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Abstract 

The paper investigates how the topological features of the virtual water (VW) network and 
the size of the associated VW flows are likely to change over time, under different socio-
economic and climate scenarios. We combine two alternative models of network formation –a 
stochastic and a fitness model, used to describe the structure of VW flows- with a gravity 
model of trade to predict the intensity of each bilateral flow. This combined approach is 
superior to existing methodologies in its ability to replicate the observed features of VW 
trade. The insights from the models are used to forecast future VW flows in 2020 and 2050, 
under different climatic scenarios, and compare them with future water availability. Results 
suggest that the current trend of VW exports is not sustainable for all countries. Moreover, 
our approach highlights that some VW importers might be exposed to “imported water stress” 
as they rely heavily on imports from countries whose water use is unsustainable.  
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1. Introduction  
Virtual water (VW) is an indicator measuring the volume of water used to produce a good, 
implicitly “embedded” into a such good (Allan 1998) and represents a useful concept to 
identify the amount of water resources associated with international trade flows. Since its 
inception, the VW concept has inspired a flourishing literature on how to address global water 
scarcity vis-à-vis commodity production and consumption in a variety of disciplines. For a 
comprehensive review on this issue, see Antonelli and Sartori (2015).  

The aim of this paper is to provide alternative projections about the future evolution of the 
international bilateral VW flows both in the medium- (2020) and in the long-run (2050), and 
to relate them to future water availability in order to assess their sustainability.  

Several recent works have applied network analysis to investigate the properties and 
evolution of the network resulting from bilateral VW flows. We refer to two broad classes of 
network models to describe the network and to forecast its future evolution. The first is based 
on a preferential attachment mechanism (Barabási and Albert, 1999; Riccaboni and Schiavo, 
2010) whereby nodes accumulate new links in proportion to the number of links they already 
have (a “rich get richer” mechanism). The second is a fitness-dependent model in which the 
ability to connect depends on an intrinsic characteristic of each node (a “good get richer” 
mechanism; see Garlaschelli and Loffredo, 2004; Suweis et al., 2011; Dalin et al., 2012).  

We start by testing which models better reproduce the relevant topological characteristics of 
the VW trade network: this is done comparing the simulated network stemming from the 
models with the data on the basis of a number of standard topological measures. We then 
investigate the ability of the models to match the characteristics of the individual nodes. 
Adding this layer of analysis to the investigation on the global properties of the network 
represents, per se, a contribution to the literature. 

Subsequently, we focus on the intensity of bilateral flows (as opposed to their mere 
existence), described by a gravity model of trade. This is an empirical framework whose 
ability to predict trade intensity is well-known in the economic literature (Anderson and van 
Wincoop, 2003; Head and Mayer, 2015).  

Finally, we combine these models to produce projections about the future evolution of the 
network of VW flows in 2020 and 2050 under alternative scenarios. These projections are 
related to future water availability to assess the degree of water stress associated with the 
VW flows implied by the models. We find that the current trend of VW exports is not 
sustainable for all countries. Moreover, our network approach allows us to capture possible 
indirect effects: some importing countries may be prone to “imported water stress” as they 
rely on VW flows coming from countries whose trade patterns put high pressure on available 
water resources.  

Our study improves and expands upon recent studies that have applied complex network 
analysis to study the topology (Sartori and Schiavo, 2015), the geography (Konar et al., 2011) 
and the temporal evolution of VW trade as a global network (Suweis et al., 2011; Carr et al., 
2012; Dalin et al., 2012). First of all, our analysis is based a total of 309 agricultural goods up 
to the year 2010; second, new country characteristics are tested in the fitness model. Third, 
two alternative models are used to simulate the topology of the VW network and are 
compared in terms of their performance. Finally, the size of future VW flows is predicted by 
means of a gravity model of trade. 

The paper proceeds as follows. The next Section briefly describes the data and the 
methodology used to replicate the binary structure of the VW network and the intensity of 
each flow. Section 3 describes the performance of the different models, whereas Section 4 
builds on the results in order to generate future projections of VW flows in 2020 and 2050. 
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The last Section discusses the implications of these projections in terms of direct and indirect 
water stress.  

 

2. The network of virtual water trade flows: data and methodology  

The network representation of the global trade system is a graph made by N nodes 
(countries), connected by links that represent bilateral (virtual water) flows. The network is 
represented by a square matrix 𝑊𝑁 (dimensions NxN), where exporters are in rows and 
importers in columns. International trade gives rise to a weighted and directed network, in 
which the link direction goes from the exporting to the importing country, and the weight of 
each link is given by the volume of virtual water flowing between any country-pair. Each cell 
𝑤𝑖𝑗 captures the VW flow from country i to country j, with 𝑤𝑖𝑖 = 0 by construction. The 

(horizontal) sum over row i is the total amount of VW exports of country i, while the (vertical) 
sum over column j is the total amount of VW imports of country j. We can derive a binary, 
unweighted version of the network by disregarding the information on link weights (i.e. the 
size of the flow) and simply accounting for the presence/absence of a trade connection. In this 
case, the NxN binary matrix 𝐴𝑁 is called an adjacency matrix and its generic element 𝑎𝑖𝑗 is 

either one or zero depending on whether countries i ad j are connected or not. 

The VW content of a good is the volume of water that is used to produce it (Allan 1998). When 
a good is traded, its VW content is implicitly traded as well: VW trade thus refers to the cross-
border flows of VW implied by international trade. A VW flow is obtained by multiplying the 
estimated country-specific VW content of each (agricultural) good by the registered volume of 
trade. Food production and international trade data for a total of 309 agricultural goods (i.e. 
crops and animal products) over the period 1995–2010 are obtained from the FAOSTAT 
database, while Mekonnen and Hoekstra (2011) provide estimates of the country-specific VW 
content of the various goods. Among existing studies, Konar et al. (2011) and Dalin et al. 
(2012) use a different method to determine the virtual water content of goods, namely the 
H08 global hydrological model by Hanasaki et al. (2008). For each single year, aggregate VW 
trade is obtained by summing the flows relative to the 309 individual goods. Our analysis 
includes 190 countries, listed in Table A1 of the Appendix.1 

