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Abstract 

Self-similarity across length scales is pervasively observed in natural systems. Here, we investigate 
topological self-similarity in complex networks representing diverse forms of connectivity in the brain 
and some related dynamical systems, by considering the correlation between edges directly 
connecting any two nodes in a network and indirect connection between the same via all triangles 
spanning the rest of the network. We note that this aspect of self-similarity, which is distinct from 
hierarchically-nested connectivity, is closely related to idempotence of the matrix representing the 
graph. We introduce two measures, (1) and ( )  , which represent the element-wise correlation 

coefficients between the initial matrix and the ones obtained after squaring it once or infinitely many 
times, and term the matrices which yield large values of these parameters “quasi-idempotent”. These 
measures delineate qualitatively-different forms of “shallow” and “deep” quasi-idempotence, which 
are influenced by nodal strength heterogeneity. A high degree of quasi-idempotence was observed for 
synchronization patterns generated by mean-field Kuramoto oscillators with noise under incomplete 
synchronization, electronic chaotic oscillators and dissociated neural cultures, wherein the expression 
of quasi-idempotence correlated strongly with network maturity. Quasi-idempotence was also 
detected for macro-scale brain networks representing axonal connectivity, synchronization of slow 
activity fluctuations during idleness and co-activation across experimental tasks, and preliminary data 
indicated that quasi-idempotence of structural connectivity may decrease with ageing. This initial 
study highlights that the form of network self-similarity indexed by quasi-idempotence is detectable in 
diverse dynamical systems, and draws attention to it as a basis for novel topological measures 
representing pattern emergence and network “collectivity”. 

 
Lead paragraph 
 
A pervasive property of natural phenomena is self-similarity, namely presence of patterns or 
properties that recur at different spatiotemporal scales, as exemplified by the morphology of 
Romanesco broccoli buds. Diverse networks, including brain connectivity, are organized in 
hierarchies of modules which resemble their constituent elements. However, another type of self-
similarity could also be identifiable, whereby the strength of direct links between any two nodes also 
reflects how closely they are connected indirectly, via the rest of the network: self-similarity not of 
nodes and modules, but of links and paths. We show that this notion is linked to a form of matrix 
idempotence, and that the brain and some related dynamical systems are indeed measurably self-
similar in this sense. 
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I. INTRODUCTION  
 
A distinctive feature of complex systems is that collective dynamics generate fractals, namely 
structural and dynamical patterns that are maintained (self-similar) across an extended scaling range. 
The emergence of fractals is closely linked to morphogenesis and function in diverse physical and 
biological systems, including networks of neurons.1 Neurophysiological recordings of cultured 
networks (representative of meso-scale features) as well as intact brains (macro-scale) concordantly 
demonstrate dynamical self-similarity, deemed to be supported by self-organized criticality and 
detected as power-law avalanche distribution and spectra, and invariance of non-linear time-series 
properties within a temporal scaling range.2-5 At the same time, certain architectural features recur 
across spatial scales, and are, to a varying extent, apparent in both structural (axonal) connectivity and 
activity synchronization (so-called functional connectivity). These features, particularly scale free-
ness, small-worldness, modular and hierarchical organization, altogether maximise information 
capacity given a budget of axonal connections and metabolic load.6-10 Even the macroscopic anatomy 
of the brain and its vasculature have self-similar morphology.11 
 
The topological self-similarity of brain networks is of particular interest for understanding 
information segregation and integration in cognitive processes. It has been established that the 
hierarchical organization of cerebral cortex regions recurs at different scales as a nested 
interconnectivity, which is in line with the notion that complex (small-world) networks can be 
invariant to length-scale transformations, subject to application of an appropriate renormalization 
procedure to coarse-grain the system.6,10,12 However, to the authors’ knowledge it remains unclear 
whether self-similarity is also apparent in the architecture of paths, that is, whether for adjacent nodes 
the strength of their direct connection resembles that of the indirect connectivity between them as 
implemented by paths of non-unitary length which span the rest of the network. This may be viewed 
as correlating the “local” and “global” connectivity between a given pair of nodes. The two aspects of 
topological self-similarity, namely hierarchically-nested interconnectivity vs. correspondence between 
direct (edges) and indirect (paths) connectivity, are conceptually related but clearly mathematically 
distinct. 
 
Here, we set out to investigate self-similarity between direct and indirect connectivity, with a focus on 
edges vs. triangles, from the perspective of the algebraic properties of the connectivity matrix. We 
considered a diverse set of networks and dynamical systems, starting from synthetic graphs derived 
from Gaussian edge strength distributions, synchronization of mean-field Kuramoto oscillators with 
noise, electronic chaotic oscillators, and culminating with demonstration of self-similarity in meso-
scale networks of cultured neurons and macro-scale structural and functional brain networks. 
 
