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1. INTRODUCTION

In recent years, the electromagnetic imaging (EI) of dielectric
targets has been considered as a potential inspection tool, which
can be used in a stand alone way or, better, in a synergic way,
with other and more consolidated diagnostic modalities (e.g.,
X-ray or ultrasounds) [1][2][3][4][5][6][7][8][9][10]. In general,
when the frequencies at hand are such that the corresponding
wavelengths are comparable with the geometrical dimensions
of the targets to be inspected, an inverse scattering (IS) problem
has to be solved [1][3][11]. In this case, the imaging system mea-
sures samples of the electromagnetic field, which is scattered by
the target once it has been illuminated by a proper source. As
in radar imaging, the measured samples are the input data for
algorithms devoted to extract information on the target under
test. In this scenario, most tomographic imaging approaches
pursue the goal of providing the whole distributions of the di-
electric parameters of the target under test. Of course, simpli-
fied information can be sufficient in several applications (e.g.,
the shape and/or the position of the target can be sufficient in
non-destructive testing, where a defect in a known structure
could be the target to be retrieved). However, the possibility
of directly retrieving the distributions of the dielectric param-
eters of a target (dielectric permittivity and electric conductiv-
ity) is just one of the main features of EI at microwave frequen-

cies and this information can be hardly extracted by using other
techniques.

Nevertheless, EI methods suffer from several well known lim-
itations. Firstly, the fully nonlinear IS equations [1] must be
solved to inspect strong scatterers. As it is well known, this rep-
resents a very ill posed problem with a high numerical complex-
ity [11]. Moreover, the nonlinearity is associated to the prob-
lem of the possible presence of false solutions, which introduce
constraints on the unknowns that can be reconstructed given a
certain measurement configuration [12][13][14]. Although sev-
eral techniques have been proposed in the past to face this prob-
lem in a straightforward way, the computational burden still re-
mains prohibitive if a fine discretization (i.e., a high spatial reso-
lution) is required. In summary, two questions essentially arise
in addressing full wave nonlinear IS: how to face the nonlin-
earity and the ill-posedness of the problem and how to reduce
the computational complexity without introducing approxima-
tions on the model (i.e., Born or Rytov first order approxima-
tions). Considerable progress has been made concerning the
first question. In fact, very good nonlinear methods and regu-
larization approaches exist. Concerning the regularization pro-
cedure, their main limitation is the need to set some parameters,
which are essentially application-dependent. In [15][16][17][18]
the present authors have developed an approach based on an
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Fig. 1. Three-dimensional imaging configuration: investiga-
tion domain Dinv and observation domain Dobs.

inexact-Newton/Landweber scheme (INLW) that is composed
by two nested loops and provides quite good reconstructions
with both synthetic and real input data. As far as the compu-
tational complexity is concerned, it has been addressed in sev-
eral different ways in the scientific literature. Recently, spar-
sity concepts have been exploited (e.g., in the application of
the so called compressive sensing [19][20][21][22]) or hybrid
formulations have been applied in which the features of ap-
proximate and rigorous IS methods are combined according
to suitable strategies for improving the overall solution qual-
ity [3]. Another point of view is the iterative focusing of the
solution towards the regions of interest (RoIs) in which the tar-
get is estimated to lie. In such a way, all the computational re-
sources can be spent to reconstruct the dielectric distributions
of such regions, fulfilling the theoretical requirements based on
the degrees of freedom of the scattered electromagnetic field
[12]. In this framework, preliminary ideas concerning the pos-
sibility of such kind of focusing have been initially proposed in
[23][24][25][26]. Following these suggestions, an iterative mul-
tiscale focusing approach (IMSA) has been introduced in [27]
and successively assessed in [28][29]. The idea of combining
the INLW method with the IMSA has been proposed in [30]
and then extended in [31] for inspecting targets buried in a ho-
mogeneous half space. However, these approaches, as most of
the ones so far proposed for the solution of IS problems, have
been developed with reference to two-dimensional (2D) con-
figurations illuminated by transverse magnetic (TM) and elec-
tric (TE) incident waves [32][33][34]. This formulation is valid
only for cylindrical targets whose dielectric properties do not
change (or change very slowly) along one of the coordinates
(corresponding to the cylindrical axis). Conversely, inspecting
3D targets requires to consider the full vector 3D inverse scat-
tering problem, which is more complex than the corresponding
2D scalar one involved in 2D imaging. Although the idea of 3D
EI is old [35][36], only today computer power makes it possi-
ble to address quite realistic targets. Accordingly, 3D imaging
methods have been recently proposed and tested (see, for exam-
ple, [37][38][39][40][41][42][43][44] and the references therein).
However, the computational complexity remains a key issue.
In this context, this paper proposes for the first time the appli-
cation of the combined strategy INLW/IMSA to 3D configura-
tions (IMSA-INLW-3D) starting from input data obtained by the
full wave solution of Maxwell equations. The choice of combin-
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Fig. 2. Flow chart of the IMSA-INLW-3D method.

ing 3D IN strategies with multi-scaling solution techniques is
motivated by the fact that (i) iterative multi-focusing methods
keep (at each discretization step) the ratio between the available
independent data and the number of unknowns as large as pos-
sible [27][28][30], thus reducing the occurrence of local minima
[14] in the associated 3D inverse problem, (ii) accordingly, effec-
tive algorithms based on local search methods operating on iter-
ative linearized formulations of the inverse scattering equations
[45] can be effectively used avoiding local minima issues, and
(iii) IMSA strategies also enable a significant mitigation of com-
putational complexity issues with respect to their “bare” coun-
terparts, which is of fundamental importance when complex
3D scenarios are at hand. Despite such advantages, integrated
IMSA-IN techniques have never been developed and validated
in 3D formulations, and the associated operative guidelines and
achievable performance have not been investigated.

In the following, the mathematical formulation of the approach
is described in details in Section 2, whereas Section 3 reports a
wide numerical analysis aimed at evaluating capabilities and
limitations of the proposed approach. A preliminary experi-
mental result has also been included. Finally, some conclusions
are drawn in Section 4.

