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Abstract 56 

Diverse microbial communities of bacteria, archaea, viruses and single-celled eukaryotes have crucial 57 

roles in the environment and human health.  However, microbes are frequently difficult to culture in 58 

the laboratory, which can confound cataloging members and understanding how communities 59 

function.  Cheap, high-throughput sequencing technologies and a suite of computational pipelines 60 



have been combined into shotgun metagenomics methods that have transformed microbiology. Still, 61 

computational approaches to overcome challenges that affect both assembly-based and mapping-62 

based metagenomic profiling, particularly of high-complexity samples, or environments containing 63 

organisms with limited similarity to sequenced genomes, are needed. Understanding the functions 64 

and characterizing specific strains of these communities offer biotechnological promise in therapeutic 65 

discovery, or innovative ways to synthesize products using microbial factories, but can also pinpoint 66 

the contributions of microorganisms to planetary, animal and human health.  67 

 68 

 69 

Introduction 70 

High throughput sequencing approaches enable genomic analyses of ideally all microbes in a sample, 71 

not just those that are more amenable to cultivation. One such method, shotgun metagenomics, is the 72 

untargeted (“shotgun”) sequencing of all (“meta”) of the microbial genomes (“genomics”) present in a 73 

sample. Shotgun sequencing can be used to profile taxonomic composition and functional potential of 74 

microbial communities, and to recover whole genome sequences. Approaches such as high-throughput 75 

16S rRNA gene sequencing 1, which profile selected organisms or single marker genes are sometimes 76 

mistakenly referred to as metagenomics but are not metagenomic methods, because they do not target 77 

the entire genomic content of a sample. 78 

In the past 15 years since it was first used, metagenomics has enabled large-scale investigations 79 

of complex microbiomes2-7(ref#4 C.Q.,N.J.L.). Discoveries enabled by this technology include the 80 

identification of previously unknown environmental bacterial phyla with endosymbiotic behavior 8, and 81 

species that can carry out complete nitrification of ammonia 9,10. Other striking findings include the 82 

widespread presence of antibiotic genes in commensal gut bacteria 11, tracking of human outbreak 83 

pathogens 4(C.Q.,N.J.L.), the strong association of both the viral 12 and bacterial 13 fraction of the 84 

microbiome with inflammatory bowel diseases, and the ability to monitor strain-level changes in the gut 85 

microbiota after perturbations such as those induced by faecal microbiome transplantation 14. 86 

In this Review we discuss best-practice for shotgun metagenomics studies, including identifying 87 

and tackling limitations, and provide an outlook for metagenomics in the future. 88 

Shotgun metagenomics study design 89 

A typical shotgun metagenomics study comprises five steps following the initial study design; (i) the 90 

collection, processing, and sequencing of the samples, (ii) the preprocessing of the sequencing reads, (iii) 91 

the sequence analysis to profile taxonomic, functional, and genomic features of the microbiome, (iv) the 92 

postprocessing statistical and biological analysis, and (v) the validation (Figure 1). Numerous 93 

experimental and computational approaches are available to carry out each step, which means that 94 

researchers are faced with a daunting choice. And, despite its apparent simplicity, shotgun 95 

metagenomics has limitations, owing to potential experimental biases and the complexity of 96 



computational analysis and their interpretation. We assess the choices that need to be made at each 97 

step and how to overcome common problems. 98 

The steps involved in the design of hypothesis-based studies are outlined in Supplementary 99 

Figure 1 with specific recommendations summarized in Supplementary Box 1.  Individual samples from 100 

the same environment can be variable in microbial content, which makes it challenging to  detect 101 

statistically significant, and biologically meaningful, differences among small sets of samples. It is 102 

therefore important to establish that studies are sufficiently powered to detect differences, especially if 103 

the effect size is small 15. One useful strategy may be to generate pilot data to inform power calculations 104 
16,17. Alternatively,  a two-tier approach in which shotgun metagenomics is carried out on a subset of 105 

samples that have been pre-screened with less expensive microbial surveys such as 16S rRNA gene 106 

sequencing, may be adopted 18(N.S). 107 

Controls can be difficult to obtain, particularly for samples from complex environments. This is 108 

particularly important for those studying human microbiota, in which the resident microbial 109 

communities are influenced by multiple factors such as host genotype 19, age, diet and environmental 110 

surroundings 20. Where feasible, we recommend longitudinal studies that incorporate samples from the 111 

same habitat over time rather than simple cross-sectional studies that compare “snapshots” of two 112 

sample sets 21. Importantly, longitudinal studies do not rely on results from a single sample that might 113 

be a non-representative outlier. Exclusion of samples that may be confounded by an unwanted variable 114 

is also prudent. For example, in studies of human subjects, exclusion criteria might include exposure to 115 

drugs that are known to impact the microbiome, e.g. antibiotics. If this is not feasible, then potential 116 

confounders should be factored into comparative analyses (see Supplementary Box 1). 117 

If samples originate in animal models, particularly those involving co-housed rodents, the roles 118 

of animal age and housing environment 22,23, and the sex of the person handling the animals 24, may 119 

have on microbial community profiles should be taken into account. It is usually possible to mitigate 120 

against potential confounders in the study design by housing animals individually to prevent the spread 121 

of microbes between cage mates (although this may introduce behavioural changes, potentially 122 

resulting in different biases), mixing animals derived from different experimental cohorts together 123 

within the same cage, or repeating experiments with mouse lines obtained from different vendors or 124 

with different genetic backgrounds 25. 125 

Finally, regardless of the type of sample being studied, it is crucial to collect detailed and 126 

accurate metadata. MiMARKS and MIxS standards were set out to provide guidance for required  127 

metadata 26, but metagenomics is now applied on such disparate kinds of environments that it is difficult 128 

to choose parameters that are suitable and feasible to obtain for every sample type.  We recommend 129 

associating as much descriptive and detailed  metadata as possible with each sample, in order to make it 130 

more likely that comparisons between study cohorts or sample types can be correlated with a particular 131 

environmental variable 21. 132 

Sample collection and DNA extraction 133 



Sample collection and preservation protocols can affect both quality and accuracy of 134 

metagenomics data. Importantly, the effect size of these steps, in some circumstances, can be greater 135 

than the effect size of the biological variables of interest 27. Indeed variations in sample processing 136 

protocols can also be important confounders in meta-analyses of datasets from different studies 137 

(Supplementary Box 1). Collection and storage methods that have been validated for one type of 138 

sample type cannot be assumed to be optimal for different sample types. As such, careful preliminary 139 

work to optimize processing conditions for sample types is often necessary (Supplementary Figure 1).  140 

Key objectives are to collect sufficient microbial biomass for sequencing, and to minimize 141 

contamination of samples. Enrichment methods can be used for those environments in which microbes 142 

are scarce (see Table 1). However, enrichment procedures can introduce bias into sequencing data 28. 143 

Since several studies have shown that factors such as length of time between sample collection and 144 

freezing 29 (A.W.W.) or the number of times samples go through freeze-thaw cycles can affect the 145 

microbial community profiles that are detected, both collection and storage protocols/conditions should 146 

be recorded  (Supplementary Box 1). 147 

The choice of DNA extraction method can affect the composition of downstream sequence data 148 
30. The extraction method must be able to lyse diverse microbial taxa, otherwise sequencing results may 149 

be dominated by DNA derived from easy-to-lyse microbes. DNA extraction methods that include 150 

mechanical lysis (or bead-beating) are often considered superior to those that rely on chemical lysis 31. 151 