II. RELATIONSHIP BETWEEN GRAPH SELF-SIMILARITY AND MATRIX 
IDEMPOTENCE 
 
Given a symmetric weighted undirected graph G , one can reveal self-similarity between edges and 

paths by constructing another graph ˆ ( , )G l n , wherein each edge represents the strength of connectivity 

between each node pair (i,j) as implemented not directly but indirectly via all possible paths spanning 
l nodes belonging to the rest of the network, and the calculation is iterated recursively n times. For 

l=1, each edge in ˆ ( , )G l n corresponds to the sum of the strengths of all triangles around the two nodes, 



each triangle being defined as the product of the two corresponding edge strengths; as exemplified in 
Fig. 1, given n=1 and network size N, one has 
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This operation evidently corresponds to squaring the symmetric matrix representing the graph. For a 
network that has self-similar connectivity, intended as similarity between edges and paths of length l, 

one expects ˆ ( , )G G l n , and more specifically 

 

 ˆ ˆ( , ) ( , )G G G l n G l n .          (2) 

 
A matrix M is said to be idempotent if M=M2, but for ease of explanation in this context we extend 
the definition to the more general case M=kM2, where k>0 is an arbitrary scaling factor.13 While 
experimentally-derived graphs are unlikely to be perfectly idempotent, one can empirically assess the 
strength of correlation between matrix entries, which can then be taken as a measure of "quasi-
idempotence" (this term has been used before in reference to polynomial matrices, but defined 

differently). In the case of G and ˆ (1, )G n , quasi-idempotence in this sense represents the similarity 

(correlation) between direct and indirect connectivity via edges and triangles, in other words, network 
self-similarity across scales, intended not as hierarchies of modules and nodes, but scales of path 
length (namely, zero for direct edges, one for triangles). In this study, we demonstrate that networks 
from diverse dynamical systems including the brain are self-similar in this sense, and thus propose to 
consider quasi-idempotence as measure of structure in these networks. 
 
By definition, an idempotent matrix M squared infinitely many times equals itself. Furthermore, as 
detailed in the next section, in the case of a non-pathological real-valued positive matrix M, repeated 
squaring eventually leads to convergence to an idempotent matrix.14-16 Hence one can define two 
parameters: the linear (Pearson) correlation coefficient between off-diagonal entries of the initial and 
derived matrices after squaring once, or after infinitely many iterations of this operation. We refer to 
the former as (1) and to the latter as ( )  , and chose to quantify similarity empirically via the linear 

correlation coefficient as this is a bounded measure and has an immediate interpretation. Both (1) and 

( )  are by definition invariant to node permutation. In this study, we always zeroed the diagonal 

entries of the initial matrix (only), i.e. self-connections are disregarded, because oftentimes their 
definition is degenerate and corresponding measurements are problematic. Hence only off-diagonal 
elements were considered for determining correlation. We chose to re-normalize the matrix to unit 
norm at each iteration to maintain its entries in a consistent numeric range. Further, by assuming 

1M the limit of infinitely many iterations can be approximated by stopping when  

 
2  M M ,           (3) 

 

where  represents the accuracy of double-precision floating-point calculation, which implies 
obtaining a unit-rank matrix.17 For the matrices considered in this study, this condition was generally 
met after 5 to 10 iterations of squaring. Since (1) and ( )   are relevant for undirected graphs 



(symmetric matrices), directed networks will not be considered; the present work is also not 
applicable to graphs that include negative weights. Notably, matrix idempotence is related to the 
eigenvalue spectrum, whereby according to the strict definition of idempotence the only possible 
eigenvalues of an idempotent matrix are 0 and 1; as exemplified below, this relationship could be 
generalizable to the case of quasi-idempotence as intended in this study. Because in this study the 
diagonal entries of the initial matrix are nulled, there is no immediate relationship to its positive 
definiteness. 
 
Based on (1) and ( )  , three qualitatively-different situations can arise. If a graph does not possess 

self-similarity between edges and triangles, the corresponding matrix is distant from being 
idempotent, hence squaring it even once changes its structure substantially, yielding (1) ( ) 0    . If 

a graph has limited self-similar features but its global structure is not stable under repeated squaring, a 
“shallow” form of quasi-idempotence is present, whereby the correlation is initially high but repeated 
squaring eventually dissipates the initial structure or distorts it, leading to a matrix  not resembling the 
initial one, hence (1) 0  and ( ) (1)   . If a graph has global topology close to complete self-

similarity, the corresponding matrix already resembles the one that repeated squaring eventually 
converges to, hence “deep” quasi-idempotence is manifest as (1) 0  and ( ) (1)   . The proposed 

qualitative distinction between “shallow” and “deep” forms of quasi-idempotence is orthogonal to the 
values of (1) and ( )   that are actually attained, which are not only dependent on the properties of the 

initial matrix but also on the chosen correlation metric (e.g., linear vs. non-linear). Throughout the 
remainder of the study with the expression “degree of quasi-idempotence” we shall encompass both 
the form of quasi-idempotence according to this scheme, and its strength as represented by the 
numerical values of (1) and ( )  . Diverse manifestations of quasi-idempotence are exemplified in the 

synthetic and experimental data presented in the following sections. 
 
III. SIMULATIONS 
 
A. Synthetic networks 
 
The effect of squaring on a graph depends in a non-trivial manner on how its structure eventually 
leads to an idempotent matrix. Initial insight was gained by considering exemplary binary graphs in 
preliminary calculations (details not shown). While Erdös-Rényi networks18 are not idempotent (i.e., 
(1) ( ) 0    ), other random networks can even show “deep” quasi-idempotence when they possess 

sufficient node degree heterogeneity, as exemplified below for the more general case of weighted 
graphs. Fully modular networks wherein all communities have equal size (and thus all nodes have 
equal degree) are perfectly idempotent (i.e., (1) ( ) 1    ); however, when community size is 

heterogeneous the smaller communities are gradually dissolved, and when separation between 
modules is incomplete the modular structure is eventually replaced by one generally not resembling 
the initial network. Arbitrary modular networks thus usually show a “shallow” form of quasi-
idempotence wherein (1) 0  but ( ) 0   , and a similar scenario is verified for small-world (Watts-