2. MATHEMATICAL FORMULATION

Let us consider a 3D inhomogeneous scatterer located in a ho-
mogeneous background (free space), as sketched in Fig. 1.
The target is characterized by a complex dielectric permittivity

given by ǫ̃ (r) = ǫ0(ǫr (r)− j
σ(r)
ωǫ0

), where ǫ0 is the vacuum di-

electric permittivity, ǫr (r) is the relative permittivity, and σ (r)
is the electric conductivity, both of them changing with the posi-
tion vector r. In this paper, we consider a multi-static and multi-
view (v = 1, ..., V, V being the number of views) measurement
configuration. However, in the following mathematical formu-
lation, only a single view (V = 1) case is treated, the extension
to the multi-view (V > 1) configuration being straightforward.

A. Electromagnetic model

The target, which is assumed to be non-magnetic (i.e., with
a magnetic permeability µ (r) = µ0, µ0 being the magnetic
permeability of vacuum) is illuminated by an incident electro-

magnetic field Ei (r) = Ex
i (r) x̂ + E

y
i (r) ŷ + Ez

i (r) ẑ, Hi (r) =
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Fig. 3. Calibration with SNR = 20 dB. Total reconstruction er-
ror, 2D cuts: (a) number of Landweber iterations vs. number of
inexact-Newton iterations; (b) IMSA threshold value vs. num-
ber of inexact-Newton iterations; (c) IMSA threshold value vs.
number of Landweber iterations.

Hx
i (r) x̂ + H

y
i (r) ŷ + Hz

i (r) ẑ. The background medium is vac-
uum (characterized by ǫ0 and µ0). Under these assumptions,
the following Maxwell’s equations hold:

∇× E (r) = −jωµ0H (r) (1)

∇× H (r) = +jωǫ̃ (r) E (r) (2)

where a time-dependence ejωt has been assumed and omitted
in the following. By using the equivalence principle and split-
ting the total field vectors E (r) = Ex (r) x̂ + Ey (r) ŷ + Ez (r) ẑ,
H (r) = Hx (r) x̂ + Hy (r) ŷ + Hz (r) ẑ as the sum of the inci-
dent and scattered fields (that is, E (r) = Ei (r) + Es (r), H (r) =
Hi (r) + Hs (r)), the equations below can be deduced from (1)
and (2) [46]

∇× Es (r) = −jωµ0Hs (r) (3)

∇× Hs (r) = +jωǫ0Es (r) + ǫ0τ (r) E (r) (4)

where τ is the so-called contrast function, which is given by

τ (r) =
ǫ̃(r)−ǫ0

ǫ0
= ǫr (r)− j

σ(r)
ωǫ0

− 1. The resulting scattered field
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Fig. 4. Comparison between IMSA-INLW-3D and the bare
INLW-3D approach. Three-dimensional representations of the
contrast function τ in the investigation domain Dinv. Voxels
having ℜ{τ(x, y, z)} > 0.5: (a) true object; (b) bare INLW-
3D reconstruction; (c) IMSA-INLW-3D reconstruction with
s = sbest = 4. Cuts along the three coordinate planes: (d) true
object; (e) bare INLW-3D reconstruction; (f) IMSA-INLW-3D
reconstruction with s = sbest = 4. Dielectric cube used for
calibration, SNR = 20 dB.

Es (r) = Ex
s (r) x̂ + E

y
s (r) ŷ + Ez

s (r) ẑ = E (r) − Ei (r), i.e., the
solution of (3) and (4), can be expressed in integral form as [3]

Es (r) = −ω2µ0ǫ0

∫

Dinv

τ
(

r
′
)

E
(

r
′
)

· G0

(

r, r
′
)

dr
′

(5)

where G0 is the dyadic Green’s function for free space [46]. The
integral in (5) should be extended to the volume occupied by
the target. However, since it is a problem unknown, we assume
the object to be included in the fixed volume Dinv (i.e., the in-
vestigation domain of Fig. 1). If the total field E (r) is known
from measurements outside Dinv, (5) turns out to be a nonlinear
integral equation describing the full three-dimensional vector
inverse problem. The unknowns are represented by τ and the
vector field E (r) inside Dinv. Equation (5) can be rewritten in
operator form as (“data equation”)

Es (r) = ΨD (τE) (r) , r /∈ Dinv (6)

with

ΨDf(r) = −ω2µ0ǫ0

∫

Dinv

f(r) · G0

(

r, r′
)

dr
′
, r /∈ Dinv (7)



Research Article Journal of the Optical Society of America A 4

-0.5
-0.25

 0
 0.25

 0.5 -0.5
-0.25

 0
 0.25

 0.5-0.5

-0.25

 0

 0.25

 0.5

z [λ]

x [λ]

y [λ]

z [λ]

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

R
e{

τ(
x,

y,
z)

}

-0.5
-0.25

 0
 0.25

 0.5x [λ] -0.5
-0.25

 0
 0.25

 0.5

y [λ]

-0.5

-0.25

 0

 0.25

 0.5

z [λ]

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

R
e{

τ(
x,

y,
z)

}

(a) (d)

-0.5
-0.25

 0
 0.25

 0.5 -0.5
-0.25

 0
 0.25

 0.5-0.5

-0.25

 0

 0.25

 0.5

z [λ]

x [λ]

y [λ]

z [λ]

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

R
e{

τ(
x,

y,
z)

}

-0.5
-0.25

 0
 0.25

 0.5x [λ] -0.5
-0.25

 0
 0.25

 0.5

y [λ]

-0.5

-0.25

 0

 0.25

 0.5

z [λ]

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

R
e{

τ(
x,

y,
z)

}

(b) (e)

-0.5
-0.25

 0
 0.25

 0.5 -0.5
-0.25

 0
 0.25

 0.5-0.5

-0.25

 0

 0.25

 0.5

z [λ]

x [λ]

y [λ]

z [λ]

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

R
e{

τ(
x,

y,
z)

}

-0.5
-0.25

 0
 0.25

 0.5x [λ] -0.5
-0.25

 0
 0.25

 0.5

y [λ]

-0.5

-0.25

 0

 0.25

 0.5

z [λ]

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

R
e{

τ(
x,

y,
z)

}

(c) (f )

Fig. 5. Three-dimensional representations of the contrast
function τ in the investigation domain Dinv. Voxels having
ℜ{τ(x, y, z)} > 0.1: (a) true object; (b) bare INLW-3D recon-
struction; (c) IMSA-INLW-3D reconstruction with s = sbest = 6.
Cuts along the three coordinate planes: (d) true object; (e) bare
INLW-3D reconstruction; (f) IMSA-INLW-3D reconstruction
with s = sbest = 6. Dielectric cube, SNR = 20 dB.

