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Abstract

The proper characterization of the size distribution and growth of firms represents an
important issue in economics and business. We use the Maximum Entropy approach
to assess the plausibility of the assumption that firm size follows Lognormal or Pareto
distributions, which underlies most recent works on the subject. A comprehensive
dataset covering the universe of French firms allows us to draw two major conclusions.
First, the Pareto hypothesis for the whole distribution should be rejected. Second, by
discriminating across firms based on the number of products sold and markets served,
we find that, within the class of multi-product companies active in multiple markets,
the distribution converges to a Zipf’s law. Conversely, Lognormal distribution is a good
benchmark for small single-product firms. The size distribution of firms largely depends

on firms’ diversification patterns.

Keywords: Firm size distribution; Firm diversification; Pareto distribution; Zipf’s

law; International trade

JEL Codes: C46, L11, L25

*Department of Economics and Management, University of Trento, Via Inama, 5 - 38122 Trento

TLIME, IMT School for Advanced Studies, Piazza S. Francesco, 19 - 55100 Lucca; Department of Man-
agerial Economics, Strategy and Innovation (MSI), KU Leuven Naamsestraat 69 - 3000 Leuven

iDepartment of Economics and Management, University of Trento, Via Inama, 5 - 38122 Trento



1 Introduction

At least since the work of Gibrat (1931), a great deal of attention has been devoted to
the investigation of the size distribution of business firms and the mechanics through which
it is determined (Luttmer, 2011). In his seminal work, Gibrat (1931) found that French
establishments were lognormally distributed, and postulated a process of proportional growth
capable of replicating that shape. A few decades later, Simon and Bonini (1958) showed that
a Pareto distribution provides a better fit to the upper tail of the largest firms. Before
jumping to the conclusion that Gibrat and Simon identified different benchmarks for the size
of firms, it should be noticed that the former analyzed all establishments while the latter
focused on the largest US companies. Since then, the lognormal and the Pareto distributions
have been considered to be the two foremost candidate distributions for firm size (see Sutton,
1997; Mitzenmacher, 2004; de Wit, 2005, for broad reviews of the topic). More recently, a
special case of the Pareto distribution, namely Zipf’s law, has come to be considered the
best first-cut benchmark for firm size and many other empirical phenomena (Simon, 1955;
Axtell, 2001; Luttmer, 2007; Gabaix, 2009) and it is increasingly used also in economic
theory to model, for instance, firm heterogeneity (Melitz, 2003). Even though the Zipf’s law
is becoming more and more popular as an analytically convenient assumption in economic
modeling, on the empirical ground there is no conclusive evidence in favor of a power-law
shape of the distribution of firm sizes.

Already in the Seventies, Ijiri and Simon (1974) noticed that the data feature systematic
departures from power-law behavior, as most firm size distributions depict a concave shape in
a double logarithmic scale graph. Due to the lack of data on the whole distribution of firms,
early works analyzed only the largest (listed) companies (such as Fortune 500 firms, see for
instance Hart and Prais, 1956; Simon and Bonini, 1958). Axtell (2001), who represents the
main reference of the majority of recent papers, manages to overcome the limitation in the

representativeness of the data by using information taken from the US Census, thus looking



at the entire distribution of firms. He concludes that Zipf’s law provides the best description
of the data “all the way down to the smallest sizes” (Axtell, 2001, p. 1819), even though
(as noted by Axtell himself) a closer inspection reveals the presence of departures similar to
those highlighted by Ijiri and Simon (1974), compatible with a lognormal distribution. The
concave shape of the size distribution has been further confirmed by Rossi-Hansberg and
Wright (2007), who use the same data analyzed by Axtell (2001). This is part of a stream of
literature that claims there is no universal functional form for the size distribution of firms,
as it depends on specific industry characteristics (Kumar et al, 1999; Halvarsson, 2013) such
as innovation (Klette and Kortum, 2004), financial constraints (Cabral and Mata, 2003),
learning and firm selection (Jovanovic, 1982; Luttmer, 2007), international trade (Di Giovanni
et al, 2011), institutional factors (Garicano et al, 2013) and the level of aggregation (Tang,
2015).