Strogatz) networks19, and for mapped fractal (Sporns) networks6 which embody a hierarchy of 
subnets. The situation for scale-free (Barabási-Albert) networks20 is somewhat more complex with 

(1) ( )    peaking at ≈0.4 for m0N/2, where N is network size; while these networks are closer to 

“deep” quasi-idempotence, the peak is not related to scale-freeness but more trivially arises because 



for such setting the network is evenly partitioned into high- and low-degree nodes. Importantly, 
binary graphs represent a limit scenario for applying the notion of quasi-idempotence as intended here 
because i) correlation between the elements of the initial and final matrices collapses to a test for 
difference between two groups (zero or one in the initial matrix), and ii) in complete weighted graphs, 
the distribution of edge strengths within and between nodes has a strong influence. Hence, binary 
graphs will not be considered in greater detail and we shall instead restrict attention to complete 
weighted graphs, which represent the usual starting scenario for structural connection and 
synchronization matrices derived from experimental neuroscientific data. 
 
Given a complete weighted graph, the Perron-Frobenius theorem implies that the largest eigenvalue of 
the corresponding matrix is unique and positive, and all elements of the associated eigenvector are 
positive. Upon squaring the matrix, its column (row) vectors are drawn closer to the direction of the 
principal eigenvector, yielding a matrix that has a “striped” structure.21 After sufficient iterations of 
squaring, the column (row) vectors are nearly-perfectly aligned with the principal eigenvector, and all 
other eigenvalues are near-zero, i.e. within numeric precision the matrix is singular and has rank one. 
Thus repeated squaring effectively corresponds to a “data reduction” operation and the route to 
idempotence under repeated squaring depends on how these vectors relate to the principal eigenvector 
in the initial and intermediate matrices. Furthermore, the column (row) sums in the initial and squared 
matrices are approximately linearly correlated: iterative squaring effectively “locks in” differences in 
nodal strengths, however small relative to the edge strength distribution these may be, and amplifies 
them eventually conferring a “striped” structure to the matrix.14-16 
 
Based on the above, we hypothesized that in complete weighted graphs the degree of quasi-
idempotence is related to the distribution of edge strengths, so that quasi-idempotence is enhanced 
when variance of the edge strengths is determined primarily by heterogeneity of the nodal strengths 
(i.e., summed or averaged strengths of the edges attached to given nodes), which physically 
corresponds to a high level of “collectivity” in the dynamics of the system1 and visually confers the 
initial matrix a “striped” structure. To verify this, synthetic networks were generated using the 
following empirical approach. Let 2,

( )x
 


 
be a normal probability density function having mean μ 

and standard deviation , and without loss of generality let μ=0.5 and =0.01. Let 2ˆ,
( )

i
x

 


 
be an 

array of N=100 probability density functions, each consisting of a normal distribution with mean i   

and standard deviation ̂ , where i  is drawn according to 2,
( )x

 
 and ̂  . One can construct a 

graph G drawing each edge strength gi,,j=gj,,i according to the “combined” probability density function 
yielded by  
 

2 2 2 2, ˆ ˆ ˆ ˆ, , , ,
ˆ ( ) ( ) ( ) ( ) ( )

i j i j
i j x x x x x

       
      ;        (4) 

 
practically, this operation can be performed numerically by calculating each  cumulative distribution 

function ,
ˆ ( )i j x  then inverting it. While this process does not realize nodal and edge strength 

distributions having standard deviation  and ̂ , it nevertheless offers a simple approach to generate 

networks wherein the variance of edge strengths unrelated to the heterogeneity of nodal strengths can 
be straightforwardly controlled by means of parameter η. For 1  , the fraction of edge strength 

variance unrelated to the nodal strength heterogeneity was very small: the initial matrix thus had a 



characteristic “striped” structure (Fig. 2a), which was preserved by squaring and the degree of quasi-
idempotence was accordingly very high ( (1) ( ) 1    ). For 1  , an intermediate situation was 

realized, wherein nodal strength heterogeneity was less evident due to greater unrelated edge strength 
variance: the initial matrix had a weaker  “striped” structure (Fig. 2b), and the degree of quasi-
idempotence was lower because repeated squaring enhanced the nodal strength heterogeneity and 
attenuated the unrelated edge strength variance, hence the resulting matrix was only moderately 
correlated with the initial one ( (1) ( ) 0.5    ). Thus, for both 1  and 1  , the situation was one 

of “deep” quasi-idempotence, however with different intensity. On the other hand, for 1  , nodal 

strength heterogeneity was no longer visually appreciable (Fig. 2c) and repeated squaring lead to a 
pattern devoid of visible element-wise relationship to the initial matrix; similarly to the situation for 
Erdös-Rényi networks18, the matrix was not idempotent ( (1) ( ) 0    ). As confirmed by numerical 

simulations performed with 100 values of η log-spaced between 0.1 and 10, and 100 networks per 
setting, (1) and ( )  decreased in unison from ≈1 to ≈0 as η was elevated (Fig. 2d and Fig. 2e). 

