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Abstract

Two important problems arising in traditional asset allocation methods are the sensitivity

to estimation error of portfolio weights and the high dimensionality of the set of candidate

assets. In this paper, we address both issues by proposing a new minimum description length

criterion for portfolio selection. The new criterion is a two-stage description of the available

information, where the q-entropy, a generalized measure of information, is used to code the

uncertainty of the data given the parametric model and the uncertainty related to the model

choice. The information about the model is coded in terms of a prior distribution that

promotes asset weights sparsity. Our approach carries out model selection and estimation in

a single step, by selecting few assets and estimating their portfolio weights simultaneously.

The resulting portfolios are doubly robust, in the sense that they can tolerate deviations from

both, assumed data model and prior distribution for model parameters. Empirical results on

simulated and real-world data support the validity of our approach in comparison to state-

of-art benchmarks.

Keywords: q-entropy, penalized least squares, sparsity, index tracking
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1 Introduction

Asset allocation aims to determine an optimal portfolio from a large set of assets by explicitly

considering their contribution in terms of performance and diversification. Markowitz (1952) pio-

neered modern portfolio theory by introducing the mean-variance optimization framework, which

explicitly deals with the trade-off between portfolio risk and return, quantified respectively by

the expected covariance matrix and the expected asset returns. It is known, however, that the

performance of the mean-variance portfolio is largely affected by the uncertainty about the model

parameters and the data distribution, which is traditionally assumed to be Gaussian (Markowitz,

1952; Michaud, 1989; Merton, 1980; Frost and Savarino, 1988). Portfolio weights are very sensitive

to errors for the model parameter estimates induced by model misspecification (Best and Grauer,

1991; Jagannathan and Ma, 2003); for example, even a small change in the covariance and mean

estimates of the multivariate Gaussian model might cause substantial changes in the optimal port-

folio asset allocations (De Miguel and Nogales, 2009). As a result, the out-of-sample performance

of the portfolio is often unsatisfactory. Moreover, the effect of estimation bias is frequently en-

hanced by the large pool of candidate assets and by the strong correlation between asset returns

series. In addition, financial data are leptokurtic and contaminated by outliers (Cont, 2001).

The misspecification of the underlying Gaussian distribution causes then imprecise estimates, if

deviations from the assumed model are not appropriately addressed.

To deal with these issues, two distinct classes of statistical methods have become increasingly

popular in the financial literature. To achieve robust estimation of model parameters, various

robust procedures to estimate the covariance matrix have been proposed (Ledoit and Wolf, 2004b;

Welsch and Zhou, 2007; Vaz de Melo and Camara, 2005; De Miguel and Nogales, 2009). To

achieve sparse portfolios with a relatively small number of assets corresponding to active (i.e.

non-zero) weights from a large pool of assets, several authors have advocated the use of penalized

least squares methods. For instance, the least absolute shrinkage and selector operator (Lasso)

(Tibshirani, 1996) has proved to be very useful in asset allocation since it not only increases the

stability of portfolio weights, but also enforces sparse solutions by imposing a penalty on the asset

weights (De Mol et al., 2008; De Miguel and Nogales, 2009; Fan et al., 2012; Carrasco and Noumon,
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2012).

Considering the high-dimensionality of the asset allocation problem and the stylized facts of

financial data (Cont, 2001), we address the important question of how to build well-performing

and sparse portfolios. Then, we introduce a new class of algorithms for portfolio selection, which

merges the strengths of both, robust and penalized estimation methods. Our approach involves

the minimization of a description length criterion that accounts for the uncertainty about the

data as well as that related to the parametric model structure. Both sources of uncertainty are

coded in terms of the q-entropy, a generalized information measure introduced by Havrda and

Charvát (1967) and studied by Tsallis (1988) in statistical mechanics. The q-entropy coding

ensures double robustness by protecting against two sources of model misspecification: i) it down-

weights observations that diverge from the data model assumed for the assets; ii) it mitigates the

effect of parameter estimates that are far from the assumed prior structure for the parameters.

The overall behavior of our criterion-function depends on a tuning parameter q, which controls

the trade-off between the statistical accuracy and the stability of estimates (Ferrari and La Vecchia,

2012). When q → 1 our procedure is equivalent to maximum a posteriori estimation of the

parameters, yielding optimal statistical efficiency but scarce robustness; values of q < 1 yield

instead robust estimates with negligible loss of efficiency. Importantly, our approach tackles the

model selection and estimation in a single step by identifying optimal portfolios with few active

positions by means of a penalty function on the asset weights, with size depending on a regula-

rization parameter λ. Larger penalty values imply sparse portfolios with a relatively small number

of assets. The solution to the new criterion can be efficiently solved by iterative algorithms that

we develop in the paper.

The remainder of the paper is structured as follows: in Section 2, we describe the general

methodology based on the two-stage description length minimization framework. In Section 3, we

propose an efficient re-weighting algorithm to compute optimal portfolios. In the same section,

we focus on two important cases, when the portfolio returns are assumed to follow a normal

or a t-Student distribution, while the prior structure on the parameters is coded by a Laplace

distribution. In Section 4, we compare the performance of our method by Monte Carlo simulation
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with other benchmark approaches. In Section 5, we illustrate our portfolio selection method by

considering real-world data. Section 6 concludes the paper.

2 The Methodology

2.1 A two-stage description length criterion

Let X = (X1, . . . , Xp)
T be a p-dimensional real-valued random vector of asset returns generated

by some unknown multivariate distribution. A financial portfolio return, Y , can then be defined by

the linear combination Y = βTX, where β = (β1, . . . , βp)
T ∈ Rp is a vector of constants playing

the role of asset allocation weights. The portfolio expected return and variance are E(Y ) = µ

and V ar(Y ) = σ2, respectively. We assume that the standardized portfolio return Z = (Y −µ)/σ

has probability distribution G(z) and probability density function g(z). To emphasize possible

model misspecifications we distinguish between the true density g, and the model density f . The

latter is a user-specified model chosen to represent the data which might or might not coincide

with the true density g. For example, f can be the standard normal distribution or the t-Student

distribution with ν degrees of freedom. In our framework, the portfolio expected return is viewed

as a fixed target, and the main interest is to estimate the asset weights β for µ set equal to some

desirable level µ∗. Although σ can be viewed as a nuisance parameter and fixed at some target

value, we typically estimate both σ and β.

