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Abstract Building from a continuous-time host-parasitoid model introduced by Mur-

doch et al. (1987), we study the dynamics of a 2 host-parasitoid model assuming, for

the sake of simplicity, that larval stages have a fixed duration. If each host is sub-

jected to density-dependent mortality in its larval stage, we obtain explicit conditions

for the existence of an equilibrium where the two host species coexist with the para-

sitoid. However, if host demography is density-independent, equilibrium coexistence
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is impossible. If at least one of the 1 host-parasitoid systems has an oscillatory dy-

namics (which happens under some parameter values), we found, through numerical

bifurcation, that coexistence is favoured. Coexistence between the two hosts may oc-

cur along a periodic solution even without density-dependence. Models of this type

may be relevant for the use of parasitoids as biocontrol agents of insect pests.

Keywords Host-parasitoid Model · Species Coexistence · Delay Differential

Equations · Periodic Solutions · Numerical Bifurcation · Characteristic Multipliers
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1 Introduction

Parasitoids are a widespread group of insects often employed as a tool for biological

control, and thus have been subjected to many modelling efforts as in Getz and Mills

(1996).

Many parasitoid species are generalist (Godfray, 1994) that are capable of attack-

ing different hosts species. Conversely, host species are often attacked by different

parasitoids. Several modelling papers have addressed this latter phenomenon, which

at first sight may appear in contrast with the competitive exclusion principle (Gause,

1934; Chesson and Case, 1986); indeed, Briggs et al. (1993) have been able to prove

that two parasitoid species can coexist at equilibrium on a single host species, as

long as they attack different host-stages, and the length of each stage is sufficiently

variable (see Pfab et al., 2016, for a more detailed analysis of their model).

On the other hand, very little attention has, to our knowledge, been paid to the

interactions of one or more parasitoid species with multiple hosts species. Several
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models (Charnov, 1976; Iwasa et al., 1984; Charnov and Stephens, 1988; Janssen,

1989) have indeed been devoted to the evolution of host choice by parasitoids; how-

ever, in this approach host densities are simply taken as given without considering

the dynamics of species interactions. In this respect, the present analysis can there-

fore provide the background for coupling evolutionary and ecological dynamics.

The recent invasion from Eastern Asia of Drosophila suzukii Matsumura, spotted-

wing fruit-fly, into Europe and North America (Calabria et al., 2012; Cini et al., 2014;

Walsh et al., 2011) with the consequent economic losses (Goodhue et al., 2011) has

revived the interest in understanding multi-hosts multi-parasitoids interactions and

the evolution of host choice. In fact, its control through insecticides is problematic

(Van Timmeren and Isaacs, 2013) and the risk to leave significant residues of insecti-

cides in the fruit is high.

While the introduction into Europe and North America of native parasitoids would

require careful studies and a long protocol for authorizations, it has been found (Rossi

Stacconi et al., 2015) that D. suzukii is attacked by several indigenous parasitoids of

other Drosophila species. It is therefore important to understand the population dy-

namics of these parasitoids, as well as the potential evolution of host choice.

In order to simplify the problem, we limit ourselves to consider the case of a

single parasitoid species attacking two host species. We develop a model based on

the scheme proposed by Murdoch et al. (1987) (earlier by Nisbet and Gurney (1984)

and generalized by Briggs (1993); Briggs et al. (1993)) where time is continuous and

delays (fixed or distributed) occur between host stages. To our knowledge, this model

has never been extended to a two host species model.
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In Section 2 we describe the model studied and discuss its assumptions. In Sec-

tion 3 we compute the equilibria and their stability, and find the conditions for equi-

librium coexistence of the two host species. In Section 4, we extend the analysis to

the case where a one-host model exhibits attracting periodic solutions; the analysis

of the stability with respect to the complete system of such periodic solutions re-

quires the use of numerical methods recently developed to approximate the dominant

multiplier(s) of linear Delay Differential Equations (DDEs) with periodic coefficients

(Breda et al., 2012); it is also necessary to approximate the periodic solutions (see,

e.g., Engelborghs et al. (2001)), and to use a continuation algorithm to track them

when varying model parameters. It turns out that the periodicity induced by host-

parasitoid interactions makes it easier for more host species to coexist, up to the point

that species can coexist even when no density-dependence exists and their densities

are controlled only by the parasitoids. Finally, in Section 5 we discuss the implica-

tions and the limitations of the results obtained, while longer computations are left to

appendices.

2 Model

We introduce a 2 host-parasitoid model based on those proposed by Murdoch et al.

(1987) and by Briggs (1993); Briggs et al. (1993). We assume that the life cycle of

the hosts can be divided into three developmental stages: eggs E, larvae L and adults

A. We assume that the two hosts considered do not compete and that intra-specific

competition is present at the larval stage that, in absence of parasitoids, would lead

the two host species to their carrying capacity.
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We assume that adult parasitoids P can attack only the larval stage of the host (adult

hosts and eggs are invulnerable to parasitism) and that they can lay a single egg inside

the host. Juvenile parasitoids then develop inside the larvae using them as food and

emerge from them after a fixed host-dependent time TiP, i = 1,2 (Briggs et al., 1993;

Murdoch et al., 1987; Rossi Stacconi et al., 2015). For the sake of simplicity, we ne-

glect many details (such as parasitoid encapsulation (Rossi Stacconi et al., 2015)) of

host-parasitoid interactions, we assume that all stage durations are fixed (see Briggs

et al., 1993; Pfab et al., 2016, for different assumptions) and we include the pupal

stage within the larval one.

Finally, we assume that density-dependence occurs only at the larval stage, through

increased mortality due to intra-specific competition. An alternative assumption, na-

mely density-dependence through reduced adult fecundity will be briefly discussed.

Indeed, it is known that different dynamical patterns may arise depending on the stage

at which population regulation occurs (de Roos et al., 2003).