 

The roles of  and ̂ in generating these matrices evidently recall the canonical formulation of one-

way analysis of variance (ANOVA), wherein the data matrix corresponds to the matrix representing 
the graph, levels of the factor (groups) correspond to nodes and observations (cases) correspond to 
edge strengths.22 Across these simulations, near-perfect linear correlation was indeed observed 

between ANV 1 /r SSE SST  from such ANOVA and ( )  , with ANV( ) 2r   (r>0.99, m=1.42, Fig. 

2f); accordingly, for the matrices obtained by infinite squaring iterations ANV 1 2r  , and the limit 

ANV 1 2r  holds due to matrix symmetry. While here (1) ( )   , the experimental examples presented 

in the next sections clarify that ANVr  is preferentially related to ( )  , and may be decoupled from (1) . 

Throughout the remainder of the study, with the expression “nodal strength heterogeneity” we shall 
refer to the value of ANVr . 

 
In sum, these results establish a link between self-similarity of edges and triangles in a weighted 
graph, matrix quasi-idempotence and level of nodal strength heterogeneity as represented by analysis 
of variance over all edges. Graphs wherein the edge strength variance is strongly related to the 
heterogeneity of nodal strengths, or equivalently wherein the strengths of the edges attached to each 
node (matrix row and column vectors) are strongly correlated with the principal eigenvector, or 
equivalently have non-principal eigenvalues close to zero, possess “deep” quasi-idempotence and are 
self-similar in the present sense. On the other hand, as demonstrated by the experimental data 
discussed in the next sections, some networks exhibit “shallow” quasi-idempotence, which also 
reveals structure formation but is less closely related to nodal strength heterogeneity and eigenvalue 
spectrum. 
 
B. Kuramoto oscillators 
 
Since the above networks represent an unphysical scenario, we next considered the paradigmatic case 
of mean-field (globally-coupled) Kuramoto (phase) oscillators. The collective dynamics of Kuramoto 
networks under incomplete synchronization support the emergence of complex patterns, and 
Kuramoto networks have been taken as basis to realize models of oscillatory dynamics in neural 
ensembles and brain networks, replicating, despite their elementary nature, diverse experimental 



observations including critical phenomena.23-26 Namely, we studied a version of the stochastic 
Kuramoto model, wherein phases i  are given by 

 

 1
( ) sin ( ) ( ) ( )

N

i i j i ij
t t t t

N

    


            (5) 

 
for i=1...N, where the number of oscillators (network size) N=100, i  are the natural frequencies, λ 

denotes coupling strength and ( )i t  denotes white noise drawn from a zero-mean normal distribution 

having standard deviation   . We solved the ODE system 4040 times assuming different λ and  

values in the range [0,1], set i  uniformly to unity and drew (0)i  randomly from a homogeneous 

distribution in [-π, π]. The resulting systems were integrated in 0.001 steps up to t=1,000 using the 
Euler–Maruyama method.27 The time-series were decimated to 0.01 steps and the first 10% was 

rejected to allow initial transient stabilization. For each combination of λ and , 8 runs were 
performed and the final scalar indices were averaged.  
  
Phase synchronization between oscillators is given by the synchronization index 
 

( ) ( )

,
i ji t t

i j
t

r e
    ,          (6) 

 

according to which average synchronization across the network ,i jr  delineated regions of complete 

synchronization (for high λ, low ), incomplete synchronization (for a “band” of intermediate λ and ) 

and complete desynchronization (for low λ, high ; Fig. 3a). In the region of incomplete 

synchronization, the standard deviation of the nodal strengths i j
r was maximised (Fig. 3b), and 

ANOVA indicated that the nodal strength heterogeneity was correspondingly also maximised 

( ANV 1 2r  ; Fig. 3c). As previously observed for synthetic networks, also in this case (1) ( )    (Fig. 

3d and Fig. 3e), indicating that the synchronization patterns generated by this system yielded different 
levels of “deep” quasi-idempotence; accordingly, there was very high linear correlation to the 

ANOVA rANV-value, with ANV( ) 2r   (r>0.99, m=1.42). The underlying synchronization matrices 

clearly demonstrated the formation of patterns featuring diverse levels of nodal strength heterogeneity 
in the region of incomplete synchronization, and that repeated squaring enhanced these patterns 
yielding a “striped” structure (Fig. 3f and Fig. 3g). While a comprehensive evaluation of the 
Kuramoto model in this context is beyond the scope of the present work, it was noted that analogous 
results are also obtained with non-uniform angular frequencies, i.e. drawing i from [0,1] (data not 

shown). 
 
In the region of incomplete synchronization, as the coupling strength was elevated (or noise was 
reduced) the collective dynamics of the oscillators became increasingly coherent, eventually 
converging to a single oscillation mode when complete synchronization was attained. As globally-
coherent activity gradually ensued, quasi-idempotence emerged because the level of synchronization 
attained between a given pair of nodes tracked more and more closely how these “co-participated” in 
such activity, as represented by their nodal strengths, and accordingly the column (row) vectors of the 
synchronization matrix became aligned with the principal eigenvector. Such relationship remained 



valid even for the small residual fluctuations observed in presence of strong coupling and low noise. 
These observations bridge the results from synthetic networks with the experimental data discussed 
below, providing initial evidence that “deep” quasi-idempotence is a relevant feature of 
synchronization patterns that can emerge in non-linear dynamical systems, and that it can be viewed 
as measure of network “collectivity”.1 
 