Given a mean target value µ = µ∗ and observations xi, i = 1, . . . , n, we compute portfolio coef-

ficients, β̂q,λ, by minimizing the following two-stage description length, or generalized description

length (GDL) criterion:

D̂q,λ(β, σ) = −
n∑
i=1

Lq

{
f

(
xTi β − µ∗

σ

)}
−

p∑
j=1

Lq {π(βj;λ)} , (1)
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for fixed tuning constants λ ≥ 0 and q ≤ 1. In (1), Lq(·) is the generalized q-logarithm

Lq(u) =

(u1−q − 1)/(1− q), q 6= 1,

log(u), q = 1,
(2)

and π(βj;λ) is a symmetric density function for βj with zero mean and variance depending on λ.

To gain more insight on the proposed optimization task, it is helpful to consider the special case

where q → 1, which implies Lq(·)→ log(·) and

−D̂q,λ(β, σ)→ log

{
n∏
i=1

f(σ−1(xTi β − µ∗))
p∏
j=1

π(βj;λ)

}
. (3)

This shows that when q is near 1, minimization of (1) is equivalent to maximum a posteriori

(MAP) estimation of β, where π(βj;λ), j = 1, . . . , p, play the role of prior pdfs for independent

coefficients βj, j = 1, . . . , p.

Criterion (1) is regarded as a two-stage description of the total information. The first sum

in (1) is interpreted as the information provided by the data (xi, i = 1, . . . , n) given a model

indexed by β, σ and µ∗. The second sum encodes the information about the model structure

itself through the prior distributions π(βj;λ), j = 1, . . . , p. The penalty function π(βj;λ) drives

the model selection step and leads to sparse optimal solutions by forcing to zero the components

of the β vector that are contributing in reaching the mean target value µ = µ∗. Different pdfs

could be chosen as penalty functions π(βj;λ). For example, Figure 1 (left) shows Lq(π(β;λ)) for

a single coefficient βj when π(·; ·) is a Normal, a Laplace or a Double Pareto pdf with q = 1/2 and

λ = 1. When comparing the Laplace with the Double Pareto, we notice that the Laplace penalty

is weaker when βj is close to zero and much stronger when βj moves further away from zero.

In this paper, we focus on considering the Laplace as penalty function π, but the model can be

easily extended to include other penalty without requiring any algorithmic modification. Figure

1 (right) shows the effect of increasing the value of λ in the Laplace penalty of the β coefficients.

The parameter λ controls for the size of π(βj;λ): increasing the λ value leads then to identify

optimal solutions with a smaller number of active β coefficients.
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Figure 1: Penalty functions. Left panel: Penalty functions π() for a single component β corre-
sponding to (standard) Laplace, normal and double Pareto penalties with q = 1/2 and λ = 1.
Right panel: Laplace penalties for different values of λ ranging from 1 to 10 and q = 1/2. Note
that −Lq(π(β|λ))→ (1− q)−1 as |β| → ∞.

Note that for many choices of π, our penalty function has the property of being non-convex.

This aspect is important to deal with the shortcoming of the convex `1-penalty, which is known

to produce biased estimates for large (absolute) coefficients (Fan and Li, 2001; Zou, 2006). As a

solution, various authors proposed to use penalties that are singular at the origin (just like the

`1-penalty) in order to promote sparsity, but non-convex, in order to countervail bias (see Gasso

et al. (2009) for a discussion of benefits of using non-convex penalties).

2.2 Robust Estimating equations

Differentiating the criterion function (1) with respect to parameters (β, σ)T results in the following

estimating equations:

0 = Ψ̂(β, σ) := ∇D̂q,λ(β, σ) =
n∑
i=1

wq(xi,β, σ)u(xi,β, σ) + p′λ(β), (4)

where “∇” denotes the gradient operator, so that Ψ̂(β, σ) is the (p+ 1)-vector of derivatives with

respect to the elements of the parameter vector (β, σ)T . In the above expression, u and wq are
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the data-dependent score vector and importance weights

u(xi,β, σ) = ∇ log f(σ−1(xTi β − µ∗)), wq(xi,β, σ) = f(σ−1(xTi β − µ∗))1−q. (5)

The quantity p′λ(β) denotes the (p + 1)-vector of first derivatives with elements {p′λ(β)}j =

∇Lq(π(βj;λ)) = vq(βj, λ)s(βj, λ), j = 1, . . . , p, and {p′λ(β)}p+1 = 0, where the prior scores and

importance weights are

s(βj, λ) = ∇ log π(βj;λ), vq(βj, λ) = π(βj;λ)1−q. (6)

It is important to note that the above estimating equations imply a double weighting scheme which

at once controls for the importance of observations xi, i = 1, . . . , n, and candidate coefficients βj,

j = 1, . . . , p. For unusual observations incompatible with the model f , the relative importance

of the score u(xi,β, σ) is automatically reduced since the corresponding weights wq(xi,β, σ) are

proportional to a power-transformation of the assumed density model f . Particularly when q < 1,

wq is typically small when |xTi β − µ∗| is large. Therefore, linear combinations xTi β occurring far

away from the target mean µ∗ receive small weights. For example, this is true in the normal

and t-Student models. For the penalty term, an analogous behavior is implied by the weights

vq(βj, λ), which are small if |βj| are large. For instance, if βj ∼ N(0, λ−1), and π is the normal

density function, then vj is small when βj is far away from 0, so that the penalization is allowed

to be larger when the jth component is close to zero.

