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abstract Precision medicine is an approach that takes into account the influence of indi-
viduals’ genes, environment, and lifestyle exposures to tailor interventions. Here, 

we describe the development of a robust precision cancer care platform that integrates whole-exome 
sequencing with a living biobank that enables high-throughput drug screens on patient-derived tumor 
organoids. To date, 56 tumor-derived organoid cultures and 19 patient-derived xenograft (PDX) mod-
els have been established from the 769 patients enrolled in an Institutional Review Board–approved 
clinical trial. Because genomics alone was insufficient to identify therapeutic options for the majority 
of patients with advanced disease, we used high-throughput drug screening to discover effective 
treatment strategies. Analysis of tumor-derived cells from four cases, two uterine malignancies and 
two colon cancers, identified effective drugs and drug combinations that were subsequently validated 
using 3-D cultures and PDX models. This platform thereby promotes the discovery of novel therapeutic 
approaches that can be assessed in clinical trials and provides personalized therapeutic options for 
individual patients where standard clinical options have been exhausted.

SIGNIFICANCE: Integration of genomic data with drug screening from personalized in vitro and in vivo 
cancer models guides precision cancer care and fuels next-generation research. Cancer Discov; 7(5); 
00–00. ©2017 AACR.
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INTRODUCTION

Precision oncology is an approach to cancer treatment 
that seeks to identify effective therapeutic strategies for 
every patient. The Englander Institute for Precision Medi-
cine (EIPM) initiated its clinical research program in 2013, 
using whole-exome sequencing (WES) of metastatic and 
primary tumors, with prospective follow-up of patients 
to identify individualized therapeutic options and to help 
guide clinical decision making (1, 2). The identification of 
mutations that arise during treatment that confer drug 
sensitivity is paramount for precision cancer care of patients 
with advanced disease (3). However, there remain a signifi-
cant number of cases where genomic analysis currently fails  
to identify effective drugs or applicable clinical trials. Even 
when targetable genomic alterations are discovered, patients 
do not always respond to therapy. Strategies to confirm 
therapeutic efficacy or identify additional options would be 
beneficial to both clinicians and patients. To address this 
need, we describe the establishment of a living biobank con-
sisting of tumor organoids, which facilitates the integration 
of genomic data with drug screening of patients’ tumor 
samples in an iterative platform to identify effective thera-
peutic regimens for individual patients. Although it may 
not be feasible to utilize this approach for all patients with 
cancer, the integration of genomic with drug-sensitivity data 

across many tumor types may significantly affect patient 
outcomes in the future.

Large-scale drug screens of cell line panels—such as the 
NCI60 by the National Cancer Institute or the Cancer Cell 
Line Encyclopedia (CCLE)—have addressed compound sen-
sitivity in cancer cells to identify mechanisms of growth 
inhibition and tumor-cell death (4, 5). A more recent study 
of pharmacogenomic interactions in cancer links genotypes 
with cellular phenotypes with the purpose of targeting select 
cancer subpopulations (6). Unfortunately, for many cancer 
types, traditional cell culture methodologies do not ade-
quately model the biology of the native tumor. The high 
failure rate of preclinical compounds in clinical trials clearly 
demonstrates the limitations of existing preclinical models 
(7, 8). The accuracy of in vitro drug screens is therefore depen-
dent on the optimization of cell culture tools that more 
closely mirror patient disease.

The taxonomy of cancer has classically been the domain 
of pathologists using tumor cell morphology to help guide 
patient care. With the development of molecular markers, 
oncologists can work with pathologists to identify tumor 
subgroups. There have been dramatic clinical responses in 
some of these subgroups with available targeted agents such 
as trastuzumab or imatinib mesylate. The advent of high-
throughput sequencing methodologies has enabled consor-
tia—such as The Cancer Genome Atlas (TCGA) and the 
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International Cancer Genome Consortium (ICGC)—to gen-
erate large datasets across a broad range of cancer types, 
providing insights into the genomic landscape of cancer and 
identifying new potential therapeutic targets (9–13). However, 
an understanding of the functionality of these alterations 
and the influence they have on treatment response remains 
limited due to a paucity of personalized preclinical mod-
els (14, 15). Through the establishment of personal tumor 
organoids and the implementation of high-throughput drug 
screens, our platform pairs drug-sensitivity information with 
detailed genomic profiles. This allows for the generation of 
direct correlative associations between the cancer genome and 
the outcome of drug treatment.

Organoid technology is used in research as an intermedi-
ate model between cancer cell lines in vitro and xenografts as  
shown for colorectal, pancreatic, and prostate cancers (16–21). 
This technique differs from traditional cell culture by main-
taining cancer cells in three-dimensional (3-D) cultures. Can-
cer cells that are grown in 3-D retain cell–cell and cell–matrix 
interactions that more closely resemble those of the original 
tumor compared with cells grown in two dimensions on plastic 
(22–29). Utilizing our newly established 3-D patient organoid 
culture system, personalized high-throughput drug screening 
coupled with genomic analysis from patient-derived tumor 
samples offers a unique opportunity to stratify and identify 
effective cancer therapies for individual patients. By adding a 
drug screening component into our precision medicine plat-
form, we are able to (i) compare the response of individual 
tumors to specific drugs in order to provide individualized 
recommendations to help guide patient care; (ii) assess how 
individual tumors adapt in response to therapies and better 
understand the context in which these agents are efficacious; 
(iii) determine the next course of action for cases where stan-
dard clinical options have already been exhausted; (iv) create 
a database that relates drug sensitivity to tumor genetics 
to nominate potential therapeutic strategies even when only 
genomic data are available. Herein, we describe a precision 
oncology approach that combines WES, patient-derived tumor 
organoids (PDTO), high-throughput drug screening, and 
patient-derived xenografts (PDX). We further outline how this 
platform can discover novel treatment strategies in a clinically 
relevant timeframe and lead to innovative clinical trials.

RESULTS
WES Is Insufficient to Identify Clinically Targetable 
Alterations for Many Advanced Cancer Types

Our institute established the EXaCT-1 Test, a WES-based 
precision medicine platform designed to inform therapeutic 
decision-making for patients with cancer (1, 2). To date, the 
EIPM has sequenced and analyzed 769 tumor–normal pairs 
from an array of different primary and metastatic tumor 
sites from 501 patients, the majority of whom had advanced 
disease (Fig. 1A). WES identified alterations involving known 
cancer genes in 95.8% (737/769) of the analyzed specimens. 
Here, cancer genes are defined according to the updated 
list from the COSMIC cancer gene census (cancer.sanger.
ac.uk/census). The data presented report cases with broad 
genomic structural variations (i.e., amplifications or larger- 
scale deletions) that include all genes contained within the 

genomic region. In our cohort, there were FDA-approved 
drugs identified for 0.4% (3/737) of patients. Based on an 
expanded list of targeted therapies available at My Cancer 
Genome (30), 9.6% (71/737) of the analyzed patients had 
potentially targetable cancer gene alterations (e.g., EGFR 
p.L858R; BRAF p.V600E; ERBB2 amplification), though with-
out current FDA-approved drug indication (Fig. 1B and C). 
It is important to note that these numbers reflect a select 
population of patients with advanced cancer, the majority 
of whom have failed prior therapies or lack standard-of-care 
options, and are therefore not indicative of patients with 
cancer in general.