The typical strategy adopted in this literature considers one candidate distribution (Zipf,
Pareto or, less frequently, lognormal) and performs goodness of fit analyses. Replicating
existing results is often difficult because of the limitations in accessing official data, and only
a few studies investigate the universe of firms in the US (Axtell, 2001; Rossi-Hansberg and
Wright, 2007; Luttmer, 2011) or other countries (see Cabral and Mata, 2003 for Portugal,
Eaton et al, 2011 or Garicano et al, 2013 for France and Huber and Pfaffermayr, 2010 for
Austria).

The contribution of this paper is twofold. First, we take a closer look at the Pareto hy-
pothesis, with a degree of methodological accuracy that goes beyond the existing literature.
In this enterprise, we exploit the massive information content of a database covering virtually
all French firms: this is particularly important as discriminating between a lognormal and a
Pareto upper tail is extremely difficult from a statistical point of view (Malevergne et al, 2009;
Bee et al, 2011). Moreover, it is crucial to cover all firms down to the smallest sizes. The
empirical study of the characteristics of the (tail of the) distribution is performed by means

of different methods, in order to be able to identify possible pitfalls of single approaches



related to specific features of the data under analysis. In addition to the tests, we employ the
Maximum Entropy (ME) method to find the best approximating density in a non-parametric
setup. Furthermore, consistently with the analysis by Virkar and Clauset (2014), our results
confirm that the practice of binning the data, quite common in the literature on the distri-
bution of firm size, significantly affects the results and should be avoided. We find that the
whole data distribution is neither lognormal nor Pareto, thus suggesting that the debate in
the literature about the shape of the size distribution is partially misleading.

Second, we argue that it is far more interesting to decompose the population of firms into
groups with different characteristics to see if some of them exhibit a more pronounced Pareto
or lognormal behavior. In this paper we discriminate across firms based on their scope, e.g.
number of products and markets they serve. The chance to operate such a classification
represents a further advantage offered by the data we use. We find that the size distribution
of firms largely depends on firms’ diversification patterns. In particular, our analysis shows
that the size distribution changes according to the features of this classification and its
upper tail converges to a Pareto distribution with a shape parameter approaching 1 from
above (Zipf’s law) for highly diversified and multinational companies whereas the lognormal
distribution is a good benchmark for small and mid-sized enterprises. Our work contributes
to recent attempts to reinvigorate research on firms’ diversification as a crucial aspect of the
growth-of-firms (Coad, 2009).

The rest of the paper is organized as follows: the next section addresses the most impor-
tant methodological issues relative to the identification of a power-law behavior and describes
the data. Section 3 presents the main empirical outcomes and investigates the size distribu-
tion of different groups of firms. Finally, Section 4 discusses the implications of our findings

for economic theory and offers some concluding remarks.



2 Methodology Background and Data

The empirical literature dealing with firm size distribution is characterized by a number of
often overlooked methodological issues that may have a significant impact on the results.
The most important ones concern the power of the tests used to distinguish among different
candidate distributions, especially when the sample size is small: the widespread practice of
binning the data and whether the power-law behavior refers to the upper tail or to the whole
distribution.

A substantial body of literature addresses the problem of discriminating between power-
law (Pareto) and lognormal tail behavior. The two distributions are mathematically different,
but only in the limit (Perline, 2005), so that for finite sample size the tests often have low
power. Given these premises, several tests have been developed. Here we follow Bee et al
(2013) and show the results obtained with the Uniformly Most Powerful Unbiased (UMPU)
test developed by Del Castillo and Puig (1999) and used by Malevergne et al (2011); the
Maximum Entropy (ME) test by Bee et al (2011); the test proposed by Gabaix and Ibragimov
(2011, GI henceforth).

The size distribution of firms has often been tested using binned data (see for instance
Axtell, 2001; Di Giovanni et al, 2011). Axtell (2001) uses US firm sizes measured by receipts
in dollars (US Census Bureau data for 1997, consisting in 5541918 observations). Data are
tabulated in successive bins of increasing size in powers of three, so that bins are equally
spaced in logarithmic scale. Using the 7 bins obtained in this way, an OLS regression in
doubly logarithmic scale suggests an approximate Zipf distribution (o« = 0.994). Di Giovanni
et al (2011) perform a similar analysis considering data based on the mandatory reporting
of firms’ income statements to tax authorities in France.