Beside trade data, we also use information on the endowments of agricultural land (from 
FAOSTAT), long-term (average) annual precipitations, total renewable water resources (from 
AQUASTAT), GDP (in constant 2005 USD) and population (taken from the World Bank 
database). Projections about GDP and population are taken from the Shared Socioeconomic 
Pathways (Riahi et al., 2017).2 

 

3. Replicating the observed network of virtual water trade 

In this Section we employ a battery of models to replicate the main features of VW trade 
observed in the data. First, we use two simple models of network formation to describe the 
binary structure of VW trade, i.e. the presence of absence of a link between any two countries 
(Sect. 3.1 and 3.2). Second, we compare the relative performance of gravity and fitness models 
to describe the intensity of bilateral trade flows (Sect. 3.3). Building on these results, Section 4 
will present projections about the future evolution of VW trade under the baseline scenarios 

                                                        
1 For a detailed and exhaustive description of the way the virtual water content of the goods and the virtual water trade flows 
were computed, we refer to Carr et al. (2012, 2013) and Tamea et al. (2014). The Supplementary Material reports the list of 
products considered in computing the virtual water flows.  
2 The dataset is available at https://tntcat.iiasa.ac.at/SspDb. We use projections based on the OECD-SSP2 scenario labelled 
"middle of the road", that corresponds exactly to the medium variant of the new IIASA-VID-Oxford projections on population, 
which combines medium fertility with medium mortality and medium migration, and the Global Education Trend education 
scenario (see KC and Lutz, 2014, Dellink et al., 2015, and Riahi et al., 2017 for more details).  
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regarding the expected evolution of economic, demographic and environmental variables, 
whereas Section 5 will discuss the implications for this and other alternative scenarios 
illustrated in the Supplementary Material. 

 

3.1 A stochastic model of network growth based on preferential attachment 

Riccaboni and Schiavo (2010) develop a generalized version of the Barabási–Albert model to 
describe the dynamics and growth of weighted networks, and show that the model correctly 
replicates several features of international trade data. Although the VW trade network 
displays structural characteristics that are different from those analyzed in Riccaboni and 
Schiavo (2010), their modelling strategy is flexible enough to accommodate such differences. 
Since we focus on the binary network structure, the model boils down to a preferential 
attachment mechanism adjusted to allow for both entry of new nodes and the random 
allocation of some links. 

The model starts with a given number of nodes (N0) and assumes that at each time t={1,...,M} a 
new link among two nodes arises. Each new link is assigned to either existing or new nodes 
according to the following procedure:  

- with probability a the new link is assigned to a new (i.e. not previously existing) source 
node, whereas with probability (1−a) it is allocated to an existing node i;  

- in the latter case, the probability of choosing any existing node i is a linear combination 
of a random assignment and a preferential attachment mechanism. In particular, 
letting b identify the probability of assigning the new link randomly across existing 
nodes, the probability of choosing node i can be written as  
 

𝑝𝑖(𝑡) = (1 − 𝑏)
𝐾𝑖(𝑡−1)

2𝑡
+

𝑏

𝑁(𝑡−1)
      (1) 

 

where N(t-1) is the number of active nodes at time t-1, and Ki(t) represents the number 
of connection of each node (node degree).  

The same process governs both sides of the link, meaning that source and destination nodes 
are treated symmetrically. By opportunely tuning the parameters a and b, as well as the 
number of initial nodes N0, we can obtain networks with very diversified topological 
structures (see the Supplementary Material for details).  

The total number of links to assign equals the number of bilateral flows observed in the data, 
for each year in the period 1995-2010. To select the values of the model parameters (a and b) 
we run a grid search aiming at minimizing the Kolmogorov-Smirnov (K-S) test statistic that 
compares the degree distribution of the empirical and simulated networks. The latter is 
computed as the average across 1,000 replications of the (stochastic) procedure described 
above. The values of the K-S test referring to the year 2010 in the data are presented in Table 
1. Given the stability of the network (see Sartori and Schiavo, 2015), results do not change 
substantially if we change the reference year. 

The stochastic model that better replicates the actual patterns of VW trade features a 
combination of high entry rate a, mimicked by the initial number of nodes N0 (N0=25, about 
10% of the final number of nodes), and a mixed preferential attachment hypothesis, where a 
randomly component coexists with the preferential attachment hypothesis (the probability 
that a new link is assigned randomly lies between 0.5 and 0.6). By fine-tuning the value of the 
parameter b, we find that b=0.53 is the value that minimizes the K-S test. 
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Table 1. Results from the K-S goodness of fit test for different entry rates and probabilities of random 
assignment. The number of initial countries N0 is associated with the value of the parameter a: the higher N0, the 
closer the parameter a to zero. Red values indicate that the null hypothesis (i.e. empirical and simulated 
networks originate from the same distribution) is accepted at 5% significance level. 

KS test 
Number of initial countries (N0) 

25 50 75 100 125 150 175 200 

Probability 
of random 

assignment 
(b) 

0 0.6852 0.586 0.4849 0.3902 0.3 0.2034 0.1224 0.1178 

0.1 0.36 0.2986 0.2245 0.1533 0.0953 0.1285 0.1846 0.2425 

0.2 0.2276 0.1659 0.1103 0.114 0.1692 0.2374 0.2911 0.3425 

0.3 0.1458 0.0925 0.1187 0.1579 0.2243 0.2902 0.3556 0.4023 

0.4 0.0872 0.0879 0.1436 0.1853 0.2582 0.3284 0.3864 0.4243 

0.5 0.0472 0.093 0.1434 0.1972 0.2693 0.3391 0.3906 0.4271 

0.6 0.0545 0.0981 0.1479 0.2106 0.2751 0.332 0.3645 0.3883 

0.7 0.0759 0.107 0.1596 0.2108 0.2594 0.2933 0.3252 0.3547 

0.8 0.0966 0.1304 0.1626 0.1964 0.2301 0.2855 0.3355 0.4168 

0.9 0.1215 0.1593 0.1907 0.2397 0.2883 0.3439 0.4299 0.5589 

1 0.1551 0.1907 0.2458 0.3009 0.3547 0.4463 0.579 0.8037 

 