The most frequently mutated cancer genes with single-
nucleotide variants (SNV)/indels in our cohort (≥5%) were 
TP53 (37.4%), APC (11.3%), NOTCH1 (8.4%), EGFR (6.7%), 
KMT2D (6.6%), ARID1A (6.6%), TET2 (6.3%), KRAS (6.2%), 
CREBBP (5.5%), and PIK3CA (5.0%; Fig. 1D). The most com-
mon somatic copy-number aberrations (SCNA; ≥18%) were 
seen in CDKN2A (25.3%), RB1 (24.9%), WRN (24.3%), PCM1 
(22.4%), PTEN (22.0%), CDKN2B (21.9%), LCP1 (20.6%), AR 
(20.2%), FGFR1 (19.9%), WHSC1L1 (19.8%), MYC (18.5%), 
BMPR1A (18.4%), and TP53 (18.0%; Fig. 1E). Of the 4.02% 
(32/769) of cases sequenced, mutations were found only 
in genes with unknown clinical or biological significance. 
Together, these data suggest that WES—although highly 
informative for some cancers with targetable mutations (e.g., 
BRAF and EGFR)—is insufficient to nominate therapeutic 
alternatives in many advanced cancer types.

Patient-Derived Tumor Organoids and Xenografts 
as Tools for Precision Cancer Care

To complement the genomic information and to provide 
therapeutic options for patients, we integrated personalized 
PDTO drug screens and PDX generation into our plat-
form (Fig. 2). Fresh tumor tissue biopsies or formalin-fixed, 
paraffin-embedded (FFPE) material was used for sequencing 
(Fig. 3A). Fresh tissue was snap-frozen for sequencing, and 
PDTOs were generated from cases with sufficient available 
material (Supplementary Fig. S1A). To date, 145 specimens 
have been collected, representing 18 different tumor types 
derived from patients with metastatic solid tumors of epi-
thelial and mesenchymal origin. These include metastatic 
and primary tumors originating from the prostate (n = 
52), bladder/ureter (n = 24), kidney (n = 10), colon/rectum  
(n = 10), brain (n = 9), pancreas (n = 7), breast (n = 6), stomach 
and esophagus (n = 6), soft tissue (n = 6), small intestine (n 
= 3), lung (n = 2), liver (n = 2), adrenal gland (n = 2), uterus 
(n = 2), ovary (n = 1), appendix (n = 1), and thyroid (n = 1), 
and cancer of unknown primary (CUP; n = 1; Supplementary 
Fig. S1B). Tumor organoids were successfully established 
from 56 specimens (38.6%), including 43 of 120 tissue biop-
sies and 13 of 32 surgical resection specimens (Fig. 3B). We 
defined successful establishment of PDTO cultures as when 
they contain viable cells that form spheroid-like structures 
and can be propagated after the initial processing for at least 
five passages. These specimens were characterized, stored 
in our living biobank, and used for functional studies. Cell 
viability was assessed in the first 10 established cultures  
at passages 2–4, and in 9 out of 10 cases, >90% of cells were 
viable (Supplementary Fig. S1C). Tumor organoids were 
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Figure 1.  WES detects a limited number of clinically targetable alterations in patients with advanced cancer. A, Overview of the sites of origin of speci-
men collected from patients and run through the EXaCT-1 test. The majority of these samples were taken from metastatic sites of patients with advanced 
disease. B, WES has been performed on a total of 769 specimens. Data presented here also include large-scale deletions (>50 genes), and each gene is indi-
vidually included in the analysis. In 85.8% (660/769) of the cases sequenced, somatic alterations in currently not targetable cancer genes were detected. 
In total, three cases (0.4%), two gastrointestinal stromal tumors (GIST) with an activating KIT mutation and a clear cell renal cell carcinoma with a BRAF 
mutation, have FDA-approved drugs available. In 9.6% (71/737) of these, there are somatic alterations in cancer genes that could be clinically actionable 
by off-label use of approved drugs; however, clinical efficacy has not been proven. In 4.2% (32/737) of the cases, we did not detect any somatic altera-
tions in known cancer genes. C, Bar graph showing above the x-axis the number of alterations in cancer genes detected in each case (gray). Below the x-axis 
we show in green (*) the three cases that have FDA-approved drugs available and in orange the cases that have clinically actionable gene alterations by 
potential off-label use of FDA-approved drugs. D, List of the 20 most relevant SNVs/indels in cancer genes detected in our cohort. Cancer genes (red) that 
have FDA-approved drugs available for non–small cell lung cancer (crizotinib, erlotinib, gefitinib) and for ovarian cancer (olaparib). E, The 20 most common 
SCNA-detected genes that have FDA-approved drugs available (green) for ovarian cancer (olaparib) and for chronic lymphocytic leukemia (venetoclax).
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characterized using cytology and histology as previously 
described (ref. 31; Supplementary Fig. S1D–S1F).

Tumor organoids with a passage number < 20 were used 
for pharmacologic screens and the establishment of PDXs. 
To date, we have generated 19 PDXs out of 22 attempts 
(86.4%) from PDTOs representing colorectal, pancreas, pros-
tate, urothelial, uterine, kidney, and lung cancers, and sar-
coma (Fig. 3C). The matched PDTOs and PDXs had similar 
histopathology to the parental tumors from which they were 
derived (Fig. 3D). The WES data of PDTOs and PDXs from 
9 solid tumor types in 15 patients (Supplementary Table S1) 
were analyzed to test concordance at base-pair resolution 
with the native tumor. We evaluated tumor purity and ploidy 
using the CLONET computational framework (CLONal-
ity Estimate in Tumors; Supplementary Fig. S2A and S2B; 
ref. 32). As expected, PDTO and PDX samples demonstrate  
high purity in all but one case, PDX WCM236_P1, where we  
detected mouse DNA admixed with the human tumor tissue 
DNA (see Methods). Ploidy and genomic burden (33) pro-
files (Supplementary Fig. S2B and S2C) of PDTOs and PDXs 
also matched patient tumor data. Allele-specific copy-number 

analysis of 1,062 putative cancer genes showed a median of 
86% concordance (see Methods) when comparing PDTOs and 
PDXs to the native tumor tissues (Fig. 4). Minor differences 
observed are either due to subclonality in the native tumor 
(subclones not represented in the PDTO) or due to the pro-
gression of the PDTO/PDX. Similarly, SNV analysis showed 
excellent concordance between native tumors, matching 
PDTOs (Supplementary Fig. S2D; Supplementary Table S1) 
and PDXs upon considering mouse DNA reads (Supplemen-
tary Fig. S2E–S2H; Methods).