However, bead-beating based approaches do vary in their efficiency 32 (A.W.W). Vigorous extraction 152 

techniques  such as bead-beating can result in shortened DNA fragments, which can contribute to DNA 153 

loss during library preparation methods that use fragment size selection techniques.  154 

Contamination can be during sample processing stages. Kit/laboratory reagents may contain 155 

variable amounts of microbial contaminants 33. Metagenomics datasets from low biomass samples (e.g. 156 

skin swabs) are particularly vulnerable to this problem, because there is less “real” signal to compete 157 

with low-levels of contamination 34 (A.W.W.,N.J.L). We advise those working with low biomass samples 158 

to use ultraclean reagents 35, and to incorporate “blank” sequencing controls, in which reagents are 159 

sequenced without adding sample template 34 (A.W.W.,N.J.L). Other types of contamination are cross-160 

over from previous sequencing runs, presence of PhiX control DNA that is typically used as part of 161 

Illumina-based sequencing protocols, and human or host DNA. 162 

Library preparation and sequencing  163 

Choosing a library preparation and sequencing method hinges on availability of materials and services, 164 

cost, ease of automation, and DNA sample quantification. The Illumina platform has become dominant 165 

as a choice for shotgun metagenomics due to its wide availability, very high outputs (up to 1.5 Tb per 166 

run) and high accuracy (with a typical error rate of between 0.1-1%), although the competing Ion 167 

Torrent S5/S5 XL instrument is an alternative choice. Recently, long read sequencing technologies such 168 

as the Oxford Nanopore MinION and Pacific Biosciences Sequel have scaled up output and can reliably 169 

generate up to 10 gigabases per run and may therefore soon start to see adoption for metagenomics 170 

studies. 171 



Given the very high outputs achievable on a single instrument run, multiple metagenomic 172 

samples are usually sequenced on the same sequencing run, by multiplexing up to 96 or 384 samples 173 

typically using dual indexing barcode sets available for all library preparation protocols. The Illumina 174 

platforms are known to suffer from issues of carry-over (between runs) and carry-between (within runs) 175 
36. Recently, concern has been raised that newer Illumina instruments using isothermal cluster 176 

generation (ExAmp) suffer from high rates of ‘index hopping’ where incorrect barcode identifiers are 177 

incorporated into growing clusters 37 although the extent of this problem on typical metagenomics 178 

projects has not been evaluated and approaches to mitigate it have been suggested. To help evaluate 179 

the extent of such issues, randomly chosen control wells containing known spiked-in organisms as 180 

positive controls, and template negative controlsshould be used to assess the impact of these issues. 181 

Such controls are particularly critical for diagnostic metagenomics projects where small numbers of 182 

pathogen reads may be a signal of infection against a background of high host contamination. Although 183 

still uncommon in the field, performing technical replicates would be useful to assess variability, and 184 

even subjecting a subset of samples to replication may give enough information to disentangle technical 185 

from true variability.  186 

Multiple methods are available for the generation of Illumina sequencing libraries: these are 187 

usually distinguished by the method of fragmentation used. Transposase-based “tagmentation”, for 188 

example in the Illumina Nextera and Nextera XT products, are popular owing to their low cost (list prices 189 

of $25-40 per sample, with dilution methods potentially able to reduce these costs even further 38). 190 

Tagmentation approaches only require small DNA inputs (1 ng of DNA recommended, but lower 191 

amounts can be used). Such low inputs are achieved due to a subsequent PCR amplification step. 192 

However, as tagmentation targets specific sequence motifs it may introduce amplification biases along 193 

with the well-known GC content biases associated with PCR. One way of reducing these biases is to use 194 

a PCR-free method relying on physical fragmentation (e.g. PCR-free TruSeq) to produce a sequencing 195 

library that may be more representative of the underlying species composition in a sample 39.  196 

 There are no published guidelines for the “correct” amount of coverage for a given environment 197 

or study type, and it is unlikely that such a figure exists. As a rule of thumb, we therefore often 198 

recommend choosing a system that maximizes output in order to retrieve sequences from as many low-199 

abundance members of the microbiome as possible. Illumina HiSeq 2500/4000, NextSeq, and NovaSeq 200 

all produce high volumes of sequence data (between 120 gigabases and 1.5 terabases per run) and are 201 

well suited for metagenomics studies (with the caveat of index hopping). The throughput per run of 202 

these instruments is known and, by deciding the level of multiplexing, the investigator can set the 203 

desired per-sample sequencing depth. Typical experiments in 2017 aim to generate between 1 and 10 204 

gigabases, but these depths may be either excessive or woefully little depending on the sensitivity 205 

required to detect rare members of a sample. 206 

The Illumina platforms mainly differ by their total output and maximum read length. The 207 

Illumina HiSeq 2500, although now two generations old, is a popular choice for shotgun metagenomics 208 

as it is able to generate 2x250 nt in rapid run mode (generating up to 180 Gb per flowcell), or up to 1Tb 209 

in high output mode with 2x125 nt reads. The newer HiSeq 3000 and 4000 systems further increase the 210 

overall throughput of a run (up to 1.5 terabases for the 4000) but are limited to read lengths of 150 nt. 211 



The NextSeq benchtop instrument has similar output to the HiSeq 2500’s rapid run mode, but are 212 

limited to 150 nt reads. However the NextSeq is less than half the price of the HiSeq and so may be 213 

attractive to research groups wishing to operate their own instrument The recently released  NovaSeq 214 

platform promises up to 3 terabases per run in the near future. The Illumina MiSeq is limited by output 215 

(up to 15Gb in 2x300 mode) but remains the de facto standard for single marker gene microbiome 216 

studies. The MiSeq (or MiniSeq) may still be useful for metagenomics for sequencing a limited number 217 

of samples or to assess library concentrations and barcode pool balancing, providing confidence of good 218 

results, before running on the higher-throughput (and much more expensive) instruments where 219 

individual runs may cost >$10,000. 220 

  221 

Metagenome assembly 222 

Numerous approaches to computationally reconstruct the composition of the microbial community 223 

from the pool of sequence reads have been published. Choosing the “best” approach is a daunting task 224 

but largely depends on the aims of the study. 225 

Metagenome de novo assembly, is conceptually similar to whole genome assembly 40(J.S.). The 226 

de Bruijn graph approach 41  is currently the most popular metagenome assembly method. For single 227 

draft genome assemblies a de Bruijn graph is constructed by breaking each sequencing read into 228 

overlapping subsequences of a fixed length k. This set of overlapping “k-mers” defines the vertices and 229 

edges of the de Bruijn graph. The assembler’s task is to find a path through the graph that reconstructs 230 

the genome(s). This task is complicated by sequencing errors, which generate non-genomic sequences 231 

that must be avoided, and repetitive sequence, which can cause misassemblies and fragmentation of 232 

the assembly. 233 

Metagenome assembly presents challenges not faced in single genome assembly. First, when 234 

assembling a single genome it is typically assumed that sequence coverage along the genome will be 235 

approximately uniform. An assembler can use sequence coverage to identify repeat copies, distinguish 236 

true sequence from sequencing errors 42(J.S.) and identify allelic variation 43. Metagenome assembly is 237 

more difficult because the coverage of each constituent genome depends on the abundance of each 238 

genome in the community. Low abundance genomes may end up fragmented if overall sequencing 239 

depth is insufficient to form connections in the graph. Using a short k-mer size in graph formation can 240 

assist in recovering lower abundance genomes, but this comes at the expense of increasing the 241 

frequency of repetitive k-mers in the graph, obscuring the correct reconstruction of the genomes. The 242 

assembler must strike a balance between recovering low-abundance genomes and obtaining long, 243 

accurate contigs for high abundance genomes. A second problem is that a sample can contain different 244 

strains of the same bacterial species. These closely related genomes can cause branches in the assembly 245 

graph where they differ by a single nucleotide variant, or by the presence/absence of an entire gene or 246 

operon. The assembler will often stop at these branch points, resulting in fragmented reconstructions. 247 