Thus, the 2 host-parasitoid model is given by

E ′i (t) = REi(t)−MEi(t)−dEiEi(t)

L′i(t) = MEi(t)−MLi(t)−αiP(t)Li(t)−dLi(Li(t))Li(t)

A′i(t) = MLi(t)−dAiAi(t)

P′(t) =
2

∑
i=1

αiP(t−TiP)Li(t−TiP)siP−dPP(t)

(1)

where

REi(t) = ρidAiAi(t)

MEi(t) = REi(t−TEi)e
−dEi TEi

MLi(t) = MEi(t−TLi)e
−
∫ t
t−TLi

(αiP(y)+dLi (Li(y)))dy
.

(2)
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The host birth rate, βi = ρidAi is written, following the parametrization by Mur-

doch et al. (1987), as the product between the mortality dAi and a parameter ρi

that represents the mean number of eggs produced per adult lifetime. Host mortal-

ity dAi = 1/TAi can then be seen as the turn-over speed of species i (TAi is the average

duration of the adult host stage) while ρi is its reproductive potential.

The maturation rate from eggs to larvae, MEi(t), represents all hosts recruited time

TEi before and survived egg mortality. Similarly, the maturation rate from larvae to

adults, MLi(t), represents all eggs matured time TLi before that have survived both

natural mortality and attack by parasitoids.

Finally, we suppose that

dLi(Li(t)) = µLi +νLiLi(t), (3)

where µLi is a constant background mortality and νLi is the quantity for which the

pro capita mortality changes by adding a new individual.

All model parameters are described in Table 1.

As mentioned above, an alternative assumption is to have density dependence in

adult fertility. In that case, dLi is assumed to be a constant, while the first equation in

(2) is substituted by

REi(t) = ρidAiψi(Ai(t))Ai(t) (4)

where ψi(·) are decreasing functions such that ψi(0) = 1 (this is just a normalization)

and lim
A→∞

ψi(A) = 0.
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Symbol Description

ρi Average total fecundity of adults

dEi Mortality of host eggs

dLi (Li) Mortality of host larvae = µLi +νLi Li

µLi Constant background mortality of host larvae

νLi Density-dependent component of larvae mortality

dAi Mortality of adult hosts

dP Mortality of adult parasitoids

αi Attack rate of adult parasitoids on host larvae

siP Survival of juvenile parasitoids

TEi Duration of egg host stage

TLi Duration of larva host stage

TiP Duration of juvenile parasitoid stage

Table 1 Parameters of model (1).

3 Equilibria

We start by looking for equilibria with only host species present together with the

parasitoid: Eq1, the equilibrium with only host 1, and Eq2, with only host 2.

Let us find, for instance and without loss of generality, the equilibrium Eq1.

Setting P′ = 0 in (1) and assuming P constant and different from zero, we obtain

L̄1 =
dP

α1s1P
.

Once L̄1 is known, we set A′1 = 0 and arrive at

ρ1dA1A1e−dE1 TE1−(α1P+dL1 (L̄))TL1 −dA1A1 = 0.

Assuming A1 6= 0, we can immediately find P̄1.

Similarly, setting first L′1 = 0, then E ′1 = 0, we obtain Ā1 and Ē1.
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Finally, the equilibrium when only host 1 is present, Eq1, is given by

Ē1 =
ρ1dA1 Ā1(1− e−dE1 TE1 )

dE1

L̄1 =
dP

α1s1P

Ā1 =
(α1P̄1 +µL1 +νL1 L̄1)L̄1

ρ1dA1e−dE1 TE1 (1− e−(α1P̄1+µL1+νL1 L̄1)TL1 )

P̄1 =
ln(ρ1)−dE1TE1 − (µL1 +νL1 L̄1)TL1

α1TL1

.

(5)

In a similar way, we can find Eq2, the equilibrium when only host 2 is present.

It is convenient to define P̂i as the value of P̄i when νLi = 0, i.e.,

P̂i =
ln(ρi)−dEiTEi −µLiTLi

αiTLi

. (6)

Note that P̄i = P̂i−
νLi L̄i

αi
, so that all the components of the equilibrium Eqi are positive

if and only if

P̂i >
νLi L̄i

αi
⇐⇒ ρi exp

{
−
(

dEiTEi +(µLi +
νLidP

αisiP
)TLi

)}
> 1. (7)

In what follows, we will always assume that Eqi is positive for i = 1,2.

Proposition 1 summarizes the outcome of the linearisation of the system at the

equilibria when only one host is present.

Proposition 1. Equilibria Eq1 and Eq2 are both unstable if and only if

P̂1 < P̂2 +
νL1

α1
L̄1

P̂2 < P̂1 +
νL2

α2
L̄2.

(8)
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Proof. The outcome of the linearisation of (1) around equilibrium Eq1 (5) can be

reduced to the single equation

A′2(t) = M̄L2(t)−dA2A2(t)

≈ME2(t−TL2)e
−
∫ t
t−TL2

(α2P̄1+µL2 )dy
−dA2A2(t)

= ρ2dA2A2(t−TE2 −TL2)e
−dE2 TE2 e−µL2 TL2−α2TL2 P̄1 −dA2A2(t).

(9)

Thus (see, for instance, Smith, 2011) A2 grows exponentially if

ρ2e−dE2 TE2−µL2 TL2−α2TL2 P̄1 −1 > 0,

i.e., if

P̄1 <
ln(ρ2)−dE2TE2 −µL2TL2

α2TL2

= P̂2 (10)

while it decreases exponentially if the inequality is reversed.

In the same way, A1 increases if

P̄2 < P̂1 (11)

Using P̄i = P̂i−
νLi L̄i

αi
, the coexistence conditions (10) and (11) can be written as in

(8).

Condition (8) can be seen as a double invasibility condition that has often been

considered to grant species coexistence (Chesson and Ellner, 1989). Note, moreover,

that it is independent of dAi .

Corollary 2. If νL1 = νL2 = 0, it is impossible to have mutual invasibility of Eq1 and

Eq2.

Proof. The two inequalities in (8) are incompatible if νL1 = νL2 = 0.
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Proposition 3 ensures the existence of an equilibrium where both the host species

are present under density-dependence conditions when equilibria Eq1 and Eq2 are

both unstable. Let us name this equilibrium Eq12.