3.2 The hidden variable hypothesis: a fitness-dependent model  

A second popular model of network formation is represented by the so-call fitness model 

(Garlaschelli and Loffredo, 2004). In this case, nodes are assumed to have attributes that 

determine their ability to connect to others players. This “fitness” variable is defined as: 

 
𝑓𝑖 =  𝑥𝑖 ∑ 𝑥𝑗

𝑁
𝑗=1⁄            (2) 

 
where 𝑓 is the definition of the fitness, 𝑥 is the fitness quantity determining the structure of 
the network, and 𝑁 the number of nodes. The fitness model is: 

 

𝑝(𝑓𝑖, 𝑓𝑗) =
𝜎𝑓𝑖𝑓𝑗

1+𝜎𝑓𝑖𝑓𝑗
           (3) 

 

where 𝑝(𝑓𝑖, 𝑓𝑗) is the connection probability of every pair of nodes (𝑖, 𝑗) of the simulated 

network, with 𝑖 ≠ 𝑗, and 𝜎 is a positive parameter of the model. The form of the connection 
probability 𝑝(𝑓𝑖, 𝑓𝑗) completely specifies the topological characteristics of the network. The 

parameter 𝜎 is determined by the following constraint: 

 

𝐿 =  1/2 ∑ ∑ 𝑝(𝑓𝑖, 𝑓𝑗)𝑖≠𝑗𝑖           (4) 

 

where 𝐿 is the observed value of the total number of links in the network. Equation (4) 
guarantees that the value of the expected total links in the simulated VW trade network 
equals the actual number of links.3 

                                                        
3 In order to obtain the simulated binary network of virtual water trade, the elements of the matrix 𝑝(𝑥𝑖 , 𝑥𝑗), which are the 

probabilities of connection between each node obtained by applying equation (4), have been sorted in descending order. The 
first 𝐿 elements have been replaced with value 1, meaning the presence of a link, while the remaining elements has been set 
equal to 0. In this way, the probability matrix 𝑝(𝑥𝑖 , 𝑥𝑗) is transformed into the simulated binary matrix, whose total number of 

links equals the total number of links of the observed network.  
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Recent contributions by Suweis et al. (2011) and Dalin et al. (2012) use GDP to replicate the 

binary undirected VW network. Here, we test the performance of other variables associated 

with a country’s endowments, namely population (Pop), water endowment (WE), 

precipitations per capita (PrecPC) and agricultural land endowment (LE). 

The similarity of the probability distributions of both the real and simulated node degree can 
be either confirmed or rejected by the K-S test (Table 2). The hypothesis that the empirical 
and the simulated networks originate from the same distribution is always accepted at the 5% 
significance level when the fitness variables are GDP and precipitations per capita, while it is 
never accepted in the case of land endowment. When the fitness model uses water 
endowment and population as fitness variables, the null hypothesis that the simulated and 
actual degree distributions are equal is rejected for 3 and 10 years respectively (over a total of 
16). For this reason, in what follows, we shall consider the simulated networks using either 
GDP or precipitations per capita as fitness variable. 

 

Table 2: Results of the K-S test on different fitness variables. The table reports for each year the result of a K-S 
test on the equality between the simulated and empirical degree distribution. 

 Fitness Variables 
Year GDP Pop LE WE PrecPC 
1995 Accepted Rejected Rejected Rejected Accepted 
1996 Accepted Rejected Rejected Rejected Accepted 
1997 Accepted Rejected Rejected Accepted Accepted 
1998 Accepted Rejected Rejected Accepted Accepted 
1999 Accepted Rejected Rejected Rejected Accepted 
2000 Accepted Rejected Rejected Accepted Accepted 
2001 Accepted Rejected Rejected Accepted Accepted 
2002 Accepted Rejected Rejected Accepted Accepted 
2003 Accepted Accepted Rejected Accepted Accepted 
2004 Accepted Accepted Rejected Accepted Accepted 
2005 Accepted Accepted Rejected Accepted Accepted 
2006 Accepted Accepted Rejected Accepted Accepted 
2007 Accepted Rejected Rejected Accepted Accepted 
2008 Accepted Rejected Rejected Accepted Accepted 
2009 Accepted Accepted Rejected Accepted Accepted 
2010 Accepted Accepted Rejected Accepted Accepted 

 

Figure 1 displays the distribution of node degree observed in the data (for 2010) alongside 
those resulting from the simulations of the different network models (i.e., stochastic, GDP-
based fitness, precipitations per capita-based fitness). We report both the complementary 
cumulative distribution (left panel) and the kernel density (right panel) to grasp the ability of 
the models to capture the connectivity distribution both in the body and in the tails.  

To better assess our ability to match the structure of international VW trade, we compare the 
empirical and simulated networks by means of a set of popular measures that allow us to go 
beyond mere connectivity. We look both at network-wide indexes, such as density and 
assortativity, and node-specific features such as node degree, centrality and clustering, for 
which we take the average value across all nodes (see the Appendix for details on the 
computation of the indexes).  
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Figure 1. Left panel: Complementary cumulative probability distributions of empirical and simulated node 
degree obtained using both the stochastic and the fitness model. A textbox reports the results of the K-S test 
(statistic and P-value).  Right panel: Kernel density of empirical and simulated node degree. Year 2010.  

 

Table 3 collects and compares these indexes, computed for the empirical and the simulated 
networks obtained using both the stochastic and the fitness model.  

The simulations for both the stochastic and the fitness model are designed in such a way that 
the number of nodes, links and density are mechanically replicated and therefore should not 
be used to evaluate the performance of the different models. A quick look at Table 3 suggests 
that the simulations do an excellent job in replicating average and maximum degree, as well 
as centralization. On the other hand, the actual values of assortativity are not very well 
replicated, whereas clustering lies somewhat in between. The stochastic model predicts lower 
levels of both assortativity (in absolute terms) and clustering, whereas the fitness model 
yields values that are higher (again in absolute terms) than what is observed in the data. 
Hence, an additional benefit of using both approaches is to derive some sort of upper and 
lower bounds to the actual behavior of the network that make results more robust. Last, we 
notice that the fitness models based on precipitations per capita and GDP have a very similar 
performance. These results hold over the entire period we consider (1995-2010), 
irrespectively of the specific year considered in the simulations.  