Metagenome-specific assemblers try to overcome these challenges. Meta-IDBA 44 uses a 248 

multiple k-mer approach to avoid the difficult task of choosing a k-mer length that works well for both 249 



low and high abundance species. Meta-IDBA has extensions to partition the de Bruijn graph (as does 250 

MetaVelvet 45) and the latest version, IDBA-UD, optimizes the reconstruction for uneven sequence 251 

depth distributions 46. The SPAdes assembler 47 has been extended for metagenome assembly and can 252 

be used for assembling libraries sequenced with different technologies (hybrid assembly).  253 

For complex samples that are likely to contain hundreds of strains, the sequencing depth must 254 

be increased as much as possible. Computational  time and memory may be insufficient to complete 255 

such assemblies. Distributed assemblers 48(J.S.) such as Ray, which spread memory load over a cluster of 256 

computers, have been used to assemble metagenomes from human faecal samples 49. To help assemble 257 

very complex samples Pell et al. developed a lightweight method to partition a metagenome assembly 258 

graph into connected components that can be assembled independently 50. Another method, named 259 

Latent Strain Analysis, partitions reads using k-mer abundance patterns which enables assemblies of 260 

individual low-abundance genomes using a limited amount of memory 51. MegaHIT uses succinct data 261 

structures to reduce the memory requirements of assembling complex metagenomes and achieves very 262 

quick run times 52. 263 

There is little community consensus on how well different assemblers perform with respect to 264 

key metrics such as completeness, continuity and propensity to generate chimeric contigs. Despite 265 

metagenomic analysis “bake-offs” aimed at making concrete recommendations for analysis software, it 266 

is likely that software performance will depend on biological factors such as underlying microbial 267 

community structure, and technical factors, such as sequencing platform characteristics and coverage. 268 

This effect was observed at an Assemblathon 53, where no single assembler came out “best”.  269 

We analysed assembly results from mock synthetic and real communities (Table 2 and Table 3). 270 

We evaluated two assemblers, MegaHIT 52 and MetaSPAdes 54 for their ability to reconstruct known 271 

genomes from the mock communities, and capture taxonomic and gene diversity in the real datasets. 272 

They both successfully reconstructed more than 75% of the mock communities (one comprising 20 273 

organisms 2, the other 49 bacterial and 10 archaeal species 55(C.Q.)). MetaSPAdes generated longer 274 

contigs, but these appeared to be less accurate. When restricted to contigs that exactly matched the 275 

references in the mock community then MegaHIT succeeded in reconstructing more of the true 276 

genomes. Choice of assembler in this case would therefore depend on the relative importance of contig 277 

size versus accuracy. Across the true datasets (Table 3), consistent patterns were hard to discern. 278 

However, examining median single-copy core gene number (which will estimate the number of genomes 279 

in the assembly) suggests that for the more complex soil and ocean communities, MegaHIT succeeded in 280 

assembling more genes that could then be functionally annotated. However, the key message here is 281 

that different state-of-the-art programs will be optimal on different datasets while requiring similar run 282 

times (about 48 hours using 16 threads on the largest sample) and main memory usage (not exceeding 283 

125GB). It is prudent, therefore, to attempt more than one assembly approach.  The CAMI challenge 284 

reported that MegaHIT was in the top three best metagenomics assemblers across their benchmark 285 

data sets 56(C.Q.) and together with MetaSPAdes (not evaluated in CAMI) these are probably the best 286 

current choices. Whatever assembler is used the result will not be genomes but rather potentially 287 

millions of contigs, and this motivates the need for binners that attempt to link those contigs back into 288 

the genomes they derived from. 289 



Binning contigs 290 

Metagenome assemblies are highly fragmented, comprising thousands of contigs (Table 2), and the 291 

challenge is that we do not know a priori which contig derives from which genome. We do not even 292 

know how many genomes are present. The aim of contig “binning” is to group contigs into species. 293 

Supervised binning methods use databases of already sequenced genomes to label contigs into 294 

taxonomic classes. Unsupervised methods, or clustering, look for natural groups in the data. 295 

Both supervised and unsupervised methods have two main elements: a metric to define the 296 

similarity between a given contig and a bin, and an algorithm to convert those similarities into 297 

assignments. For taxonomic classification, contig homology against known genomes is a potentially 298 

useful approach, but most microbial species have not been sequenced so a large fraction of 299 

reconstructed genomic fragments cannot be mapped to reference genomes. This has motivated the use 300 

of contig sequence composition for binning. Different microbial species’ genomes contain particular 301 

combinations of bases, and this results in different k-mer frequencies 57. Metrics based on these k-mer 302 

frequencies can be used to bin contigs, with tetramers considered the most informative for binning of 303 

metagenomics data 58. Many different software choices are available that are based on these 304 

frequencies such as Naïve Bayes classifiers 59 or support vector machines 60, but sequence composition 305 

often lacks the specificity necessary to resolve complex datasets to the species level in complex 306 

communities 58,61(ref#61 C.Q.,N.J.L.).  307 

Clustering of contigs is appealing because it does not require reference genomes. Until recently, 308 

most contig clustering algorithms such as MetaWatt 62 and SCIMM 63 used various species composition 309 

metrics, sometimes coupled with total coverage. Recently, as multi-sample metagenome datasets have 310 

been produced it has been realized that contig coverage across multiple samples provides a much more 311 

powerful signal to group contigs together 64,65. The principle is that contigs from the same genome will 312 

have similar coverage values within each metagenome, although intra genome GC content variation, 313 

and increased read depth around bacterial origins of replication, can challenge this assumption 66. The 314 

first algorithms, e.g. extended self-organising maps 64, required human input to perform the clustering, 315 

which is based on coverage information and composition that could be visualized in 2D 65. Completely 316 

automated approaches such as CONCOCT61(C.Q.,N.J.L.), GroopM 67 and MetaBAT 68 are now available 317 

and they are convenient, particularly for large datasets, but better results may still be obtained when 318 

combined with human refinement, for instance using a visualization tool named Anvio 69(C.Q.).   319 