Ex Vivo Drug Screening Nominates  
Therapeutic Candidates

Tumor organoids, derived from biopsies and surgical speci-
mens of four patients with cancer, were subjected to high-
throughput drug dose-response screens. The four organoid 
samples were derived from patients with a uterine carci-
nosarcoma (patient A, stage IIIB: PIK3CA p.Q546H; PTEN 
p.K6fs*4), an endometrial adenocarcinoma (patient B, IIIC2: 
PIK3CA p.H1047R; PTEN p.K267fs*9; CTNNB1 p.D32G), 
a stage IV colorectal cancer with a clinically relevant KRAS 

Figure 2.  Personalized models to guide precision medicine in advanced cancer. Illustration of our precision medicine program depicting the workflow, 
beginning with sequencing using the EXaCT-1 WES test (top), continuing with the establishment of PDTOs, which are compared with the primary tumor 
sample through histology and sequencing before they are subjected to drug screening (middle row; arrow with dotted line suggests unestablished path-
way), and utilized to generate PDXs where potential drugs are validated in mice (bottom). The sequencing data are available in our internal cbio-portal 
and reported back to the referring physician. Tumor organoid cultures are prepared from fresh patient tumor samples as personalized in vitro models. 
After the initial characterization, targeted or high-throughput single and combination drug screens can be performed in an iterative process in order to 
nominate therapeutic strategies that are further evaluated in personalized in vivo models.

Sequencing Sequencing report

Tumor organoids

Patient-derived xenograft

Drug screening

In vivo drug validation
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Figure 3.  Development of preclinical models for the guidance of precision medicine. A, Of the 769 samples that have been run through the sequencing 
program, 50.9% were FFPE specimens, 44.5% were freshly collected tissue specimens, and a minority of 4.6% were from patients with hematologic malig-
nancies sent to us as DNA specimens. B, 152/342 of the freshly collected specimens had a tissue biopsy or resection specimen to attempt the development 
of tumor organoids. Of these 152, 56 (36.8%) patient-derived organoids were successfully initiated from numerous tissues, including prostate (10/52), blad-
der/ureter (8/24), kidney (6/10), breast (4/6), colon/rectum (8/10), esophagus (1/6), soft tissue (3/6), brain (5/9), pancreas (5/7), lung (1/2), small intestine 
(2/3), ovary (1/1), and uterus (2/2). C, 22 of these patient-derived organoid models were subsequently injected into mice of which 19 organoid lines from 
colorectal cancer (CRC; n =  7), pancreatic ductal adenocarcinoma (PDAC; n = 3), uterine cancers (n = 2), neuroendocrine prostate cancer (NEPC; n = 2), renal 
cell carcinoma (RCC;  n = 2), urothelial cancer (n = 1), lung adenocarcinoma (n = 1), and sarcoma (n = 1) successfully engrafted. D, Histology of primary tumor 
samples, tumor organoids, and xenografts from six different solid tumors: endometrial adenocarcinoma, pancreatic ductal adenocarcinoma, colorectal cancer, 
uterine carcinosarcoma, urothelial carcinoma, and renal cell carcinoma. Tumor organoid gross morphology (row 2) shows tumor type–specific structures such 
as the formation of lumina as seen for pancreas and colon. Tumor organoid and PDX histology shows conservation of the histopathologic features of the native 
tumors. Hematoxylin and eosin (H&E) stain from native tumor tissue, scale bar, 200 μm; tumor organoids bright field view in vitro, scale bar, 10 μm; H&E stain 
from tumor organoids, scale bar, 20 μm (urothelial carcinoma 200 μm); H&E stain from PDXs, scale bar, 20 μm.
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Figure 4.  Allele-specific copy-number heat map showing the genomic characterization of patient-derived in vitro and in vivo models. Allele-specific 
copy number of 1,062 putative cancer genes (columns) derived from 57 whole-exome tumor tissue samples (rows) from 15 patients. Six copy-number 
states are represented: homozygous (Homo del) and hemizygous deletions (Hemi del), wild-type, low-level gain (Gain), and high-level amplification (Amp), 
loss of heterozygosity (Loss of het). Relevant biomarkers are highlighted at the bottom. Left column annotation reports the tissue type (N, native tumor; 
O, tumor organoid; P, organoid-derived PDX). The different numbers for T denote different locations of the native tumor samples sequenced. Different O 
numbers indicate tumor organoids in culture over time (O1, passage 5; O2, passage 10; O3, passage 15; O4, passage 20; O5, passage 30). P1 is the initial 
xenograft derived from tumor organoid passage < 20 and P2 is an orthotopic xenograft (WCMC601 intrauterine). Right column annotation reports the 
tumor type of the patient.
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p.G13D and TP53 p.R282W mutation (patient C), and a stage 
IV colorectal cancer with an APC mutation p.G857X and an 
APC frameshift insertion p.E1536_fs (patient D). The drug 
libraries used consisted of a total of ∼160 drugs (119 NCI 
Library + 120 SEngine Library with 70% overlap), includ-
ing current FDA-approved chemotherapeutics and targeted 

agents under clinical development (Supplementary Table S2).  
These compounds target clinically relevant molecules and 
signaling pathways, including PI3K, RTKs, CDK, MEK, 
HDAC, IKK/NFKB, mTOR, PKC, HH, EGFR, CHK, PARP, 
epigenetic modifiers, the proteasome, and apoptosis. Each 
drug was tested with a minimum of 6 to a maximum of 8  
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different concentrations selected to cover the therapeutic 
range (Supplementary Table S2). As proof of principle, 
screening of patient-derived examples of ER+ breast cancer 
and BRAF-mutant melanoma with the drug library identi-
fied tamoxifen and BRAF as well as MEK inhibitor as top-
scoring drugs, respectively, indicating the high-throughput 
screens can identify targeted agents that are clinically vali-
dated (Supplementary Fig. S3A–S3H). To directly compare 
drug responses in liquid versus semisolid culture conditions 
with Matrigel, we tested the same 120-drug library with 
tumor cells from patient B using both conditions. There was 
a high degree of concordance between the two conditions 
with a Spearman rank correlation coefficient (Spearman Rho) 
of 0.77 (Supplementary Fig. S3I). Only ∼5% of drugs tested 
showed preferential activity when assayed in 2-D versus 3-D. 
Unless noted, the results below were obtained from culture 
of organoids in 2-D (for the colon cancer cases, collagen was 
used as a substratum to improve cell viability). Selected top-
scoring drugs were subsequently validated in 3-D.

Tumor cells from patients A and B with uterine malig-
nancies demonstrated in vitro responses to PI3K inhibitors, 
consistent with PIK3CA mutations in both samples, single-
agent chemotherapeutics (e.g., purine synthesis inhibitors 
such as fludarabine), and HDAC inhibitors (Fig. 5A–F; Sup-
plementary Table S3–S5; Supplementary Fig. S4A–S4F). The 
KRAS-mutant colorectal tumor cells from patient C were 
resistant to most agents but showed an exceptional response 
to the MEK inhibitor trametinib. The KRAS WT colorectal 
tumor cells from patient D demonstrated sensitivity to EGFR 
inhibitors, and in particular afatinib (Fig. 5G–L; Supplemen-
tary Table S7; Supplementary Fig. S4G–S4J), consistent with 
known sensitivity of KRAS WT colon cancer to inhibition of 
EGFR and approval of cetuximab (34).