Proposition 3. Equilibrium Eq12 exists if and only if (8) holds.

Proof. An equilibrium where both the host species are present is given by setting

equal to zero the right hand sides of all equations in (1). Thus, we obtain
ρ1e−dE1 TE1−(α1P∗+dL1 (L

∗
1))TL1 = 1

ρ2e−dE2 TE2−(α2P∗+dL2 (L
∗
2))TL2 = 1

α1L∗1s1P +α2L∗2s2P−dP = 0.

(12)

By solving (12), using the definitions (6), we have
P∗ = P̂1−

νL1
α1

L∗1

P∗ = P̂2−
νL2
α2

L∗2

L∗1 = L̂1− α2s2P
α1s1P

L∗2.

(13)

Since the two expressions for P∗ have to be equal, we have

P̂1−
νL1

α1
L∗1 = P̂2−

νL2

α2
L∗2.

This equation, together with the last of (13) is a linear system in the unknowns L∗1

and L∗2 that can be easily solved by simple algebraic calculations, yielding

L∗1 = α1L̂1

(
α2(P̂1− P̂2)+νL2 L̂2

α2νL1 L̂1 +α1νL2 L̂2

)
L∗2 = α2L̂2

(
α1(P̂2− P̂1)+νL1 L̂1

α1νL2 L̂2 +α2νL1 L̂1

)
P∗ =

α1νL2 L̂2P̂1−νL1νL2 L̂2L̂1 +α2νL1 L̂1P̂2

α1νL2 L̂2 +α2νL1 L̂1
.

(14)

The values of L∗1 and L∗2 are both positive if and only if (8) holds.
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Remark 1 Using (8) in (14), we obtain

L∗1 < L̂1

(
α2νL1 L̂1 +α1νL2 L̂2

α2νL1 L̂1 +α1νL2 L̂2

)
= L̂1.

Similarly

L∗2 < L̂2

(
α1νL2 L̂2 +α2νL1 L̂1

α1νL2 L̂2 +α2νL1 L̂1

)
= L̂2.

In other words, the equilibrium value for each host species in presence of the other

is always lower than in its absence. Hence, the presence of the common parasitoid

always causes an indirect competition between the two species.

As for the parasitoid density at equilibrium, using the relation between P̂i and P̄i,

we can rewrite

P∗ =
α1νL2 L̂2P̄1 +α2νL1 L̂1P̂2

α1νL2 L̂2 +α2νL1 L̂1

showing that P∗ is a weighted mean between P̄1 and P̂2. Symmetrically, one can also

write

P∗ =
α1νL2 L̂2P̂1 +α2νL1 L̂1P̄2

α1νL2 L̂2 +α2νL1 L̂1

showing that P∗ is a weighted mean between P̂1 and P̄2.

If, as often will be the case, min{P̂1, P̂2} ≥ max{P̄1, P̄2}, it follows that equilib-

rium parasitoid density in presence of both hosts is higher than with either alone, but

we cannot prove that this intuitive property always holds.

In any case, the above computation show that P∗ is always positive, as required.

In Appendix A we analyse the 1-host 1-parasitoid equilibria under the assump-

tion of density-dependent adult fecundity. It turns out that the model is more complex,

since, depending on the function ψ(A), backward bifurcations of the host-only equi-

librium can occur, giving rise, for some parameter values, to two equilibria where
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the host coexists with the parasitoid. Moreover, there is no simple expression for the

equilibria, so that the instability conditions (10) and (11) (that hold in case of density-

dependent adult fecundity, too) cannot be transformed in simple conditions like (8).

Since the focus of this manuscript is on host coexistence, especially when intrin-

sic periodicity arises, we limit the analysis in the following Sections to the simplest

situation, i.e., when density dependence acts through larval competition.

4 Invasibility under periodic conditions

Conditions for invasibility and host coexistence may change if periodic solutions

are considered. Indeed, it has been shown by Murdoch et al. (1987) that (5) can be

destabilized via Hopf bifurcation with the emergence of a stable periodic solution.

In particular, Murdoch et al. (1987) show that this happens when the adult stage is

infinitesimally short (dA→ ∞). Thus, in order to see whether the double invasibility

condition holds, it becomes necessary to study the stability of periodic solutions with

only one host present (Metz et al., 1992).

The complexity of the proposed model hinders such a general achievement with

analytical means. Resorting to linearisation leads to rather cumbersome characteristic

equations whose analysis, in general, is unattainable. However, the recent literature

on DDEs furnishes efficient numerical routines to tackle the several tasks required in

this regard. In particular, in this section we make use of four reliable tools, namely:

M1 the method in Breda et al. (2005) to approximate the rightmost eigenvalue(s) of

the linearisation around given equilibria;
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M2 the method in Breda et al. (2012) to approximate the dominant multiplier(s) of

the linearisation around given periodic orbits;

M3 (an adaptation of) the method in Engelborghs et al. (2001) to compute periodic

solutions of non-linear problems;

M4 the Matlab built-in function dde23 to integrate in time Cauchy problems for non-

linear equations, see Shampine and Thompson (2001).

The four methods are often combined in a framework of parameter continuation, i.e.,

results for a certain parameter value are obtained starting from results previously

computed for a different but close parameter value. Aside, note that an updated and

complete presentation of M1 and M2 can be found in Breda et al. (2015), with user-

friendly and freely available Matlab codes.

In order to have a model with a small number of parameters, we let only parame-

ters related to fecundity and adult mortality of the two hosts vary, i.e., ρ1, ρ2, dA1 and

dA2 . All the other parameters are kept fixed at the values listed in Table 2.

Parameter dEi µLi νLi siP αi TEi TLi TiP dP

Value 0.2 0.1 0.1 1 1 1 1 1 1.1

Table 2 Parameter values used in the computations. In these it is always assumed that the two hosts are

identical except for the adult host mortality dA and the fecundity ρ .