 

Table 3. Empirical versus simulated networks: topology descriptive indexes and statistics. Year 2010. 

VW Network Nodes Max 
degree 

N° of 
links 

Density Assortativity Centralization Clustering 

Empirical 190 181 13,719 38.2% -0.27 0.58 0.71 

Simulated:  
stochastic model 

190 178 13,712 38.2% -0.10 0.57 0.31 

Simulated: fitness 
model (GDP) 

190 181 13,719 38.2% -0.56 0.58 0.82 

Simulated: fitness 
model (PrecPC) 

190 177 13,719 38.2% -0.58 0.56 0.82 

 

In our application, matching the aggregate structural properties of the empirical network may 
not be sufficient to evaluate a specific model. In fact, the overall performance of a model 
depends also on its ability to predict the attributes of individual nodes, such as node degree or 
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clustering.4 This kind of analysis has not been performed in previous studies using network 
models to generate predictions about the future development of virtual water trade (for 
instance Suweis et al., 2011; Dalin et al., 2012), and it therefore represents a further novelty of 
the paper. 

Figure 2 displays a series of scatterplots that compare empirical and simulated values of out-
degree obtained using either per capita precipitations or GDP as fitness variables for 1995 
and 2010. This exercise turns out to be particularly informative: while the two models feature 
a similar performance in terms of aggregate network measures (see Table 3), the situation is 
quite different when we look at node-specific measures. In fact, the fitness model based on 
GDP generates a good match between the simulations and the data, the same does not apply 
to the model that uses per capita precipitations as fitness variable. In this case (left panels of 
Figure 2) there is no relationship at all between the out-degree predicted by the model and 
the values observed in the data.  

 
Figure 2. Scatterplot of simulated (vertical axis) versus empirical (horizontal axis) out-degree. Fitness model 
based on per capita precipitations (left panels) and GDP (right panels); data refer to 1995 (top) and 2010 
(bottom). A textbox reports the values of Pearson’s and Spearman’s correlation coefficients.  

 

Since the stochastic model does not identify nodes (they are all treated symmetrically), we 
match nodes to countries using connectivity, i.e. node out-degree. Hence, the node with 
highest out-degree is associated with the most connected country in the empirical network 
and so on for all nodes. As a result, there is a built-in correlation between empirical and 
simulated node out-degree and a scatterplot such as those in Figure 2 would not be 
particularly informative. However, a comparison between empirical and simulated values is 
still relevant for higher-order statistics such as clustering.  

In Table 4 we report (Pearson’s and Spearman’s) correlation coefficients for out-degree and 
clustering for the three network models (fitness with precipitations per capita or with GDP, 

                                                        
4 We thank an anonymous referee for suggesting this type of analysis. 
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plus the stochastic model) in two different years. Results are stable over time, and the table 
displays values only for the first and last year in the sample. The table confirms that the 
fitness model based on GDP clearly outperforms the one using precipitations per capita as 
“hidden variable”, also in terms of clustering. On the other hand, the stochastic model displays 
relatively high levels of correlation for the clustering coefficient as well, indicating a good 
ability to replicate the behavior of individual nodes in addition to the good matching of 
aggregate measures described in Table 3.5 

 

Table 4. Correlation coefficients among empirical and simulated node-specific network measures.  

  out-degree  clustering coefficient 

  PrecPC GDP stochastic  PrecPC GDP stochastic 

1995 
Pearson -0.09 0.85 0.99  -0.15 0.24 0.39 

Spearman 0.01 0.82 1.00  -0.20 0.35 0.49 

2010 
Pearson -0.05 0.83 1.00  -0.22 0.32 0.19 

Spearman -0.01 0.81 1.00  -0.31 0.47 0.54 

   

This additional investigation leads us to exclude the fitness model based on precipitations per 
capita from the rest of the analysis: in fact, when using the models to discuss future scenarios 
of VW trade, it is crucial that they manage to identify precisely the behavior of individual 
countries, not only the aggregate structural properties of the network. This finding has also a 
more general implication as it challenges the practice, common in the literature, to assess 
network models by focusing exclusively on their ability to predict the aggregate topological 
properties of the network. When the behavior of individual nodes is relevant, this practice is 
potentially misleading, as node-specific features may vary a lot even within networks with 
similar topological features. 

 

3.3 The gravity model: goodness of fit 

Whereas in the Sections 3.1 and 3.2 we compare models of network formation able to 
describe the binary structure of VW trade, in this section we investigate the relative 
performance of a fitness model and of a gravity model in describing the intensity of the 
bilateral trade flows in the weighted network. 

The gravity model is a workhorse empirical tool used in economics for describing 
international trade flows (see, e.g., Anderson and van Wincoop, 2003; Anderson, 2011; Head 
and Mayer, 2015). It relates bilateral flows of goods to the mass of the countries, their 
geographical distance and other (either pair- or country-specific) factors. Recently, this model 
has been applied to study international and regional flows of virtual water (Fracasso, 2014; 
Tamea et al., 2014; Fracasso et al., 2016).  

The baseline, log-linear version of the gravity model can be written as: 

 
𝑙𝑜𝑔𝑋𝑖𝑗 =  𝛼0 + 𝛼1𝑙𝑜𝑔𝐺𝐷𝑃𝑖 + 𝛼2𝑙𝑜𝑔𝐺𝐷𝑃𝑗 + 𝛼3𝑙𝑜𝑔𝐷𝑖𝑠𝑡𝑖𝑗 + 𝜀𝑖𝑗      (5) 

where the (log) exports from country i to country j (𝑋𝑖𝑗) are modelled as a log-linear function 

of the countries’ GDP and their geographical distance (𝐷𝑖𝑠𝑡𝑖𝑗), plus a constant (𝛼0) and an 

error term (𝜀𝑖𝑗).  𝛼1 and 𝛼2  measure, respectively, the elasticity of trade to the GDP of the 

source and destination country, whereas 𝛼3 measures the elasticity of trade to distance. In this 