Development of resistance to both chemotherapies and 
targeted agents is very frequent in clinical practice and is 
a major cause of mortality. Anticipating this, we set out to 
identify optimal combination therapies for all four tumor 
organoid lines using combination drug screens with selected 
compounds identified from single-agent screens and/or com-
pounds indicated by the genetic data (Fig. 6A–L). Each of the 
selected compounds was used at sublethal concentrations 
(∼IC30) and tested in combination with the entire 120-drug 
library. Drugs that showed strong curve shifts in combi-
nation relative to single agents (top 15% by way of AUC fold 
change) and uniquely sensitive to the patient sample (nega-
tive AUC Z-score) were selected as candidate drug combi-
nations. For further prioritization, we manually curated the 
drugs to identify the most promising combinations (e.g., 
novelty, clinical utility, and targeted therapies). For cells 
from patient A, the top drug in the buparlisib combination 
screen was the HDAC inhibitor vorinostat (Supplementary 
Table S3). An additional combination screen was performed 
using the HDAC inhibitor vorinostat (which was a top drug 
in the single-agent screen for this patient) as the sensitizing 
agent (Supplementary Table S4). This second combination 
screen confirmed the findings of the buparlisib-sensitizing 
screen by demonstrating that vorinostat further sensitized 
patient A’s carcinosarcoma cells to PI3K inhibitors, including 
buparlisib (Fig. 6A–C; Supplementary Table S4; Supplemen-
tary Fig. S5A). Although buparlisib was not the top-scoring 

single agent for patient B (Fig. 5D and E), it was selected as 
a modifying agent for a subsequent combinatorial screen 
because of its effect within the range of therapeutic doses 
and patient B’s PIK3CA mutation. The results of the combi-
nation screen indicated that buparlisib sensitized cells from 
patient B to two HDAC inhibitors, vorinostat and belinostat, 
and to a PARP inhibitor, olaparib (Fig. 6D–F; Supplementary 
Table S5; Supplementary Fig. S5B). The combination screen 
for patient C showed that the MEK inhibitor trametinib sen-
sitized the KRAS-mutant colon cancer cells to multiple drugs 
including celecoxib, nilotinib, vorinostat, belinostat, and 
afatinib (Fig. 6G–I; Supplementary Table S6; Supplementary 
Fig. S5C), indicating sensitization to multiple FDA-approved 
agents, which on their own had no or little effect. In contrast, 
for the KRAS WT colon cancer cells from patient D, a sen-
sitizing screen with the EGFR inhibitor afatinib, which was 
the top-scoring single agent, showed an enhanced response 
to HDAC and IGF1R inhibitors (Fig. 6J–L; Supplementary 
Table S7; Supplementary Fig. S5D). This result is consistent 
with a colorectal cancer model showing that EGFR inhibitors 
synergize with HDAC inhibitors (35). Thus, we were able to 
identify unique combinations for each patient.

3-D and PDX Models Validate Single Agents and 
Combinations Identified In Vitro and Provide 
Safety Information

In order to validate high-throughput drug screen results 
and prioritize agents for in vivo studies, we tested top-scoring 
single agents and combinations in 3-D PDTOs for all four 
patients. Dose-response cell survival assays in the PTDOs 
confirmed the specificity and sensitivity of both single agents 
and combinations for all four patients (Supplementary Fig. 
S5E–S5H). Drug combinations were selected for further vali-
dation using PDX models based on the drug screen efficacy 
as well as safety considerations. Drug combinations that had 
already been tested in clinical trials, such as buparlisib and 
olaparib, were given preference over novel combinations, as 
they had a greater potential to be of immediate clinical utility. 
We also compared response with standard-care therapies that 
the patients received. We studied PDX models from patient 
B’s uterine cancer and patient D’s colorectal cancer because 
organoids from these patients exhibited optimal growth kin-
etics after successful engraftment.