The first goal is to see when 1-host periodic solutions are possible, with say host

1 without loss of generality. To this aim, we fix, e.g., ρ1 = 5, and consider the non-

trivial equilibrium Eq1 of (1) varying dA1 . Based on the use of M1, we found that
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the equilibrium is asymptotically stable as far as dA1 < dHB1 with dHB1 ≈ 0.3089.

At this value the associated rightmost complex-conjugate pair of eigenvalues crosses

the imaginary axis left-to-right in a Hopf bifurcation, Figure 1 left. The equilibrium

loses stability and a periodic solution arises. The latter is computed as follows. M3 is

applied for dA1 slightly above dHB1 , with initial guess the equilibrium itself. Indeed,

the method converges to a periodic solution, with rather small amplitude. To obtain a

more pronounced periodic behaviour, we increase dA1 incrementally, each step start-

ing the solution from the previously computed one. This way we are able to compute

a distinct periodic solution for dA1 = 0.35 with period Ω ≈ 18.5938, Figure 1 right.

�2 �1.5 �1 �0.5 0 0.5
�10

�5

0

5

10

0 ⌦ 2⌦ 3⌦
0

2

4

t

E†
1 L†

1

A†
1 P †

1

Fig. 1 Eigenvalues at Hopf bifurcation for dA1 = dHB1 ≈ 0.3089 and ρ1 = 5 (left panel); the periodic

solution for dA1 = 0.35 and ρ1 = 5 (right panel) with host 1, Ω ≈ 18.5938. All other parameter values are

as in Table 2.

Such solution, call it (E†
1 ,L

†
1,A

†
1,P

†
1 ), is confirmed by using M4: integration for-

ward in time leaves it unchanged.

The next step is to see whether host 2 can invade under the above determined

periodic conditions. So we keep ρ1 = 5 and dA1 = 0.35 fixed and linearise (1) around

(E†
1 ,L

†
1,A

†
1,0,0,0,P

†
1 ). It is not difficult to realize that the stability of this periodic
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solution with only host 1 can be inferred by analysing only the linearised equation

for host 2 adults, i.e.,

A′2(t) = ρ2dA2A2(t−TE2 −TL2)e
−dE2 TE2 e

−µL2 TL2−α2
∫ t
t−TL2

P†(y)dy
−dA2A2(t). (15)

This is a linear non autonomous DDE with periodic coefficients, periodicity essen-

tially due to the behaviour of the parasitoid. According to Floquet theory (see, e.g.,

Hale and Verduyn Lunel (1993)), the stability of its null solution depends on whether

the dominant multiplier lies inside or outside the unit circle in the complex plane.

Thus we compute the modulus of this quantity by using M2 for varying ρ2 and dA2 . In

this way we construct a surface R2→R, whose curve of level 1 divides the (dA2 ,ρ2)-

plane into stable and unstable regions.

Figure 2 shows this boundary (thick line), obtained with Matlab contour.

A simple verification lets us conclude that host 2 can invade when (dA2 ,ρ2) is

above this curve, otherwise coexistence is not possible. For comparison, we add in

the same figure a straight (dashed) line that represents the first invasibility condition

in (8) in the case when Eq1 is stable, i.e., with the value of dA1 below dHB1 . If the

equilibrium Eq1 is stable, invasion of host 2 would be possible for ρ2 above the

line and would not depend on the value of dA2 . We then see that the invasibility of

the equilibrium Eq1 and the presence of the periodic solution (E†
1 ,L

†
1,A

†
1,0,0,0,P

†
1 )

make the invasion of host 2 easier if dA2 is small and harder if dA2 is large.

The effect of fluctuations on host coexistence can be illustrated more specifically

in Figure 3.

In it we study both invasibility conditions in the (dA,ρ2)-plane having assumed

dA1 = dA2 =: dA while keeping ρ1 = 5 fixed. The shaded region of mutual invasibility
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host 2 invades

host 2 does not invade

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

dA2

ρ
2

Fig. 2 Values of (dA2 ,ρ2) for which the periodic solution (E†
1 ,L

†
1,A

†
1,0,0,0,P

†
1 ) is stable or unstable for

system (1). Above the thick line, it is unstable and host 2 can invade; below it is stable. The straight dashed

line represents instead the value ρ1e−
νLdPTL

αsP that is obtained from (8) for dA1 < dHB1 . Parameter values are

ρ1 = 5, dA1 = 0.35, while all others are from Table 2.

is obtained as follows. The straight lines for lower values of dA account for (8), i.e.,

ρ1e−
νLdPTL

αsP < ρ2 < ρ1e
νLdPTL

αsP .

The lower straight line ends at the Hopf bifurcation value dHB1 as previously deter-

mined. For greater values of dA we repeat the same arguments as above: we compute

the periodic solution in absence of host 2 and we study its local stability by search-

ing for the value of ρ2 giving the dominant multiplier on the unit circle for (15). By

repeating the procedure over all values of dA > dHB1 , we obtain the lower curve of

Figure 3. As before, host 2 can invade when introduced in a system where host 1

coexists with the parasitoid, if the parameter values are above the curve so computed;

it will be excluded if they are below.
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mutual
invasibility

dHB2

dHB1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
4

4.5

5

5.5

6

dA

ρ
2

Fig. 3 Invasibility regions in the parameters (dA = dA1 = dA2 ,ρ2), while ρ1 = 5 and all other parameters

are as in Table 2. Host 2 can invade the attractor where host 1 coexists with the parasitoid when ρ2 is above

the lower curve; host 1 can invade the attractor where host 2 coexists with the parasitoid when ρ2 is below

the upper curve. For dA > dHB, the lower curve is a decreasing function of dA, while the upper curve is an

increasing function of dA.

For the increasing part of the upper bound of the shaded region, we repeat the

reasoning by exchanging the roles of the two hosts. More precisely, for a fine mesh

of points in that region of the (dA,ρ2)-plane we compute a periodic solution of (1) in

absence of host 1.