                                                        
5 Also in the case of clustering, to link simulated values obtained using the stochastic model with empirical values we first 
sort nodes in terms of out-degree, and then compute the correlation for the associated clustering coefficients. 
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study we adopt a slightly more elaborated version of this model by building on Fracasso 
(2014). In practice, to investigate the size of the bilateral virtual water flows (𝑉𝑊𝑖𝑗), we 

estimate: 

 
𝑙𝑜𝑔𝑉𝑊𝑖𝑗 =  𝛽0 + 𝛽1𝑙𝑜𝑔𝐺𝐷𝑃𝑝𝑐𝑖 + 𝛽2𝑙𝑜𝑔𝐺𝐷𝑃𝑝𝑐𝑗 + 𝛽3𝑙𝑜𝑔𝑃𝑜𝑝𝑖 + 𝛽4𝑙𝑜𝑔𝑃𝑜𝑝𝑗 + 𝛽5𝑙𝑜𝑔𝐷𝑖𝑠𝑡𝑖𝑗 + 𝛽6𝑙𝑜𝑔𝐴𝑟𝑎𝐿𝑎𝑛𝑑𝑖 +

                      + 𝛽7𝑙𝑜𝑔𝐴𝑟𝑎𝐿𝑎𝑛𝑑𝑗 + 𝛽𝑖𝑗𝐷𝑖𝑗+𝑢𝑖𝑗          (6) 

 
where GDP per capita (GDPpc) and population (Pop) capture economic mass, AraLand 
measures the available endowment of arable land, Dist is the geographical distance between 
the countries, and Dij includes a set of dummy variables (taking value 1 when, respectively, 
countries have a common border, participate in a common preferential trade agreement, 
share the same official language, adopt the same currency, had the same colonizer post-1945). 
Data on the geographical distances between the most populated cities of each country-pair, as 
well as information about the dummy variables, are taken from the database maintained by 
the CEPII (see Head et al., 2010), while the sources of data on GDP, population and 
agricultural land are the same described in Section 2. 

In order to deal with unobserved country-specific factors that might bias the estimates 
obtained by means of a cross-section analysis for one year, the model is estimated using panel 
data for the years 1995, 2000, 2005 and 2010, and it includes country-role specific fixed 
effects, in line with the recommendations of the most recent literature to reduce the risk of 
biased estimates for the coefficients of interest (Head and Mayer, 2015).  

As anticipated, the predicting power of this gravity model applied to VW flows is compared 

against that of a fitness model calibrated to match the intensity of bilateral VW flows. In 

particular, we refer to the recent contribution by Dalin et al. (2012), who assume that VW 

trade responds to rainfall times agricultural area of the exporting countries, and to the 

population of importing ones. Labeling yi and zj the fitness of the exporting and importing 

country respectively, Dalin et al. (2012) assign each link a weight 𝑤𝑖𝑗(𝑦𝑖 , 𝑧𝑗) = 𝛽𝑦𝑖𝑧𝑗 , and 

calibrate β such that 2𝐹 =  ∑ ∑ 𝑤𝑖𝑗(𝑦
𝑖
, 𝑧𝑗)𝑖≠𝑗𝑖 , F being the total VW flow observed in the system 

in a given period. This setup allows us to obtain a second set of predictions: comparing them 

to the ones resulting from the gravity model we can see which setup performs better. 

a) b) c) 

   
Figure 3. Complementary cumulative probability distribution of in-strength (panel a), out-strength (panel b) 
and bilateral VW flows (panel c). Comparison of empirical and simulated data at the year 2010; a textbox 
reports the results of the K-S test (statistic and P-value) for the two simulation models. 

 

Figure 3 displays a comparison between the empirical and simulated distributions of 
countries’ total imports (panel a), total exports (panel b), and bilateral flows (panel c) using 
the alternative approaches. A text-box reports the values of a K-S test for equality of the 
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gravity- and fitness-based distributions. Results confirm that the gravity model performs 
better in case of out-strength and bilateral trade flows (panel b and c). These results hold over 
the period we are considering (1995-2010), irrespective of the specific year considered. 
Hence, these findings suggest that the gravity model is a suitable approach to predict the 
volumes of VW flows and describe the so-called intensive margin of trade.  

Once again, we are interested in looking beyond the aggregate behavior of the two models, 
and in assessing their ability to assign high-strength to countries that actually export large 
amounts of VW. Figure 4 presents scatterplots and correlation coefficients for actual and 
simulated values of out-strength (total export flows) for each country in the sample. Both 
models perform reasonably well and displays a positive correlation between simulated and 
actual values, but the gravity model features a much tighter fit, and higher values of 
correlation coefficients.  

In what follows, therefore, we will use the gravity model to produce a set of out-of-sample 
projections on future VW flows, and combine them with either the fitness or the stochastic 
models of network formation, to determine the presence/absence of a link between any two 
countries. More precisely, we will use the estimated coefficients of the gravity model to 
deliver projections on the volumes of bilateral trade flows conditional on the existence of a 
link, as determined by either the stochastic or the fitness network model. These projections 
are based on the same prospective evolution for the underlying variables (i.e, a baseline 
scenario in Section 4 and alternative scenarios in the Supplementary Material).  

 

 
Figure 4. Scatterplot of simulated (vertical axis) versus empirical (horizontal axis) out-strength. Fitness model 
based on rainfall times agricultural area of the exporting countries, and the population of importing countries. 
Gravity model based on equation (6). Data refer to 1995 (top) and 2010 (bottom). A textbox reports the values of 
Pearson’s and Spearman’s correlation coefficients. 
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4. Future scenarios of virtual water trade  

Taking stock of our previous results, we now present a set of projections about the future 
evolution of the VW network, along the lines of Suweis et al. (2011) and Dalin et al. (2012). 
We employ both a short-term scenario that uses predictions for 2020 and a long-term one 
calibrated on 2050. In this exercise, we are assuming that the structure of the system remains 
stable, so that the mechanisms that have generated the VW flows we observe in the data, will 
remain valid and drive the future evolution of the system. We are aware that this restriction 
trades off simplicity for realism, but this simplification is both necessary and common to all 
existing strategies used to forecast the future evolution of VW trade.  

The topological structure of the network is predicted using two different network models 
(stochastic and fitness): hence, we end up with a total of four future scenarios (Table 5).   