A noteworthy special case of our approach is the popular Lasso method (Tibshirani, 1996)

which is obtained when: q → 1, f(z) is the normal density function, and the penalty term uses

the Laplace density function π(β;λ) = λ exp{−λ|β|}/2. In the Lasso case, the data weights wi,

i = 1, . . . , n, and parameters weights vj, j = 1, . . . , p, are all equal to 1 and therefore do not

affect the optimization process. The constant weighting scheme implied by the Lasso leads to

unstable behavior and inaccurate selections for large coefficients (Fan and Li, 2001). To improve

the accuracy of the estimates Zou (2006) proposed to vary the penalty term introducing a weighting

scheme, similar to our weights vj, j = 1, . . . , p. Differently from our approach, however, the
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weights are based on OLS-estimates and the varying tuning parameter is determined by either a

prior distribution or a particular expectation on the market.

3 Algorithms

3.1 Doubly re-weighted algorithm (2RE)

In this section, we provide a general algorithm for portfolio selection and then derive two im-

portant special cases of the algorithm when the working model f for the data is represented by

either the normal and t-Student distributions. Computing the optimal portfolios, β̂q,λ, by direct

minimization of (1) is challenging because the terms Lq
{
f(xTi β;µ, σ)

}
and

∑p
j=1 Lq {π(βj;λ)} are

typically non-convex in the parameters. However, this issue can be efficiently addressed by noting

that optimization of (1) can be divided into a sequence of simpler (convex) optimization steps.

When the weights wq and vq in (4) are fixed constants, say wi, i = 1, . . . , n and vj, j = 1, . . . , p,

finding the solution to (4) becomes then a penalized likelihood problem. This suggests an it-

eratively re-weighted strategy to find the estimates, where we iterate parameter estimation by

solving (4) with given weights and then update the weights based on the latest parameter esti-

mates. Since the re-weighting is applied to both, data and penalty scores, we call this algorithm

a doubly re-weighted (2RE) algorithm for portfolio selection.

For given tuning constants q ≤ 1, λ ≥ 0, and a target portfolio return µ∗, the algorithm

consists of the following steps:

0. At Step s = 0, compute initial parameter values β̂
(s)

and σ̂(s).

1. Set s = s+ 1, and update the data weights ŵ
(s)
i = f((xiβ̂

(s−1)
− µ∗)/σ̂(s−1))1−q, i = 1, ..., n,

and the penalty weights v̂
(s)
j = π(β̂

(s−1)
j ;λ)1−q, j = 1, ..., p.

2. Find the parameter values β̃ and σ̃ by minimizing

n∑
i=1

ŵi log f((xTi β − µ∗)/σ) +

p∑
j=1

v̂j log π(βj;λ). (7)
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3. Compute β̂
(s)

and σ̂(s) by solving f((xTi β − µ∗)/σ) ∝ f(xTi β̃ − µ∗)/, σ̃)q.

4. Repeat Steps 1 and 2 until a stopping criterion is satisfied.

Next we give some remarks on the 2RE algorithm. Firstly, if the initial estimates are obtained

by solving (4) with equal weights wq(xi,β, σ) = 1, i = 1, . . . , n, and vq(βj, λ) = 1, j = 1, . . . , p, this

corresponds then to the Lasso approach. However, since the Lasso solution is non-robust and ty-

pically sensitive to the presence of outliers, robust approaches for computing stable starting points

could be also be considered, for example by trimming out the 10% most extreme observations for

each asset before computing the Lasso estimates. Secondly, note that the re-scaling operation to

correct for bias in Step 3 is due to wq(·,β, σ), which arises in location-scale models, but not in

pure location models. In fact, for the location-scale models, E [wq(X,β0, σ0)u(X,β0, σ0)] 6= 0

and a simple transformation is typically needed to re-center the estimates. For a similar estimator

without the penalty term, Ferrari and La Vecchia (2012) show how to correct for such a bias;

following their Proposition 1, we re-scale the parameter estimate by solving f((xTi β − µ∗)/σ) ∝

f((xTi β̂−µ∗)/σ̂)q, in β and σ where (β̂, σ̂) are the solution to (4). For example, if f is the normal

pdf, then we take β = β̂ and σ = σ̂/
√
q as final estimates. Finally, a second potential source of

bias is given by the penalty function
∑

j Lq(π(βj;λ)) in criterion (1); the heuristic derivation in

the Appendix illustrates how this bias can be controlled by choosing sufficiently large values of λ.

3.2 Algorithm for normal portfolios

An important model in portfolio theory is when the assets X are assumed to follow a p-variate

normal distribution. The model for Y is then the univariate normal distribution N1(µ, σ
2). If we

choose π(βj;λ) = λ exp {−λ|βj|}/2, j = 1, . . . , p, Step 2 of the algorithm in Section (3.1) computes

the portfolio estimates by solving

β̂
(s)

= argmin
β

{
n∑
i=1

ŵ
(s−1)
i

1

2

(
µ∗ − xTi β

σ̂(s−1)

)2

+ λ

p∑
j=1

v̂
(s−1)
j |βj|

}
, (8)
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and the weights ŵi and v̂j are computed using estimates obtained in Step s− 1 as follows:

ŵ
(s−1)
i =

 1√
2πσ̂2(s−1)

exp

−
(
µ∗ − xTi β̂

(s−1))2
2σ̂2(s−1)




1−q

, v̂
(s−1)
j =

[
λ

2
exp

{
−λ|β̂(s−1)

j |
}]1−q

.

