and an algorithm library–both distributed over the network)
and a P2P core service layer, which handles the network
functionalities (secure peer discovery, messaging, and file
transferring). In all cases the underlying layer runs over the
TCP/IP protocol stack, except for the system proposed in
[2] which runs over a DRM (Distributed Resource Machine).

Volunteer-computing was also tested in [8], by gathering
the computing resources of up to 27,000 hosts participating
in the MilkyWay@home project1. In this case, the authors
ran a distributed version of Differential Evolution (DE) and
Particle Swarm Optimization (PSO), with a parallelization
granularity at the level of a single evaluation.

Distributed GP was also contributed, more recently, in [7,
29]: the proposed P2P framework, called FlexGP, is based
on the OpenStack2 open-source cloud computing platform
and makes use of a simple island-based system where all

1http://milkyway.cs.rpi.edu
2http://www.openstack.org
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the peer nodes run independent copies of the GP-based re-
gression algorithm, each one using different parameters and
learning from different subsets of the original dataset. The
best models obtained in each node are eventually fused of-
fline to provide the user with an optimal meta-model for the
regression task at hand (the system is, therefore, particularly
suitable for solving large regression problems). Finally, an
abstract model for scalable P2P evolutionary computation,
named EvAg (Evolvable Agent), was proposed in [17], and
a thorough analysis of the scalability of the system with re-
spect to the problem size was provided. This model was
further investigated in [16]. However, in both studies, the
authors focused mostly on the conceptual aspects of the dis-
tributed GA (and how to simulate those) rather than the
actual implementation.

2) The second set consists of frameworks that rely on
distributed file systems, or existing cloud storage services,
for the sharing of data and resources needed by an evolu-
tionary algorithm. Examples of this kind are represented
by island-based methods that realize the parallelization
through MapReduce, a powerful platform for distributed
computation based on the distributed file system Apache
Hadoop3. These include MapReduce implementations of
GP [11], Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [30], and, more recently, a new Swarm Intelli-
gence method called the Fireworks Algorithm [18]. Another
island-based GA, which was presented in [21], relies instead
on two different cloud storage services (Dropbox and
SugarSync) for the file synchronization among islands.

3) Finally, the newest frameworks distribute the calcula-
tions via the browser, either to simply submit resources, con-
figure and run the evolutionary tasks through a web inter-
face, or by performing computations directly in a user’s web
browser by leveraging cutting-edge web technologies. This
idea falls within the broad new trend of leveraging bleeding
edge web technologies to make user friendly platforms that
can be run directly from a web browser without the need to
install any additional software [27].

Such a possibility was first tested in [20]: in this work,
JavaScript clients (running in the browser) communicate
with a Perl server through JSON and XmlHttpRequest4.
Each client evolves a separate population (with a predeter-
mined JavaScript fitness function) and asynchronously ex-
changes the local elites with the global elites taken from
a master population stored on the server. The same frame-
work was recently re-engineered in [24] by making use of cut-
ting edge technologies (and a reimplementation of the server
in PHP), and was extensively tested on several browsers.
Due to the new design, the resulting system, (named jsEO)
is characterized by a higher level of flexibility and configura-
bility. Yet another improved version of this system, named
NodIO [19], replaces the original server with a REST server
that handles the routing to the JavaScript clients.

Duda and D lubacz have proposed [9] a similar island-
model system composed of JavaScript clients and a
Node.js server. The main difference from jsEO and
NodIO is that instead of using AJAX/AJAJ, it makes use
of the AJAX “long polling” technique to push data from
the server to the clients in the absence of an explicit request.

3http://hadoop.apache.org/core
4http://www.w3.org/TR/XMLHttpRequest

In the present contribution, we further push the research
in the area of browser-based evolutionary computation, ask-
ing whether it is possible to make the computational re-
sources necessary for running large scale evolutionary ex-
periments, with expensive fitness evaluations, available for
amateur and professional researchers alike, in a web-based,
user-friendly, accessible, scalable and cost-effective manner.
To this aim, we introduce the Seamless Peer And Cloud Evo-
lution (SPACE) framework5, a novel web-based distributed
framework that allows for any visitor to a website to initi-
ate an evolutionary experiment, which is then distributed
to other computing resources. An unprecedented feature of
our system is that it combines the possibility of distribut-
ing the computation at the same time to other peers visiting
the same website, as well as to “cloud” based servers running
optimized versions of the fitness evaluation code (written in
the developer’s language of choice). Both kinds of nodes
(browser clients and cloud servers) can seamlessly join the
system in a way that is completely transparent to the users.
This allows us to leverage on-demand, cloud-based service
providers, such as Amazon Elastic Comput Cloud (EC2)6,
at the same time as encouraging the general populous to
donate CPU cycles from their personal computers, such as
has been done in popular citizen science projects such as
SETI@home [1]. Both of these sources of computing re-
sources are then made available to the users directly from
their web browsers.