In order to solve (6), a second operator equation is needed. It
is obtained by evaluating (5) at points inside Dinv (“state equa-
tion”), that is,

Ei (r) = E (r)− ΨS (τE) (r) , r ∈ Dinv (8)

where the involved operator is defined as

ΨSf(r) = −ω2µ0ǫ0

∫

Dinv

f(r) · G0

(

r, r′
)

dr
′
, r ∈ Dinv (9)

Equations (6) and (8) can be combined together in order to ob-
tain the operator vector equation

Es (r) = ΨD

(

T
(

(I − ΨST)−1 Ei

))

(r)

= F(τ)(r), r /∈ Dinv (10)

where T is an operator defined as T(g)(r) = τ (r) g(r), r ∈ Dinv.
Starting from this equation, the goal of the inverse scattering
problem is to retrieve the unknown contrast function τ in the in-
vestigation domain Dinv given the measured scattered electric
field Es inside the so-called observation domain Dobs. A numeri-
cal counterpart of (10) can be obtained after the discretization of
the continuous model. In particular, Dinv is partitioned into N
cubic cells (voxels) and the field vector E is assumed to be mea-
sured in a set of M measurement points located outside Dinv

and constituting the observation domain Dobs. The equation
can be written as

Ēs = F̄(τ) (11)

where Ēs is a 3M-element array containing the values
of the three components of the scattered field vector
measured at the M measurement points, i.e., Ēs =

[Ex
s (r1), E

y
s (r1), Ez

s (r1), . . . , Ex
s (rM), E

y
s (rM), Ez

s (rM)]T, and τ =
[τ(r1), . . . , τ(rN)]

T is an array containing the N values of the
contrast function at the centers of the N voxels in which Dinv

is divided. Finally, F̄ denotes the discretized counterpart of the
operator F. In order to acquire multi-illumination multi-view
information, the target is successively illuminated by a set of V
incident field vectors Ev

i , v = 1, . . . , V. In this case, the size of
the numerical array containing the scattered field data is multi-
plied by a factor V.

B. Multiscaling inversion algorithm

The inversion of the nonlinear scattering equation (11) to recon-
struct the contrast function τ gives rise to a strongly ill-posed
problem. Therefore, we adopt here the INLW method presented
in [15][17][18] combined with the IMSA strategy [27][28][30].
A flow chart of the developed integrated inversion strategy is
shown in Fig. 2.

In general, for each IMSA focusing step, the domain is dis-
cretized according to a (non-uniform) 3D grid in which the di-
mension of each voxel is iteratively adapted to reduce their vol-
ume in the detected scatterer region, while keeping the overall
number of voxels (i.e., unknowns) as close as possible to the
amount of available information [27][28][30]. It is worth noting
that this is not in general sufficient to completely avoid local
minima [14]. However, IMSA tries to keep the ratio between in-
dependent data and unknowns as large as possible to increase
the robustness with respect to false solutions. Such a procedure
is particularly challenging in the 3D case since (i) at each itera-
tion, the multi-scale gridding of the investigation domain must
guarantee the coherence of the final voxel layout (i.e., the entire
volume under investigation must be fully discretized), which is
much more complex to be met than in the 2D case, and (ii) un-
like standard meshing procedures, this goal must be achieved
without increasing the total number of voxels in the investiga-
tion domain. The s-th step discretized inverse problem is then
handled by a Gauss-Newton loop that provides a linearization
of the 3D vector scattering equation (10), which is subsequently
solved (in a regularized way) with a truncated Landweber tech-
nique. More in detail, this combined approach has the follow-

ing scheme, in which s denotes the IMSA iteration, D
(s)
inv is the

investigation area at the s-th IMSA iteration, and τ
(s)
i denotes

the array containing the values of the contrast function at the i-
th iteration of the solving Gauss-Newton loop at the s-th IMSA
iteration.

1. Initialization of the inversion algorithm at the coarsest
scale (s = 1). In this first step, the investigation domain
is discretized using a uniform grid with N = NI MSA vox-
els (i.e., a relatively “coarse” discretization is used to image
the domain), and the associated problem is solved for com-
puting the starting point for the multi-focusing procedure
by using the algorithm described in Section C. In this ini-

tialization phase, we assume D
(1)
inv = Dinv, i.e., the region

of interest coincides with the whole investigation area and
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Table 1. Relative reconstruction errors for both the bare INLW-
3D and the IMSA-INLW-3D approaches. Dielectric cube,
SNR = 20 dB.

INLW-3D IMSA-INLW-3D

Ξtot 9.29 × 10−2 1.38 × 10−2

Ξint 2.47 × 10−1 9.65 × 10−2

Ξext 7.72 × 10−2 5.57 × 10−3

it is discretized into NI MSA subdomains. An empty investi-

gation area (i.e., τ
(1)
0 is a null N -element array) is assumed

as initial guess if no information on the target properties is
available;

2. At step s, the contrast function τ(s) is found by solving
(10) in a regularized sense in the current region of interest

D
(s)
inv. To this end, the inexact-Newton approach described

in Section C is used.