Methods for reconstructing metagenomic assembled genomes (MAGs) are indispensable to 320 

uncover the hitherto inaccessible diversity of bacteria. The recovery of nearly a thousand MAGs from 321 

candidate phyla, with no cultured representatives, from acetate enriched and filtered groundwater 322 

samples showcased the potential of this approach8. Recovered genomes were all small, with minimal 323 

metabolism, and formed a monophyletic clade, separate from the previously cultured diversity of 324 

bacteria. These have been proposed as a new bacterial sub-division, the candidate phyla radiation, 325 

revealed through metagenomics 70. 326 

Completeness of MAGs is usually evaluated by examining single-copy core genes, which are 327 

found in most microbial genomes, for example tRNA synthetases or ribosomal proteins. A pure MAG will 328 



have all these genes present in single copies. Once constructed, the MAGs provide a rich dataset for 329 

comparative genomics, including the construction of phylogenetic trees, functional profiles and 330 

comparisons of MAG abundance across samples (see left panel in Figure 2 and the step-by-step tutorial 331 

we provide at https://github.com/chrisquince/metag-rev-sup). 332 

Assembly-free metagenomic profiling 333 

Taxonomic profiling of metagenomes identifies which microbial species are present in a 334 

metagenome, and estimates their abundance. This can be carried out without assembly using external 335 

sequence data resources, such as publicly available reference genomes. This approach can mitigate 336 

assembly problems, speed up computation, and make it possible to profile low-abundance organisms 337 

that cannot be assembled de novo (Supplementary Box 1). The main limitation is that previously 338 

uncharacterized microbes are very difficult to profile (Supplementary Box 1). However, the number of 339 

reference genomes available is increasing rapidly, with thousands of genomes being produced each 340 

year, including some derived from difficult-to-grow species targeted by new cultivation methods 71, 341 

single-cell sequencing approaches 72, or metagenomic assembly itself. The diversity of reference 342 

genomes available for some sample types, such as from the human gut 73, is now extensive enough to 343 

make assembly-free taxonomic profiling efficient and successful, including for comparatively low 344 

abundance microbes that lack sufficient sequence coverage and depth to enable the assembly of their 345 

genome. Analysis of more diverse environments including soil and oceans is hampered by a lack of 346 

representative reference genomes. As a result, it is generally inadvisable to avoid assembly when 347 

analyzing metagenomes from these environments. 348 

Assembly-free taxonomic profilers with species-level resolution utilize information available in 349 

reference genomes 74(N.S) and in environment-specific assemblies 75, and have been used in the largest 350 

human-associated metagenomics investigations performed so far 2,5,75-80. The simple brute force 351 

mapping of reads to genomes can result in profiles with many false positives but, nonetheless, this 352 

approach has been proven to be effective when the output is post-processed based on lowest common 353 

ancestor (LCA) strategies 81 or coupled with compositional interpolated Markov models 82. However, the 354 

run times of these approaches do not improve on assembly-based methods. Kraken 83 also exploits LCA 355 

but dramatically speeds up the computation by substituting sequence mapping with k-mer matching.  356 

Taxonomic profiling by selecting representative or discriminative genes (markers) from available 357 

reference sequences is another fast and accurate assembly-free approach that has been implemented 358 

with several variations. By looking at co-abundant markers from pre-assembled environment specific 359 

gene catalogs 84,85(ref#85 A.W.W.), for example, the MetaHIT consortium was able to characterize 360 

known and novel organisms in the human gut 5,75. Similarly, mOTU 86 focuses on universally conserved 361 

but phylogenetically informative markers (e.g. genes coding for ribosomal proteins), whereas 362 

MetaPhlAn 87,88(N.S) (right panel of Figure 2) adopts several thousands of clade-specific markers with 363 

high discriminatory power, and proved effective to quantitatively profile the microbiome from multiple 364 

body areas for the Human Microbiome Project 2 with a very low false positive discovery rate. These 365 

methods are scalable and can be used for large metagenomics meta-analyses 89(N.S.). Marker-based 366 

approaches can also be used for strain-level comparative microbial genomics using thousands of 367 



metagenomes 88,90,91(ref#88 N.S.). Importantly, the accuracy of these methods will improve as more 368 

reference genomes and high-quality metagenomic assemblies become available. For large datasets with 369 

hundreds of samples on which performing or interpreting metagenomics assembly is impractical, 370 

marker-based approaches are currently the method of choice especially for environments with a 371 

substantial fraction of microbial diversity covered by well-characterized sequenced species.  372 

Genes and metabolic pathways from metagenomes 373 

With a fragmented but high-quality metagenome assembly, the gene repertoire of a microbial 374 

community can be identified using adaptations of single-genome characterization tools. These include a 375 

gene identification step, usually with a metagenomic-specific parameter setting 92, followed by 376 

homology-based annotation pipelines commonly used for characterizing pure isolate genome 377 

assemblies. Indeed, some of the largest shotgun sequencing efforts performed so far 5 used 378 

metagenomic assemblies to compile the microbial gene catalog of the human 93 and mouse 84 gut 379 

metagenomes, although this approach is often limited by the large fraction of uncharacterized genes in 380 

the reference database catalogs.  381 

Other large metagenomic datasets 2 were interpreted by translated sequence searches against 382 

functionally characterized protein families 94(N.S.). Databases, that include combinations of manually 383 

annotated and computationally predicted proteins families such as KEGG 95 or UniProt 96, can be used 384 

for this task and enable characterization of the functional potential of the microbiome (Figure 2, right-385 

hand panel). Single protein families are aggregated into higher-level metabolic pathways and functional 386 

modules providing either graphical reports 81 or comprehensive metabolic presence/absence and 387 

abundance tables, as in the HUMAnN pipeline 94(N.S.). Regardless of whether an assembly-free or 388 

assembly-based approach is adopted, the main limiting factor in profiling the metabolic potential of a 389 

community is the lack of annotations for accessory genes in most microbial species (with the exception 390 

of selected model organisms, Box 1). This means that highly conserved pathways and housekeeping 391 

functions are more consistently detected and quantified in metagenomes, which might explain why 392 

functional traits are often reported to be surprisingly consistent across different samples and 393 

environments, even when taxonomic composition is highly variable 2. Experimental characterization of 394 

microbial proteins, coding genes, and other genomic features (tRNAs, non-coding RNAs, CRISPRS) to 395 

more thoroughly assess functions of individual loci is a bottleneck that currently has a crucial impact on 396 

our ability to profile the functions of metagenomes 85. 397 

A complementary approach to metabolic function profiling of metagenomes is an in-depth 398 

characterization of specific functions of interest. For example, identifying genes involved in antibiotic 399 

resistance (the “resistome”) in a microbial community can inform on the spread of antibiotic resistance 400 
97. Ad-hoc methods 98(N.S.) and manually curated databases of antibiotic resistance genes have been 401 

crucial to this approach; ARDB 99 was the first widely adopted resistance database and is now 402 

complemented by additional resources such as Resfams 100. Comparably large efforts are also devoted to 403 

reporting the virulence repertoire of a metagenome; targeted analyses of metagenomes for specific 404 

gene families of interest can also be used to validate findings from single, cultivation-based isolate 405 

experiments. 406 



Post-processing analysis 407 

Regardless of the methods used for primary metagenomic sequence analyses, the outputs will comprise 408 

data matrices of samples versus microbial features (species, taxa, genes, pathways). Post-processing 409 

analysis uses statistical tools to interpret these matrices, and decipher how the findings correlate with 410 

the sample meta-data. Many of these statistical approaches are not specific for metagenomics. Specific  411 

challenges of metagenome-derived quantitative values include the proportional nature of the taxonomic 412 

and functional profiles, and the log-normal long-tailed distribution of abundances. These issues are also 413 

problematic in high-throughput 16S rRNA gene amplicon sequencing datasets, and several popular R 414 

packages such as DESeq2 101, vegan 102, and metagenomeSeq 103 that were originally developed for 415 

amplicon sequencing can be used for metagenomics. 416 

Post-processing tools include traditional multivariate statistics and machine learning. 417 