(9)

The portfolio variance is also updated using estimates from Step s− 1 as

σ̂2(s) =

∑n
i=1 ŵ

(s−1)
i

(
µ∗ − xTi β̂

(s−1))2
q
∑n

i=1 ŵ
(s−1)
i

. (10)

When the portfolio variance is not estimated and instead set equal to a fixed target value, say

σ∗2, then we have σ̂2(s) = σ∗2, for all s ≥ 0.

The updating rule in (8) is a weighted L1-penalized quadratic problem (Lasso) and can be

solved efficiently using existing algorithms. Tibshirani (1996) and Turlach et al. (2005) proposed

to use quadratic optimization to solve the L1-penalized optimization problem, while Friedman

et al. (2007) developed a coordinate-wise approach that works efficiently with convex optimization

problems. To compute (8), we use the gradient projection algorithm developed by Figueiredo et al.

(2007), as Gasso et al. (2009) have shown that such algorithm is more efficient to solve problems

as ours compared to quadratic programming and coordinate-wise optimization.

3.3 Expectation-Maximization algorithm for t-portfolios

Assume that the portfolio Y = βTX follows a non standardized t-Student distribution with mean

µ and variance σ with probability density function

fν(y;µ, σ) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

(y − µ)2

νσ2

)− ν+1
2

, (11)

where ν is the number of degrees of freedom and Γ is the gamma function. The value of ν > 1

and µ∗ are fixed and will not be estimated. Under the t-Student model, for each Step s ≥ 1 we
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compute {β̂
(s)
, σ̂(s)} by solving

argmin
β,σ

{
−
(
ν + 1

2

) n∑
i=1

ŵ
(s−1)
i log

{
1 +

(xiβ
T − µ∗)2

νσ2

}
+ λ

p∑
j=1

v̂
(s−1)
j |βj|

}
, (12)

where σ > 0 and ν > 1 and the estimation weights ŵi is updated from estimates obtained in Step

s− 1 as follows

ŵ
(s−1)
i =

[
fν

(
xTi β̂

(s−1)
;µ∗, σ̂(s−1)

)]1−q
, i = 1, . . . , n, (13)

where fν is the probability density function in (11) and the penalty weights v̂j have the same

expression as in (9).

In this case, the updating rule (12) (Step 2 of the general algorithm in Section 3.1) represents

a non-convex problem. Thus, solving (12) can lead to unreliable estimates, especially when the

number of assets p is large. Under the t-Student model, a stable approach for (weighted) likeli-

hood optimization is given by the Expectation-Maximization (EM) algorithm. The EM algorithm

exploits the well-known fact that a t-Student distribution can be equivalently represented as a

scale mixture of normals; particularly, one observation from the t-Student model can be written

as Yi ∼ N(µ, σ2Z−1i ) where Zi follows a Gamma distribution Zi ∼ Ga(ν/2, ν/2) (McLachlan and

Krishnan, 2007). This considerations motivate the following EM steps, which specify Step 2 of

the algorithm in Section (3.1) for the t-Student distribution.

For any s > 0, given robust weights ŵ
(s−1)
i and v̂

(s−1)
i obtained in Step s − 1, first set the

initial mixture weights ẑi = 1/n, i = 1, . . . , n. Then, obtain the updated estimates β̂
(s)

and σ̂(s)

by iterating the following EM steps

• M-Step: This step computes weighted parameter estimates β and σ using the mixing con-
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stants ẑi:

β′ = argmin
β

{
n∑
i=1

ŵ
(s−1)
i ẑ

(s−1)
i

1

2

(
xTi β − µ∗

σ̂(s−1)

)2

+ λ

p∑
j=1

v̂
(s−1)
j |βj|

}
, (14)

σ′
2

=

∑n
i=1 ŵ

(s−1)
i ẑ

(s−1)
i

(
xTi β̂ − µ

)2
∑n

i=1 ŵ
(s−1)
i ẑ

(s−1)
i

× ν

(ν + 1)q − 1
. (15)

where ŵ
(s−1)
i is proportional to the t-Student probability density function as in (13) evaluated

in β̂
(s−1)

, σ̂(s−1), the parameter estimates obtained in Step s− 1.

• E-Step: Update the mixing constants as follows:

ẑi =
(νq + 1)σ′2

νqσ′
2 + ŵ

(s−1)
i (xTi β

′ − µ)2
, i = 1, . . . , n, (16)

where β̂, σ̂ are computed in the M-Step and νq = (ν + 1)q − 1.

In the remainder of this section, we derive the above M- and E-Steps. Let Y = (Y1, . . . , Yn)T ,

with Yi = XT
i β, be the vector of portfolio returns such that Yi ∼ N(µ, σ2/Zi) and Z =

(Z1, . . . , Zn)T be a random vector such that Zi ∼ Gamma(ν/2, ν/2). We also denote by wi

and vj the robustness weights in (13) and (9) respectively, which are fixed constants in the EM.

Then, the complete (re-weighted and penalized) log-likelihood function is

logL(Y ,Z;β, σ) =
n∑
i=1

wi

{
logN

(
Yi;

σ2

Zi

)
+ log Ga

(
Zi;

ν

2
,
ν

2

)}
+

p∑
j=1

vj log π(βj;λ)

∝ −
n∑
i=1

wi
log σ2

2
−

n∑
i=1

wiZi

(
XT

i β − µ∗

2σ2

)2

− λ
p∑
j=1

vj|βj|, (17)

and in the last expression we drop all the terms not depending on β or σ. Next, we compute the

expected value of the complete log-likelihood function, with respect to the conditional distribution

of Z given X under the current estimates of the parameters, denoted by β′ and σ′:

EZ;Y [logL(Y ,Z;β, σ);β′, σ′] = logL (Y , EZ;Y [Z;β′, σ′] ;β, σ) , (18)
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where the equality follows from the fact that (17) is linear in Z. Since the Gamma distribution is

the conjugate prior for the normal scale parameter, we have that the posterior distribution of Zi,

given Y ′i = X iβ
′, is

Zi ∼ Ga

(
ν

2
,
ν

2
+ wi

(
Y ′i − µ∗

2σ′2

)2
)
, (19)

which implies

ẑi = EZi [Zi;β
′, σ′] =

(ν + 1)σ′2

νσ′2 + wi(X
T
i β
′ − µ∗)2

, i = 1, . . . , n. (20)

The last expression is the E-Step in (16). The updating formulas for the parameters (14) and

(15) in the M-Step are simply obtained by maximizing the complete log-likelihood (17) with Zi

replaced by its conditional expectation ẑi.