IV. EXPERIMENTAL DATA  
 
A. Electronic chaotic oscillators 
 
We next considered experimental data acquired in a “micro-scale” setting, wherein each node 
corresponded to an individual oscillator. For this purpose, we reanalyzed publicly-available time-
series data from a ring network comprising 32 non-linear electronic oscillators having free phase and 
amplitude, and implemented in field-programmable analog array (FPAA) circuits. This system 
generates emergent patterns that feature cluster synchronization and diverse forms of remote 
synchronization; these synchronization patterns consequently have small-world features despite the 
underlying ring structure, and are reminiscent of aspects of brain functional connectivity.28 Collective 
dynamics were primarily determined by three oscillator parameters, namely two gains (G6, G7) and an 
integration constant (K1), according to the circuit described in detail in Ref. (28). The parameters G6 
and G7 controlled, respectively, the internal loop gain of each oscillator and its coupling with (input 
from) the preceding one in the ring. As detailed in the original study, for suitable values of K1 a 
“chaotic band” was observed as a function of the two gains, and within it a variety of complex 
synchronization patterns were formed. Here, we only considered the dataset acquired for K1=0.11 μs-1 
and restricted network analyses to inside the “chaotic band”, defined empirically based on the average 

correlation dimension of the signals, with 2 1.5D  (Fig. 4a). As detailed in the original study, 

synchronization was measured as the maximum cross-correlation coefficient of oscillation amplitude 

fluctuations ,max ( )i jC    . 

 
While G6 and G7 were elevated, fine-grained structure appeared within the “chaotic band”, visible as 

variability in the average correlation dimension 2D  and amplitude synchronization ,max ( )i jC     

(Fig. 4a and Fig. 4b). Considerable fluctuation of the ANOVA rANV-value was correspondingly 
observed, indicating that small changes in G6 and G7 lead to the generation of synchronization 
patterns expressing diverse levels of nodal strength heterogeneity (Fig. 4c). In contrast to the synthetic 
networks and Kuramoto oscillators considered above, here a clear dissociation appeared between (1)

and ( )  , which were only moderately correlated (r=0.42); consideration of the respective 

distributions with respect to G6 and G7 revealed that while for low G6 and high G7 synchronization 
patterns pervasively exhibited “shallow” quasi-idempotence (Fig. 4d), “deep” quasi-idempotence only 
emerged for narrower control parameter regions (Fig. 4e). Linear correlation between the ANOVA 

rANV-value and ( )   was again near-perfect with ANV( ) 2r   (r>0.99, m=1.58), however correlation 

with (1) was much weaker (r=0.37). 

 
Consideration of the underlying synchronization matrices demonstrated that “deep” quasi-
idempotence was primarily supported by remote synchronization appearing in the form of heightened 
synchronization between distant ring segments, which lead to markedly heterogeneous nodal 



strengths; notably, the communities formed via cluster synchronization in this system (visible along 
the diagonal in the initial synchronization matrices) were not preserved during repeated squaring (Fig. 
4f and Fig. 4g). Contrariwise, “shallow” quasi-idempotence was observed for synchronization 
matrices exhibiting primarily another form of remote synchronization which ensued between node 
pairs having approximately fixed non-unitary distance (appearing as “diagonal lines” on the initial 
matrix, Fig. 4h), or exhibiting weaker pattern formation in the form of community substructure 
overlaid to a synchronization gradient decaying with node separation (Fig. 4i): although largely 
preserved in the first iteration, both patterns were eventually dissipated by repeated matrix squaring. 
 
These results are consistent with those from mean-field Kuramoto oscillators, but additionally 
emphasize the different sensitivities of (1) and ( )   thanks to the richer repertoire of synchronization 

patterns available to this system: while both measures were sensitive to spontaneous pattern 
formation, high ( )   required large nodal strength heterogeneity that in this case was only conferred 

by remotely synchronized clusters (“deep” quasi-idempotence), whereas (1)  was also elevated in 

presence of other less stable substructures (“shallow” quasi-idempotence). While in Kuramoto 
networks the emergence of “deep” quasi-idempotence straightforwardly reflected co-participation in 
increasingly coherent global activity, in this scenario the situation was more complex because the 
system could generate a repertoire of qualitatively-different synchronization patterns.28 
 
B. Neural cultures on multi-electrode arrays 
 
Subsequently, we considered a biological “meso-scale” scenario, wherein each network node 
ensumed activity from a population of contiguous oscillators. For this purpose, we reanalyzed 
publicly-available spike series data of cortical neurons harvested from rat embryos, dissociated, then 
plated on culture wells containing multi-electrode arrays (MEA). While the initial connectivity is 
destroyed, the plated neurons spontaneously grow new axonal connections over a scale of few 
millimetres, eventually leading to generation of a rich repertoire of bursting patterns, critical dynamics 
and complex network topology.29-31 We drew data from so-called “dense” cultures, wherein ≈50,000 
cells were concentrated in a droplet and plated on area having diameter ≈5 mm, underneath which an 

array of 88 recording electrodes with pitch 200 μm was instanced. Spontaneous spiking activity was 
recorded daily for 30 min from 10 until 40 days in-vitro (DIV), and due to inherent biological 
variability the cultures were substantially heterogeneous in activity intensity and features.29  Because 
of limited data after 35 DIV, we restricted correlation analyses up to this culture age. 
 