3. Identification of the new region of interest D
(s+1)
inv on the

basis of the detected target location (e.g., a clustering tech-

nique [27] can be used) and discretization of D
(s+1)
inv into

NI MSA cells. More specifically, the barycenter of D
(s+1)
inv is

computed as follows [29]

c(s+1) =
∑

R(s)
r=1 ∑

N
(s)
r

n(r)=1

{

cn(r)τ
(s)

(

rn(r)

)}

∑
R(s)
r=1 ∑

N
(s)
r

n(r)=1

{

τ(s)
(

rn(r)

)}
(12)

where c = {x, y, z} and R (s) = s is the number of resolu-

tion levels at the s-th step. Moreover, the side of D
(s+1)
inv is

computed as follows

L(s+1) = 2

∑
R(s)
r=1 ∑

N
(s)
r

n(r)=1

{

ρn(r)c(s)τ
(s)(rn(r))

max
n(r)=1,...,N

(s)
r
{τ(s)(rn(r))}

}

∑
R(s)
r=1 ∑

N
(s)
r

n(r)=1

{

τ(s)(rn(r))
max

n(r)=1,...,N
(s)
r
{τ(s)(rn(r))}

} (13)

where

ρn(r)c(s) =

√

(

xn(r) − x(s)
)2

+
(

yn(r) − y(s)
)2

+
(

zn(r) − z(s)
)2

.

(14)

4. Iteration from step 2 until a predefined number of IMSA
scaling steps is reached (s = S) or a stationarity criterion is
fulfilled, such as

|L(s+1)− L(s)|

L(s)
< ηth (15)

where ηth is a given threshold value. The scaling step s for
which the condition (15) is satisfied is denoted as sbest.
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Fig. 6. Evolution of the fitness function Φ versus the iteration
number for (a) bare INLW-3D method; (b) IMSA-INLW-3D
method for different values of SNR. In the IMSA-INLW-3D
method, vertical dashed lines delimit the IMSA steps. Dielec-
tric cube.

C. Inexact-Newton method

According to the algorithm described in Section B, at any IMSA
iteration s , the array containing the values of the contrast func-
tion is obtained by the following steps [16, 17]:

1. Initialization of the procedure by setting i = 0 (i being the
iteration index of the outer inexact-Newton loop), with ini-

tial guess τ
(s)
0 . In the case of s > 1, the reconstruction ob-

tained at the previous scale s − 1 is employed for initializ-
ing the inexact-Newton method;

2. Linearization of the scattering equation (11) for yielding
the linear equation

F̄
′

τ
(s)
i

h̄
(s)
i = Ēd

i (16)

where F̄
′

τ
(s)
i

is the Jacobian matrix of F̄ calculated at τ
(s)
i [45],

h̄
(s)
i (to be found in the inner loop) is the increment with re-

spect to the currently reconstructed contrast function τ
(s)
i ,

and Ēd
i = Ēs − F̄(τ

(s)
i );

3. Computation of a regularized solution of the linear equa-

tion (16) with respect to the unknown h̄
(s)
i , by using a trun-

cated Landweber scheme, i.e.,






















h̄
(s)
i,0 = 0̄

h̄
(s)
i,k+1 = h̄

(s)
i,k +

−αF̄
′∗

τ
(s)
i

(

F̄
′

τ
(s)
i

h̄
(s)
i,k − Ēd

i

)

(17)
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Fig. 7. Three-dimensional representations of the contrast
function τ in the investigation domain Dinv. Voxels having
ℜ{τ(x, y, z)} > 0.5: (a) true object; (b) IMSA-INLW-3D re-
construction with SNR = 5 dB; (c) IMSA-INLW-3D recon-
struction with SNR = 40 dB. Cuts along the three coordi-
nate planes: (d) true object; (e) IMSA-INLW-3D reconstruction
with SNR = 5 dB; (f) IMSA-INLW-3D reconstruction with
SNR = 40 dB. Dielectric sphere.

with α =

∥

∥

∥

∥

F̄
′∗

τ
(s)
i

F̄
′

τ
(s)
i

∥

∥

∥

∥

−1

as constant step length. In (17), F̄
′∗

τ
(s)
i

denotes the adjoint matrix of F̄
′

τ
(s)
i

, and k is the inner itera-

tion index. The iterations are stopped when a maximum
number of inner steps K is reached;

4. Update of the current contrast function as

τ̄
(s)
i+1 = τ̄

(s)
i + h̄

(s)
i,K ; (18)

5. Iteration of the inversion procedure from step 2, setting i =
i + 1, until a predefined stopping criterion is verified or a
maximum number of outer Gauss-Newton iterations I is
reached;

It is worth noting that the number of inner steps K represents a
regularization parameter for the solution of (16) in the nested
truncated Landweber algorithm [11]. Therefore, if a proper
number of Landweber iterations is executed, a regularizing be-
havior can be easily obtained.
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Fig. 8. Three-dimensional representations of the contrast
function τ in the investigation domain Dinv. Voxels having
ℜ{τ(x, y, z)} > 0.5: (a) true object; (b) bare INLW-3D recon-
struction; (c) IMSA-INLW-3D reconstruction with s = sbest = 6.
Two-dimensional cuts for z = 0 of the reconstructed distribu-
tions of the contrast function τ: (d) true object; (e) bare INLW-
3D reconstruction; (f) IMSA-INLW-3D reconstruction with
s = sbest = 6. L-shaped object, SNR = 20 dB.

3. NUMERICAL AND EXPERIMENTAL RESULTS

The IMSA-INLW-3D algorithm has been validated with several
numerical simulations. Moreover, a preliminary experimen-
tal test has also been performed. The performance of the pro-
posed method has been also compared with the “bare” inexact-
Newton approach (INLW-3D), namely the standard inexact-
Newton/Landweber inversion method without the IMSA scal-
ing steps. In all simulations, the forward electromagnetic prob-
lem has been solved with the method of moments [47]. In order
to analyze the impact of the noise, the simulated scattered field
data at the measurement points r ∈ Dobs have been corrupted
by adding a Gaussian noise having zero mean value and stan-
dard deviation proportional to the signal-to-noise ratio (SNR).

The reconstruction error has been evaluated as

Ξreg =
1

Nreg
∑

rn∈Rreg

|ǫ̃(rn)− ǫ̃∗(rn)|

|ǫ̃(rn)|
(19)

where Dreg, with reg = {tot, int, ext} indicates the considered
region for the error computation, i.e., the whole investigation
domain, the actual object support, and the background region,
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Table 2. Relative reconstruction errors for both the bare INLW-
3D and the IMSA-INLW-3D method, for different values of
SNR. Dielectric sphere.