Patient B had a radical hysterectomy and is currently receiv-
ing the chemotherapy combination carbotaxol (carboplatin 
at 50 mg/kg and paclitaxel 20 mg/kg), given once a week, 
and shows stable disease. This treatment was compared with 
daily buparlisib at 50 mg/kg, vorinostat at 200 mg/kg, and 
olaparib at 50 mg/kg as single agents, as well as buparlisib in 
combination with vorinostat or olaparib. Greater inhibition 
of tumor growth was observed in mice treated with buparlisib 
as a monotherapy and in combination with vorinostat or 
olaparib as compared with mice treated with carbotaxol, vori-
nostat, or olaparib administered as monotherapies (Fig. 7A 
and B). These results demonstrate good concordance of both 
single agents and drug combinations identified in vitro with  
in vivo tumor response. Also, targeted agents identified through 
drug screens performed better than existing standard-of-care 
therapies. However, directly comparing PDX response to 
patient response would be needed to establish clinical utility.
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Figure 5.  High-throughput drug screen and validation to nominate patient-specific therapeutic options. Once organoids have been established and 
validated the cells can be utilized to identify patient-specific responses to therapeutic agents through the use of selected or high-throughput drug 
screens. A, D, G, and J, Heat maps of the drug screen results depicting the relative sensitivity of the patients’ tumor cells from most resistant (red) to 
most sensitive (blue). Black dots indicate agents that were selected for validation and further studies. B, E, H, and K, Graphs of the response of patient’s 
tumor cells to each compound in the library as a Z-score (AUC) compared with other primary cells screened with the same library (N(SEngine) = 43, N(NCI) = 10).  
C, F, I, and L, The in vitro validation of selected drugs in the 3-D system. Patient A: The patient’s tumor cells were generally resistant to many agents. 
Selective enrichment was seen for targeted agent classes such as PI3K (AZD8482, buparlisib, GDC-0980, idelalisib, taselisib, PIK-75, NVP-BGT226) and 
HDAC inhibitors (vorinostat, belinostat). Drug sensitivity was validated using the 3-D Matrigel system and compared with the patient’s actual treatment 
paclitaxel and carboplatin as single agents. Patient B: The high-throughput drug screen demonstrated that cells from patient B were responsive to a 
broad array of chemotherapeutic drugs, including antimetabolites methotrexate and fludarabine phosphate. Mitoxantron and paclitaxel as part of the 
patient’s actual treatment and topotecan were also effective in these cells. The cells showed sensitivity to several classes of targeted agents, including 
inhibitors of PI3K (AZD8482, buparlisib, GDC-0980, idelalisib, taselisib, and PIK-75) and HDAC (vorinostat and belinostat). Patient C: Tumor cells showed 
resistance to most chemotherapeutics and targeted agents (as indicated in the heat map); high sensitivity was seen for the targeted agent trametinib, 
a MEK inhibitor. Drug sensitivity was validated in our 3-D Matrigel system also using oxaliplatin and 5-FU in comparison with what the patient initially 
received. Patient D: This patient harbors an APC mutation and a frameshift deletion. The tumor cells were sensitive to a small number of drugs, including 
EGFR inhibitors, particularly for afatinib, and showed sensitivity to neratinib. Drug sensitivity was validated in our 3-D Matrigel system using oxaliplatin 
and 5-FU in comparison with what the patient was initially treated with.
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Figure 6.  High-throughput combination drug screening to nominate potent drug combinations. Using a combination of the genomics (EXaCT-1) 
and drug sensitivities from the primary drug screen, secondary drug screens were performed on the patient-derived tumor organoids from the same 
four cases. A, D, G, and J, Heat maps of the single therapy (left) and combination drug (right) screens depicting the relative sensitivity of the patients’ 
tumor cells from most resistant (red) to most sensitive (blue). Black dots indicate agents that were selected for validation. B, E, H, and K, Graphs of the 
response of patient’s tumor cells to each compound in the library as a Z-score in the presence of the combination treatments (y-axis) and the fold change 
of the IC50 identified with each compound in combination as compared with the agent as a monotherapy. C, F, I, and L, The in vitro validation of selected 
drugs in our 3-D Matrigel system. Patient A: A sensitizing drug screen using a PI3K inhibitor (buparlisib), as the investigational most advanced selec-
tive inhibitor of p110α/β/δ/γ did show an enhanced drug effect for HDAC inhibitors (vorinostat and belinostat; Supplementary Table S3). However, a 
high-throughput combination drug screen using vorinostat (at its IC30) showed that many of the investigational PI3K/AKT pathway drugs were enhanced 
compared with monotherapeutic use (Supplementary Table S4). A significant difference using vorinostat (IC30) with buparlisib in combination was seen 
compared with buparlisib alone (2-way ANOVA: ****, P < 0.0001). Vorinostat also enhanced the effects of EGFR inhibitors in this patient’s tumor cells 
(Supplementary Table S2). Patient B: Sensitizing screen with buparlisib for patient B enhanced the drug effects of drugs such as HDAC inhibitors and 
olaparib (Supplementary Table S5). For the validation of the olaparib and buparlisib combination, we extended the drug assay up to 6 days and noticed a 
significant difference compared with olaparib as monotherapy (2-way ANOVA: ****, P < 0.0001). Patient C: The combination drug screen using trametinib 
has increased the efficacy of several compounds (Supplementary Table S6). As an example, celecoxib did not have an effect on cell survival as a single 
compound activity but showed a significant effect in combination (2-way ANOVA: ****, P < 0.0001). Patient D: Afatinib-sensitizing drug screen for patient 
D showed enhanced effects for HDAC and IGF1R inhibitors, which were confirmed in our 3-D Matrigel system (Supplementary Table S7). A significant 
difference using vorinostat with afatinib (IC30) in combination was seen compared with vorinostat alone (2-way ANOVA: ****, P < 0.0001).
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Figure 7.  In vivo validation of drug screens. A, Patient B xenografts were treated with carbotaxol (patient’s actual treatment) or vehicle, or compounds 
that were identified through the single compound or combination drug screens. Tumor volumes of these mice are shown on the left and their tumor mass 
after 10 days of treatment are shown on the right. A significant effect upon tumor growth was observed with combinations of buparlisib and olaparib  
(2-way ANOVA: **, P = 0.0071) as well as buparlisib and vorinostat (2-way ANOVA: **, P = 0.0059) when compared with carbotaxol. Similarly, when the 
mass of the tumors at endpoint were compared, the combinations of buparlisib and olaparib (Student t test: *, P = 0.0205) and buparlisib and vorinostat 
(Student t test: *, P = 0.0369) showed significant improvement over crabotaxol. Error bars, SD. B, Representative H&E-stained section and IHC against 
the proliferation marker Ki67 of representative tumors from each of the treatment groups; scale bar, 300 μm. Carbotaxol and monotherapy treatments 
showed identical KI67 positivity as seen in the vehicle-treated group. In both combination treatments, we noticed only a few more individual cells that 
were not proliferating compared with the vehicle and other treatments, but in general, there is no noticeable relevant difference. C, Patient D xenografts 
were treated with FOLFOX (the patient’s actual treatment) or vehicle, or compounds that were identified through the single compound or combination 
drug screens. Tumor volumes of these mice are shown on the left and their tumor mass after 14 days of treatment are shown on the right. As compared 
with FOLFOX both afatinib alone (2-way ANOVA: *, P = 0.025) and afatinib with vorinostat (2-way ANOVA: *, P = 0.0232) showed more tumor regression 
than FOLFOX. The difference was also significant in the tumor mass at harvest between afatinib alone (Student t test: *, P = 0.0362) and afatinib with 
vorinostat compared with FOLFOX (Student t test: *, P = 0.0368). Error bars, SD. D, Representative H&E-stained section and IHC against the proliferation 
marker Ki67 of representative tumors from each of the treatment groups; scale bar, 300 μm. The xenografts that have been treated with afatinib alone 
and afatinib in combination with trametinib and vorinostat showed clear reduction in the Ki67-positive cells when compared with the vehicle, FOLFOX, 
and vorinostat as monotherapy-treated groups.
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For the second case, a stage IV colon cancer (patient D), 
the PDX study was set up to compare the standard of care 
that the patient is currently receiving (FOLFOX, 5-fluorura-
cil at 100 mg/kg and oxaliplatin at 10 mg/kg), given once a 
week, to the EGFR inhibitor afatinib at 20 mg/kg, vorinostat 
at 200 mg/kg, trametinib at 1 mg/kg alone, and vorinostat 
and trametinib in combination with afatinib with the same 
dosage (Fig. 7C and D). The combination of trametinib with 
afatinib appeared to be toxic, as all 5 of the mice had signifi-
cant weight loss (>20%) within the first week of treatment. 
Therefore, this arm was terminated. The combination of 
afatinib with vorinostat showed tumor shrinkage (tumors 
were 10% the size of the tumors treated with FOLFOX,  
P = 0.0232). Afatinib as monotherapy also had a significant 
effect on the tumor (tumors were 25% the size of tumors 
treated with FOLFOX, P = 0.025) and a reduction in the 
number of proliferating cells as shown by Ki67 staining 
(Fig. 7D). Monotherapy with vorinostat showed only minor 
growth inhibition as compared with the vehicle-treated ani-
mals, with minimal changes in Ki67 (Fig. 7C and D). Again, 
drugs and combinations identified in unbiased screens were 
validated in mice in vivo, and the combination of targeted 
agents was more effective at reducing tumor growth com-
pared with the broadly toxic FOLFOX regimen which the 
patient is receiving. Altogether, these results indicate that 
optimal drug combinations for each patient could be iden-
tified using sequential drug-sensitivity screens followed by 
validation in personalized PDX models in a clinically relevant 
time frame (Supplementary Fig. S6).

DISCUSSION
In Vitro Functional Testing Identifies  
Therapeutic Options

Cancer is a set of diseases in which genetic alterations 
in individual cells give rise to malignant growth. Over the 
past two decades, our knowledge of cancer genetics has 
increased exponentially; however, our ability to effectively 
treat tumors based upon their genetics has lagged behind. 
Here, we describe a precision-medicine platform that inte-
grates WES with drug screening of patient-derived tumor 
models to enable the identification of effective therapeutic 
strategies for individual patients. Further iterations of this 
platform will capitalize on an expanding database that will 
allow us to relate complex tumor genomics to therapeutic 
responses and provide a platform for personalized oncology.