Unsupervised methods include simple clustering and correlation of samples, andvisualization techniques 418 

such as heatmaps, ordination (e.g. PCA and PCoA), or networks, which allow the patterns in the data to 419 

be revealed graphically. Some unsupervised statistical tools aim to specifically address the problems 420 

introduced by the proportional nature of metagenome profiles (compositionality issue 104, Box 1) and try 421 

to infer ecological relationships within the community 105(N.S.). Supervised methods include both 422 

statistical methods such as multivariate analysis of variance ANOVAs for direct hypothesis testing of 423 

differences between groups, or machine learning classifiers that train models to label groups of samples, 424 

such as Random Forests or Support Vector Machines 106(N.S.). A classic machine learning example would 425 

be to diagnose disease (e.g. for type 2 diabetes 76) on the basis of community dysbiosis, although 426 

developing cross-study predictive signatures is challenging 106(N.S.).  427 

Unsupervised and supervised methods consider the community as a whole. A complementary 428 

strategy is to ask which specific taxa or functional genes are statistically different between sample types 429 

or patient groups. Given the complexity of metagenomics datasets, and the huge numbers of 430 

comparisons that can typically be made, correction for multiple comparisons 107 or effect size estimation 431 
108(N.S.) are vital for this task.  432 

Robust statistical testing is key to determining the validity of results, but compact graphical 433 

representations can intuitively reveal patterns. In many cases visualization of post-processing results 434 

requires ad-hoc graphical tools 109,110(ref#109 N.S.), and carefully adopted general visualization 435 

approaches. 436 

Outlook  437 

Metagenomics still faces roadblocks to applicability, usefulness, and standardization (Box 1). 438 

The lack of reference genome sequence data for large portions of the microbial tree of life, or functional 439 

annotation for many microbial genes, substantially reduce the potential for success of the 440 

computational approaches used to analyse the vast amounts of sequences produced. Metagenomes 441 

from environments such as soil or water are particularly affected by this problem owing to both their 442 

high microbial diversity, and the proportion of uncharacterized taxa in these communities. Shotgun 443 

sequencing also fails to discriminate between live and dead organisms. However, the outlook is bright, 444 



because year on year a large community of wet-lab and computational researchers are finding solutions 445 

to these problems.  446 

Metagenome bioinformatics tools, especially for translating raw reads into meaningful microbial 447 

features (genomes, species abundances, functional potential profiles) (Figure 1), are continually 448 

improving. For example, strain-level analyses are now possible 111-113(ref#113 C.Q, ref#111 N.S., ref#112 449 

N.S.). There remains an active debate about which sequence analysis approach is best (see Table 4). 450 

Metagenomic assembly is the preferred theoretical solution if there is sufficient genome coverage (i.e. 451 

>20x), but this level of coverage is difficult to obtain for most of the members of the microbiome (Table 452 

4) and assembly-free methods have other advantages including the possibility to perform large-scale 453 

strain-level analyses. The success of either approach depends on the microbial community composition 454 

and complexity, sequencing depth, size of the dataset, and available computational resources (Table 4). 455 

We recommend that researchers use both approaches for sequence analysis whenever possible, as they 456 

complement and validate each other. 457 

As for the technological improvements in the sequencing of community DNA, long-read 458 

sequencing platforms have matured and are likely to become useful for metagenomics assembly 459 

strategies, although publications are few at present. The Pacific Biosciences instruments can deliver 460 

complete or nearly complete isolated microbial genomes with low base error rates if sufficient coverage 461 

is achieved (typically 30-100X). The Oxford Nanopore MinION single molecule, long read instrument 462 

holds appeal because of its size and portability (smartphone size) and early analysis of reads from this 463 

platform indicates it has an error rate akin to Pacific Biosciences reads 114(N.J.L.). Assembly of isolate 464 

genomes is possible into single contigs 115(J.S.,N.J.L.) so the portability of the MinION raises the 465 

tantalizing possibility of performing metagenomic sequencing in the field. 466 

An alternative experimental approach to improve genome reconstruction from metagenomes 467 

couples Illumina sequencing chemistry with a multiplexed pooling library preparation protocol. This so-468 

called  Synthetic Long Reads technology relies on the dilution of genomic DNA into fragmented and 469 

barcoded pools consisting of hundreds to thousands of individual molecules. These pools are sequenced 470 

and assembled de novo to produce synthetic long reads. One benefit of synthetic long reads is that 471 

because they are built from a consensus of Illumina sequences, the base error rate is extremely low. 472 

However, the  protocol is rather laborious and requires high DNA input (between 1 and 10 µg of DNA), 473 

plus, problems persist with local repetitive sequences. Reports suggest that this approach is useful for 474 

metagenomics, especially when coupled with standard shotgun sequencing, as it can reconstruct 475 

genomes from closely related strains, as well as those from rare microorganisms 116,117.  476 

Another outstanding problem in shotgun metagenomics is the accurate reconstruction of strain-477 

level variation from mixtures of genetically related organisms 118, with several solutions proposed 14,90,111-478 
113,119,120(ref#113 C.Q., ref#111 N.S., ref#112 N.S.) that are based on assembly, mapping, or a 479 

combination of the two. Mapping to genes that are unique to a species 88(N.S) can resolve the dominant 480 

haplotype in a sample, and this method has been applied to thousands of unrelated metagenomes, 481 

providing strain-level phylogenies that enable microbial population genomics for hundreds of largely 482 

uncharacterized species 111(N.S). Mixtures of strains from the same species in a single sample cannot be 483 

resolved by consensus approaches, but if the same strains are present in multiple samples there will be 484 



characteristic signatures in single nucleotide variations. These nucleotide variations can be linked 485 

together to deduce haplotypes and their frequencies 90,113,119(ref#113 C.Q.). This methodology was 486 

initially only applied after mapping to reference genes 90, and optionally with simultaneous strain 487 

phylogeny reconstruction 119, but it has now been applied directly to contig bins with inference of strain 488 

gene complement in an entirely reference free method 113(C.Q.). One limitation of this approach is that  489 

in some environments, including the human gut, it has been shown that one strain usually dominates 490 

over other strains from the same species 111(N.S). It is therefore challenging to detect non dominant 491 

strains of low-abundance species, and the user has to weight the increased robustness of profiling only 492 

the dominant strains 111(N.S) with the potential additional information that can be garnered from 493 

characterizing mixtures of strains 113(C.Q.). Strain-level metagenomics is an active area of research 118 494 

and has the potential to empower metagenomics with similar resolution to that which can be derived 495 

from sequencing of pure culture single isolates. Although long read technologies can aid these efforts in 496 

the future, solving the computational challenges of strain-level profiling from metagenomics is arguably 497 

the biggest challenge in the field at the moment.   498 

Conclusions 499 

Since the pioneering application of whole DNA sequencing to environmental samples by teams 500 

led by Jillian Banfield 121 and Craig Venter 7 in 2004, shotgun metagenomics has become an important 501 

tool for the study of microbial communities. Widespread adoption of metagenomics has been enabled 502 

by the falling cost of sequencing and the development of tractable computational methods. The main 503 

limitations facing researchers now are the costs of training computational scientists for analyzing the 504 

complex metagenomic datasets, and of sequencing enough samples for properly powered study 505 

designs. Initiatives such as the Critical Assessment of Metagenomic Interpretation 56(C.Q.) are vital for an 506 

unbiased assessment of computational tools to improve reproducibility and standardization.  507 