After performing spike detection, which yielded a point-process activity representation, bursts were 
identified separately for each electrode based on temporal clustering (minimum inter-spike interval 
≈0.1 s, adaptively set).32 Subsequently, we segmented network bursts intended as time-intervals of 

simultaneous bursting involving 5 electrodes; further analyses only considered activity within these 
intervals, as it is during them that synchronization is preferentially expressed over the background of 
stochastic firing. Synchronization matrices were thereafter obtained by computing the coincidence 

index (CI), which represents the cross-correlation integral within a 1 ms conduction delay with 
respect to the total.31 The number of active electrodes depended on culture age and individual 
features, and network size varied between 6-58 nodes. 
 



Reflecting the expected spontaneous growth of new connections (i.e., synapses, axons, dendritic trees) 
among the initially-dissociated neurons, the number of active electrodes (network size N) raised 
steadily (rank-order r=0.40; Fig. 5a), and the average synchronization among them also increased 
(r=0.64; Fig. 5b). Notably, nodal strength heterogeneity as measured by the ANOVA rANV-value also 
gradually raised (r=0.58), featuring a steeper gradient between 10-20 DIV and a shallower one 
afterwards (Fig. 5c). Correspondingly, (1) and ( )   increased in unison (r=0.63 and r=0.58 

respectively; Fig. 5d and Fig. 5e); here, they were highly linearly related (r=0.93), and as observed 

previously, ( )   was near-perfectly correlated to the ANOVA rANV-value with ANV( ) 2r   (r>0.99; 

m=1.41). 
 
Consideration of the underlying synchronization matrices revealed a clear progression in structure 
formation between immature and fully-developed cultures. Initially, less than two weeks after plating, 
the distribution of edge strengths appeared random, and yielded low (1) and ( )   (Fig. 5f). Already 

after three weeks, stable substructures pervasively appeared in the form both of individual high-
strength nodes, and of large communities conferring higher nodal strength to their members, yielding 
intermediate and concordant values of (1) and ( )   (Fig. 5g). From that culture age onwards, the 

majority of cultures further evolved towards markedly quasi-idempotent topology, driven by 
emergence of groups of high-strength nodes, which also preferentially synchronized between 
themselves; values of (1) and ( )   were accordingly high (Fig. 5h and Fig. 5i). 

 
As (1) ( )   , these results demonstrate that self-organized structure formation in biological neural 

networks leads to the emergence of “deep” quasi-idempotence, which in this case reflected the 
increasing collective participation in coherent activity ensuing as network-wide bursts, recalling the 
situation for Kuramoto oscillators. There was striking correlation with culture development stage 
(age), which was evident particularly in early weeks when new connections are developed rapidly; 
compared to previous observations in this area predicated on other network topology measures, these 
results suggest that quasi-idempotence has remarkable sensitivity to the emergent organization 
exhibited by these networks.33 
 
C. Brain structure and function in human and mouse 
 
We finally considered “macro-scale” brain architecture in terms of both structural and functional 
connectivity, accessed via magnetic resonance imaging (MRI) techniques respectively probing axonal 
bundle anatomy and hemodynamic activity, and via meta-analysis of an activation data repository. In 
the resulting networks, each node effectively corresponded to the ensemble average over a cortical 
parcel which, depending on local cytoarchitecture and parcellation granularity, could harbour ≈106-
108 neurons. Structural and functional brain connectivity is concomitantly characterized by multiple 
topological features, which are deemed to have emerged under evolutionary pressure as means to 
enhance processing capacity relative to size and metabolic cost; these include small-world, scale-free 
organization, hierarchical modular organization and presence of a “rich-club” of hub nodes that are 
both heavily interconnected to the rest of the cortex, and preferentially interconnected between 
themselves.8-10,34-38 
 
To evaluate the degree of quasi-idempotence of macroscopic brain networks, we first considered 
axonal connectivity, averaged over 5 healthy, young participants who were studied by means of 



diffusion-spectrum imaging (DSI), an MRI technique which relies upon water self-diffusion 
anisotropy to probe white matter micro-structure. Publicly-available data were drawn from a previous 

study wherein DSI was performed sampling the Q-space over 129 points in 223 mm voxels, 
followed by reconstruction of the orientational probability density functions and tractography via a 
deterministic streamline algorithm, which yielded “fibres” representing an approximation of the 
underlying anatomy. For this and the other data sources referred to below, ethics statements are 
contained in the original publications. To construct the connectivity matrix, the cortex was parcellated 
in 998 regions, pair-wise connection density was determined based on fibre count and length, then the 
resulting values were logarithm-transformed and rescaled to [0,1].35 The resulting network was sparse, 
having completeness 8%, and featured a prominent distinction between intra- and inter-hemispheric 
connections. Squaring the matrix once enhanced the connectivity of high-strength nodes, and yielded 
a network highly correlated to the initial one, having (1) 0.78  ; further iterations consolidated the 

predominance of such nodes and dissolved the unrelated substructures, eventually yielding weak 
correlation with the initial matrix, having ( ) 0.20   (Fig. 6a), indicating that the network possessed 

“shallow” quasi-idempotence. Anatomical visualization of nodal strength distribution highlighted that 
it was highest for contiguous parcels clearly delineating the boundaries of the precuneus and posterior 
cingulate cortex, which knowingly represent the principal hub in the “rich-club” of brain connectivity, 
and squaring effectively had the effect of “focusing” connectivity onto these areas (Fig. 7a).39,40 Even 
though the situation was one of “shallow” quasi-idempotence, both indices were significantly higher 
(p<10-6) than for null networks obtained via random edge permutation (n=100), which preserved edge 
strength but not nodal strength distribution, and yielded (1) 0.000 0.003   and ( ) 0.045 0.001     

(meanstandard deviation). Here, as a consequence of matrix sparsity , 2 ( )ANVr    with 

ANV2 0.13r  . 