INLW-3D

SNR (dB) Ξtot Ξint Ξext

∞ 4.74 × 10−2 3.02 × 10−1 3.73 × 10−2

40 4.74 × 10−2 3.02 × 10−1 3.74 × 10−2

30 4.74 × 10−2 3.02 × 10−1 3.74 × 10−2

20 4.76 × 10−2 3.02 × 10−1 3.75 × 10−2

10 4.83 × 10−2 3.05 × 10−1 3.72 × 10−2

5 5.06 × 10−2 3.00 × 10−1 3.83 × 10−2

IMSA-INLW-3D

SNR (dB) Ξtot Ξint Ξext

∞ 1.74 × 10−2 2.10 × 10−1 1.07 × 10−2

40 1.74 × 10−2 2.10 × 10−1 1.07 × 10−2

30 1.74 × 10−2 2.10 × 10−1 1.07 × 10−2

20 1.78 × 10−2 2.09 × 10−1 1.07 × 10−2

10 1.84 × 10−2 1.83 × 10−1 1.12 × 10−2

5 2.91 × 10−2 1.69 × 10−1 2.07 × 10−2

respectively. In (19), ǫ̃(rn) and ǫ̃∗(rn) are the actual and the
reconstructed values of the dielectric permittivity in the n-th
sub-domain, while Nreg is the number of cells of the consid-
ered region. The fitness function, which quantifies the distance
between the reconstructed and the measured scattered electric
field, is defined as

Φ =

√

√

√

√

√

∑
V
v=1

∥

∥

∥
Ēv

s −
˜̄Ev

s

∥

∥

∥

2

∑
V
v=1 ‖Ēv

s ‖
2

(20)

where Ēv
s is the array containing all the scattered field measure-

ments (x, y, and z components) at the vth view, and ˜̄Ev
s is the

corresponding reconstructed counterpart.
The number of views, the number of measurement points, and
the discretization used for solving the IS problem have been
chosen on the basis of the degrees of freedom of the scattered
field calculated by using the Effective Bandwidth (EB) approach
[12][13]. Accordingly, V and M have been set to V = M =
⌊

12π
(

LDinv
λ

)2
⌋

, LDinv
being the side of a cubic investigation do-

main, while

NI MSA =









3

√

72π2

(

LDinv

λ

)4








3

(21)

has been chosen for discretizing the investigation domain Dinv

in the IMSA-INLW-3D method. The number of cells for dis-
cretizing the inversion domain of the “bare” inexact-Newton
approach NBARE has been selected to have a resolution smaller
or equal to λ/10 in Dinv.

Table 3. Relative reconstruction errors for both the bare INLW-
3D and the IMSA-INLW-3D method, for different values of
SNR. L-shaped object.

INLW-3D

SNR (dB) Ξtot Ξint Ξext

∞ 2.87 × 10−2 6.10 × 10−1 2.26 × 10−2

40 2.87 × 10−2 6.10 × 10−1 2.26 × 10−2

30 2.87 × 10−2 6.10 × 10−1 2.26 × 10−2

20 2.88 × 10−2 6.10 × 10−1 2.26 × 10−2

10 2.91 × 10−2 6.10 × 10−1 2.27 × 10−2

5 2.98 × 10−2 6.10 × 10−1 2.29 × 10−2

IMSA-INLW-3D

SNR (dB) Ξtot Ξint Ξext

∞ 9.14 × 10−3 3.70 × 10−1 5.85 × 10−3

40 9.03 × 10−3 3.69 × 10−1 5.75 × 10−3

30 9.12 × 10−3 3.71 × 10−1 5.81 × 10−3

20 9.18 × 10−3 3.71 × 10−1 5.77 × 10−3

10 9.87 × 10−3 3.88 × 10−1 5.86 × 10−3

5 1.36 × 10−2 3.38 × 10−1 9.65 × 10−3

A. Calibration

The most important control parameters of the IMSA-INLW-
3D are the number of Gauss-Newton iterations, I, the number
of Landweber steps, K, and the IMSA threshold, ηth, for the
volume-based stopping criterion (15). Because of their impact
on the inversion performance, a calibration phase concerned
with a benchmark scenario including noisy data has been car-
ried out. To this end, it is worth remarking that the objective
of the calibration phase is not that of providing an optimal
parameter setup for each possible imaging configuration, but
rather to deduce an effective tradeoff guideline for the IMSA-
INLW-3D configuration which can be reliably adopted in dif-
ferent scenarios and configurations (as it will be demonstrated
in the subsequent numerical validation). Towards this purpose,
noisy conditions have been considered (SNR = 20 dB) and a
benchmark cubic investigation domain centered at the origin
of side LDinv

= 0.75λ has been assumed. The target under test
has been illuminated by plane waves impinging from Vθ = 6
directions on θ and Vφ = 5 directions on φ for a total number
of views equal to V = (Vθ − 2)× Vφ + 2 = 22. As for the obser-
vation domain, it was composed by a set of points located on a
sphere of radius rDobs

= λ. In particular, Mθ = 6 and Mφ = 5
field measurements have been taken on θ and φ, respectively,
with a total number of M = (Mθ − 2) × Mφ + 2 = 22 mea-
surements. The actual scatterer was a cube with side length

lobj = 0.3λ centered at
(

xobj, yobj, zobj

)

= (0.075, 0.075, 0.075) λ

and characterized by a contrast function τ = 1.5. The for-
ward problem has been solved discretizing the investigation
domain into N f wd = 9261 cubic cells of side l f wd = 0.036λ,
while NI MSA = 216 cells have been used for the inversion
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Fig. 9. Three-dimensional representations of the contrast func-
tion τ in the investigation domain Dinv for SNR = 20 dB, with
different methods and object contrast functions. Voxels having
ℜ{τ(x, y, z)} > 0.5: (a) actual profile, τ = 1.0; (b) INLW-3D,
τ = 1.0; (c) IMSA-INLW-3D, τ = 1.0; (d) actual profile, τ = 3.0;
(e) INLW-3D, τ = 3.0; (f) IMSA-INLW-3D, τ = 3.0. Cube ob-
ject.

method. The control parameters have been varied within the
following ranges: I = {1, 2, . . . , 20}, K = {1, 2, . . . , 30}, and
ηth = {0.025, 0.05, 0.1, 0.15, 0.2}. A maximum number of IMSA
scaling steps S = 6 has been fixed. The total reconstructions
errors (19) versus the three calibration parameters are reported
in Fig. 3. The best reconstruction has been obtained with the
setup I∗ = 9, K∗ = 27, and η∗

th = 0.1 (where the asterisk indi-
cates the optimal parameters found in calibration), then used as
reference in the following.