3.4 Robust selection of λ

The parameter λ controls for the size of the penalty. Large λ values imply more parsimonious

portfolios with a larger number of assets having zero weight. In the literature of penalized regres-

sion, similar tuning constants are chosen by information theoretical criteria, such as the AIC and

BIC selection criteria yielding good empirical performances (Zhang et al., 2010). We will follow the

same approach here. Many authors, including Ronchetti (1997), Shi and Tsai (1998) and Machado

(1993), have highlighted the non-robust nature of the traditional information theoretical criteria

and stressed instead the importance of robust model selection procedures. Following Ronchetti

(1997) and Machado (1993), for a given q we choose optimal values of λ by minimizing the following

robust Bayesian Information Criterion (BIC):

BICq = −2
n∑
i=1

Lq

{
f

(
xTi β̂q,λ − µ∗

σ̂q,λ

)}
+ log(n)k, (21)

where k ≤ p is the number of active portfolio positions and the traditional BIC is obtained when

q → 1. Note that when the penalty log(n)k is replaced by 2k in (21) we obtain the robust AIC
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approach by Ronchetti (1997).

4 Monte Carlo simulations

We evaluate the performance of the proposed approaches for normal and t-Student portfolios (de-

noted by GDLN and GDLt, respectively) and compare our method to other popular penalization

schemes. The data are simulated from the following models:

1. Model 1: Np(µ,Σ), where µj = 1, if j ≤ k, and µj = 0, if j > k, and the covariance matrix

is such that Σjj = 1, j = 1, . . . , p, and off-diagonal elements Σjk = ρ, 0 ≤ ρ < 1, j 6= k.

2. Model 2: Multivariate t-Student distribution tp(µ,Σ, ν), with ν degrees of freedom. The

mean-variance structure is as in Model 1.

The above models reflect different levels of correlation for the assets X and possible presence of

fat tails. For each model, we generate B = 250 samples with n = 500, p = 50, k = 10 and

correlation ρ ranging from 0.2 to 0.8. Models 1 and 2 represent the situation in which the assets

are characterized by heterogeneous returns and homogeneous risk; choosing only a few assets

characterized by positive returns can achieve a positive target return for the overall portfolio.

The normality assumption is the standard assumption in the modern portfolio theory introduced

by Markowitz (1952). However, as shown in Figure 5, the t-Student distribution can be a more

suitable model in real applications due to leptokurtic distribution of the data. Therefore, both

normal and t-Student distributed data have to be investigated in our simulations. Given B samples

from one of the above models, we assess the overall performance with respect to a target value

µ∗ = k by the Monte Carlo mean squared error (MSE)

M̂SE =
1

B

B∑
b=1

 µT β̂b − µ?√
β̂
T

b V ar(X)β̂b

2

, (22)

where µT β̂b and β̂
T

b V ar(X)β̂b are the mean and variance of the b-th optimal portfolio in the bth

Monte Carlo run. To assess sparsity, we calculate the number of estimated active components as
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k̂ =
∑p

j=1 I(|β̂j| > τ), where I(·) is the indicator function and τ = 0.005 is a threshold value,

below which asset weights are set equal to zero. To evaluate the model selection properties, we

compute the F-measure as follows:

F-measure = 2
|supp(β∗)| ∩ |supp(β̂)|
|supp(β∗)|+ |supp(β̂)|

, (23)

where the support of a vector β is defined as supp(β) = {j : |βj| ≥ τ} and β∗ is the vector with

values equal to 1 in the first k positions. The larger the F-measure value, the better the model

selection performance. In fact, a F-measure equal to 1 corresponds to the optimal situation in

which only the k active assets in β∗ are selected.

We compare the resulting estimates with analogous estimates obtained by the following me-

thods: Lasso (Tibshirani (1996)), the Zhang-penalty method by Gasso et al. (2009) with η = 0.2,

and the logarithm penalization by Weston et al. (2003) with φ = 1.5. For each method we select

the solutions with the lowest BIC, as explained in Section 3.4. All the methods except Lasso

involve the solution of non-convex problems, which we solve by the DC-programming approach

proposed by Gasso et al. (2009). The optimization relies on iterative primal-dual approach for the

non-convex penalty functions considered, where in each iteration a convex primal problem is solved

by the gradient projection algorithm of Figueiredo et al. (2007). To initialize all the algorithms

we used ordinary least squares estimates, except for the EM algorithm of the GDLt approach. In

our numerical experiments, we noticed that the convergence of the EM algorithm can be sensitive

to the initial estimates of the β coefficients, as also discussed in the statistical literature, so we use

the robust estimates obtained by GDLN approach as initial values. Both GDLt and GDLN are

initialized using equal weights wi = 1/n, i = 1, . . . , n, and v = 1/p, j = 1, . . . , p. The iterative

algorithm for normal portfolios and the EM algorithm converge after a small number of iterations.

For Model 1, the Monte Carlo average for the number of iterations based on B = 150 runs was

7.11 (se=0.17) and 3.91 (se=0.32) for GDLN and GDLt, respectively.
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4.1 Empirical Results

Sparsity and accuracy Figure 2 and Figure 3 show boxplots for the number of active positions,

F-measure and MSE, obtained under mildly and strongly correlated data (ρ = 0.2, 0.8 and q = 0.9).