 
We then drew from another study the average functional connectivity measured over 24 healthy, 
young participants, in whom blood oxygen level-dependent time series were recorded during idle 

wakefulness, for 150 time-points spaced by 2 s, voxel size 3.53.53 mm (resting-state functional 
MRI, rs-fMRI). After suitable filtering to attenuate variance due to non-neural physiological activity, 
low-frequency fluctuations (<0.1 Hz) in these signals knowingly represent spontaneous brain activity 
that is coherent across cortical regions, separable in a set of independent components and 
simultaneously shows complex network architecture.25,41 To construct the connectivity matrix, the 
cortex was parcellated in 638 regions, pair-wise temporal correlations were calculated and Fisher 
transformed, discarding negative correlations as their interpretation is controversial.37 The resulting 
network was near-complete at 99.8% and featured a well-evident subdivision in default-mode, visual, 
fronto-parietal and central modules, in line with previous reports. Also for this network, moderate 
nodal strength heterogeneity was present and enhanced by squaring the matrix once, yielding 
(1) 0.72  ; however, compared to structural connectivity, this network had more stable structure and 

repeated squaring retained moderate correlation to the initial matrix, with ( ) 0.57    (Fig. 6b), 

indicating an “intermediate” degree of quasi-idempotence, also evident as close preservation of the 
nodal strength distributions before and after squaring (Fig. 7b). Both indices were again significantly 
higher (p<10-6) than for null networks obtained via random edge permutation, which yielded 

(1) 0.000 0.003    and ( ) 0.056 0.001     (meanstandard deviation); in this case ANV( ) 2r    , 

with ANV2 0.55r  . 



 
We furthermore drew from the same study statistical data on co-activation, determined between all 
region pairs by meta-analysis of >1,600 studies available in the BrainMap database42, performed using 
fMRI or positron-emission tomography (PET) and contrasting active tasks in diverse domains 
including language, memory, other cognitive functions, emotion, sensory stimulation and motor 
performance. The same cortical parcellation in 638 regions was assumed, but in this case matrix 
entries consisted of Jaccard similarity scores. Effectively, this provided a measure of synchronization 
which was predicated on variance among studies and tasks instead of temporal variance of 
spontaneous activity during idleness, and therefore potentially more ecologically valid. As detailed in 
the original work, the resulting network had significant correspondence to spontaneous activity 
synchronization measured during idleness and featured a similar modular organization.37 Although 
more sparsely connected, having completeness 83.9%, also this network demonstrated moderate nodal 
strength heterogeneity, which was enhanced by squaring the matrix once, yielding (1) 0.62  ; it had 

marginally less stable structure than synchronization of spontaneous activity during idleness, and 
repeated squaring lead to weaker correlation with the initial matrix, with ( ) 0.43    (Fig. 6c). High-

strength nodes were located primarily in superior frontal, superior parietal regions and lateral frontal 
regions, in line with the distribution of central “rich club” hubs identified previously, and their 
distribution was closely preserved by squaring (Fig. 7c).37 Both indices were significantly higher 
(p<10-6) than for null networks obtained via random edge permutation, which yielded 

(1) 0.000 0.003    and ( ) 0.056 0.002     (meanstandard deviation); here, ANV2 0.36r  . 

 
Lastly, we considered murine structural connectivity, which reflects a type of brain anatomy that is 
profoundly different to the human one due to lower gyration, greater centrality of subcortical 
structures and different architecture of the main pathways.43 To this end, we obtained from another 
public repository the average structural connectivity matrix of 2 wild-type adult C57BL/6 mice.44 
These were studied ex-vivo with diffusion-tensor imaging (DTI), probing water self-diffusion along 
120 directions in 43 μm isotropic voxels and subsequently performing probabilistic tractography, 
generating probability maps starting from each of 296 parcellation regions. To construct the 
connectivity matrix, for each region pair the relative connectivity estimates were averaged over mice 
and between directions to yield a symmetric matrix, and the resulting values were logarithm-
transformed and rescaled to [0,1]. The resulting network had completeness 98.6%, and a prominent 
modular structure delineating the isocortex, pallidum-diencephalon-midbrain, and hindbrain. There 
was moderate nodal strength heterogeneity, which was enhanced by squaring the matrix once, with 
(1) 0.74  , and relatively stable with respect to further squaring, with ( ) 0.65    (Fig. 6d), pointing to 

“deep” quasi-idempotence in apparent contrast with human data. High-strength nodes were located 
primarily in the pallidum and subpallidum, in keeping with the central role of these structures in 
murine brain architecture.45 Both indices were significantly higher (p<10-6) than for null networks 
obtained via random edge permutation, which yielded (1) 0.000 0.007   and ( ) 0.083 0.003     

(meanstandard deviation); here, ANV2 0.66r  . 