Shotgun metagenomics will play an increasingly important part in diverse biomedical and 508 

environmental investigations and applications. We hope that this Review will provide an understanding 509 

of the basic concepts of shotgun metagenomics including both its limitations and its immense potential.  510 
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Figure Captions 530 

Figure 1. Summary of a metagenomics workflow. Step 1: Study design and experimental protocol, the 531 

importance of this step is often underestimated in metagenomics.  Step 2: Computational pre-532 

processing. Computational quality control steps minimize fundamental sequence biases or artefacts e.g. 533 

removal of sequencing adaptors, quality trimming, removal of sequencing duplicates (using e.g. fastqc, 534 

trimmomatic 122, and Picard tools). Foreign or non-target DNA sequences are also filtered and samples 535 

are sub-sampled to normalize read numbers, if the diversity of taxa or functions is compared. Step 3: 536 

Sequence analysis. This should comprise a combination of ‘read-based’ and ‘assembly-based’ 537 

approaches depending on the experimental objectives. Both approaches have advantages and 538 

limitations (See Table 4 for a detailed discussion). Step 4: Post-processing. Various multivariate 539 

statistical techniques can be used to interpret the data. Step 5: Validation. Conclusions from high 540 

dimensional biological data are susceptible to study driven biases so follow-up analyses are vital. 541 

 542 

 543 

Figure 2. Assembly-based and assembly-free metagenome profiling. Starting from a metagenomic 544 

case-control design, we describe some of the steps needed to identify the organisms, the encoded 545 

functions and to try to links these samples’ characteristics with the case/control condition. Left panel: 546 

An assembly-based pipeline, which can be fully reproduced following the commands and the code 547 

provided as a GitHub repository at https://github.com/chrisquince/metag-rev-sup is shown on the left. 548 

A read-based pipeline (right panel) using MetaPhlAn2 88, HUMAnN2 94, and a recent strain-level 549 

extension of the MetaPhlAn2 approach 88 is shown on the right. The raw data is available at 550 

http://metagexample.s3.climb.ac.uk/Reads.tar.gz.  551 

 552 

Supplementary Figure 1. Example workflow for planning a metagenomics study. The advice presented 553 

here is targeted towards entry-level researchers in this area, with a particular focus on hypothesis-554 

driven experiments, which of course may be designed very differently compared to 555 



exploratory/hypothesis-generating studies. Key considerations for study design (blue box), sample 556 

collection (green box) and experimental procedures (yellow box) are highlighted. Understanding the 557 

potential for confounding factors, and optimization of design, can substantially improve the quality of 558 

both metagenomic sequence data, and interpretation. Supplementary Table 1 contains further specific 559 

recommendations. 560 

 561 

 562 

 563 

  564 



Tables and Boxes 565 

Enrichment 
technique 

Advantages Limitations 

Whole genome 
amplification  123 

• Highly sensitive - can generate sufficient DNA for sequencing 
from even tiny amounts of starting material. 

• Cost effective - can be applied directly to extracted 
environmental DNA, no need to isolate cells. 

• Non-specific and untargeted - can amplify DNA from the 
whole range of species present within a given sample. 

• Amplification step can introduce significant biases, which 
skew resulting metagenomics profiles. 

• Chimeric molecules can be formed during amplification, 
which can confound the assembly step. 

• Non-specific – unlikely to improve proportional abundance 
of DNA from a species of interest. 

Single-cell 
genomics 72 

• Can generate genomes from uncultured organisms. 
• Can be combined with targeting approaches such as 

fluorescence in situ hybridization to select specific taxa, 
including those that might be rare members of the microbial 
community. 

• Places genomic data within its correct phylogenetic context. 
• Reference genomes can aid metagenomics assemblies. 

• Can be expensive to isolate single cells, requires specialist 
equipment. 

• Requires whole genome amplification step – see limitations 
above. 

• Biases introduced during genome amplification mean that it 
is usually only possible to recover partial genomes. 

• Prone to contamination. 
Flow-sorting 124  • High throughput means to sort cells of interest. 

• Targeted approach - can select specific taxa, including those 
that might be rare members of the microbial community. 

 

• Expensive equipment, requiring specialist operators. 
• Requires intact cells. 
• Any cells in the sample that are attached to surfaces or fixed 

in structures e.g. biofilms may not be recovered. 
• Flow rates and sort volumes limit the number of cells that 

can be collected. 
In situ 
enrichment 125 

• Simplifies microbial community structure - can make it easier 
to assemble genomes from metagenomics data. 

• Presence of particular taxa within enriched samples can give 
clues as to their functional roles within the microbial 
community. 

• Requires that cells of interest can be maintained stably in a 
microcosm over the entire enrichment period 

• Simplifies microbial community structure - biases results in 
favour of organisms that were able to thrive within the 
microcosm. 

Culture/microcult
ure 71 

• Cultured isolates can be extensively tested for phenotypic 
features. 

• Reference genomes can aid metagenomics assemblies. 
• Functional data can improve metagenomics annotations.  
• Places genomic data within its correct phylogenetic context. 

• Low throughput, can be highly labor intensive. 
• Extremely biased - many microbes are inherently difficult to 

culture in the laboratory. 
• Unlikely to recover rarer members of a microbial 

community, as cultured isolate collections will be dominated 
by the most abundant organisms. 

Sequence capture 
technologies 126 

• Oligonucleotide probes can be used to identify species of 
interest as recently demonstrated for culture-independent 
viral diagnostics 

• By focusing only on species of interest, higher sensitivity can 
be achieved particularly when large amounts of host 
contamination are present 

• Capture kits can be expensive 
• Like PCR, capture fails when target organisms vary compared 

to the reference sequences used to design the probes 
• Genome coverage of targeted organisms can be uneven, 

affecting assemblies 

Immunomagnetic 
separation  127 

• Targeted approach - can enrich specific taxa, including those 
that might be comparatively rare members of the microbial 
community 

• Far less expensive than many other targeted enrichment 
techniques such as single cell genomics or flow sorting. 

• Less technically challenging and time consuming than other 
targeted enrichment techniques. 

• Requires intact cells. 
• Requires a specific antibody for the target cells of interest. 
• If target cell numbers are low, whole genome amplification 

may be needed following cell separation – see limitations 
above. 

Background (e.g. 
human / 
eukaryotic) 
depletion 
techniques 128 

• Particularly useful for samples where microbial cell numbers 
are much lower than eukaryotic cells (e.g. biopsies) 

• Improves sensitivity - enhanced detection of microbial 
genomic data. 

• Lower sequence depth required to obtain good coverage of 
microbial genomes, reduced sequencing costs. 

• Relatively inexpensive, not technically challenging. 