In terms of sparsity, the GDL algorithms perform considerably better than all other approaches in

the first two models (panels (a) and (d)), regardless of the correlation level. The number of active

regressors is close to the optimal value k = 10. The GDL always outperforms the Lasso and Zhang

penalties, which give over-fitting solutions with too many coefficients different from zero. The Log

penalty shows a good performance when ρ = 0.8. This is not surprising as previous studies have

already shown the considerable model selection accuracy of the Log penalty in the presence of

highly correlated data (Gasso et al., 2009). Panels (b) and (e) show that the GDL algorithms

not only select the correct number of active regressors, but also tend to select the right assets

more frequently compared to the other methods. Particularly, the boxplots of the F-measure are

centered on larger values than those of other approaches. In terms of MSE, the Lasso has the

worst overall performance, due to selecting too many unnecessary active weights (panels (c) and

(f)). The good model selection performance of the GDL approaches comes with a relatively small

price in terms of MSE compared to the Zhang and Log penalties. The GDLt outperforms the

GDLN , due to the advantage in terms of good initialization and the larger penalization for the

observations in the tails.

Effect of correlation Comparing Figure 2 and Figure 3 shows that the GDL approaches work

well regardless the amount of correlation, while the other approaches tend to keep too many

variables, with the Log penalty being the only exception for ρ = 0.8. Clearly, this leads to smaller

values of MSE, while the model selection performance, as quantified by the F-measures, is still

inferior to the GDL approaches.

Role of the tuning constant q Figure 4 shows the boxplots for the GDLt for q = 0.5, 0.7, 0.9

when ρ = 0.2 and 0.6. For Model 1, smaller values of q < 1 lead to a more parsimonious selection

with fewer active components, while better F-measure values are reached for ρ = 0.2 and q = 0.9.

In terms of MSE, in Model 1 we expect the GDLt approach with q = 0.9 to perform best, as there
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Figure 2: Monte Carlo simulations - Mildly correlated data. From left to right: Number of
estimated active positions, F-measure and MSE for different selection methods: GDL for Normal
and t-Student, Lasso, Zhang and Log penalty. The boxplots are based on 250 samples of size
n = 500 from Model 1 (first row) and Model 2 (second row) with ρ = 0.2, q = 0.9, p = 50 and
k = 10.
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Figure 3: Monte Carlo simulations - Highly correlated data. From left to right: Number of
estimated active positions, F-measure and MSE for different selection methods: GDL for Normal
and t-Student, Lasso, Zhang and Log penalty. The boxplots are based on 250 samples of size
n = 500 from Model 1 (first row) and Model 2 (second row) with ρ = 0.8, q = 0.9, p = 50 and
k = 10.

19



is no need to robustify the estimates with respect to potential extreme values. For Model 2, using

the GDLt accounts automatically for the possible presence of fat tails, leading to satisfactory

results for all q levels. However, when the correlation level increases, the degree of robustness

given by q = 0.9 does not give sufficiently sparse models.

Summing up, the optimal choice of q depends on the distribution of the data. A larger value

of q should be preferred when data do not exhibit fat tails, since there is no need to trade off bias

for variance to improve the quality of the estimates. On the other hand, smaller values of q help

to reduce the number of active beta in presence of high correlation and fat tails, despite paying a

small price in terms of accuracy. Clearly, while we currently set a priori the value of q, it is high

on our agenda to develop an automatic data-driven procedure for its optimal choice.

5 Index Tracking

One of the most challenging problems in asset allocation is the so-called index-tracking problem.

The aim of index tracking is to replicate the performance of a financial index by using a relatively

small subset of its constituents, with the advantage of managing transaction and monitoring costs.

Typically, the problem can be set-up as a regression problem with a so-called budget constraint

(i.e. the sum of the coefficients of the β vector has to sum to 1) and a constraint on the 0-norm of

the β vector, by imposing a maximum number of active positions. The latter constraint and the

typical large dimensionality of the problem makes then the optimization NP-hard and different

solutions have been proposed in the literature (see Beasley et al. (2003) for a review). Recently,

Giamouridis and Paterlini (2010) and Fastrich et al. (forthcoming) have shown that using a Lasso

or a non-convex approach can be beneficial in hedge fund replication and index tracking, by

allowing to automatically select sparse solutions with good out-of-sample properties.

In this section, we compute the optimal tracking sparse portfolios for a set of financial indexes with

a different number of constituents. We consider daily observations from 23.08.2002 to 27.03.2008

of three financial indexes, Fama & French 100, S&P 200 and S&P 500, with number of constituents

p equal to 100, 200 and 500, respectively. In Figure 5, we show the log-returns for all indexes

along with the fitted normal and t-Student distributions, obtained using maximum likelihood
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Figure 4: Monte Carlo simulations - Role of q. From left to right: Number of estimated active
positions, F-measure and MSE for GDLt. The boxplots are based on 250 samples of size n = 500
from Model 1 (first row) and Model 2 (second row) with different levels of correlation ρ = 0.2, 0.6,
q = 0.5, 0.7, 0.9, p = 50 and k = 10.
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estimation. The data are slightly asymmetric and leptokurtic and a satisfactory fit is given by the

t-Student distribution with approximately 4 degrees of freedom. The F&F 100 is a capitalization-

weighted index where 8.16% of the assets have weight larger than 5%, 11.23% have weights values

between 1% and 5%, and the remaining 80.61% have weights smaller than 1%. The S&P indexes

are market-value weighted indexes, characterized by much smaller positions in the constituents:

no weight is larger than 5% and the majority of weights are smaller than 1% (89% for S&P200,

95.80% for S&P 500).
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Figure 5: Fitted Normal and t-Student curves on histograms of F&F 100 (a), S&P 200 (b) and
S&P 500 (c)