The remainder of this paper is structured as follows.
The next section describes the system architecture and the
main technology choices behind that. Section 3 describes
an example application of the SPACE framework based on
RoboGenTM, an open-source platform for the co-evolution
of robot bodies and brains [3]. Section 4 discusses the
experimental results and highlights the key elements of the
SPACE framework in comparison with alternative solutions
from the literature. Finally, Section 5 concludes this work.

2. METHODS
This section first defines the system requirements. Then, a

description of the specific technology choices that were made
is provided along with the reasoning behind those choices,
and how those technologies were applied. Finally there is a
discussion of how the SPACE framework was designed and
implemented.

2.1 Requirements
A major goal of this work is to build a distributed evo-

lutionary computation system that is usable by the largest
possible number of users. To fulfill this goal, the system
should be:

1. cross-platform, i.e. it should be available on as many
computer platforms as possible (Linux/Windows/Mac
OS systems, as well as tablets or smart phones);

2. usable off-the-shelf, i.e. it should not require the instal-
lation of any third party components (such as plug-ins,
addons, etc.), which would make the user experience
less immediate.

While the first requirement could be met by using inter-
preted or cross-platform languages, such as Python or Java,
5https://github.com/lis-epfl/space-framework
6https://aws.amazon.com/ec2/
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this would still require users to install an interpreter (as in
the case of Python) or a Virtual Machine (as in the case of
Java). Furthermore, some of these components may not be
available on all platforms, may require continuous updates,
or may even contain security flaws (this is the case, for in-
stance, of the Adobe Flash player and some Java applets).

A more appealing alternative is to use browser technolo-
gies. Nowadays, web browsers are bundled with almost every
operating system, so by offering a solution that runs inside of
a web browser, we would provide compatibility with the vast
majority of personal computers, tablets, and smart-phones,
without requiring the user to install any software. Therefore,
we concentrate our choices on technologies already available
in most web browsers.

2.2 Networking protocols
An important aspect with browser technologies is the

choice of the protocol to allow bi-directional communication
between multiple users of the system and (as we will see
below) with the cloud. While HTTP would be the simplest
choice in this case (since it is the default protocol for
web pages), making raw HTTP requests is equivalent to
repeatedly loading a new web page. This would introduce
a latency that would be detrimental to the user experience
and the whole system throughput.

However, modern browsers now offer efficient alterna-
tives to HTTP, namely: XMLHttpRequests, WebSockets

and Socket.io. Below, the main features of these three
protocols are analyzed, highlighting the pros and cons of
each, and finally motivating our choice.

XMLHttpRequest
XMLHttpRequest is an API that allows JavaScript code to
send HTTP and HTTPS requests in the background to the same
domain name as the one from which a web page was down-
loaded from7. This protocol has many advantages: it is
mature, it is supported by every modern browser, and it
is simple to use. However, it also has disadvantages: it is
uni-directional, which means that the client can initiate a
connection to the server, but the server is passive and has
to wait for user requests. The server can respond with data
only after receiving a user request. In order to use this
protocol for bi-directional communication it would be nec-
essary to find a mechanism for the server to send evaluation
requests to the clients. This could be done with a polling
protocol [5], however this requires creating a new connection
for each polling request, which incurs a large latency.

WebSockets
An alternative is offered by WebSockets8, which were de-
signed to address the main limitations of XMLHttpRequests.
They are similar to TCP sockets, and have the convenient
characteristic that they can run alongside a standard HTTP

server on the same port, thus avoiding any issues related to
firewall configurations. However, they do have some limita-
tions: connections can only be opened between the server
and a client, but it is not possible to have peer-to-peer com-
munication. Moreover, WebSockets are not interoperable
with classic TCP sockets, and currently they are not imple-
mented in all web browsers.