For each point, we linearise the equation of host 1 around the computed periodic

solution and determine the dominant multiplier. The curve is then obtained by select-

ing those points with dominant multiplier on the unit circle. Notice that this curve

joins the upper straight line at a value dA = dHB2 < dHB1 . Indeed, this is correct since

ρ2 > 5 and hence the Hopf bifurcation for host 2 (in absence of host 1) occurs at

a lower value of dA than that of host 1 (in absence of host 2), which was found for

ρ1 = 5.
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Figure 3 shows clearly that, with larger values of dA that cause each host alone to fluc-

tuate with the parasitoid, the region in (ρ1,ρ2) where double invasibility conditions

are satisfied, presumably leading to coexistence, becomes wider.

More surprisingly, use of this procedure shows that, when periodic solutions

arise, double invasibility (and thus presumably coexistence) is possible even without

density-dependence, a case where it has been seen (Corollary 2) that double invasi-

bility of equilibria is impossible.

In this case, it is easy to show that, if dA1 = dA2 , host 2 will invade a periodic

solution with only host 1 if ρ1 > ρ2 and vice versa; double invasibility is then im-

possible when dA2 = dA1 . In order to explore possible coexistence, we fix therefore

the values of ρ1 and dA1 and let ρ2 and dA2 vary. Precisely, we set ρ1 = 5, dA1 = 0.3

and νL1 = νL2 = 0, and repeat the procedure used for Figure 2 to construct the solid

thick curve in Figure 4, below which host 1 excludes host 2 and coexistence is not

possible.

The dashed thick curve represents the condition for invasibility of the host 2 peri-

odic solution (or equilibrium). For larger values of dA2 , this second curve is computed

by exchanging the roles of the two hosts, i.e., by following the same procedure used

to obtain the upper bound of the dashed region of Figure 3. For lower values of dA2 ,

instead, there cannot be periodic solutions of (1) without host 1, since dA2 is below the

Hopf bifurcation point. To the left of this value, the dashed thick curve corresponds

to the straight line obtained from (8). Indeed, the dotted thin curve is the bifurcation

curve of the equilibrium Eq2: the right curve part is the locus of the Hopf bifurca-

tions leading to periodic solutions; the bottom segment is the locus of trans critical
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Fig. 4 Invasibility regions in the parameters (dA2 ,ρ2), while ρ1 = 5, dA1 = 0.3, νL1 = νL2 = 0 and all other

parameters, except νLi are as in Table 2. Above the solid thick curve host 2 can invade the attractor where

host 1 coexists with the parasitoid; below the dashed thick curve host 1 can invade the attractor where host

2 coexists with the parasitoid. The dotted thin curve is the bifurcation curve of the equilibrium Eq2: the

right curve part is the locus of the Hopf bifurcations leading to periodic solutions; the bottom segment is

the locus of transcritical bifurcation with the trivial equilibrium.

bifurcation with the trivial equilibrium. Both segments are obtained by using M1: the

former searching for the rightmost eigenvalue in zero, the second for the rightmost

conjugate pair on the imaginary axis.

Double invasibility conditions hold when (ρ2,dA2) belongs to the shaded region

enclosed between the two curves. We then see that, thanks to the periodicity induced

by instability of the single-species equilibria, coexistence becomes possible even

when both host populations are regulated by the parasitoid, in absence of density-

dependence.
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In Appendices B and C we give a heuristic explanation of host coexistence with-

out density-dependence, using an approximation of the threshold coefficient for scalar

linear periodic delay-differential equations (Chen and Wu, 2012).

5 Discussion

In this work we have provided the first, as far as we know, analysis of a continuous-

time model for a system consisting of a parasitoid species attacking two different host

species.

The model is built on the framework proposed by Murdoch et al. (1987) assuming

that developmental time in all stages is fixed, while other authors (e.g., Briggs et al.,

1993) have allowed for distributed lengths of developmental stages, and have shown

that such an assumption is crucial for the possibility of equilibrium coexistence of

several parasitoid species on a single host species.

The other assumption used is that the two host species do not compete directly but

are regulated by independent resources, acting through a density-dependent mortality

in the larval stage. Under this assumption, it is possible to find an explicit condition

for the existence of an equilibrium where both host species coexist with the parasitoid.

This condition is equivalent, as it often occurs in population models, to the double

invasibility condition, e.g., that both equilibria with a single host species are unstable

relatively to the invasion of the other host species. Although the two host species do

not compete directly, they are subject to apparent competition (see e.g. Holt, 1977;

Holt and Lawton, 1993) through the shared parasitoid.
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In the special case without density-dependence in the hosts, the condition for

coexistence is never satisfied; thus, it would appear that necessarily one host species

will exclude the other. When host regulation occurs only because of the parasitoid,

the species more strongly regulated by the parasitoid will get extinct, because the

parasitoid will be able to reach even higher densities at which the host species with a

weaker regulation gets under control.

However, it is well known that host-parasitoid systems can exhibit cycles, as usual

in systems of predator-prey type, but more easily so, because of the delays built in

the stage structure. The previous analysis holds if each system with a single-host

tends to an equilibrium, but becomes irrelevant when a single host-parasitoid system

converges to a periodic solution. In this case, in order to assess the double invasibil-

ity condition, it is necessary to analyse the stability of the periodic solution in the

complete system (Metz et al., 1992).

While finding explicit conditions for the stability of periodic solutions in systems

of delay-differential equations is probably hopeless (it is generally impossible al-

ready in systems of two ordinary differential equations), recent advancements in the

methods for the approximation of multipliers of the monodromy operator of linear

delay-differential equations with periodic coefficients provide a fundamental tool for

being able to numerically study the stability of a periodic solution. These methods

have been coupled with a method to approximate periodic solutions of such systems,

and to a continuation algorithm that allows for efficiently tracking the periodic so-

lutions as a parameter is varied, and applied to the 2 host-parasitoid system in some

cases that appear biologically significant.
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A discussion of the results that have been obtained is that conditions for invasi-

bility and host coexistence can be favoured by considering periodic solutions, where

periodicity is due to the behaviour of the parasitoid and is not forced from the out-

side. In fact, periodicity favours host coexistence, up to the extreme case without

density-dependence: even then, if at least one of the single host-parasitoid systems

converges to a periodic solution, coexistence of the two hosts is possible, albeit under

rather stringent conditions on the parameters. Li and Smith (2003) found that coex-

istence of multiple host species and multiple parasitoid species needs existence of a

periodic solution, while Murdoch et al. (1987) discussed instead this possibility for

an infinitesimally short invulnerable adult stage and constant fecundity.