Our aim is to build sparse portfolios that are able to track as closely as possible the index

performance over time. For each dataset, we compare six tracking techniques: the GDLN and

the GDLt approaches with q = 0.9 and q = 0.5, the Lasso, and the equally weighted strategy

(1/N). We test the out-of-sample performance of these methods adjusting the asset weights

periodically based on a rolling window of 250 in-sample observations, moving each time ahead by

one observation and then discarding the oldest data point. For each window, we set µ∗ equal to

the mean of the index in-sample returns and then select the optimal portfolios according to the

BIC criterion, as described in Section (3.4). The out-of-sample excess returns over the index is

then computed with respect to the next observation in time. The rational of our study is to take

the viewpoint of an investor who decides his optimal allocation by exploiting the information in

the in-sample window and then holds the portfolio for one day, before revising it. We assess the

portfolio selection by looking at different performance measures. The risk/return performance is
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quantified by the Information Ratio (IR), which corresponds to the ratio of the mean excess return

(ER) and the tracking error volatility (TEV) relative to the index. The excess return time series

is determined by the difference between the index and the tracking portfolio on the entire out-of-

sample period, while the tracking error volatility is the standard deviation of the out-of-sample

excess return. To assess the tracking ability, we compute the portfolio out-of-sample correlation

(Cor) with respect to the index. Finally, to evaluate sparsity and stability of portfolios, which

have a direct impact on transaction costs, we compute the number of active positions and the

average turnover (TO).

Strategy ER (%) TEV (%) IR k̄ TO Cor
PANEL A: F&F 100

GDLN q = 0.9 0.338 0.624 0.542 37.749 0.068 0.999
GDLN q = 0.5 0.302 0.659 0.458 38.244 0.060 0.999
GDLt q = 0.9 0.170 0.492 0.346 32.241 0.066 0.999
GDLt q = 0.5 0.186 0.527 0.352 32.121 0.064 0.999

Lasso 1.030 2.117 0.486 65.939 0.017 0.990
1/N 0.929 3.854 0.241 98 0 0.960

PANEL B: S&P 200

GDLN q = 0.9 0.319 4.500 0.071 36.950 0.399 0.963
GDLN q = 0.5 0.639 4.961 0.129 43.627 0.346 0.967
GDLt q = 0.9 -2.421 4.897 -0.494 28.431 0.520 0.933
GDLt q = 0.5 -0.196 4.614 -0.042 28.011 0.481 0.960

Lasso 4.760 7.267 0.655 66.532 0.037 0.950
1/N 5.937 2.518 2.357 200 0 0.971

PANEL C: S&P 500

GDLN q = 0.9 2.906 6.966 0.417 44.564 0.605 0.932
GDLN q = 0.5 -1.989 8.100 -0.245 45.736 0.322 0.947
GDLt q = 0.9 1.192 9.018 0.132 27.770 0.811 0.872
GDLt q = 0.5 2.287 8.859 0.258 26.944 0.801 0.902

Lasso 2.986 10.315 0.289 66.407 0.053 0.926
1/N 5.113 3.107 1.646 500 0 0.962

Table 1: Out-of-sample statistics of each tracking portfolio computed by different strategies: an-
nualized excess return ER in percentage, tracking error volatility TEV, Information Ratio IR,
average number of active components k̄, turnover TO, correlation w.r.t. index Cor.

Table 1 reports the out-of-sample statistics of the six portfolios for each dataset. As expected,

in terms of risk/return performance, the 1/N portfolio is a tough benchmark to beat, especially

for S&P 200 and S&P 500, which are market weighted indexes with about 90% of weights smaller
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than 1%, while F&F 100 is a value-weighted index. However, investing in the equally weighted

portfolio would imply having a position in each constituents, which could be undesirable due to

monitoring and transaction costs. Comparing the IR results of the five remaining strategies (Co-

lumn 4) shows that for F&F 100 and S&P 500 the GDLN (q=0.9) has the largest IR (even larger

than the equally weighted for the first index), while the Lasso outperforms the other methods for

S&P 200. Since the target here is to track an index as closely as possible and not to beat it, a

good tracking portfolio should have excess returns close to zero, as well as ideally the smallest

out-of-sample tracking volatility. We observe that the GDL strategies always have a lower out-

of-sample TEV than Lasso (Column 3), which is consistent with our simulation analysis, showing

that the GDL approaches usually identify solutions with smaller MSE and still sparser than the

Lasso. According to the average number of active positions k̄ in Column 5, the smaller levels of

TEVs of the GDL approaches are obtained by using approximately 35% of the available positions

for F&F 100 (Panel A), less than 25% for S&P 200 (Panel B) and less than 10% for S&P 500

(Panel C). Lasso identifies optimal tracking portfolios with always more than 65 constituents for

each index. However, investing in a larger number of constituents gives a turnover rate lower than

the GDL, as shown in Column 6. The GDL portfolios have values of correlation with respect

to the index very close to 1. In particular, our method outperforms the Lasso portfolio reaching

better out-of-sample tracking volatility. This aspect is illustrated in Figure 6, where we show the

out-of-sample returns, rebased to 100, for the 1/N , Lasso and the GDL approaches. A portfolio

close to the index indicates a good out-of-sample tracking performance. The GDL approach pro-

vides satisfactory replications of the index by using a relatively small subset of its components.

Instead, 1/N and Lasso show returns patterns which, despite outperforming the indexes in the

selected period, are often far away from the indexes.

6 Conclusion

This work proposes a new objective function and then develops the related algorithm for financial

portfolio selection. The main rationale of our approach is to select asset weights that minimize two
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Figure 6: Normalized trends of the tracking portfolios with respect to the corresponding indexes:
F&F 100 (a) and S&P 200 (b).

sources of uncertainty. One source is related to the choice of the model for portfolio returns (e.g.,

normal or t-Student models); while the other pertains to the choice of the model structure itself.