 

Table 5. The four scenarios for future VW flows 

Model Family Network model specification Year 
2020 2050 

Stochastic start from 2010 values I III 

Fitness GDP II IV 

 

To predict the topological features of future scenarios of VW trade, we need information on 
the number of total links as well as on future projections of GDP, population and 
precipitations. To determine the number of future links present in the network (𝐿𝑡), we follow 
Dalin et al. (2012), who estimate it on the basis of the average growth rate of the total links 
over the whole period considered in this analysis (1995-2010), which equals 1.95% in our 
context. The number of total links at the years 2020 (L2020) and 2050 (L2050) turn out to be 
16,635 and 29,657 respectively. Future projections for GDP and population are taken from the 
SSP database described in Section 2 (Duval and de la Maisonneuve, 2010; KC and Lutz, 2014; 
Dellink et al., 2015; Riahi et al., 2017); those for precipitations are available in the GAEZ 
database.6 

 

4.1 Predicting the topological structure 

To predict the evolution of the VW network with the stochastic model, we start from the 
empirical 2010 network and use the stochastic model to allocate the additional (L2020L2010 or 
L2050L2010) links. In this way we preserve the “identity” of each node and we minimize the 
risk to attribute a high degree to a small country or vice-versa. The key parameters governing 
the simulations (entry and randomness) are those reported in Section 3.1. 

The complementary cumulative probability distribution functions (CCDF) of the logarithms of 
the simulated degrees at the year 2020 and 2050 are shown in Figure 5. The preferential 
attachment mechanism that drives the model implies that well-connected nodes capture a 
large share of new links, giving rise to a degree distribution with a thick upper tail and a 
minimum degree of about 90.  

The fitness model provides us with another possible projection of the future structure of the 
VW trade network. Table 3 above suggests that it generates an upper bound for several of the 
topological features of interest that are instead underestimated by the stochastic model. 

                                                        
6 The GAEZ database (http://www.fao.org/nr/gaez/about-data-portal/agro-climatic-resources/en/) collects projections on 
several climate variables, including precipitation levels, obtained from a number of General Circulation Models (e.g., Hadley 
CM3, MPI ECHAM4, CSIRO Mk2, etc.) on the base of some SRES climate scenarios (A1F, A1, A2, B1 and B2), developed for the 
IPCC Fourth Assessment Report. We use projections on precipitations generated by the Hadley CM3 model, B2 SRES scenario, 
for the years 2020 and 2050 as our baseline, but also check the results using other climate scenarios, namely A1F1 and A2.  
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The procedure starts from assigning a value to the parameter of equation (3), 𝜎, computed by 
fixing the future number of total links, L2020=16,635 and L2050=29,657. Figure 5 compares the 
CCDF of actual degree (years 1995 and 2010) and future scenarios at the year 2020 and 2050, 
using GDP as fitness variable. We observe that, if the total number of links grows at the 
average rate of the 1995-2010 time period (1.95% per year), the model predicts an increasing 
level of homogeneity in the distribution of node degree. In other words, the increasing density 
of the network implies that peripheral countries get more and more integrated into world 
trade, and thus catch up with top players in terms of number of trade partners. 

 

 
Figure 5. Complementary cumulative probability distribution function of the simulated out-degree for the year 
2020 and 2050: stochastic model and fitness model. The figure also reports the empirical degree distribution for 
1995 and 2010. 
 

Consistently with other similar findings in the literature, Figure 5 suggests that poorly 
connected and peripheral countries will increase their relative importance in terms of VW 
trade. We see no significant differences across the projections for the short-term scenario of 
2020, while the alternative models produce different results over a longer-term. These 
conclusions are confirmed by Kolmogorov-Smirnov tests that compare the cumulative 
distribution functions of the various models displayed in Figure 5 (see Table 6).  

 

Table 6. Results for K-S test on the different models portrayed in Figure 5.  

Year Models compared H p-value K-S stat 

2020 Stochastic – fitness (GDP) 0 0.665 0.074 

2050 Stochastic – fitness (GDP) 1 <0.01 0.311 

The null hypothesis is the equality between the distributions of node degree 
obtained from the two models. H=1 indicates that the null hypothesis is rejected at 
5% confidence level. 

 



14 
 

4.2 Predicting the intensity of VW flows 

While the existing literature projects the evolution of both the binary and weighted structure 
of the VW network by means of the same (fitness) model (e.g. Suweis et al. 2011; Dalin et al. 
2012), here we employ a gravity model to predict the intensity of each bilateral trade flow 
while taking the projected evolution of the VW network as calculated with either the 
stochastic model or the fitness model based on GDP.7  

Using the estimated parameters from the regression of equation (6), thus, we predict the size 
of the virtual water flows in 2020 and 2050 by using the projections for GDP and population 
for those years, while keeping all the remaining variables constant. In particular, the 
endowments of arable land are treated as fixed, even though they might change due to 
urbanization, industrialization, demographic change, and technological change. Since different 
forces may have opposite effects on land availability, we take a neutral stance and prefer to 
consider it as fixed.  

First, we predict bilateral VW flows for all possible country-pairs (meaning for all countries 
for which we have projections on GDP and population), then we only keep those links that are 
predicted by the network models.  

Figure 6 reports the complementary cumulative probability distributions of node strength for 
the various scenarios under investigation: the left panel shows results obtained combining the 
stochastic and the gravity models, while the right panel is based on the fitness and gravity 
models. 

 
Figure 6. Complementary cumulative probability distributions of node out-strength (total VW export by 
country) in future scenarios (years 2020 and 2050). X-axis in log-scale. 