In general, binning the observations in a sample implies a loss of information with respect
to the original sample. Intuitively, the reason is that, after binning, we only know how many

observations are included in a certain interval, but not their exact location. More formally,



and focusing on the problem at hand, the (adjusted) frequency used by Axtell (2001) and
Di Giovanni et al (2011), located at the geometric mean of the bin endpoints, is not a
sufficient statistic for the Pareto shape parameter, and this results in a loss of information.
Given the data, as the number of bins gets smaller, the loss of information increases, because
all intervals become wider. Hence, any statistical inference procedure based on binned data
produces less reliable results than the same procedure based on the actual values of the
observations (Virkar and Clauset, 2014). Similar problems arise when only a small sample of
the full distribution is available (Perline, 2005; Segarra and Teruel, 2012).

In our analysis we exploit a comprehensive dataset covering the universe of French firms:
the data are analogous to those used in Eaton et al (2011) and have been used elsewhere as
well (e.g. Garicano et al, 2013). The data on total revenues that we use to measure firm size
are taken from the FICUS (Fichier complet de Systéme Unifié de Statistique d’Entreprises)
database maintained by the French National Statistical Office (INSEE). We focus on the
year 2003 (although the choice of year is actually irrelevant in terms of the results), and
have information on more than 2 million firms, excluding the very few cases in which a
firm reports total revenues equal to zero. To investigate the relationship between firm scope
and size distribution (Section 3 below), we use the information collected by the French
Customs, which reports values, destinations and product classes of export flows involving
French firms. Our definition of a product is therefore a 6-digit code within the Harmonized
System classification. We take the number of different products exported and/or the number
of foreign destinations they served as a proxy for firm scope. Unfortunately, no comparable
information is available for domestic transactions. Firms exporting less than 1000 euros
outside the EU, or less than 100000 euros within the EU are not required to report their
transactions; other than that, the dataset is comprehensive. Furthermore, we can link the
two sources of information by means of a unique firm identification number.

Table 1 reports summary statistics for the full sample under investigation, as well as for

a series of subgroups based on the number of products exported and/or destination served



by firms operating in international markets. Exporters represent 4.1% of French firms, but
are significantly larger than firms serving only the domestic market. More than one third of
firms export just one product, 42.5% of them ship to one destination only, and 29.3% sell
one product to one foreign market. On the other hand, wide-scope (highly-diversified) firms
represent a small fraction of the universe (0.2%), but they account for more than 25% of

total sales.

Table 1: Summary statistics: number of firms and average size (full sample and subgroups)

share of share of  average

# firms share exporters total sales firm size

full sample 2,247,547 100% 100% 1,333

exporters 92,057 4.1% 100% 59.2% 19,281
of which:

single product 31,387  1.4% 34.1% 5.3% 5,067

multi-product 60,670 2.7% 65.9% 53.9% 26,604

more than 5 prod. 28,150  1.3% 30.6% 45.1% 47,694

more than 10 prod. 16,084 0.7% 17.5% 38.9% 71,767

single destination 39,122 1.7% 42.5% 6.2% 4,785

multiple destinations 52,935 2.4% 57.5% 53.0% 29,994

more than 5 dest. 23,651  1.1% 25.7% 42.9% 54,297

more than 10 dest. 13,249 0.6% 14.4% 36.1% 81,715

single prod.-dest. 26,985 1.2% 29.3% 4.2% 4,693

multiple prod.-dest. 65,072  2.9% 70.7% 55.0% 25,321

more than 5 prod.-dest. 36,974  1.6% 40.2% 48.4% 39,118

more than 10 prod.-dest. 25712 1.1% 27.9% 44.5% 51,626

more than 50 prod.-dest. 7,463  0.3% 8.1% 32.6% 129,931

more than 100 prod.-dest. 3,527  0.2% 3.8% 25.4% 213,644

Firm size measured in terms of sales (1,000 of euros).

3 Empirical Analysis

The empirical analysis starts by investigating the features of the whole firm size distribution
by means of the ME approach, which is a method for fitting nonparametric density obtained
by maximizing the Shannon’s information entropy under constraints that impose the equality
of the first k theoretical and empirical moments; see Kapur (1989) for details. Then we run the

tests on the original data without sampling or binning observations in size groups. Afterwards



we concentrate on the upper tail of the distribution and investigate the presence of power-law
behavior using the three different methodologies. Last, we look at the relationship between
the scope of firms and the properties of the size distribution.