We describe four late-stage cancer cases that underwent 
complete genomic analysis together with high-throughput 
drug screens using a comprehensive library of up-to-date 
targeted agents as well as chemotherapeutics. For each case, 
we identified effective targeted agents and, through a set of 
conditional screens, identified the optimal combinations for 
those agents. The uterine carcinosarcoma and endometrial 
adenocarcinoma from patients A and B had similar driver 
mutations in PIK3CA and PTEN, yet our screen clearly distin-
guished the two cases based on their drug-response profiles 
(Supplementary Fig. S4A–S4D). For the endometrial adeno-
carcinoma case, we identified the combination of buparlisib 
with olaparib as optimal treatments in both organoid and 
PDX models. In contrast, one of the top drug combinations 

for the uterine carcinosarcoma was the combination of vori-
nostat and buparlisib. The relevance of these findings is 
underscored because no targeted therapies are approved for 
endometrial cancer.

We also compared two stage IV colon cancer cases, one 
with mutations in KRAS and TP53 (patient C) and the other 
with mutations in APC (patient D). Tumor cells from patient 
C were resistant to most, if not all, drugs with the notable 
exception of trametinib, a result that was confirmed in orga-
noid culture. A conditional screen with trametinib indicated 
the potential to combine it with several targeted agents. Inter-
estingly, celecoxib, which has been investigated in clinical tri-
als for colorectal cancer as chemoprevention and therapeutic 
(e.g., NCT00230399, NCT00685568, and NCT00258232), 
was among the top combinations, a finding that was also 
confirmed in organoids. This finding alone could constitute 
the basis for a clinical trial.

For patient D, afatinib and other EGFR inhibitors scored 
as the most effective drugs, a result that was validated in 
3-D tumor organoids and PDX models. Although the use of 
EGFR inhibitors is not novel for KRAS WT colon cancer, here 
we extended the analysis to identify optimal combinations 
with afatinib. The results, which were confirmed in organoids 
and PDX models, demonstrated that the combination of 
afatinib and HDAC inhibitors led to greater tumor growth 
inhibition than did the standard-of-care FOLFOX regimen. 
As FOLFOX is broadly toxic, further exploration of these 
targeted agent combinations is warranted.

Although the application of functional testing for precision 
medicine is still in its infancy, here we demonstrate its feas-
ibility by integrating robust genomics with a living biobank 
and high-throughput screening that reveals specific drug sen-
sitivities of patient tumors and relates it back to their genom-
ics. This pipeline has the potential to help identify effective 
therapeutics for patients who have already exhausted their 
clinical options and may also nominate therapeutic options 
for genetically based clinical trials. In both cases tested in 
PDX models, the recommended targeted agents performed 
better than the standard-of-care chemotherapies.

Technical and Clinical Challenges of  
Functional Testing

The tissue collection protocol for this study was opti-
mized for DNA sequencing and yet we were still able to 
generate organoids for 38.6% of the patients. The major limi-
tation to the successful establishment of organoid cultures 
was insufficient amounts of fresh tissue with viable tumor 
cells. Increasing the tumor tissue available for organoid pro-
duction would allow for culture media optimization and 
lead to a greater success rate. More viable tumor tissue could 
be made available through the acquisition of larger samples 
through surgical biopsies or resections as well as the use of 
noninvasive approaches, including ascites fluid and pleural 
effusions. As previously published for breast, lung, and colo-
rectal cancers, we also consider the ex vivo culture of circulat-
ing tumor cells to be a powerful resource (36, 37).

Time is also a critical component for the utility of our func-
tional pipeline to inform and succeed in precision oncology. 
Although our study was not specifically designed to minimize 
time, three out of four patients were still alive when our 
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studies were completed and drug choices were identified. If 
sufficient tumor material is available from surgical excisions, 
blood, ascites, or pleural effusions, these data demonstrate 
that single-agent and combination drug testing can be com-
pleted within one to two weeks of biopsy.

To maximize identification of clinically useful drugs, we 
created and utilized in vitro models of increasing complexity 
and used validation in PDX models. Here, we present evi-
dence that high-throughput testing in 2-D versus 3-D on 
established organoids does not yield major differences, yet 
may be worthwhile further exploration. Other differences, for 
example, drugs that target tumor–stromal interactions, may 
not be identified using tumor organoids derived exclusively 
from epithelial cells (38). Validating the optimal therapeutic 
strategy in individualized PDX models provides a mechan-
ism to test the efficacy, and potential toxicity, of novel drug 
combinations in a mammalian system. This provides critical 
preclinical data and includes comparisons to the standard-
of-care treatments.

At present, the structure of clinical trials in the United 
States is not amenable to N of 1 studies, so applying the infor-
mation garnered from this platform, particularly the combi-
nation therapy drug screens, remains a significant hurdle. 
Despite the identification of some mutated cancer genes that 
could nominate an investigational therapeutic intervention, 
enrolling patients with advanced cancer in clinical trials—
after failing standard of care and progression under second- 
and third-line treatments—is challenging, because patients 
are heavily pretreated and/or do not fulfill the entry cri-
teria for trials. Compassionate request of non–FDA-approved 
drugs or even of FDA-approved drugs for another cancer type 
is time-consuming, costly, and not always successful. Thus, 
prioritization of which somatic alterations to target and the 
choice of next-line therapy remains a significant challenge for 
the treating physician.

CONCLUSION
In summary, we demonstrate that for patients with advanced 

cancer in whom genomics does not nominate an obvious 
approved targeted therapy, in vitro drug testing may enable 
the assessment of additional possibilities, including itera-
tive combinations to identify effective therapeutic strategies, 
and may help guide the choice of clinical trials for individual 
patients. A broad adoption of biobanking, i.e., the generation 
of a living biobank with the cryopreservation of living tumor 
cells, as described in the current study, has potential to accel-
erate the development of rationally based combination thera-
pies and guide the design of future clinical trials. Larger-scale 
integration of genomic data, functional drug profiling, clini-
cal characteristics, and patient follow-up information into a 
mineable database also has the potential to inform clinical 
decisions when personalized tumor cultures are not available 
by relating genomics to therapeutic responses.

METHODS
Specimen Procurement

Patient-derived fresh tissue samples were collected with written 
informed patient consent in accordance with the Declaration of 

Helsinki and with the approval of the Institutional Review Board (IRB) 
at Weill Cornell Medicine, as recently described by Beltran and colleagues 
(2). Fresh tissue biopsies and resection specimens were taken directly 
in the procedure rooms, processed by a pathologist, and immediately 
frozen in OCT Compound (Tissue-Tek). This material was used for 
next-generation WES (EXaCT-1 assay) and/or targeted sequencing 
(50-gene panel, Illumina). Fresh tissue biopsies were transported to the 
laboratory to establish primary tumor organoid cultures. Macroscopi-
cally different–appearing tumor areas were collected and processed 
individually. The time between harvesting fresh tissue specimens and 
placing them in transport media [DMEM (Invitrogen) with Glutamax  
(1×, Invitrogen), 100 U/mL penicillin, 100 μg/mL streptomycin 
(Gibco), Primocin 100 μg/mL (InvivoGen), and 10 μmol/L Rock inhibi-
tor Y-27632 (Selleck Chemical Inc.)] varied from 10 to 45 minutes. 
Sample size varied between biopsies (~0.2–0.3 mm2) and resection 
specimens (~0.5 mm2–0.5 cm2).