It has been known for several decades, since the seminal works by De Mottoni

and Schiaffino (1981) and by Cushing (1976) that coexistence of competitors is easier

if the environment fluctuates periodically (see also Smith and Waltman, 1995). This

system is different, in that periodicity is not forced from outside but is generated

intrinsically by host-parasitoid interactions. It is worthwhile noticing that the effect

is the same; it can be said that fluctuations in one host-parasitoid system improve the

chances of a second host species to coexist.

A similar phenomenon has been proved to occur in predator-prey systems (Hsu

et al., 1978; Armstrong and McGehee, 1980): two predator species cannot coexist on

a single prey species at equilibrium, but can coexist along a periodic solution, that

emerges because of the periodicity generated by one prey-predator system. The situ-

ation here is analogous except that the coexistence occurs between two host species

(corresponding to prey) and one parasitoid (corresponding to predator). In simple
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predator-prey models, it is not possible to obtain coexistence of two prey species with

a common predator, unless some type of density-dependence is assumed for the two

species. Indeed, in the prototype predator-prey system without density-dependence

(i.e., the classical Volterra system with neutral cycles) a simple computation shows

that it is impossible to satisfy the double invasibility. All other models that we know

of (for instance, those examined by Chesson and Kuang (2008) to examine the in-

teractions between competition and predation) assume that each basal species has a

carrying capacity. In this sense, host-parasitoid systems based on delay-differential

equations are more stable than predator-prey systems and may be more suitable

for examining general ecological principles. Moreover, the present model is simple

enough to allow for a quantification of the degree of density-dependence necessary

for coexistence both at equilibrium and when periodicity arises.

A specific feature of this model (that makes easier its analysis) is that the stage

attacked by parasitoids is exactly the same at which density-dependence occurs. It

would be interesting studying how the results change under different assumptions, for

instance if density-dependence acts through reduced adult fecundity. The preliminary

analysis presented in Appendix A shows that the structure of equilibria is definitely

more complex, and might give rise to different features.

In the present model, it is assumed that there is no dependence of attack rate on

parasitoid density but it is well known (Godfray and Waage, 1991; May and Has-

sell, 1981; Kakehashi et al., 1984) that if attack rates are density-dependent, results

on coexistence and the effect on host abundance can be altered. Moreover, consumer

species adaptively adjust their consumption behaviour when they are in presence of
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more host species (Murdoch, 1969; Murdoch and Oaten, 1975; May, 1977; Abrams,

1987; Tregenza et al., 1996). Several authors (Charnov, 1976; Iwasa et al., 1984;

Janssen, 1989) have studied optimal host choice by parasitoids, but, to our knowl-

edge, only Abrams and Kawecki (1998) studied parasitoid trade-off in its ability to

exploit two different hosts by coupling evolutionary and population dynamics. They

found that adaptive behaviour and evolution frequently destabilize population dynam-

ics and increase the difference between host densities. Their analysis was however

based on a discrete-time host-parasitoid model. We believe that the present analysis

yields a background to be able to apply adaptive dynamics methods to a continuous-

time host-parasitoid model.

In order to be able to apply these results to a specific system, for instance the par-

asitoids of Drosophila spp., it would be necessary to add many details to the model.

There are several indigenous species of parasitoids (Rossi Stacconi et al., 2015) of

D. melanogaster that attack also D. suzukii, some of which (e.g., Leptopilina het-

erotoma) are larval parasitoids, while others (especially Pachycrepoideus vindemiae)

attack the pupal stage. Applying this model to the existing data necessarily requires

extending the model to more parasitoid species, and adding more stages to hosts’ life

cycle. Moreover, it would be necessary to include seasonal (and perhaps stochastic)

changes in climate (and thus in demographic rates), as well as in resource availability

for hosts.

Despite these limitations, we believe that the analys of models like the ones pre-

sented in this work will be relevant for modelling control strategies for D. suzukii

based on native parasitoids of indigenous fruit flies.
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A Equilibria for the 1 host-parasitoid model with density-dependent fecundity

We analyse here the model in which intra-specific host competition affects adult fecundity, perhaps because

of competition for egg-lying sites. Precisely we consider the following modification of (1)–(2):

E ′(t) = RE (t)−ME (t)−dE E(t)

L′(t) = ME (t)−ML(t)−αP(t)L(t)−dLL(t)

A′(t) = ML(t)−dAA(t)

P′(t) = αP(t−TP)L(t−TP)sP−dPP(t)

(16)

where

RE (t) = ρdAψ(A(t))A(t)

ME (t) = RE (t−TE )e−dE TE

ML(t) = ME (t−TL)e
−
∫ t
t−TL

(αP(y)+dL)dy
.

(17)

where ψ(·) is a decreasing function such that ψ(0) = 1 (this is just a normalization) and lim
A→∞

ψ(A) = 0.

Let us look for equilibria of (16)–(17). It is easy to see that there may be an equilibrium E0 =

(EK ,LK ,AK ,0) without parasitoids where

ρψ(AK)e−(dE TE+dLTL) = 1. (18)

A necessary and sufficient condition for (18) to have a positive solution is

ρe−(dE TE+dLTL) > 1. (19)

In what follows, we will always assume that (19) holds.

Then the other components are obtained setting L′ = 0 and then E ′ = 0 and are

LK =
dA

dL
AK

(
edLTL −1

)
EK =

dA

dE
AK

(
edE TE −1

)
edLTL .