                                                        
7 Given the poor performance of the fitness model based on precipitations per capita to correctly predict node degree of 
individual countries, we only use the stochastic model and the fitness model based on GDP in this part of the analysis. It is 
worth noting that the fitness model based on precipitations per capita is the one that “shuts off” the largest number of 
bilateral links due to the simultaneous increase in population and reduction in precipitations in several locations as a result 
of climate change. 
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Overall, there are not big qualitative differences across the two families of models, which 
implies that these network models generate results that are broadly consistent with each 
other. Given the high uncertainty that surrounds forecasts about the relevant variables 
(especially long-term ones) we find the robustness of the results to the different network 
models rather reassuring. Indeed, in the case of the 2050 scenario, Kolmogorov-Smirnov tests 
(not reported) find not significant difference between the two distributions. Our projections 
suggest VW flows are bound to increase over the years, due both to the increased density of 
the network (as the number of links rises) and the stronger links between countries (for 
population and GDP are expected to grow in all countries). Over time we see that peripheral 
countries featuring small VW exports in 2010 increase their relevance in almost all scenarios. 
This is consistent with results in Sartori and Schiavo (2015), who find that the VW network 
has become more balanced over time, and with the predictions in Dalin et al. (2012). 

 

5. Policy implications and concluding remarks 

An important question stemming from the analysis is whether the projected VW flows are 
compatible with future water availability. Elaborating on the rainfall projections provided by 
the GAEZ database, we get an estimate of the future water availability by country. In short, we 
assume that future water availability will change in the same way as precipitations. This is 
tantamount to assume that changes in water availability are solely due to changes in 
precipitations, which is a very strong hypothesis. We are aware of the limits of this approach, 
especially when it comes to 2050: variations in water endowments depend also on other 
factors, such as the average annual temperature and the evapotranspiration (Gardner 2009), 
or the possibility that climate change brings about an acceleration of the water cycle.8 To (at 
least partly) account for the shortcoming of our approach, in what follows we discuss results 
based on different SRES scenarios. In particular, we use the B2 scenario as our baseline, but 
also consider scenarios A1F1 and A2 as an alternative. Moreover, for each scenario we 
consider both the average precipitation level and a confidence interval given by the average 
plus/minus one standard deviation. 

Therefore, we apply the projected change in precipitations predicted by the GAEZ database to 
2010 data on water availability by country. Then, we subtract from the estimated amount of 
future water availability the fraction of water resources that should be set aside for 
preserving environmental ecosystems, defined by the literature as Environmental Flow 
Requirement (EFR). A reasonable value for the EFR is about 30% of the total (blue) water 
availability (see for instance Smakhtin et al., 2004; Hirji and Davis, 2009). To account for all 
the remaining water-consuming activities of the economy, such as manufacturing, services 
and municipal water uses, an additional 30% of water resources is subtracted from the total 
water available.9  

Each country’s future net VW exports (i.e., exports minus imports of VW) computed from the 
network plus gravity models are then compared with the projected water availability. We 
classify each country according to the Water Stress Indicator (WSI), elaborated by Smakhtin 
et al. (2004). This indicator is computed as the share of the country’s net VW exports over the 
total water availability, net of the fraction to set aside for preserving the environment and for 
non-agricultural water consumption. In this context, a value of the WSI larger than 1 indicates 
that the predicted amount of net VW exports is not sustainable as water resources would be 

                                                        
8 We thank an anonymous referee for pointing out this last factor. 
9 It is estimated that, worldwide, agriculture accounts for about 70% of all water consumption, compared to 20% for industry 
and the 10% that is consumed for domestic use. At country level, however, differences in water allocation across sectors can 
be substantial (see Hoekstra and Mekonnen, 2012).  
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not enough to support the production of the associated agricultural goods; a value between 
0.6 and 1 denotes that water resources will be heavily exploited; a value in the range 0.3—0.6 
suggests that the projected net VW exports will moderately exploit water resources; finally, a 
WSI lower than 0.3 indicates that the production of agricultural goods for export will not 
generate a significant water stress. At this stage of the analysis it is important to point out 
that, despite the future available water is computed by setting aside the water needed for EFR 
and for non-agricultural water uses, the water stress indicator may possibly be 
underestimated for some agriculture-based economies, whose water use priority is for the 
agricultural sectors. Also, it is worth noting that the use of country-level variables may mask 
the presence of important regional disparities and situations of local water stress.  

Results for 2050 (B2 SRES scenario, stochastic and gravity model) are illustrated in Figure 7, 
where grey areas refer to net VW importers while net VW exporters feature different colors 
based on the WSI (blue, light blue, orange and red in increasing order of water stress). Net VW 
exports are projected to exceed future water availability for agricultural purposes in some 
European countries, such as France, Denmark and the Netherlands. Other heavily stressed 
countries are likely to be some Eastern European (Ukraine) and Central Asian countries 
(Kazakhstan and Tajikistan).  

 
Figure 7. Predicted Water Stress Indicators (WSI) by country in 2050. Net VW exporters are blue if WSI is below 
0.3; light-blue if WSI is between 0.3 and 0.6 (moderate exploitation of water resources); orange if WSI ranges 
between 0.6 and 1 (heavy exploitation of resources); red if WSI>1 (unsustainable situation). Dark grey regions 
represent net VW importers sourcing more than 50% of their imports from exporters with a WSI > 0.6 (stressed 
importers); light grey are other net VW importers. The map is generated using googleVis-0.6.2 and is based on 
results from a stochastic network model starting from the actual 2010 data, coupled with a gravity model to 
predict future bilateral VW flows. Future water availability is based on the Hadley global circulation model 
(Hadley CM3) under scenario B2. Maps obtained using different network models and different climatic scenarios 
are available in the Supplementary Material. 

Different network models and different climatic scenarios deliver slightly different results 
(see the Supplementary Material for the complete set of maps), with the number of countries 
with an unsustainable position (“red countries”) ranging between 3 and 7. 
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Figure 7 further suggests that the majority of the water-scarce countries are net VW 
importers: this does not mean that they are not at risk. On the contrary, when these countries 
source a large fraction of their VW imports from countries whose export position is 
unsustainable, they may “import” water stress (for a recent contribution that stresses this 
point see Hoekstra and Mekonnen, 2016). We classify countries as “stressed importers” if they 
source more than 50% of their VW inflows from exporters with a predicted WSI > 0.6. This is 
an admittedly crude way to capture the indirect effect of water stress in countries that may 
not be water-scarce per se, but rely extensively on VW imports. However, the importance of 
these indirect effects lies at the core of the network approach we have adopted in the paper.  