• Concomitant loss of bacterial DNA of interest can occur 
during processing steps, can bias subsequent microbiome 
profiling. 

• May introduce contamination. 

Table 1: Summary of the advantages and limitations of methods to enrich for microbial cells/DNA before  566 

sequencing. 567 



 

 568 

569 

Dataset 
Metagenomi
c assembly 

method 

Assembly statistics for contigs longer than 1kb  
(values in parenthesis refers to perfect contigs* only) 

# contigs Total assembly size Reconstruction % N50† % identity

Env. Mock 
community 

55 (C.Q) 

MetaSPAdes 
16.22k 

(11.26k) 
150.47M (108.39M) 80.93% (58.30%) 

26.46k 
(25.88k) 

99.86% 
(99.96%)

MegaHIT 
21.82k 

(16.67k) 
146.72M (124.67M) 78.91% (67.05%) 

16.94k 
(17.94k) 

99.93% 
(99.98%)

HMP Mock 
community 2 

(N.S.) 

MetaSPAdes 
0.72k 

(0.42k) 
62.67M (31.95M) 95.15% (48.50%) 

260.45k 
(178.28k) 

99.98% 
(99.99%)

MegaHIT 
1.43k 

(1.14k) 
62.09M (54.56M) 94.27% (82.84%) 

124.02k 
(113.11k) 

99.99% 
(99.99%)

Table 2: Comparative evaluation of metagenomic assembly on mock microbial communities with 570 

known composition.  571 

 572 

Sample‡ Assembler #genes§ 

#matches 
against nr 

(95% 
identity) 

# of 
species 

observed 
(nr at 95% 

identity)  

Median # 
of single 

core 
genes 

# of 
annotated 

COGs  

# of 
annotated 

KEGG 
orthologues

Env Mock 
community 

55 (C.Q) 

MetaSPAdes 164750 154403 103 49.5 100681 91376 

MegaHIT 164146 154185 105 49 97119 91035 

HMP Mock 
community 

2 (N.S.) 

MetaSPAdes 62850 61362 30 20 44625 36082 

MegaHIT 63304 61617 38 20 44289 36394 

Gut 
sample 2 

 

MetaSPAdes 169399 111119 365 44.5 79414 76500 

MegaHIT 166289 109777 381 41.5 77666 75020 

Ocean 
sample 6 

MetaSPAdes 124251 7397 118 42 51138 68633 

MegaHIT 151627 7987 110 60.5 67979 87344 

Soil 
sample 129 

MetaSPAdes 34118 7411 86 4 10448 15312 

MegaHIT 44396 11008 132 11.5 17671 22524 

                                                 
* ‘perfect contigs’ are those contigs reconstructed by metagenomic assembly that have a match with 
>99% identity with the reference genome over the full length of the contig. Notably, ‘perfect contigs’ 
excludes chimeric contigs. 
† The N50 value corresponds to the size of the contig for which longer contigs represent at least half of 
the total assembly 
‡ All samples have been subsampled to 50 million reads for inter sample comparability 
§ total number of genes identified from the assembled contigs using Prodigal 



Table 3: Comparative evaluation of metagenomic assembly of a set of metagenomes from diverse 573 

environments. Functional annotations performed as previously described 61(C.Q.,N.J.L).  574 

 575 

Table 4. Strengths and weaknesses of assembly-based and read-based analyses for primary analysis of 576 

metagenomics data. 577 

 578 

 Assembly-based analysis Read-based analysis (“Mapping”) 

Comprehensiveness Can construct multiple whole 
genomes but only for organisms 
with enough coverage to be 
assembled and binned 

Can provide an aggregate picture of 
community function or structure, but is 
only based upon the fraction of reads that 
map effectively to reference databases 

Community 
complexity 

In complex communities only a 
fraction of the genomes can be 
resolved by assembly 

Can deal with communities of arbitrary 
complexity given sufficient sequencing 
depth and satisfactory reference database 
coverage 

Novelty Can resolve genomes of entirely 
novel organisms with no sequenced 
relatives 

Cannot resolve organisms for which 
genomes of close relatives are unknown 

Computational 
burden 

Assembly, mapping and binning are 
all computationally costly steps 

Can be performed efficiently, enabling 
large meta-analyses 

Genome resolved 
metabolism 

Can link metabolism to phylogeny 
through completely assembled 
genomes, even for novel diversity 

Can only typically resolve the aggregate 
metabolism of the community, links with 
phylogeny are only possible in the context 
of known reference genomes 

Expert manual 
supervision 

Manual curation required for 
accurate binning/scaffolding, and 
for misassembly detection 

Manual curation usually not needed, 
although the selection of reference 
genomes to use could involve human 
supervision. 

Integration with 
microbial genomics 

Assemblies can be  fed into 
microbial genomic pipelines 
designed for analysis of genomes 
from pure cultured isolates 

Obtained profiles cannot be directly put 
into the context of genomes derived from 
pure cultured isolates 

 579 

 580 

Box 1. Limitations and opportunities in metagenomics. 581 



Limitations of shotgun metagenomics 582 

“Entry-level access” issues. It is still expensive to sequence and analyze large numbers of metagenomes without 583 
access to sequencing and computational facilities. Improved sequencing platforms and cloud computing facilities 584 
should decrease these entry-level costs. 585 

Comprehensiveness of genome catalogs. The set of >50,000 microbial genomes available is biased toward model 586 
organisms, pathogens, and easily cultivable bacteria. All metagenomic computational tools, to some extent, rely on 587 
available genomes and they are thus affected by the biases in the reference sequence resources. 588 

Biases in functional profiling. Profiling of the functional classes present in a metagenome is hindered by the lack of 589 
validated annotations for most genes, an issue that can be mitigated only by expensive and low-throughput gene-590 
specific functional studies. Moreover, intrinsic microbiome properties such as its average genome size can critically 591 
impact the quantitative profiling 130. 592 

Microbial dark matter. Several members of a microbiome might have not been characterized before with culture-593 
based methods or with metagenomics. This is regarded as microbial dark matter, and assembly-based approaches 594 
can recover part of this unseen diversity. A fraction of reads may still remain unused after assembly, and the size of 595 
this fraction is highly dependent on community structure and complexity (e.g. see the analysis reported in Table 2 596 
and 3). It is also impacted by features such as sequencing noise, contaminant DNA, and microbes and plasmids that 597 
remain taxonomically obscure even after assembling part of their genome. 598 

“Live or dead” dilemma. DNA persists in the environment after the death of the host cell, so the sequencing 599 
results may not be representative of the active microbial population. Compounds such as propidium monazide, 600 
which binds to free DNA, as well as DNA within dead or damaged cells, or techniques such as metatranscriptomics, 601 
may be used if the aim is to study the active microbes. 602 

“Curse of compositionality”. Quantitative metagenomic features are reported as fractional values without links to 603 
the real absolute concentration. Variations in the true concentration of organisms across samples can thus 604 
produce false correlations. For example, if a highly abundant organism doubles its concentration in two otherwise 605 
identical samples, all the other organisms in the sample will appear to be differentially abundant after 606 
normalization. 607 

Mucosa-associated microbiome sequencing. Human mucosal tissues are crucial interfaces between microbes and 608 
the immune system, but sequencing the mucosal microbiome with shotgun metagenomics is very challenging due 609 
the extremely high fraction of human DNA and the low microbial biomass. 610 