We now look for equilibria (Ē, L̄, Ā, P̄) with all positive components. Setting P′ = 0, one immediately

obtains

L̄ =
dP

αsP
(20)

as in (5). Equations (17) immediately yield

RE = ρdAĀψ(Ā), ME = RE e−dE TE ML = ME e−(αP̄+dL)TL = RE e−dE TE e−(αP̄+dL)TL . (21)
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Setting A′ = 0 yields ML = dAĀ; hence using (21)

ρdAĀψ(Ā)e−dE TE e−(αP̄+dL)TL = dAĀ ⇐⇒ ρψ(Ā)e−dE TE e−(αP̄+dL)TL = 1. (22)

As the expression on the left hand side of (22) is decreasing both in Ā and in P̄ a necessary condition to

find a solution of (22) is (19). From (22), we can solve for P̄ in function of Ā as

P̄ =
log(ρψ(Ā))−dE TE −dLTL

αTL
. (23)

Setting L′ = 0 then yields

ME

(
1− e−(αP̄+dL)TL

)
= (αP̄+dL)L̄.

Substituting (17) and remembering that L̄ is known and P̄ is given by (23), one arrives at

ρdAĀψ(Ā)e−dE TE
(

1− e−(αP̄+dL)TL
)
= (αP̄+dL)L̄. (24)

Now, using (22) in (24), we obtain

dAĀ
(

e(αP̄+dL)TL −1
)
= (αP̄+dL)L̄. (25)

This can be written as

cĀ = G(Ā) with c =
dATL

L̄
, G(A) =

log(m(A))
m(A)−1

, m(A) = ρψ(A)e−dE TE . (26)

From (23), we see that αTLP̄ = log(m(Ā))−dLTL. Since this quantity has to be positive we are interested

in solutions of (26) such that log(m(Ā))> dLTL, i.e. ρψ(Ā)e−(dE TE+dLTL) > 1, hence Ā < AK .

Thus we look for solutions of (26) in (0,AK). At A= 0, the left hand side is equal to 0, while G(0)> 0.

On the other hand, G(AK) =
log(m(AK))

m(AK)−1
= dLTL

edLTL−1
. If the left hand side at A = AK is larger than G(AK),

then a positive equilibrium exists.

Performing the computations, we have thus obtained:

if dATL
L̄ AK > dLTL

edLTL−1
, i.e., dA

dL
AK
(
edLTL −1

)
> L̄, then there exists a positive equilibrium.

Note that, recalling the definition of LK , this condition can be written as LK > L̄, i.e., the density of

larvae at the equilibrium without parasitoids must be larger than the density at which parasitoid density

remains constant.

We cannot say more than this without making specific assumptions on the function ψ(·). For instance,

if ψ(A) = (1+νA)−1, then it is possible to show that G(A) is a concave function, so that there is a unique

solution in (0,AK) of (26) if LK > L̄ and no solutions if LK ≤ L̄.
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On the other hand, for ψ(A) = e−A, G(A) is a convex function. Thus, if LK > L̄, there is a unique

solution in (0,AK) of (26); it is possible that solutions occur also when LK < L̄.

An example with two intersections among cA and G(A) is shown in Figure 5 . With the parameter

values used AK = e−0.1≈ 2.62, LK ≈ 1.07, L̄ = (e−1)2 ≈ 2.95. However, there exist two equilibria

(Ē1, L̄, Ā1, P̄1)≈ (2.22,2.95,1.36,3.97) (Ē2, L̄, Ā2, P̄2)≈ (3.50,2.95,2.15,3.18).

0.0 0.5 1.0 1.5 2.0 2.5

0.
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8
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0

A

AK

y=cA

y=G(A)

Fig. 5 The functions cA and G(A) with ψ(A) = e−A. Equilibria are found at the intersections Ā of the two

curves as long as Ā < AK . Parameter values are ρ = 2ee, TE = TL = 1, sP = 1/(e−1), dP = e−1, α = 1,

dE = log(2), dL = 0.1, dA = 1.02.

B Approximation of dominant eigenvalue of monodromy operator for a

delay-differential equation

Several authors have studied the linear delay equation with periodic coefficients (see e.g. Chen and Wu

(2012))

x′(t) = α (β f (t)x(t− τ)− x(t)) (27)
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Assuming that α is a positive constant and f a positive 1-periodic function, Chen and Wu (2012) have

shown that there exists a β ∗ ∈ (0,∞) such that the zero solution is stable if β < β ∗ and unstable if β > β ∗.

At β = β ∗ the dominant eigenvalue of the monodromy operator will be 1.

Here we show how to approximate β ∗ by assuming that f is a 1-periodic sinusoidal of small ampli-

tude. In order to make explicit computations, assume

f (t) = 1+ ε cos(2πt)

and expand in order of ε .

Hence, the problem is to find β such that

x′(t) = α (β (1+ ε cos(2πt))x(t− τ)− x(t)) (28)

has 1-periodic non-trivial solutions.

Expand the periodic solution x(t) and the value β as

x(t) = x0(t)+ εx1(t)+ ε
2x2(t)+ · · ·

β = β0 + εβ1 + ε
2
β2 + · · ·

(29)

At zero order, the solution is β0 = 1, x0(t)≡ c, that we set equal to 1.

At first order

x′1(t) = α (β1 + cos(2πt)+ x1(t− τ)− x1(t)) (30)

Assuming that x1(t) is 1-periodic, we immediately have

0 =
∫ 1

0
x′1(t)dt = α

(
β1 +

∫ 1

0
cos(2πt)dt +

∫ 1

0
x1(t− τ)dt−

∫ 1

0
x1(t)dt

)
(31)

As the integral of cosine is zero and
∫ 1

0 x1(t− τ)dt =
∫ 1

0 x1(t)dt, β1 = 0.

Thus, equation (30) becomes

x′1(t) = α (cos(2πt)+ x1(t− τ)− x1(t)) (32)

for which we search for a periodic solution.

If we assume that

x1(t) = K cos(2πt)+Lsin(2πt) (33)

we can easily compute x′1(t) and x1(t− τ). Substituting the expressions in (32), we obtain

cos(2πt)(2πL−α−αAK +αBL+αK) = sin(2πt)(2πK +αBK +αAL−αL) (34)
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where

A = cos(2πτ) and B = sin(2πτ).