7There are also ways to reach other domains name using
CORS (http://www.w3.org/TR/cors/) policies.
8http://www.w3.org/TR/websockets/

Socket.io
Finally, Socket.io9, is a bleeding edge technology which
solves the few shortcomings of WebSockets, while also
providing compatibility with a diverse set of programming
languages. At the time being, it supports JavaScript
(on both server and client side), C/C++, Python, Java
and Swift. Another major advantage of Socket.io is
that is supports several underlying protocols, includ-
ing XMLHttpRequest, WebSockets, Flash Sockets, AJAX

long-polling, AJAX multipart streaming, IFrames

(standard HttpRequests), and JSON Polling. Socket.io

automatically chooses the best protocol depending on
the capabilities of the client and server, by allowing old
browsers to fall back to XMLHttpRequest (JSON) polling if
required. The only drawback of Socket.io is that, since it
uses a “client/server” architecture, all messages destined to
another client must go through the server, which impedes
true P2P communication. This might be overcome by using
WebRTC (Web Real Time Communication), a lightweight
UDP-based open-source protocol developed by Google in
201110. However, WebRTC is currently supported only by
58.09% of Internet users11 and, unlike WebSockets, there are
no libraries that provide a fall-back protocol for browsers
that do not support WebRTC. This is unacceptable for our
purposes, since it would mean that a large percentage of
potential users could not use the system. Therefore, our
framework makes use of a client/server architecture.

To summarize, although XMLHttpRequest is robust and used
on almost every website, it does not offer bi-directional com-
munication. It would require introducing a polling pro-
cedure, which would unduly stress the network, and pro-
vide inferior performance. Therefore it was decided to use
Socket.io, as it can leverage WebSockets when available,
without adding any measurable overhead. We should note
that this choice differentiates the SPACE framework from
most of the previous works in the literature [19, 20, 24].

Furthermore, the multi-language support provided by
Socket.io is important because it allows for a simple
means of communication between heterogeneous processes.
In fact, to make the system as scalable as possible (as will
become clear in the next section) it is desirable to distribute
fitness evaluations among peers running a JavaScript imple-
mentation in their web browser, as well as cloud computing
nodes running an optimized C++ implementation of the
same fitness evaluation code.

2.3 System architecture
In order to support Socket.io, the system must be de-

signed around its client/server architecture, and hence a cen-
tral server is needed to route the messages between clients.
This server will do very little computation, but it will need
to handle many clients connected at the same time, and
since we also provide computation on the cloud, it will be
up to this server to interact with cloud providers in order to
start up and shutdown virtual machines on demand. This
server will also require sufficient memory to maintain many
concurrent, open connections.
Socket.io is a library originally designed for the browser

9http://socket.io/
10http://www.w3.org/TR/webrtc/
11http://caniuse.com/#feat=rtcpeerconnection
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Figure 1: Global architecture

and the Node.js platform. This is why it uses JSON
(JavaScript Object Notation) to serialize data across the
network. Implementing the scheduling server in Node.js
would be a natural choice. It offers many advantages for
the current application: its concurrency model avoids data
races and makes it capable of handling many request in a
short amount of time. While Node.js is typically slower
than compiled languages such as C++, this is not a big
issue for our purposes, because the server will not do any
heavy computation. The main problem with Node.js is that
it can only run on a single thread. Under heavy traffic, this
might present a problem, however, this can be solved by
using multiple Node.js servers and a load balancer.

In order to keep the code clean and modular, a set of in-
terfaces and specialized implementations are required. The
problem with JavaScript is that it is an untyped language
and does not have any concept of interfaces. When dealing
with network packets, it is always safer to have a strongly
typed language able to detect missing/misspelled fields so
that users do not received malformed packets. For these
reasons, the decision was made to use TypeScript12, an
open-source superset of JavaScript. As described in [23],
TypeScript is useful for avoiding mistakes while writing
JavaScript code.

Distributing Evaluations
As mentioned above, the aim of the SPACE framework is to
distribute complex fitness evaluations. Here, we explain in
detail how the CPU cycles of volunteers are used to speed
up the evolutionary process.

The system is best described through an example use-case.
Say that a user (researcher/hobbyist) wants to run a new
experiment. They visit a specified website where they start
their experiment directly in their web browser. This user’s
computer will henceforth be referred to as the the initiator,
but importantly multiple initiator computers may exist in
the system at the same time. To evaluate an individual,
the initiator prepares a simple JSON packet containing a
GUID13 and the description of the individual. This packet

12https://github.com/Microsoft/TypeScript
13Globally Unique Identifier

is given to the SPACE framework API. It is forwarded to
the scheduling server using Socket.io. The scheduler is the
central component of the system, its roles are to maintain an
up-to-date set of connected users, assign fitness evaluations
to nodes and route packets to their recipients.