B. Comparison with the bare inexact-Newton approach

Clearly, a comparison with the “bare” inexact-Newton ap-
proach is essential. To this aim, let us consider the same con-
figuration used for the calibration, that is, a middle-sized di-
electric cube. All the configuration details and parameters are
reported in the “Calibration” Section, the IMSA-INLW-3D con-
trol parameters being chosen as in the same Section. The bare
INLW-3D method has been applied to the same investigation
domain Dinv, but discretized into NBARE = 1000 cubic cells of
side lBARE = 0.075λ, with IBARE = 20 maximum outer Gauss-
Newton iterations and KBARE = 2 maximum inner Landweber
steps [45]. The results of the reconstruction with these different
methods versus the true dielectric configuration of the investi-
gation domain are presented in Fig. 4. In this case, the threshold
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Fig. 10. Two-dimensional cuts for z = 0 of the actual and re-
constructed distributions of the contrast function τ of the in-
vestigation domain Dinv for SNR = 20 dB, with different meth-
ods and object contrast functions: (a) actual profile, τ = 1.0; (b)
INLW-3D, τ = 1.0; (c) IMSA-INLW-3D, τ = 1.0; (d) actual pro-
file, τ = 3.0; (e) INLW-3D, τ = 3.0; (f) IMSA-INLW-3D, τ = 3.0.
Cube object.

value η∗
th determined an optimal number of IMSA steps equal

to sbest = 4. The quality improvement from the use of the
IMSA scaling steps into the standard INLW-3D method is ev-
ident. With the IMSA-INLW-3D approach [Fig. 4 (c)], the cubic
target is better localized, and both the shape and the contrast
function τ are closer to the actual ones. Such an enhancement
is confirmed by the relative reconstruction errors reported in
Table 1.

C. Performance versus the signal-to-noise ratio

In this Section, the performance of the proposed IMSA-
INLW-3D method versus the SNR is analyzed. Several
targets with different shapes and dimensions have been
considered in various operating conditions with SNR =
{5, 10, 20, 30, 40, ∞} dB. In all cases, a cubic investigation do-
main Dinv of side LDinv

= λ, centered at the origin, has been
considered. Plane waves originated from Vθ = 8 directions on θ
and Vφ = 6 directions on φ have been used for illuminating the
investigation domain, obtaining a total number of views equal
to V = 38. The observation domain Dobs was composed by
M = 38 measurement points (Mθ = 8 and Mφ = 6) positioned
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on a sphere of radius rDobs
= 2λ. Dinv has been partitioned into

N f wd = 9261 cubic cells of side l f wd = 0.048λ for solving the
forward problem. The number of subdomains for the IMSA-
INLW-3D method has been chosen equal to NI MSA = 512,
while NBARE = 1728 cubic cells of side lBARE = 0.083λ have
been used for the bare INLW-3D approach.

C.1. Cube object

For a dielectric cube of side lobj = 0.25λ with contrast func-

tion τ = 1.0, centered at
(

xobj, yobj, zobj

)

= (0, 0,−0.125) λ, the

reconstructed contrast distributions when SNR = 20 dB are
shown in Fig. 5 versus the true dielectric configuration. As
it can be observed, there is a non-negligible improvement. By
analyzing the behavior of the fitness function (20) for different
SNRs (Fig. 6), it turns out that the IMSA-INLW-3D approach
enables a better modeling of the electric field in the observation
domain Dobs. This is due to the iterative execution of multi-
ple inexact-Newton procedures, each one performed at a dif-
ferent IMSA scaling step (delimited by vertical dashed lines in
the graph). Of course, the lowest fitness function values (i.e.,
the best reconstructions of the electric field around the object)
in both the bare INLW-3D and the IMSA-INLW-3D method
are found for the noiseless case. In general, as the SNR de-
creases, there is an increase in the values of the fitness function
Φ. In the IMSA-INLW-3D technique, significant improvements
in terms of the fitness function minimization between IMSA
steps could be noticed in particular for SNR > 20 dB. Moreover,
the IMSA-INLW-3D method is computationally more efficient
than the bare INLW-3D approach. In particular, the reduced
number of discretization cells in the investigation domain al-
lows to save both computational time and computer memory.
For instance, on an Intel(R) Core(TM) i5-2400 CPU at 3.10 GHz
personal computer with 4 GB of random access memory, the av-
erage computational time per outer inexact-Newton iteration
in this case is equal to 3.22 × 102s using the IMSA-INLW-3D
method and 1.08 × 103s in the bare INLW-3D algorithm, while
the required memory is 263 MB vs. 776 MB, respectively. As a
matter of fact, a significant time saving is achieved by the IMSA-
INLW-3D to retrieve the electromagnetic properties of Dinv (i.e.,
∆t|I MSA− INLW−3D

∆t|INLW−3D
≈ 0.42). Moreover, it is worth pointing out that

the additional computational time required at each multiscal-

ing step (s = 1, ..., sbest − 1) for identifying the RoI (D
(s+1)
inv ), up-

dating its barycentre and side through (12) and (13), as well as
discretizing it (Fig. 2) is lower than 1 s using a non-optimized
code.