From (34) we get the system in K and L,
K(2π +αB)−Lα(1−A) = 0

Kα(1−A)+L(2π +αB) = α

(35)

whose solution is 
K = α2(1−A)

(2π+αB)2+α2(1−A)2

L = α(2π+αB)
(2π+αB)2+α2(1−A)2 .

(36)

Using (33) with (36) the required periodic solution of (32) is easily obtained.

By considering the second order of (28), we obtain, as β1 = 0,

x′2(t) = α(β2 + cos(2πt)x1(t− τ)+ x2(t− τ)− x2(t)). (37)

By assuming x2(t) is a 1-periodic solution, and using the fact that
∫ 1

0 x2(t−τ)dt =
∫ 1

0 x2(t)dt, it is possible

to obtain

0 =
∫ 1

0
x′2(t)dt = α

(
β2 +

∫ 1

0
cos(2πt)x1(t− τ)dt

)
, (38)

i.e.,

β2 =−
∫ 1

0
cos(2πt)x1(t− τ)dt =−K

∫ 1

0
cos(2πt)cos(2π(t− τ))dt−L

∫ 1

0
cos(2πt)sin(2π(t− τ))dt

(39)

Computing the integrals in (39) and using (36) one, remembering A2 +B2 = 1, arrives at

β2 =
−α2(1−A)A+α(2π +αB)B
2((2π +αB)2 +α2(1−A)2)

=
α2(1−A)+2παB

4(α2(1−A)+2π(π +αB))

=
α2(1− cos(2πτ))+2πα sin(2πτ)

4(α2(1− cos(2πτ))+2π(π +α sin(2πτ)))
.

(40)

This shows that β2 is always positive.

Consider now how β depends on α , letting β2 = G(α). It is immediate to see that G(0) = 0 and

G(∞) =
1
4

. Moreover from

G′(α) =
(1−A)π2α +π3B

(α2(1−A)+2π(π +αB))2 (41)

one sees that G′ > 0 in (0, ᾱ) and G′ < 0 on (ᾱ,∞) where ᾱ is the root of a quadratic equation, whose

complicated expression does not seem easy to interpret.
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C Application to host-parasitoid model

Here we see how the results of the previous section can be used to provide a heuristic justification for the

possibility of host coexistence even without density-dependence.

Take in fact νL1 = νL2 = 0 and, for the sake of simplicity as in Section 4, we assume that different

hosts share the values of dE , µL, TE , TL.

Assume that host 1 coexists with the parasitoid along an (attractive) T -periodic solution (E†
1 (t),L

†
1(t),A

†
1(t),P

†
1 (t)).

The equation for adult hosts is then

A†
1
′
(t) = dA1

(
ρ1e−dE TE−µLTL−α1

∫ t
t−TL

P†
1 (y)dyA1(t−TE −TL)−A1(t)

)
. (42)

By considering P†
1 (t) as a given function, the monodromy operator corresponding to equation (42) has

dominant eigenvalue equal to 1.

By changing the time (t̄ = t/T ), P†
1 becomes 1-periodic, and (42) is equal to

A†
1
′
(t) = dA1 T

(
ρ1e−dE TE−µLTL−α1T

∫ t
t−TL/T P†

1 (y)dyA1(t− τ)−A1(t)
)

(43)

where τ = (TE +TL)/T and the functions have been rescaled.

Set

α1 = dA1 T

β1 = ρ1/K

f1(t) = Ke−dE TE−µLTL−α1T
∫ t
t−TL/T P†

1 (y)dy

(44)

where

K =
edE TE+µLTL∫ 1

0 e−α1T
∫ t
t−TL/T P†

1 (y)dy dt
.

so to have
∫ 1

0 f1(t)dt = 1 and the equation written exactly as (27).

Suppose that f1(t)≈ 1+ εcos(2πt); then, using the results of Appendix B

ρ1 ≈ (1+ ε
2G(α1))K.

The invasion by a second host sharing all parameter values as in Section 4 will succeed if and only if the

linearised equation

A†
2
′
(t) = dA2 T

(
ρ2e−dE TE−µLTL−αT

∫ t
t−TL/T P†

1 (y)dyA2(t− τ)−A2(t)
)

(45)
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has dominant monodromy eigenvalue greater than 1. The equation can be written as

A†
2
′
(t) = α2 (β2 f1(t)A2(t− τ)−A2(t)) (46)

with α2 = dA2 T and β2 = ρ2/K.

The eigenvalue is larger than 1 if and only if

ρ2 > (1+ ε
2G(α2))K.

If α1 is in the region where G is increasing, this will be possible for ρ2 < ρ1 if α2 < α1. Vice versa, in the

region where G is decreasing.

This mechanism can presumably give rise to mutual invasibility. However, when the roles of host 1 and

host 2 are switched, also the period will in principle change as well as fi, so G does not remain the same.

It is easier to show mutual coexistence, if we take a value of α2 < α1 such that 2-host only solutions are

attracted to a stable equilibrium (this is certainly true if α2 is small enough).

Then as all other parameters are the same, and the value of dAi do not enter the invasibility conditions (8),

host 1 invades the equilibrium with only host 2 if and only if ρ2 > ρ1.

Thus mutual invasibility occurs if we find a pair (dA1 ,ρ1) and (dA2 ,ρ2) such that the first gives rise to a

periodic solution and the second to a stable equilibrium with

dA2 < dA1 and
1+ ε2G(dA2 T )
1+ ε2G(dA1 T )

< ρ2
ρ1

< 1 (47)

where G and T refer to 1-parameters. Clearly (47) is only possible if G is increasing between dA2 T and

dA1 T . This result can be compared with Figure 4 and it can be noticed that it corresponds to what is seen

in the left edge of the Figure.

Of course, this argument is purely heuristic as it is based on the unlikely assumption that f1(t) is exactly

a sinusoidal function. However, the argument can possibly be extended to Fourier series, and anyway we

believe it gives some intuition on why coexistence may occur even without density-dependence.
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