Figure 1 displays the histogram of the logarithms of the data along with the truncated
normal (logarithm of the truncated lognormal), the exponential (logarithm of Pareto) and
the best fitting ME distributions.! We use observations larger than 14000 euros, as below
this threshold the distribution is very irregular. Only the smallest 3.7% of the observations
are discarded in this way. The optimal ME distribution has £ = 4; hence, neither the Pareto
(k = 1) nor the lognormal (k = 2) distributions are good approximations, although it is clear
from the graph that the lognormal one is “closer” to the true distribution than the Pareto

distribution.
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Figure 1: The size distribution of the natural logarithm of French firms, along with the
exponential (log of Pareto), normal (log of lognormal) and ME densities. The best-fitting
ME density has k£ = 4, and its functional form is given in the plot. Sales are in thousand of
euros.

'The MLEs of the truncated normal are computed by means of the EM algorithm.



To reinforce the claim that the Pareto distribution does not provide a very good approx-
imation of the data, and to understand why much of the existing literature, at least starting
from Axtell (2001), reaches the opposite conclusion (Gabaix, 2009), we investigate the impact

of binning the data on the result.

French data fit: log(P(S, >5))=—0.89159 log(s)+4.1435, R2= 0.97486

+ USdata
O French data

log(P(S>s))

o
US data: Iog(P(Si>s))=—O.99385 log(s)+4.5119, R2= 0.96567
6l +
_7 | | | | | | |
4 5 6 7 8 9 10
log(s)
0.6
04 + US data
o o +
02— + o
+
o Q
=} oF
-}2 O French data
& -0.2
(o)
04 - 6
—os -
+
—08 1 1 1 1 1 1 1
4 5 7 9 10
log(s)

Figure 2: The size distribution of US and French firms: the upper panel shows the comple-
mentary cumulative distribution function of bin frequencies in double log scale; the lower
panel displays the residuals of the linear regressions on binned data.

The upper panel of Figure 2 shows the distribution of US and French firm sizes. The



graph is the log-log plot of the counter-cumulative distribution function of bin frequencies.
For comparison purposes, we use the same data and number of bins (7) used by Axtell
(2001), and the bins are equally spaced on a logarithmic scale. The results look qualitatively
similar. Nevertheless, the slope of the regression line is considerably smaller in absolute
value for French firms. The residuals from the linear regressions are shown in the lower panel
of the same figure: they look far from random, showing instead a clear cyclical pattern.
These doubts are confirmed by performing the test of power-law behavior with binned data
developed by Virkar and Clauset (2014)%: at the 5% level, the null hypothesis of power-law
is rejected for both the US data (p-value = 0.02) and the French data (p-value smaller than
0.001).

Furthermore, Virkar and Clauset (2014) note that “for small values of n, or for a small
number of bins|. .. ], the empirical distribution may closely follow a power-law shape, yielding
a large p[-value], even if the underlying distribution is not a power law”. Thus, whereas the
risk of a false positive (the test finds a power-law when the true distribution is not power-law)
is high, a false negative does not seem to be a major concern.

Having said that the full distribution is not well fitted neither by a Pareto distribution
nor by a lognormal one, we now consider the tail behavior. According to the discussion in
Section 2, we should trust the tests that use raw data rather than binned data more. Thus,
we carried out the UMPU, ME and GI tests using the 2247 547 observations on the receipts

of French firms. The results are reported in Table 2.> The standard errors for &MV and

aME are computed by means of non-parametric bootstrap with 100 replications,* whereas

2The test is an extension to the case of binned data of the bootstrap-based test for testing the power-
law hypothesis developed by Clauset et al (2009). This approach estimates the parameters via maximum
likelihood and uses the Kolmogorov-Smirnov goodness-of-fit statistic and the likelihood ratio tests for making
a decision.

3The ME methodology lends itself in a natural way to testing the hypothesis Hy : k = 2 against H; : k = 3.
As the ME(2) distribution is lognormal, this test allows to find the length of a (possible) lognormal tail. At
the 5% level, the test finds a lognormal tail containing the largest 47 000 firms, approximately corresponding
to the 0.021 quantile and to the 75.59% of the total revenues.