 611 

Challenges in shotgun metagenomics 612 

Integrative meta-omics. Complementing DNA sequencing with RNA, protein, and metabolomic high-throughput 613 
assays is possible with shotgun metatranscriptomics, mass-spectrometry-based metaproteomics and 614 
metabolomics 74. Despite the potential of these technologies, it is unclear how to integrate and analyze meta-omic 615 
data within a common framework. 616 

Virome shotgun sequencing. Viral organisms can be detected by shotgun metagenomics, but virome enrichment 617 
techniques are usually needed to access a broader set of viruses. Virome analysis is also computationally 618 
challenging because of limited availability of viral genomes and a lack of inter-family phylogenetic signals. 619 

Strain-level profiling. The genomic resolution of single isolate sequencing is still higher than what can be achieved 620 
for single organisms in a metagenomic context. Increasing the profiling resolution to the level of single strains 621 
would be crucial for in depth population genomics and microbial epidemiology. 622 



Longitudinal study designs. Many shotgun metagenomic studies are cross-sectional and thus unpowered for 623 
assessing inter versus intra subject variability and microbiome temporal evolution. Tools for longitudinal settings 624 
have been developed 61 but more methods and data are needed to investigate the temporal dimension 131. 625 

Disentangling cause from effect. Hypotheses from metagenomic studies should be followed up with experimental 626 
work to validate correlations and associations. Longitudinal and prospective settings can potentially provide direct 627 
insights into the causative dynamics of conditions of interest. 628 

Validation of microbiome biomarkers. Microbiome biomarkers of a given condition are often strongly study-629 
dependent. It is thus crucial to validate biomarkers across technologies and cohorts to enhance reproducibility and 630 
minimize batch effects. 631 

Data sharing, open data, open source, and analysis reproducibility. Data and metadata sharing is strongly 632 
encouraged, raw data deposition is usually requested prior to publication, and open source software is desirable. 633 
However, metagenomics has still to reach the level of standardization that is characteristic of other more 634 
established high-throughput techniques. 635 

 636 

 637 

Supplementary Box 1. Common difficulties in Study design: problems and some recommended 638 

solutions.  639 

Powering the study / Read depth requirements. The number of samples and sequencing depth required to be 640 
able to detect significant differences will depend on factors such as consistency of microbiome composition 641 
between different samples, the inherent microbial diversity of the samples, and effect size of the phenomenon 642 
being studied. Solution: These decisions can often be guided by results from previous studies in the same type of 643 
environment. In cases where this information is lacking it may be prudent to carry out preliminary marker gene-644 
based studies to gauge the relative impact of each of the factors listed opposite. 645 

Confounding variables and control groups. It is often very difficult to select a control group to compare against 646 
the samples of interest that is free from other confounding variables. An example of this is rodent microbiome 647 
research, where cage and animal batch effects can result in dramatic differences in microbiome composition, 648 
independent of the variable being studied 25. Another example is the cross-sectional study of the microbiome 649 
associated with a disease for cases in which the patients cannot be sampled in the absence of active treatment. 650 
Solution: Current best practice is to collect as much metadata about each of the study groups as possible and 651 
factor these into the subsequent analyses when comparing groups. For clinical samples this typically includes 652 
features such as gender, age, antibiotic/medication use, location, dietary habits, and Bristol stool chart scores. For 653 
environmental samples this commonly includes associated parameters such as geographic location, season, pH, 654 
temperature etc. Further extensive advice for planning rodent microbiome studies is available 25. Longitudinal 655 
sampling from the same patient/location can also act as an additional control, especially when longitudinal 656 
changes can be correlated with associated metadata. 657 

Sample collection/preservation. It may be difficult to process and store all samples in exactly the same way (for 658 
example when samples are provided from a number of locations by different research groups). With longitudinal 659 
studies, samples collected at the final time point may spend less time in frozen storage prior to DNA extraction 660 
than samples collected at other time points. Such changes in sampling and preservation procedures may introduce 661 
systematic biases. Solution: Where possible, collection and preservation methodologies should be standardized 662 
throughout for all samples within a given study. All procedures used should also be recorded and included as 663 
pertinent metadata when carrying out subsequent data analyses. This should ideally include factors such as time 664 



between collection and DNA extraction, length of time in frozen storage, and number of freeze-thaw cycles. For 665 
mammalian gut samples there is some evidence that storage in glycerol may result in more representative 666 
compositional results following long term frozen storage 132. Similarly, freeze drying prior to long-term frozen 667 
storage may be a prudent approach 133. 668 

Biomass/Contamination. Modern sequence based technologies are highly sensitive, meaning very small amounts 669 
of DNA are sufficient for sequencing. However, common laboratory kits and reagents are not sterile, meaning that 670 
any contamination that is present in these can potentially overwhelm the “real” signal in samples containing only a 671 
very low microbial biomass 34. Solution. It is prudent to gauge the level of biomass present in samples before 672 
sequencing using a quantitative approach such as qPCR. Samples containing fewer than 105 microbial cells appear 673 
to be most impacted by background contamination 34. Table 1 offers some approaches that may be tried in order 674 
to enrich cell numbers/DNA yields from samples prior to sequencing. Negative control samples, that have been 675 
processed using the same kits/reagents as the actual samples, should be sequenced in order to determine the 676 
types of contaminating microbes present. Sequence data derived from these contaminants might then be removed 677 
bioinformatically from the final sequence datasets. Note that the sensitivity of these negative controls can be 678 
enhanced by the use of carrier DNA 134. 679 

Choice of DNA extraction methodology. This step can hugely impact the results of a metagenomics study. If the 680 
approach selected is not stringent enough to extract DNA from some cell types they will not be represented 681 
accurately in the subsequent sequence data. Fundamentally, the optimal type of DNA extraction approach will 682 
depend on the underlying composition of the cell types that are present within a given sample. Unfortunately this 683 
can vary greatly, even within the same type of sample (e.g. the faeces of some humans are dominated by Gram 684 
negative species with cell walls that are relatively easy to disrupt, while those of others are dominated by relatively 685 
recalcitrant Gram positive species). As a result, no one DNA extraction approach will work optimally for all sample 686 
types. Solution: The use of defined mock community controls 2 consisting of cultures derived from a mixture of the 687 
types of species that are common within a given environment can be a useful starting point to test the efficiency 688 
and accuracy of different DNA extraction methods. Mock communities can be optimized by including a 689 
phylogenetically diverse collection of species that are known to be commonly abundant in the sample type being 690 
studied. However, it is difficult to mimic the complexity of real microbial communities using simplified mocks, and 691 
impossible to test for the efficiency of the extraction step for unknown/uncultured organisms. Much evidence 692 
suggests that incorporating a bead-beating step into the DNA extraction process improves yield and 693 
representativeness of resulting species profiles compared to chemical-only lysis 31,135(ref#133 C.Q.,N.J.L.). 694 
However, this type of approach does typically result in more sheared DNA, potentially limiting the power of 695 
burgeoning long read sequencing technologies. DNA extraction methodology should also be included as crucial 696 
metadata when uploading sequence data to public repositories. This allows variance in methodology choices to be 697 
factored into subsequent meta-analyses that incorporate metagenomic datasets from different laboratories. 698 
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