Tissue Processing and Cell Culture Conditions
Tissue samples were washed a minimum of three times with trans-

port media and placed in a sterile 3-cm petri dish (Falcon) for either 
total mechanical dissociation or dissection into smaller pieces (<2 mm 
diameter) prior to enzymatic digestion. Enzymatic digestion was 
done with two thirds of 250 U/mL collagenase IV (Life Technologies) 
in combination with one third of 0.05% Trypsin-EDTA (Invitrogen) 
in a volume of at least 20 times the tissue volume. Tubes were incu-
bated on a shaker at 200 rpm at a temperature of 37°C until the 
digestion solution turned cloudy. The suspension was mixed with 
10% FBS (Denville) enriched DMEM to inactivate the enzymes and 
centrifuged at an average of 1,000 rpm for 5 minutes to pellet cells. 
The cell pellets were washed once with 10% FBS-enriched DMEM and 
washed once with unsupplemented DMEM to wash away residual 
FBS. The cells were resuspended in a small volume of tissue-type 
specific primary culture media [Advanced DMEM (Invitrogen) with 
glutamax (1×, Invitrogen), B27 (Gibco), 100 U/mL penicillin, 100 
μg/mL streptomycin (Gibco), Primocin 100 μg/mL (InvivoGen), and 
tumor type–specific growth factors] and mixed with a 1:2 volume of 
growth factor–reduced Matrigel (Corning). For tumor type–specific 
media, we provide information in the supplementary material (Sup-
plementary Table S2). Up to ten 50- to 80-μL drops of Matrigel/cell 
suspension were distributed into a 6-well cell suspension culture 
plate (SARSTEDT Ltd). The drops were solidified by a 30-minute 
incubation in the cell culture incubator at 37°C and 5% CO2. After 
solid drops formed, 4-mL tumor type–specific primary culture media 
were added. Each well was replaced with fresh culture media every 
five days until the organoid culture started growing, and then every 3 
to 4 days. Organoids at approximately 300 to 500 μm were passaged 
using TrypLE Express (Gibco) for up to 15 minutes in the water bath 
at 37°C. Single cells and small cell clusters were replated according 
to the procedure described above. Regular Mycoplasma screening was 
performed using the MycoAlert Kit (Lonza Inc). Tumor organoids 
were biobanked in Recovery Cell Culture Freezing Medium (Gibco) 
in liquid nitrogen.

Organoid Viability Assessment
Upward of five tumor organoids were transferred in a 96-well plate 

(VWR) and washed twice with PBS (1×, VWR). After washing, tumor 
organoids were incubated with PBS containing the dead cell–permeable 
red fluorescent dye Ethidium homodimer-1 (4 μmol/L) and the live-
cell–impermeable green fluorescent dye Calcein-AM (2 μmol/L; LIVE/
DEAD Viability Kit, Molecular Probes) for a maximum of 45 minutes 
at 37°C. Calcein-AM is a nonfluorescent membrane-permeable probe 
that is hydrolyzed by cellular esterases to form a green fluorescent 
membrane impermeable compound. With this dye combination, dead 
cells are shown as red and viable cells are shown as green. Imaging was 
performed with the confocal microscope LSM510 from Zeiss.
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Tumor Organoid and Patient-Derived Xenograft 
Characterization Using Cytology and Histology

As previously described, 3-D cultures are characterized using our 
developed cytology and histology platforms (31).

Tumor Organoid and Patient-Derived Xenograft 
Characterization and Validation Using  
Next-Generation Sequencing

Fresh tumor organoid DNA was extracted using the DNeasy Blood 
and Tissue Kit (QIAGEN). DNA from snap-frozen patient-derived 
xenograft samples was isolated using the Maxwell 16 Tissue DNA 
Purification Kit (Promega). Native tumor DNA and germline DNA 
was obtained and extracted as previously described by our group 
(2). DNA (200 ng) was required to proceed with WES. DNA quality 
was confirmed for all samples by real-time PCR prior to sequencing. 
Sequencing was performed using Illumina HiSeq 2500 (2 × 100 bp). 
A total of 21,522 genes were analyzed with an average coverage of 
84× (81×) using HaloPlex System (Agilent). Short reads were aligned 
to GRC37/hg19 reference using Burrows-Wheeler Aligner and pro-
cessed according to the IPM-Exome-pipeline v0.9.

For tumor organoid specimens where the amount of 200 ng could 
not be reached, a targeted cancer gene panel of 50 genes was run 
using TruSeq Amplicon (Illumina).

Computational Analysis
We applied CLONET (32) to study WES tumor and matched 

germline data to first assess tumor ploidy and purity (Supplemen-
tary Fig. S2A and S2B; Supplementary Table S1), then to refine 
copy-number data computed by the IPM-Exome-pipeline v0.9 adjust-
ing each log2R to account for both aneuploidy and tumor purity. 
Combining purified log2R values and the allelic fraction of germline 
heterozygous SNP loci, CLONET assigns allele-specific copy-number 
values [represented as a (cnA, cnB) pair] to a set of 1,062 putative 
cancer genes (Fig. 4; Supplementary Table S1). Quality filters require 
at least 10 informative SNPs and a mean coverage of 20 reads to 
quantify allele-specific copy-number values of a gene.

Allele-specific copy-number concordance between two samples is 
assessed on discretized allele-specific copy-number values while consid-
ering six levels: homozygous deletion (cnA = 0, cnB = 0), hemizygous 
deletion (cnA = 1, cnB = 0), wild-type, low-level gain (cnA = 2, cnB = 1), 
and high-level amplification (cnA+cnB > 2 and cnB > 0), loss of het-
erozygosity (cnA = 0, cnB > 1). Loss of heterozygosity allows capturing 
complex copy-number events where one allele is lost and the other one 
is gained. Concordance between two samples is defined as the percent-
age of genes with the same discretized allele-specific copy-number value.

We applied an integrated approach to nominate putative aberrant 
genomic positions (SNV) initially called by MuTect (39) and SNVs-
eeqer (40); then, all nominated positions were scrutinized by means 
of ASEQ (41) in normal and germline samples to (i) filter out any 
germline SNP (positions where the alternative base is present in the 
control sample), and (ii) in cases of multiple samples from the same 
patient, check for the presence of SNVs with below-threshold allelic 
fractions. Finally, each aberrant genomic position was annotated 
with Oncotator (ref. 42; cancer analysis relevant information; Sup-
plementary Fig. S2C and S2D; Supplementary Table S1).