The fitness evaluation task will then be assigned to a node
based on the scheduling policy (see Section 2.4). Once the
task has been assigned to a node, the packet is sent to that
machine. Every node runs a pool of Web workers. The
task is thereafter saved in a local queue where it waits for
an available worker, and then evaluates the individual as
soon as possible. Once the fitness has been computed, a
new JSON packet, which contains the same GUID as the
request along with the computed fitness value, is created
and travels back to the initiator using the same path. The
scheduler maintains a map from each GUID to the initiator
to be sure the packet is sent back to the correct node. This
data flow is depicted graphically in Fig. 1.

2.4 Scheduling Policy
A policy is needed for deciding which peer machine will

be assigned each requested fitness evaluation. This policy
should aim to spread the load across peers as uniformly as
possible. To accomplish this goal the following scheduling
policy was implemented. When a new evaluation task t ar-
rives the scheduler computes the load of all connected peers
and chooses the peer m with minimal load. If m has at least
one core available (load < 1) t will be assigned to m, other-
wise t is placed into a first-in-first-out (FIFO) queue. When
a peer finishes an evaluation, it must have at least one core
available (the one which computed the finished evaluation),
and so an evaluation is popped from the queue and assigned
to this peer. This scheduler is simple, works well to balance
the evaluations across users, has very little overhead and
good throughput. However, it is not perfect, and some of
its shortcomings are discussed below (see Section 5).

2.5 Leveraging the “Cloud”
The SPACE framework supports connecting, disconnect-

ing and crashing peers during an evaluation14. However, a
sufficient number of peers volunteering their CPU cycles is
needed to achieve a meaningful pool of compute resources.
On the other hand, modern “cloud” platforms offer access to
flexible virtual machines. They can be started in minutes,
use templates, and can be killed when no longer needed, all
while being billed only for the hours consumed. For these
reasons, we have incorporated the ability to add virtual ma-
chines to our worker pool. Specifically, we have included vir-
tual machines provided by Amazon EC2 (as also done, for
instance, in [11]), but other virtual machine providers, such
as Microsoft Azure15 or the Google cloud platform16 would
also be straightforward to incorporate. Another possibility
would be to set up a private cloud system using OpenStack,
as done in [7, 29].

To handle the decisions of how many virtual machines
are desired17, a virtual machine manager (VMM) has been
implemented. The VMM watches the state of the sched-

14When a user is no longer connected all of their assigned
tasks are rescheduled to other peers.

15https://azure.microsoft.com/en-us/
16https://cloud.google.com/
17We leverage the Amazon Auto Scaling Group API to au-
tomatically scale the number of VMs based on this quantity.
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Figure 2: Cloud management architecture

uler (contents of the queue, number of connected users, and
current throughput), and decides the number of desired in-
stances based on a specified criteria. The architecture is
detailed in Fig. 2.

Like the scheduler, the VMM is swappable by another
manager. In this way different scaling policies can be im-
plemented. The currently implemented policy works as fol-
lows: every fixed interval18, the VMM computes the ex-
pected time to empty (ETE) the queue of the scheduler.
This ETE is smoothed using an exponential moving aver-
age. If the smoothed ETE is bigger than a threshold, then a
new instance is added; if it is lower than a different, smaller
threshold, then the number of desired instances is decreased.
After the number of desired instances is modified the sys-
tems waits a given amount of time for new machines to be
started, and then resets the moving average to zero.

The ETE is estimated as follows: first the VMM asks the
scheduler for the throughput (in tasks per second), as well
as the number of queued tasks. If this throughput is below a
given threshold, then the VMM asks for the average waiting
time of tasks before being processed and multiplies this by
the number of queued tasks to arrive at an ETE. However,
this estimate may be too heavily influenced by outdated in-
formation. So, if the throughput is sufficiently large, then
the ETE is computed as the number of tasks divided by the
throughput. Since the throughput is always a fresh measure-
ment (< 10s old), this provides a more accurate estimate.