C.2. Sphere object

The reconstruction of a spherical dielectric target is now

analyzed. The sphere was centered at
(

xobj, yobj, zobj

)

=

(0, 0.1, 0.1) λ with a radius robj = 0.2λ and characterized by a
contrast function τ = 1.5. Some IMSA-INLW-3D reconstruc-
tions for different SNR values are shown in Fig. 7. Clearly, the
lowest SNR value [Fig. 7(b) vs. Fig. 7(c)] provides a poorer
reconstruction. Nevertheless, the dielectric sphere is correctly
localized and its retrieved contrast function is near the actual
value in both cases. The relative reconstruction errors versus
the SNR are given in Tab. 2. Although the IMSA-INLW-3D
method seems to be slightly more sensitive to SNR variations,
it always provides significantly lower reconstruction errors.
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Fig. 12. Three-dimensional representations of the contrast
function τ in the investigation domain Dinv. Voxels having
ℜ{τ(x, y, z)} > 0.1: (a) true object; (b) bare INLW-3D recon-
struction; (c) IMSA-INLW-3D reconstruction with s = sbest = 2.
Cuts along the three coordinate planes: (d) true object; (e) bare
INLW-3D reconstruction; (f) IMSA-INLW-3D reconstruction
with s = sbest = 2. Low-contrast target, SNR = 20 dB.



Research Article Journal of the Optical Society of America A 10

C.3. L-shaped object

The behavior of the inversion method with a more complex tar-
get shape is studied in the present Section, in particular with
reference to an “L-shaped” dielectric object (Fig. 8a). The max-
imum length of its side is lobj = 0.25λ and its contrast function
is equal to τ = 2.5. The parameters of both the forward and in-
verse solution methods are those described in Section “Perfor-
mance versus the signal-to-noise ratio”. In Fig. 8, the 3D repre-
sentations and the corresponding 2D cuts for z = 0 of the recon-
structed contrast function in the investigation domain versus
the true dielectric configuration are shown when SNR = 20 dB.
In particular, the result yielded with the bare INLW-3D method
is reported in Fig. 8(b) and in Fig. 8(e), while in Fig. 8(c) and Fig.
8(f ) there is the IMSA-INLW-3D reconstruction. Once again, the
multi-resolution implementation outperforms the bare one by
producing a high quality map of the contrast function τ. An
analysis of the methods performance versus the data noise level
is summarized in Table 3. As it can be noticed, the IMSA-INLW-
3D produces the lowest restoration errors.

D. Performance versus the object permittivity

Another key-analysis in assessing the proposed IMSA-INLW-
3D method is on the dependence of the inversion accuracy on
the object permittivity. In this Section, such a task is accom-
plished taking into account representative examples dealing
with different targets and measurement setups.

D.1. Cube object

With reference to a centered cubic Dinv of side LDinv
= λ illu-

minated by plane waves impinging from Vθ = 3 and Vφ = 4
directions (V = 6) and partitioned into N f wd = 9261 cubic
cells of side l f wd = 0.048λ, a measurement setup composed by
M = 82 measurement points distributed in Mθ = 10 directions
on θ and Mφ = 10 directions on φ, and positioned on a sphere
with radius rDobs

= λ, the IMSA-INLW-3D has been applied
by considering NI MSA = 512 subdomains with control parame-
ters as in the previous section, while the bare INLW-3D method
has been used with NBARE = 8000 cells of side lBARE = 0.05λ,
IBARE = 20 and KBARE = 3 being the control parameter setup
[45]. The investigation domain Dinv has been assumed to con-
tain a cubic dielectric target with side length lobj = 0.5λ and

located at
(

xobj, yobj, zobj

)

= (0.1, 0.1, 0.1) λ. The object contrast

function τ has been varied in the range τ ∈ [0.5, 3.0] with steps
of 0.5. Some 3D reconstructions and the corresponding 2D cuts
of the retrieved dielectric profile distributions for SNR = 20 dB
are reported in Fig. 9 and Fig. 10. It is worth noting that the per-
formance of this technique versus the bare INLW-3D one seems
to improve even more with an increase in the object permittiv-
ity. Thanks to the scaling steps, the reconstruction of the actual
shape of the scatterer appears to be significantly more faithful.

D.2. L-shaped object

Another set of simulations is concerned with the L-shaped ob-
ject shown in Fig. 8(a). By keeping the same measurement and
control parameters setups, the contrast function τ of the actual
L-shaped object has been varied between 0.5 and 3.0 with steps
of 0.5. Figure 11 plots the relative reconstruction errors referred
to the different investigation domain regions versus the target
permittivity. As it can be observed, the relative reconstruction
error always increases with the object permittivity. However,
the errors from the IMSA-INLW-3D method are significantly
lower than those with the bare INLW-3D technique.
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Fig. 13. Three-dimensional representations of the contrast
function τ in the investigation domain Dinv. Voxels having
ℜ{τ(x, y, z)} > 0.1: (a) true object; (b) bare INLW-3D recon-
struction; (c) IMSA-INLW-3D reconstruction with s = sbest = 6.
The region 0 < x < 0.5λ ∪ −0.5λ < y < 0 ∪−0.5λ < z < 0.5λ
has been removed to see into the object. Cuts along the three
coordinate planes: (d) true object; (e) bare INLW-3D recon-
struction; (f) IMSA-INLW-3D reconstruction with s = sbest = 6.
Inhomogeneous object, SNR = 20 dB.