4The standard error of the Hill estimator &VMPY can in principle be computed analytically using the
asymptotic normality of the estimator. However, the regularity conditions necessary for this result are
difficult to verify (Embrechts et al, 1997, p. 337-339), so that the bootstrap estimate is more reliable.
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Table 2: Test results for French firms (n = 2247547): power-law threshold rank, power-law
threshold, percentile, share and shape parameter. The power-law threshold is the observation
corresponding to the rank found by each test.

UMPU ME GI
5% level 1% level 5% level 1% level 5% level 1% level
rank 1600 1650 1750 2150 2400 3480
power-law threshold 179337 173321 162 246 134022 119177 84483
percentile <0.1 < 0.1 <0.1 0.1 0.1 0.2
% revenues 41.89 42.19 42.75 44.70 45.75 49.35
shape 1.158 1.147 1.137 1.111 1.181 1.151
s.e. 0.062 0.061 0.047 0.042 0.020 0.016
95% CI [1.101,1.352] [1.096,1.403] [1.062,1.254] [1.031,1.273] [1.141,1.221] [1.110,1.192]
The values in the table should be interpreted as follows: rank gives the number of observations
larger than the power-law threshold, percentile is the percentile of the empirical distribution cor-
responding to the rank, % revenues is the percentage of total revenues corresponding to the firms
in the power-law tail, shape is the estimate of the Pareto shape parameter, s.e. is the standard
error, 95% CI is the 95% confidence interval.
the asymptotic standard error of 4“7 is given by (a%1)?/v/2n (Gabaix and Ibragimov, 2011).
Similarly, the confidence interval for 4YM*Y and &™¥ is the empirical confidence interval of

the corresponding bootstrap distribution, whereas for 4“7 it is the confidence interval of the
limiting normal distribution. Although the GI test finds a slightly longer tail than UMPU
and ME, the overall messages are that the Pareto tail (if any) corresponds to a quite small
fraction of the largest firms and the shape parameter is significantly different from 1.

Even though these very few observations contain a non-negligible share of the total re-
ceipts, to confirm the lack of statistical significance of the Pareto tail found by the tests we
carry out a simulation-based analysis. The description of the experiment is as follows. We
sample n observations from a lognormal distribution with parameters estimated from the real
data and estimate the probability p of obtaining a power-law tail at least as long as the one
found by the tests in the real data:

#{r; >r*}

p = B Y

where B = 500 is the number of replications, r* is the rank obtained applying the test to
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the real data, r; (¢ = 1,..., B) is the rank such that, at the i-th replication, the test is below
the 95% critical value for ranks 1,...,7; — 1 and above this value for ranks r;,r; +1,...,n.
A small value of p implies that the data display a tail which is significantly longer than the
tail found for the lognormal used in the simulation.

We obtain p = 0.71 for ME, p = 0.62 for UMPU and p = 0.25 for GI. These outcomes
suggest that the Pareto tail found by the tests in the real data is not significantly longer than
the one identified when applying the tests to a lognormal distribution. In sum, according to
these outcomes, the size distribution of French firms is not Pareto, even in the tail.

It is worth extending the study of the tail behavior also to the subpopulations obtained
when one moves to consider firm diversification and internationalization levels. This is done
by discriminating among different subsets of firms, based on the number of products they
sell, the number of foreign destinations they serve, and the number of product-destination
pairs.

Table 3 reports the test results for various subsets of firms. The first row of panel a is
based on the whole dataset and thus simply replicates Table 2, the second (K > 0) refers
to exporting firms only, while the next three lines concern multi-product firms. The number
of observations shrinks significantly when we move from the universe of firms in the dataset
to exporting firms only (92000 observations, roughly 4% of the total), whereas only 16 000
firms export more than 10 different products. Although the power of the tests decreases
with the sample size, most of these numbers are still sufficiently large to guarantee reliable
results. Moreover, when considering the smallest subsets, we are mostly interested in the
point estimate of the shape parameter, whose standard error incorporates the effect of the
sample size. All three tests find a monotonic increase in the share of firms belonging to the
Pareto tail of the distribution, whose length goes from virtually nil (0.07-0.15% depending on
the test) to a value ranging between 5 and 8.7% of the distribution. Similarly, the estimated
shape parameter of the power-law decreases monotonically toward 1 once we progressively

restrict the analysis to firms exporting a larger number of products.