3. RoboGenTM CASE-STUDY
Since the SPACE framework has been designed to speed

up evolutionary experiments that have costly fitness func-
tions, we chose to demonstrate its effectiveness in the do-
main of Evolutionary Robotics [22] where in most cases
the computational bottleneck is created by the large cost
of physically simulating robots. In particular we chose the
RoboGenTM Evolutionary Robotics platform [3] for experi-
mentation, because it is open-source and has recently been
ported to run inside a web browser.

18All intervals/thresholds can be configured through a JSON
file on the server.

3.1 Architectural Setup
There are currently two versions of the RoboGen software

platform19: A C++ version, and a JavaScript version called
RoboGen.Js. Most of the JavaScript code is ASM.js20 that
is compiled from the C++ code base using emscripten21.
Only the non-portable code differs between the two versions.

Even if ASM.js offers performance benefits over vanilla
JavaScript, RoboGen.js is still about 4-5x slower than the
C++ version, mostly due to the complex matrix opera-
tions inherent in simulating robot physics22. In order to get
the best performance from the system, the compute grid is
comprised of heterogeneous nodes. The EC2 instances (see
above) run the more efficient C++ version, while peer users
run the in-browser version that does not require installing
any software. Finally, to avoid blocking the user interface
while computations are going on (as explained by [19]), the
SPACE framework uses a dynamic pool of workers23.

3.2 Experimental Setup
The goal of the first experiment (Experiment 1) is to eval-

uate how the system is capable of making use of a heteroge-
neous pool comprized of both peer-nodes and cloud servers.
In order to show how peer volunteers offering their CPU
cycles through the browser based software impact the per-
formance, a number of peers gradually join the system over
the duration of the experiment. To make the measurements
more consistent, all the peers run on a machine with the
same hardware and software configuration. They all run
Ubuntu 12.04, Firefox 43 on an IntelTM i7 with 4/8 multi-
threaded 3.2GHz cores. The worker pool of each peer con-
tains eight threads, which means eight fitness evaluations
can run concurrently on each peer machine.

Additionally, a dynamic pool of EC2 instances starts
empty and is capped at 4 instances. All instances are of
type ‘T2.micro’24 with 1GB of main memory, and run the
C++ version of RoboGenTM. In order to show that it is
also possible to add additional virtual machines to the grid
while it is operating, five more virtual machines are added
after the dynamic pool has reached its maximum capacity.

The task we want to tackle is to evolve the brain (neural
network) of a quadruped robot. The fitness function is the
distance traveled by the robot in a 60 second simulation. In
order to measure the speed of the evaluations, we evaluate
a population of 10, 000 individuals for a single generation.
This configuration is used in order to study this scaling with-
out polluting the data with brief intervals of zero through-
put that would be present while new generations are being
generated (as that interval is independent of the number of
nodes in the system, and should generally be short relative
to the time needed for expensive fitness evaluations). In real
world applications, it is likely that multiple experiments are
running in the system concurrently, which would keep all
nodes busy at all times.

Two additional experiments (Experiments 2 and 3) aim

19http://robogen.org
20http://asmjs.org/spec/latest/
21https://kripken.github.io/emscripten-site/
22In RoboGen all physics simulations are conducted using
the Open Dynamics Engine (http://www.ode.org/), which
has also been compiled to ASM.js with emscripten.)

23https://github.com/GuillaumeLeclerc/WebWorker
24More information about EC2 instances: https://aws.
amazon.com/ec2/instance-types/
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Figure 3: Experiment 1: throughput and number
of nodes as a function of time. This experiment
demonstrates the ability of the system to effectively
utilize a heterogeneous pool of peer and cloud com-
pute nodes.

to further demonstrate the strength of the SPACE frame-
work: fault tolerance and scalability, respectively. In or-
der to demonstrate how the SPACE framework seamlessly
handles nodes either failing or leaving the pool, an experi-
mental protocol is defined that reflects the behavior of real
users from previous volunteer-computing experiments: the
length of time that each node spends in the pool is sampled
from a Weibull distribution [28] with shape parameter 0.38
and scale 3.1 as was presented as the best fit of user behav-
ior in [15]. In Experiment 2, up to 98 workers25 join the
pool over the course of a 3000s time window during which
up to four evolutionary runs are optimizing neural network
controllers to maximize the displacement of an articulated
robot26. Each node joins the pool at a time chosen uniformly
at random in the first [0, 1800]s and then remains active for
a number of seconds sampled from the Weibull distribution
just described.