SNV analysis initially revealed an unexpectedly high number of pri-
vate mutations in a subset of PDX samples (Supplementary Fig. S2D). 
Mouse DNA contamination was suspected; therefore, multigenome 
alignment (MGA) was applied for quality control and contamination 
screening of next-generation sequencing data (43); for a WES sam-
ple, the tool aligns 105 random reads to selected reference genomes 
(Homo Sapiens hg19 and Musculus GRCm38.p5). MGA was run a 
hundred times on each sample and it detected the presence of mouse 
DNA in some of the PDXs (Supplementary Fig. S2E). To evaluate if 
mouse DNA contamination would likely affect SNV detection, MGA 

was then run on only reads intersecting SNVs, and there was an 
enrichment of mouse DNA in PDXs with an outlier number on pri-
vate SNVs (Supplementary Fig. S2F). To ensure that PDX tumor cells 
originated from the human tumor, we also computed the genotype 
distance (SPIA distance; ref. 44) between each patient’s tumor sample 
(native tumor, PDTO, or PDX) and the matched germline sample 
(Supplementary Fig. S2G) and then applied MGA on reads used to 
compute genotype distance (Supplementary Fig. S2H). Both analyses 
confirm that PDXs are derived from human tissues.

High-Throughput Drug Assay
Lab automation was used for each step of (i) cell plating, (ii) drug 

addition, and (ii) plate reading. A range of 900 to 2,000 cells (a value 
determined by optimization studies for doubling time for each cell 
type) were plated in 384-well plates on day 1 and exposed to between 
six and eight different drug concentrations after 24 hours. Drug 
concentrations ranged from 10 μmol/L to 33 pmol/L, depending on 
the individual drug properties. Chemotherapies were tested at lower 
concentrations because they are usually very potent in an in vitro set-
ting. To maximize cell viability for the colon cancer samples, plates 
were coated with 0.1% collagen (Thermo Fisher) prior to plating 
cells. Cell viability was measured at 4 to 6 days following the drug 
treatment depending on the drugs of interest (for PARP inhibitors 
and epigenetic modulators assay length was 6 days). CellTiter-Glo 
2.0 (Promega) was selected to assess cell viability, as it was previ-
ously determined to exhibit the broadest linear range and minimally 
affected by the time necessary to process multiple plates. A Biotek 
Synergy H4 plate reader was used to read the luminescence signal. To 
compare the drug responses of 2-D and 3-D high-throughput drug 
screening, we simultaneously seeded patient B in the presence and 
absence of Matrigel on normal tissue culture–treated 384-well plates. 
Drugs were added 24 hours later as previously described. Cellular 
viability was assessed 6 days after drug addition via CellTiter-Glo.

Statistical Analysis and Selection of  
Single Drugs and Combinations

The raw luminescence obtained from each well was normalized 
to the average of multiple DMSO control wells to be considered 
100% viability (maximal DMSO concentration used was 0.1%). For a 
positive control, we used mitomycin C and/or bortezomib, as these 
drugs exhibit high toxicity with the majority of cell types. Dose-
response curves were generated for each drug using a 4-parameter 
logistic model. AUC, IC50, and R-squared criteria were all calculated. 
Dose-response curves were then compared with the Cure First/SEn-
gine Precision Medicine internal database of a total of 53 (N(SEngine) = 
43, N(NCI) = 10) primary tumor samples across multiple tumor types, 
generating Z-score values that we used to prioritize future drug 
investigation. The tumor types included ovarian, breast, colorectal, 
prostate, lung, sarcoma, neuroblastoma, glioblastoma, leukemia, 
melanoma, thyroid, head and neck, pancreas, and liver. This method 
of analysis allows for the detection of unique sensitivities across 
multiple samples. For the drug combinations study, the top drug 
combinations were selected through multiple criteria: fold changes 
in AUC as single agent versus combination, second by Z-score 
(as described above). Nomination of combinations to be retested 
included clinical criteria.

Tumor Organoid (3-D) Pharmacologic  
Drug Assays and Analysis

Between 1,000 and 3,000 cells were plated in a 10-μL cell culture 
media and Matrigel mix (v/v 1:1) in a 96-well angiogenesis plate 
(IBIDI) in triplicate. Plates were incubated for 30 minutes at 37°C 
to solidify the cell–matrix mix; 70 μL of media was added to each 
well. Twenty-four hours after plating, drugs were run in a 6- to 
8-point dilution dose-response log scale to determine the IC50 values;  
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highest dose was 10 μmol/L and lowest dose was 4.7 pmol/L. Assay 
times were in general 96 hours with an extension to 144 hours for 
drugs such as PARP inhibitors (olaparib). For 3-D drug screens, 
micro plate-based viability assays were performed using CellTiter-Glo 
and assay (Promega). The media were replaced by 65 μL of undiluted 
CellTiter-Glo, and plates were incubated for 90 minutes in a cell cul-
ture incubator (37°C, 5% CO2) to ensure tumor organoids were ana-
lyzed. Plates were read using the Spectra Max L (Molecular Devices) 
at 570 nm. Analysis was performed running a nonlinear regression 
(curve fit) method in Prism 6 for Mac OS X.

Xenograft Studies
All animal procedures were approved by the Institutional Ani-

mal Care and Use Committee protocol 2013-0016. For xenograft 
development, 1 × 106 cells from tumor organoids were mixed with 
Matrigel 1:1 in a total volume of 100 μL and injected subcutane-
ously in flanks from nude mice (The Jackson Laboratory). Xenograft 
take rate varied from 2 weeks to 16 weeks based on tumor type. For 
in vitro drug studies, 5 mice per treatment arm (N = 5) were used. 
Treatment was begun after tumors reached a diameter of approxi-
mately 0.65 cm. The following drugs and dosing schedules were 
used: afatinib: 20 mg/kg diluted in 1% HEC/PBS (pH2), oral gavage 
daily; vorinostat: 200 mg/kg diluted in 1% HEC/PBS (pH2), oral 
gavage daily; olaparib: 50 mg/kg diluted in 10% DMSO with 30% 
PEC, i.p. daily; buparlisib: monotherapy 50 mg/kg, used in combi-
nation 30 mg/kg diluted in 10% DMSO and 1% HEC/PBS oral gav-
age daily; paclitaxel: 20 mg/kg diluted in PBS (1×), i.p. once a week; 
carboplatin: 50 mg/kg diluted in water i.p. once a week; fluorouracil: 
100 mg/kg diluted in water, i.p. weekly; and oxaliplatin: 10 mg/kg 
diluted in water, i.p. weekly. Mouse weight was monitored at the 
beginning of the treatment, then weekly, and at the end of the treat-
ment. Tumor size was evaluated by caliper twice a week. Volumes 
were calculated using the formula 4/3πpi*((sqrt(L*W))/2)3, where L 
is the minor tumor axis and W is the major tumor axis. Fresh tumors 
were harvested when their diameter reached a size >1.5 cm. Tumor 
samples were snap-frozen and fixed for 24 hours with paraformal-
dehyde solution (4% in PBS, Affimetrix) for paraffin embedding and 
sectioning. Sections (3 μm) were cut and stained with hematoxylin 
and eosin and used for IHC.

IHC and Analysis
Xenograft sections (3 μm) were antigen retrieved with 10 mmol/L 

citrate acid, 0.05% Tween 20, pH6.0, incubated with antibodies target-
ing Ki67 (Abcam, ab16667) 1:500; cleaved caspase-3 (Asp175; 5A1E; 
Cell Signaling Technology, 9664) 1:200; phospho-AKT (Ser473; Cell 
Signaling Technology, 8101) 1:20; and phospho-S6 ribosomal pro-
tein (Ser235/236; Cell Signaling Technology, 2211) 1:300.
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