Differently from other criteria for portfolio selection, the information is coded by the q-entropy,

a generalized information measure, which has been previously shown to be useful for inference

due to its robustness properties in the presence of model misspecification (Ferrari and La Vecchia,

2012). The resulting optimization task may be regarded as the optimization of a robust penalized

likelihood function, subject to a constraint depending on the prior density model for the portfolio

coefficients or asset weights. To compute the estimates, we developed an iteratively re-weighted

algorithm when the underlying models for the asset returns are the normal or t-Student models,

which are typical choices in the asset allocation literature. In this work we explored the use of a

Laplace density as a prior density model for the coefficient weights; such a choice is shown to be

useful when the goal is to obtain sparse portfolios (i.e. portfolios with a relatively small number

of active weights).

The empirical findings in Section 4 show a good performance of the proposed method in most

of our simulation settings when compared to other state-of-the-art approaches, pointing out that
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the GDL criterion can be a useful tool for portfolio selection. Besides the robustness to possible

misspecifications of the normal or t-Student models for the data, another important aspect emerg-

ing from our empirical study is the robustness to the presence of strong correlation. This feature

is not shared by other popular approaches such as the Lasso method (Tibshirani, 1996), whose

performance is instead negatively influenced by high levels of correlation. The robustness to model

misspecification is achieved through the well-established properties of the first term of our objec-

tive function in Equation (1), which are already well-studied in the literature of M-estimation.

The robustness to strong correlation, however, is related to the form of the second term of crite-

rion (1). Our empirical findings suggest that further research on the theoretical properties of the

proposed estimator in the context of a more general regression setting may be fruitful. Moreover,

given that the overall behavior of the GDL criterion in terms of sparsity and robustness is based

on the choice of the tuning parameters λ and q, it is a priority in our agenda to develop automatic

methods for the optimal selection of the two parameters.

In Section 5, we consider the index-tracking problem. Ideally, a tracking strategy should select

portfolios with good out-of-sample replicating performance and a small number of constituents to

limit transaction costs. Indeed, the GDL approach selects sparse portfolios with remarkable out-of-

sample performance. In our empirical study we found that the optimal GDL portfolios outperform

the Lasso portfolios, by achieving a smaller out-of-sample tracking error volatility despite investing

in a lower number of assets. The proposed approach also outperforms the equally-weighted stra-

tegy in terms of sparsity and tracking ability. Only for the S&P 500 dataset, the equally-weighted

portfolio shows a lower out-of-sample tracking volatility. The large diversification in the S&P 500

index implies that actual proportions of its assets are not much different from those of the 1/N

portfolios.
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A Sources of bias and corrections

Suppose β0 and σ0 are optimal parameter values such that the standardized variable Z0 = (XTβ0−

µ∗)/σ0 follows exactly the assumed model f(z) (normal or t-Student model). The solution of

equations (4) are generally biased for β0 and σ0 for large n (n→∞), which is important to discuss.

The following heuristic derivation illustrates how the bias can be controlled by appropriate selection

of q and λ. Let λn be a sequence such that λn →∞ as n→∞. Appropriate regularity conditions

on f and π yield the first-order Taylor expansion 0 = n−1Ψ̂(β0)+n−1∇Ψ̂(β0)(β̂q,λn−β0)+op(1).

Therefore, for large n, the Law of Large Numbers gives the following approximation:

Bias(β̂q,λn) = β̂q,λn − β0 ≈ A−1n EΨ̂(β0)/n = A−1n

{
E [wq(X,β0, σ0)u(X,β0, σ0)] +

1

n
p′λn(β)

}
,

(24)

where An = E [∇wq(X,β0, σ0)u(Xβ0, σ0)] + n−1∇p′λn(β) is typically a positive definite matrix.

By looking at (24), we can distinguish between two sources of bias: the first source of bias is due

to wq(·,β, σ) and arises in location-scale models, but not in pure location models. The second

source of bias arises from the term p′λ(β) implied by the penalty term and affects the coefficients.

For the location-scale models, E [wq(X,β0, σ0)u(X,β0, σ0)] 6= 0 and a simple transformation

is typically needed to re-center the estimates. For a similar estimator without the penalty term,

Ferrari and La Vecchia (2012) show how to correct for such a bias; following their Proposition 1,

we rescale the parameter estimate by solving f((xTi β − µ∗)/σ) ∝ f((xTi β̂ − µ∗)/σ̂)q, in β and σ

where (β̂, σ̂) are the solution to (4). For example, if f is the normal pdf, then we take β = β̂ and

σ = σ̂/
√
q as final estimates. This transformation implies that the first summand in (4) is equal

to zero when n is large.

The bias arising from the penalty term p′λn(β) is generally necessary to prevent overfitting

in over-parametrized problems. However, it is easy to see that the bias is generally small when

the tuning parameter λ is sufficiently large. If π(β;λ) is the Laplace density function π(β;λ) =
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2−1λ exp{−λ|β|}, we have

n−1 {pλn(β)}j = n−1{vq(βj, λn)}s(βj, λn)} =

(
λ2−qn

n21−q

)
e−λn|β0,j |(1−q)sign(β0,j), (25)

where sign(β0,j) = 1 if β0,j > 1, sign(β0,j) = 0 if β0,j = 0, and sign(β0,j) = −1 if β0,j < 0 . The

above expression shows that ‖Bias(β̂q,λn)‖ is close to zero if the tuning constant λn is sufficiently

large and q < 1, since the term e−λn|β0,j |(1−q) dominates the other terms in (25). Finally, Eq. (25)

helps illustrate another important point: when q < 1 and minj |β0,j| is large, ‖Bias(β̂q,λn)‖ tends

to be small. The same behavior, however, is not observed for the Lasso, since q = 1 implies the

presence of the biasing term λnsign(β0,j)/n in (25), which does not vanish as n → ∞ (unless λn

goes to zero at an appropriate rate, which would then imply absence of regularization).
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