E. Low-contrast objects

In this Section, the reconstructions obtained by means of
the IMSA-INLW-3D method in the case of low-contrast targets
have been analyzed. A cubic investigation domain Dinv of side
LDinv

= λ, with barycentre at the origin, has been considered. A
set of plane waves originated from Vθ = 8 directions on θ and
Vφ = 6 directions on φ have been used for illuminating the in-
vestigation domain, obtaining a total number of views equal to
V = 38. The observation domain Dobs was composed by M =
38 measurement points (Mθ = 8 on θ and Mφ = 6 on φ, equally
spaced) positioned on a sphere of radius rDobs

= 2λ. The in-
vestigation domain has been partitioned into N f wd = 8000 cu-
bic cells of side l f wd = 0.05λ for solving the forward problem.
The number of cubic cells for the IMSA-INLW-3D method has
been chosen equal to NI MSA = 512, while NBARE = 1728 cu-
bic cells of side lBARE = 0.083λ have been used for the bare
INLW-3D approach. All the control parameters of the IMSA-
INLW-3D method have been chosen as in the “Calibration” Sec-
tion, while IBARE = 20 maximum outer Gauss-Newton itera-
tions and KBARE = 2 maximum inner Landweber steps have
been performed in the bare INLW-3D technique. As can be seen
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in Fig. 12(a), the investigation domain Dinv contains two low-
contrast objects, characterized by a contrast function τ = 0.2,
with long sides of size lyz = 0.5λ and short side of dimension
lx = 0.15 λ spaced by ls = 0.35 λ along the x axis (i.e., distance
between their barycenters). The reconstruction results versus
the true dielectric configuration of the investigation domain are
presented in Fig. 12, for a noisy case with SNR = 20 dB. With
the present target, the bare INLW-3D method [Fig. 12(b) and
Fig. 12(e)] is not able to retrieve a suitable approximation of
the dielectric configuration of Dinv. In particular, a clear sepa-
ration between the two objects is missing. On the contrary, the
novel IMSA-INLW-3D approach [Fig. 12(c) and Fig. 12(f )] is
capable of correctly reconstructing the two low-contrast targets
and the separation between them, even though a slight under-
estimation of the contrast function value still appears.

F. Inhomogeneous object

The reconstruction of a inhomogeneous target has also been
considered. Both the control parameters of the reconstruction
methods and the configuration are the same as the previous
Section, except for the object, which is an inhomogeneous cube
with two layers characterized by different dielectric properties
[Fig. 13(a)]. An inner cubic region of side lint = 0.15λ and cen-
tered at the origin has a contrast function equal to τint = 1.5,
while an outer layer with external side lext = 0.25λ is character-
ized by a contrast function τext = 0.5. The results obtained by
applying the IMSA-INLW-3D reconstruction method and the
bare INLW-3D one with SNR = 20 dB are reported in Fig. 13.
It is evident that both the object size and its dielectric proper-
ties are better estimated by the proposed IMSA-INLW-3D tech-
nique.

G. Experimental results (“TwoSpheres” target)

The developed strategy has been finally tested by using
the experimental data made available from the Institut Fresnel
(France). In particular, the “TwoSpheres” target, composed by
two spheres with radius 25 mm and relative dielectric permit-
tivity equal to 2.6, has been considered. The detailed descrip-
tion of the measurement setup and of the the target is reported
in [48]. In this paper, only the θ-polarized data have been em-
ployed for the inversion. In particular, V = 25 views has been
considered (Vθ = 5 and Vφ = 5 positions of the TX antenna
have been selected from the available data by taking one every
other position along θ and φ). All the available M = 27 sam-
ples of the measured electric field for every considered view
have been used. The first frequency ( f = 3 GHz) is employed.
It is worth noting that the RX antennas are located on a circum-
ference in the x − y plane, consequently only the z-component
of the electric field is available. All the other components have
been set equal to zero in the scattered field used for the inver-
sion. The investigation domain is a cube of side LDinv

= 1.5λ
centered at the origin. The retrieved three-dimensional dielec-
tric profiles by the IMSA-INLW-3D and INLW-3D are shown in
Fig. 14. As it can be observed, a visible improvement of the so-
lution quality is achieved by the IMSA-INLW-3D [i.e., Fig. 14(b)
vs. Fig. 14(a)], showing (i) a more accurate estimation of the di-
electric permittivity of the targets (the actual contrast function
being equal to τ = 1.6), as well as (ii) a better resolution. In-
deed, differently from its bare counterpart, the IMSA-INLW-3D
allows to identify the presence of the two targets, as it is visi-
ble by looking at the corresponding two-dimensional cuts for
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Fig. 14. Three-dimensional representations of the con-
trast function τ in the investigation domain Dinv for the
“TwoSpheres” experimental target [48]. Voxels having
ℜ{τ(x, y, z)} > 0.6: (a) bare INLW-3D reconstruction; (b)
IMSA-INLW-3D reconstruction with s = sbest = 3. Two-
dimensional cuts for z = 0 of the reconstructed distributions
of the contrast function τ: (c) bare INLW-3D reconstruction; (d)
IMSA-INLW-3D reconstruction.

z = 0 reported in Fig. 14(d) and 14(c), respectively. Finally, con-
cerning the computational times, it is worth observing that a
non-negligible reduction of the total execution time is achieved

by the IMSA-INLW-3D (i.e.,
∆t|I MSA− INLW−3D

∆t|INLW−3D
≈ 0.59).

4. CONCLUSIONS

In this paper, a novel method for three-dimensional electro-
magnetic imaging of dielectric targets has been presented and
validated. This method is the combination of an inexact-
Newton inversion technique with an iterative multiscaling ap-
proach. In particular, the main goal was the development of
a 3D computationally-effective procedure able to deal with the
strong ill-posedness of the underlying inverse scattering prob-
lem, faced by exploiting the regularization capabilities of the
inexact-Newton method. From one hand, the combined al-
gorithm allows a better usage of the available computational
resources. From the other hand, the reduced number of un-
knowns required by the multiscaling inexact-Newton method
allows to reduce the occurrence of local minima, addressing the
ill-posedness in a more effective way. The method performance
has been assessed throughout several numerical simulations in
various operating conditions with different targets and config-
uration parameters, from canonical configurations to the more
challenging cases of inhomogeneous, low contrast and complex
dielectric structures. The new approach has been proven to ac-
curately and efficiently reconstruct the electromagnetic proper-
ties of objects with different shapes and values of dielectric con-
trast. Furthermore, the described method appears to be quite
robust with respect to the presence of noise on the scattered
field data. The representative numerical results also pointed
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out the enhanced performance of the combined method ver-
sus the “bare” application of the original procedure based on
the inexact-Newton technique. Moreover, a preliminary experi-
mental result has been shown, verifying the improved effective-
ness of the IMSA-INLW-3D in solving the three-dimensional in-
verse scattering problem, providing better estimations of the ac-
tual contrast function as well as an increased resolution within
the identified RoI.
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