12



Table 3: Test results for firms with different levels of diversification (number of products, K)
and internationalization (number of foreign markets, N, and product-market pairs, NK)

UMPU ME GI
panel a: number of products
K rank  perc. shape rank  perc. shape rank  perc. shape # firms
>0 1600 < 0.1 1.158 (0.062) 1750 < 0.1 1.137 (0.047) 2400 0.1 1.181 (0.020) 2247547
= [1.101,1.352] [1.062,1.254] [1.141,1.221]
>0 1350 1.5 1.136 (0.041) 1450 1.6 1.112 (0.046) 2410 2.6 1.135 (0.019) 92057
[1.076,1.255] [1.044,1.234] [1.096,1.174]
-1 1300 2.1 1.123 (0.056) 1350 2.2 1.112 (0.063) 2230 3.7 1.125 (0.019) 60670
[1.045,1.269] [0.991,1.270] [1.084,1.166]
<5 1050 3.7 1.089 (0.051) 1150 4.1 1.057 (0.048) 1830 6.5 1.086 (0.020) 28 150
[0.992,1.210] [0.972,1.150] [1.041,1.131]
<10 850 5.3 1.073 (0.062) 950 5.9 1.049 (0.065) 1400 8.7 1.072 (0.022) 16 084
[0.966,1.213] [0.929,1.143] [1.020,1.124]
panel b: number of destinations
rank  perc. shape rank  perc. shape rank  perc. shape # firms
-1 1250 2.4 1.124 (0.050) 1350 2.6 1.106 (0.053) 2235 4.2 1.118 (0.019) 52935
[1.038,1.233] [0.997,1.187] [1.077,1.159]
> 5 1050 4.8 1.113 (0.054) 1100 4.6 1.043 (0.059) 1810 7.6 1.070 (0.019) 23651
[0.998,1.194] [0.947,1.171] [1.025,1.115]
~ 10 850 6.4 1.109 (0.050) 900 6.8 1.018 (0.054) 1460 11.0  1.040 (0.020) 13249
[0.937,1.142] [0.888,1.095] [0.989,1.091]
panel ¢: number of product-destination pairs
NK rank  perc. shape rank  perc. shape rank  perc. shape # firms
-1 1300 2.0 1.133 (0.050) 1350 2.1 1.122 (0.055) 2280 3.5 1.127 (0.019) 65072
[1.037,1.232] [1.002,1.212] [1.086,1.167]
> 5 1150 3.1 1.136 (0.035) 1200 3.2 1.081 (0.044) 2095 5.7 1.098 (0.019) 36974
[1.030,1.150] [0.980,1.139] [1.056,1.140]
<10 1050 4.1 1.119 (0.048) 1150 4.5 1.082 (0.046) 1800 7.0 1.088 (0.020) 25712
[1.024,1.227] [0.976,1.186] [1.042,1.134]
< 50 780 10.4 1.082 (0.055) 820 11.0 0.995 (0.060) 1195 16.0  1.031 (0.022) 7463
[0.937,1.149] [0.872,1.114] [0.975,1.087]
> 100 520 14.7 1.121 (0.067) 600 17.0 0.941 (0.070) 780  22.1 1.002 (0.025) 3527
[0.857,1.129] [0.777,1.066] [0.933,1.071]

The values in the table should be interpreted as follows: rank gives the number of observations larger than the Pareto
threshold, perc. is the percentile of the empirical distribution corresponding to the rank, shape is the estimate of the Pareto

shape parameter and the numbers in brackets are the corresponding 95% confidence intervals.
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Similar conclusions hold when we look at “very international” firms, i.e. companies
shipping their goods to many foreign destinations (see panel b of Table 3). Indeed, when
compared to the total population or the universe of exporters, the size distribution of firms
exporting to more than 10 destinations (which make up less than 1% of all firms) displays a
power-law tail spanning between 6 and 13% of the population. Furthermore, the estimated
shape parameter moves downward becoming closer to 1.

The change in the behavior of the distribution is all the more apparent when we clas-
sify firms on the basis of the number of their product-destination pairs, thus distinguishing
between, say, apples shipped to country A and to country B (see panel c).

The convergence towards a power-law appears clearly in Table 3 as well. According to
the 95% confidence intervals, the hypothesis o = 1 is often not rejected for large values of
K, N and NK: in particular, all the confidence intervals of all the tests contain the value
1 when N > 10, NK > 50 and NK > 100, and two tests out of three contain the value 1
when K > 5, K > 10 and N > 5.