Since many of the nodes in Experiment 2 leave the pool
prior to the end of the experiment, a final experiment, Ex-
periment 3, replicates Experiment 2, but once a node joins
the pool it remains there for the duration of the experiment.
This allows us to observe the performance of the system as
it scales beyond what is seen in Experiments 1 and 2.

3.3 Results and interpretation
The results of Experiment 1 are shown in Fig. 3. This

plot shows the throughput of the system over time along
with the number of peers and EC2 instances connected to
the grid. These measurements have been smoothed with a
simple moving average with a 10s window in order to make
the results easier to understand.

25Here all workers use a single core of an Amazon c4.large in-
stance. Only Amazon nodes are included in this experiment
to allow for defining the start times and durations program-
matically, and because the ability to employ a heterogeneous
pool is studied separately in Experiment 1.

26Each experimental run consists of a generational EA with a
population size of 500 where each fitness evaluation involves
simulating a robot for 50s of simulated time.

The first thing that can be noticed is the delay between
the time when an EC2 instance starts up and when it starts
contributing to the throughput. It typically takes about 45
seconds for a virtual machine to start. This can be observed
in the plot when the first instances start as well as when the
five additional instances start. This is clearly not the case
for peer volunteers, because their machines are already up
and running when they open the website.

The first four EC2 instances start every 30 seconds (ap-
proximately), which means the virtual machine manager is
working properly. Indeed, it was configured not to start
virtual machines too fast to reduce the cost of this small
experiment (because it is necessary to pay for every hour of
computation we start). The five other EC2 instances start
at the same time because they were started manually. We
can also remark that the throughput reaches 0 at the end
of the experiment even though there are still machines in
the grid. This is the case because we reached the end of the
experiment (all 10, 000 individuals had been evaluated).

The most important takeaway from this figure is that the
system scales almost perfectly: the throughput is approxi-
mately the sum of the two other curves (if the green curve
is shifted in order to take into account that EC2 instances
take some time to start). This result demonstrates the effec-
tiveness of the SPACE framework. Moreover the CPU and
network usage on the scheduling server remained low (the
processor utilization never exceeded 6%), even though we
were using the smallest instance available in our geographi-
cal region (T2.micro)).

The results of Experiments 2 and 3 are shown in Fig.
4. The main figure depicts the number of nodes and the
throughput over time. Here, the primary results are that
the system (a) functions well while multiple evolutionary
runs are active simultaneously and (b) the system is able
to seamlessly handle nodes crashing and/or users leaving as
would be the case in applied experiments. Moreover the
results of Experiment 3 (shown in the inset) demonstrate a
near perfect scaling to a large number of nodes.

4. DISCUSSION
Most other solutions in this area (such as [19, 24]) use

island based algorithms, therefore peers evolve a population
on their own and only occassionally share individuals. The
SPACE framework is closer to the classic volunteering solu-
tions such as SETI@Home. Indeed, the only task that peers
perform is evaluating fitnesses. They receive tasks (i.e. in-
dividual evaluation requests) and they return the fitness as
soon as they are done. In the example with RoboGen, the
fitness depends on the result of a potentially long physics and
neural network simulation. As demonstrated in the previ-
ous section, this system can successfully be used to speed
up these costly fitness evaluations.

Applying island-like algorithms to problems with complex
fitness functions could lead to some problems. Since each
peer would need to maintain and evaluate its own popu-
lation, its load could be heavier. Moreover, it is possible
that some users would close their browser before the com-
putation has completed. In this situation they would not
have sent the locally best individual to the global popula-
tion (hosted on a central server), and all the CPU cycles
from those users would be lost. In addition, multiple islands
might needlessly perform the same fitness evaluation, which
would be a potentially large waste of resources. All of these



Figure 4: Experiments 2 and 3. Main figure:
throughput and number of nodes as a function of
time as nodes join and leave the system (see text for
details). Inset: throughput as the number of nodes
is further increased to test the system’s scalability.

problems are amplified when working with slow devices such
as smart phones.

In the SPACE framework, there is instead an independent
population for each active evolutionary experiment, main-
tained by the initiator of that experiment. This guarantees
that computation is not wasted (it would be easy to avoid
that the same fitness evaluation is unduly performed multi-
ple times), and every fitness computed by a peer is actually
usable (although partially finished evaluations are still lost
and rescheduled to an active peer).