Even this rough measure allows us to pinpoint a group of 16 importing countries that may 
come under “imported water risk” (in the terms of Hoekstra and Mekonnen, 2016) by 2050. 
Again, alternative scenarios change the number and identity of potentially stressed importers, 
whose number ranges between 11 and 17.  
Within this group, some countries appear under most if not all scenarios: among these there 
are some small, import-dependent countries (such as Andorra and Malta), a number of 
African countries (Burundi, Rwanda, Guinea-Bissau and Mozambique), but also large 
countries such as Afghanistan, Romania and Turkey.  
Different thresholds for identifying water stress and critical import shares would lead to the 
identification of diverse sets of stressed exporters and importers exposed to “imported water 
risk”: we leave the analysis of what thresholds are to be preferred as an issue for further 
research. Here, we limit ourselves to provide a prima face evidence showing that critical 
water conditions in certain countries are not just a matter of domestic interest but should be 
discussed at the multilateral level so as to take interdependences and spillovers into account. 
 
The paper has investigated how the topological features of the virtual water network and the 
size of the associated VW flows are likely to change over time. The current trend of VW 
imports and exports, while broadly consistent with future water availability, is not 
sustainable for all countries. Technical change and trade agreements (two important drivers 
of water use and trade patterns) may help reducing the water requirements of several 
products, but demographic and dietary change may well put additional pressure on natural 
resources such as land and water. Incorporating these elements into the analysis represents a 
fruitful avenue for further interdisciplinary research that combines network analysis with 
insights from economics, agronomy, and climate science. 
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Appendix 

 
Table A1. List of countries. 
 

Afghanistan Djibouti Liberia San Marino 
Albania Dominica Libyan Arab Rep. Sao Tome and Principe 
Algeria Dominican Rep. Lithuania Saudi Arabia 
Andorra Ecuador Luxembourg Senegal 
Angola Egypt Madagascar Serbia 
Ant. and Bar. El Salvador Malawi Seychelles 
Argentina Equatorial Guinea Malaysia Sierra Leone 
Armenia Eritrea Maldives Singapore 
Australia Estonia Mali Slovakia 
Austria Ethiopia Malta Slovenia 
Azerbaijan Faroe Islands  Marshall Islands Solomon Islands 
Bahamas Fiji Mauritania Somalia 
Bahrain Finland Mauritius South Africa 
Bangladesh France Mexico Spain 
Barbados Gabon Micronesia Sri Lanka 
Belarus Gambia Mongolia Sudan 
Belgium Georgia Montenegro Suriname 
Belize Germany Morocco Swaziland 
Benin Ghana Mozambique Sweden 
Bhutan Greece Myanmar Switzerland 
Bolivia Grenada Namibia Syrian Arab Republic 
Bosnia and Herz. Guatemala Nepal Tajikistan 
Botswana Guinea Netherlands Thailand 
Brazil Guinea-Bissau New Zealand Macedonia 
Brunei Darussalam Guyana Nicaragua Timor-Leste 
Bulgaria Haiti Niger Togo 
Burkina Faso Honduras Nigeria Tonga 
Burundi Hungary Norway Trinidad and Tobago 
Cambodia Iceland Oman Tunisia 
Cameroon India Pakistan Turkey 
Canada Indonesia Palau Turkmenistan 
Cape Verde Iran (Islamic Rep.) Panama Tuvalu 
Central African Rep. Iraq Papua New Guinea Uganda 
Chad Ireland Paraguay Ukraine 
Chile Israel Peru United Arab Emirates 
China, mainland Italy Philippines United Kingdom 
Colombia Jamaica Poland United Rep. Tanzania 
Comoros Japan Portugal USA 
Congo Jordan Qatar Uruguay 
Costa Rica Kazakhstan South Korea Uzbekistan 
Croatia Kenya Rep. of Moldova Vanuatu 
Cuba Kiribati Romania Venezuela 
Cyprus Kuwait Russian Federation Viet Nam 
Czech Republic Kyrgyzstan Rwanda Yemen 
Côte d'Ivoire Lao Dem. Rep. Saint Kitts and Nevis Zambia 
North Korea Latvia Saint Lucia Zimbabwe 
Dem. Rep. Congo Lebanon Saint Vinc. and the Gren.  
Denmark Lesotho Samoa  
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Network Measures 

Node degree  𝑘𝑖 = ∑ 𝑎𝑖𝑗𝑗  is measures the number of contacts maintained by each node i, 

where aij is the element of the binary undirected adjacency matrix AN. Density is the number 

of active links over their total possible number of links (which would occur if all nodes were 

connected with every other node).  

 

Node strength, si, is the sum of all link weights wij of a node, and in the case of the VW trade 

network it represents the total VW imports (in-strength 𝑠𝑖
𝑖𝑛 = ∑ 𝑤𝑗𝑖𝑗 ) or total VW exports (out-

strength 𝑠𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑗𝑗 ). 

 

Assortativity is the tendency of highly connected nodes to be linked to other high-degree 

nodes. The assortativity index r for network G, computed following Newman (2001, 2003), is 

𝑟 =  ∑ (𝑘𝑖 − 𝑘)(𝑘𝑗 − 𝑘)𝑖𝑗∈𝐺 ∑ (𝑘𝑖 − 𝑘)2
𝑖∈𝐺⁄ , where ki is the degree of node i and 𝑘 is the average 

degree in the network.  

 

Centrality is meant to capture the position of each node within the network and its relative 

importance. Many centrality measures exist, here we compute the Freeman’s network 

centrality: 𝑓𝑛𝑐 =  ∑ [𝐷(𝑛∗) − 𝐷(𝑖)]𝑖 [(𝑁 − 1)(𝑁 − 2)]⁄ , where 𝐷(𝑛∗) is the maximum degree of the 

degree distribution while D(i) the degree of each single node, and N the number of nodes.  

The clustering coefficient ci represents the tendency of nodes to form tightly connected 

groups. Formally,  𝑐𝑖 = 2𝑒𝑖 𝑘𝑖(𝑘𝑖 − 1)⁄ , where ei is the number of links between the neighbors of 

node i and 𝑘𝑖(𝑘𝑖)/2 is the maximum possible number of links existing between the ki 

neighbors of i (Boguna and Pastor-Satorras, 2003). The clustering coefficient for the whole 

network is then given by the average value of ci across all nodes.  