The tendency toward Zipf’s law in the upper tails of the distributions appears clearly in
Figure 3 as well, where we portray the counter-cumulative distribution functions pertaining
to the different groups of firms, along with a reference line with a slope equal to —1.° In-
terestingly, the top panel shows that the distribution of all firms is similar to the one found
by Rossi-Hansberg and Wright (2007) on US firms, with the central part approximately re-
sembling a Pareto distribution and a more pronounced concave shape in the tails. The plots
confirm the results presented in Table 3: the Zipf behavior is more apparent in the case of
multiple products (top panel) than in the case of firms serving multiple markets. The overall
distribution of firm size is a weighted average of the distributions of different subgroups,
with weights given by their relative importance in the total population. As a result, the size
distributions of business firms may differ depending on the weights of each type. A larger

share of diversified firms would lead to a more pronounced power-law behavior and a closer

5The various distributions have been right-shifted to improve readability.
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Figure 3: The size distribution of French firms by number of products, K, destination mar-
kets, N and product-destination pairs NK. The distributions have been right-shifted to
improve readability.
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resemblance to Zipf’s law (at least in the upper tail). If, for instance, US firms were generally
more diversified and/or more internationalized than French ones, then the corresponding size

distribution would display a fatter Pareto tail.

Probability, log

-10 -

Alr o actual distribution of firm size T
ompm® O

12k simulation results |

13 1 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 24

log of Firm Sizes, PDF

Figure 4: The size distribution of French firms and simulation results.

To better understand the emergence of a Pareto tail for large diversified companies, we fol-
low Growiec et al (2008) and perform a series of simulations; see also (De Fabritiis et al, 2003;
Fu et al, 2005; Yamasaki et al, 2006; Buldyrev et al, 2007; Pammolli et al, 2007; Riccaboni
et al, 2008). According to their model, the number of products in a firm grows in proportion
to the existing number of products and the size of each product grows in proportion to its
size. As a result, the Gibrat-like growth process at the level of single products/markets leads
to a lognormal distribution of product sizes, whereas the proportionate growth process in
the number of products generates a Pareto distribution of the number of products by firm,
like in the Simon model (Simon, 1955). Therefore the size distribution of single-product

firms is lognormally distributed, as in the original Gibrat model, but the size distribution of
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multi-product firms is difficult to determine since the sum of lognormally distributed variates
does not have a closed form solution. Our simulations reveal that, as predicted by Growiec
et al (2008), the emergence of a Pareto upper tail depends on the interplay between the
two growth processes of the number and size of products. We proceed as follows. First, we
estimate the parameters of the lognormal distribution of product sizes in France. Next, we
generate a Zipf distribution of the number of products to match real world data. Finally, we
randomly assign to each firm a number of products drawn from the Zipf’s law, and to each
product a size drawn from the lognormal distribution. Summing over products for each firm
we then compute firm size.

As shown in Figure 4 the simulated distribution of firm sizes closely matches the size

distribution of French firm sizes®

. This is a striking result given that in our simulations
we just use the empirically observed distribution of product sizes with no free parameters.
Thus we can conclude that the size distribution of firms lies between a lognormal for small,
single-product firms and a Pareto distribution which might emerge in the upper tail of large
diversified companies. Figure 5 shows what happens when we sum lognormally distributed
product sizes. Our simulations run in two steps. First, we generate the number of products K;
of a given firm ¢ by sampling a discrete power law distribution of product numbers. Second,
we compute the total sales of firm ¢ as the sum of K; products whose size is sampled from the
lognormal distribution of product sizes (LDPS). We do the same computation for every firm
in the industry. Therefore, the size of business firms depends on both the extensive margin
(i.e. the number of products sold) and the intensive margin (i.e. the sales of each and every
product in its portfolio). When the scale parameter of the size distribution of products is
small (i.e. products are approximately of the same size) and the number of products by firm

is very heterogeneous (i.e. power-law), the size of firms is Pareto all the way down to small

companies (a straight line in double log scale in Figure 5(b)). Conversely, when firms have a

8Simulation results are based on 100 replications of the random assignment process. Only firms with more
than 1,000 euros of revenue are considered.