Furthermore, the SPACE framework was designed with
the idea that multiple different experiments, initiated by
different users, can be performed concurrently on the same
network. Other solutions (as they are implemented now) do
not offer this opportunity, because they host the population
on a central server and therefore would require a separate
server for each concurrent experiment, see for instance the
EvoSpace framework described in [12].

Finally, because the abstraction provided by the platform
is very thin, it allows users to implement the fitness evalua-
tion in any language supported by the Socket.io protocol.
This allows for the creation of a heterogeneous pool, which
mixes nodes running implementations in multiple languages.
For example, as we have demonstrated, it is possible to com-
bine user nodes running the in-browser, JavaScript imple-
mentation with virtual machines on the “cloud” running an
optimized C++ version. This architecture also allows for
advanced users to install a more efficient version while other
users use the installation-free (but less efficient) solution.

The current architecture is not without its drawbacks,
however. Indeed, there are two potential points of failure:
the scheduling server and the initiator of a given experiment.
Even if it is very unlikely the former would fail, it might oc-
cur quite frequently for the latter (if the internet connection
breaks for a long time for example). This could be miti-
gated by several measures [13], for instance by the initiator
frequently saving the current state of the program to disk,
but this capability has not been implemented yet.

Additionally, the SPACE framework, as it is now, would
not be well suited for applications with inexpensive fitness
evaluations. The reason is simple: if it is faster to compute
the fitness than to send a packet containing the individual
and wait for the result, then there is no point in distribut-
ing the fitness evaluations. This problem is amplified by the
latency between users and the scheduling server. To mini-
mize the latency in our experiments, the server and the EC2
instances were both situated in the same AWS region, but
it may be desirable to use EC2 instances in other regions
where computation is less expensive.

5. CONCLUSION
In this work, we have introduced the SPACE framework

for distributing expensive fitness evaluations across an
elastic, heterogeneous pool of compute nodes that includes
both the personal computers of users/volunteers running
JavaScript software in their web browsers as well as a
variable sized pool of cloud compute nodes running an
optimized C++ version of the software. The utility of the
system has been demonstrated in the context of Evolution-
ary Robotics using the RoboGenTM open-source platform
and the use of virtual machines from Amazon EC2.

While successful speed-up of complex evolutionary
robotics experiments has been demonstrated, there are still
possible improvements that could be made.

In particular, the scheduler, as described above (see Sub-
section 2.4) is not perfect. If a user a starts a new evolution-
ary experiment while there are many pending evaluations
from other users then user a’s experiment will take some
time before it begins to obtain results. Even if user a shares
some computing power, it will not be used for that experi-
ment because it will be assigned the tasks from other users
first. Additionally, a user a who may want to run an exper-
iment rapidly could be willing to start many machines and
connect them to the network. But if there are many other
users running experiments, even if they are not contributing
computing power to the system (by disabling the sharing of
their computing power for example), user a’s machines will
be used to evaluate other users’ individuals, and hence the
scheduling would not be fair.

This unfairness could be remedied by attaching each ma-
chine/user to an account, and each account to one or more
specific collaborative groups. This way the scheduler knows
which user started a given machine, as well as how much
each user has contributed to the overall computing power of
the system. Also, it would be possible to limit the sharing
of computing resources only to the groups the user belongs
to. With this knowledge, a more fair algorithm could be im-
plemented. For example, a Round-Robin approach could be
used. Time would be cut into small slices where each slice
belongs to a single user. During a given time slice, all peers
would compute tasks from the user the slice belongs to, and
the duration of a slice would be proportional to the comput-
ing power provided by the user. It would also be possible to
implement more complex fair share schedulers such as those
given in [10, 14].

Besides reputation and credit mechanisms, account au-
thentication might also be used to provide a layer of security
and privacy: in some sensitive applications, users might be
reluctant to share their data with unknown peers. Group
policies would allow a complete access control. Another



layer of security might be implemented by adding encryption
to the communication channels used in the system.

Finally, to fully take advantage of the capabilities of the
SPACE framework, it is desirable to attract a large pool of
users willing to volunteer their compute resources. Due to
the installation free web-interface, this should be fairly easy
to accomplish, but it will be necessary to (a) offer problems
that are of interest to users, (b) advertise experiments on
popular web platforms such as reddit27, and (c) offer spe-
cific rewards and/or incentives that are tied to the number
of computations that a user’s computers perform.
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