17



small (and similar) number of products of different sizes we observe a lognormal distribution
of firm sizes”. The actual distribution of firm sizes has a lognormal body and might depict a
Pareto upper tail, as postulated by Growiec et al (2008), depending on the interplay between

the lognormal distribution of product sizes and the Pareto distribution of product numbers.

4 Discussion and conclusions

This paper studies the size distribution of business firms using comprehensive data on French
companies. We adopt a rigorous methodological approach that applies both parametric and
non-parametric procedures and addresses the shortcomings that characterize many existing
studies. We look at the entire distribution of firms investigating the tail behavior of the
distribution for diversified and international firms. It is worth noting that all the tests and
simulations employed in this paper to identify the tail behavior of the size distributions give
approximately the same outcomes: this suggests that our conclusions have a strong empirical
justification.

We do not find support for the hypothesis that the size distribution follows either a
Zipt’s law or a Pareto distribution. This is consistent with recent evidence put forward
by, for instance, Rossi-Hansberg and Wright (2007) and Head et al (2014). Even if we
consider the power-law as a tail property, the shape parameter is significantly larger than
1, and only approximately 0.1% of the firms belong to the Pareto tail, corresponding to
less than 50% of combined total revenues. However, we document a tendency toward the
emergence of a Zipf’s law upper tail for the group of large multi-product firms, that are more
actively engaged in export markets. Based on a simulation exercise, we show how the size
distribution of firms can vary from lognormal to Pareto, depending on the interplay of two
growth processes in the number and size of products. Our work contributes to shed new

light on the role of diversification patterns in the process of firm growth. With few notable

"More precisely, the resulting distribution is given by a sum of lognormal distributions that, when o is
small, can be approximated by a lognormal distribution.
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Figure 5: Simulation results. Subplot (a): The lognormal distribution of product sizes (LDPS) and
the sum of lognormals. The value of ;1 and o2 of the LDPS are the maximum likelihood values of the
size distribution of French products: p = 7.613, 02 = 2.833. We also report the distribution of the
sum of 5, 10 and 100 values randomly sampled from the LDPS. Subplot (b): The size distribution
of firms is derived by sampling a power-law distributed number of products from the LDPS. In the
first simulation we use 02/10 = 0.283 to show that when the variance of the product distribution
is small, the power-law behavior of the distribution of the number of products dominates the final
firm size distribution. In simulation 2 we use the actual value of 02 = 2.833 for the LDPS and
a Pareto distribution of product numbers to obtain the size distribution of firms which depicts a
power-law upper tail.
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exceptions, the role of firm diversification has been neglected in that literature. In more
general terms, our paper contributes to the recent body of work that explains departures
from benchmark distributions, either Pareto or Lognormal, and differences across sectors or
firm types. Our results are compatible with multiple theoretical models recently appeared in
the literature. For instance, Chatterjee and Rossi-Hansberg (2012) show that so long as new
ideas are captured mostly by established firms (versus startups), the size distribution of firms
converges to Zipf’s law. Since few firms are highly diversified from the very beginning, and
few new exporters ship many goods to many destinations the first time they enter foreign
markets (Albornoz et al, 2012), when looking at firms with wide scope, we are focusing on
established ventures. Similarly, Rossi-Hansberg and Wright (2007) argue that higher human
capital intensity leads to an approximate power-law size distribution. Since the empirical
literature on firm behavior in international markets has found a link between the degree of
international involvement and human capital at the firm level (Munch and Skaksen, 2008),
our empirical findings are consistent with this interpretation as well.

From a practical point of view we consider the lognormal distribution to be a good
approximation of the size distribution of French firms; departures from this benchmark in
the lower and upper tail are informative of economic forces and frictions, and deserve further
scrutiny. For instance, lognormality allows for the easy derivation of concentration indexes
and therefore for the quantification of departures from a clear-cut theoretical benchmark (on
this subject see Hart, 1975; Davies, 1980). Overall, the actual size distribution of firms largely
depends on the degree of diversification of economic activities across (almost independent)
products and markets. When firms are diversified across many independent areas of activities
we tend to observe the emergence of a Pareto upper tail in the distribution of firm sizes.
Therefore, it makes much sense to devote future research to the analysis of differences across
countries and industries, and to cross-compare diversification patterns of firms in different

empirical domains.
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