 
We additionally evaluated the quasi-idempotence of structural and functional connectivity in the 
context of publicly-available data acquired from a large cohort of healthy human participants 
representative of the entire lifespan (NKI-Rockland sample, obtained via the UCLA multimodal 
connectivity database).46,47 Connectivity matrices according to a parcellation in 188 regions were 



obtained based, respectively, on DTI and rs-fMRI measurements, applying methods detailed 
elsewhere; in these analyses, we did not logarithm-transform the DTI-derived connection weights and 

we only considered rs-fMRI data without global-signal regression. For DTI (n=196, age 35.020.0 

years), we obtained (1) 0.79 0.01   (meanstandard deviation) and ( ) 0.42 0.04    , whereas for rs-

fMRI (n=146, age 35.420.1 years), we obtained (1) 0.81 0.03   and ( ) 0.59 0.11    . These 

measurements demonstrated that quasi-idempotence is highly consistent across individuals and age 
ranges. Notably, there was a moderate inverse correlation between (1) derived from DTI and age 

(rank-order r=-0.24, p<0.001); this effect, however, should be interpreted cautiously as it was 
quantitatively very small. No such correlations was observed for ( )  (p=0.6), and for rs-fMRI 

measures there was only a marginal, unconvincing correlation (p=0.03). These results suggest that 
age-related degeneration could weaken the topological features that underpin quasi-idempotence, and 
do so primarily affecting structural connectivity, as observed elsewhere for other network measures. 
48,49 
 
Taken together, these findings confirm that significant self-similarity between edges and paths is to 
some extent present even in the macroscopic organization of brain networks, and demonstrate quasi-
idempotence in the context of networks substantially larger than those considered in the previous 
scenarios. Quasi-idempotence was verified for structural networks in both human and mouse brains 
despite profound anatomical differences, and for synchronization as well as  co-activation networks in 
the human brain. For structural connectivity, it is plausible that the different degree of idempotence 
observed between the species was due to both biological factors (white matter architecture, brain size, 
gyration) and methodological aspects (tracking algorithm, resolution, thresholding/sparsity, in-vivo 
vs. in-vitro). For functional connectivity, differences between datasets may be down to confounding 
effects of parcellation and signal filtering differences. Predicated on the clearly different effect of 
squaring on nodal strength topography visible in Fig. 7, we speculate that at this level hardwired 
structural (axonal) connectivity may preferentially express “shallow” quasi-idempotence, whereas 
“deep” quasi-idempotence may become apparent only for emergent synchronization patterns 
(functional connectivity and co-activation). These results additionally indicate that measurements 
were reproducible and potentially sensitive to age-related degeneration. 
 
V. DISCUSSION 
 
This study investigated network self-similarity by means of a novel approach that considers edges and 
paths, rather than nested hierarchies of nodes and modules as already done extensively in the existing 
literature.50,51 It was demonstrated that for the case of triangles, namely the shortest possible non-
unitary-length paths, rescaling corresponds to matrix squaring, and consequently that network self-
similarity corresponds to matrix quasi-idempotence, intended as a “relaxed” version of the canonical 
definition of idempotence based on linear correlation of off-diagonal elements. Two scalar indices 
that encapsulate the “degree” of quasi-idempotence were proposed, alongside a qualitative distinction 
between “shallow” and “deep” quasi-idempotence, predicated on observations that certain emergent 
networks possess local edge substructures that are stable over few squaring iterations but are 
eventually dissolved or distorted, while others feature a more globally-stable topology that is close to 
the one that iterative squaring eventually converges to. It was shown that quasi-idempotence does not 
trivially reflect already well-known network properties such as scale-freeness and small-worldness, 
and that even though multiple elementary topologies possess “shallow” quasi-idempotence, “deep” 



quasi-idempotence is related to nodal strength heterogeneity in a clear manner, such that the most 
stable networks are those wherein edge variance is predominantly determined by the nodal strengths, 
a property which maps closely to the definition of statistical difference as embodied in analysis of 
variance (ANOVA). 
 
To the authors’ knowledge, the notion of matrix idempotence had thus far been applied in the context 
of graph theory only sparingly, with the notable exception of the MCL algorithm, where expansion 
and inflation steps, corresponding to matrix and Hadamard products, are alternated to obtain optimal 
graph partitioning. In this context, it is established that squaring a matrix (expansion) corresponds to 
increasing the path lengths that are considered, in other words, looking at a coarser scale. It was 
shown that matrix idempotence is related to the presence of stable substructures rich in triangular 
motifs.52 While the expansion step is in common between our approach and the MCL, our take is 
different, in that no inflation is performed and the purpose is to measure the degree of quasi-
idempotence and not to partition graphs. Furthermore, our approach to self-similarity is reminiscent of 
the matching index, an auxiliary matrix used in the context of network clustering wherein each 
element quantifies the overlap in neighbours between each pair of nodes.53,54 A similar notion has also 
been proposed as a means of detecting missing links.55 However, while the matching index is a 
bounded measure of overlap, in our case the matrix entries after squaring represent the sum of paths 
between node pairs across iterations, hence, two nodes can have a high matching but nevertheless be 
weakly connected to the rest of the network overall, and vice versa. Future studies should consider the 
relationship between quasi-idempotence as intended in this context, and the aspects of network 
symmetry reflected by the Laplacian spectra as highlighted in recent work.56 
 
As summarized in Table 1, convergent observation of quasi-idempotence in profoundly different 
dynamical systems, namely Kuramoto networks, electronic chaotic oscillators, neural cultures and 
even entire brains motivates querying the significance of this property. One perspective is yielded by 
considering it as a measure of “collectivity”, as clearly exemplified by observations in incompletely-
synchronized Kuramoto networks.1 If in the lifetime of a given network links (representing structural 
connections or activity synchronization, depending on the nature of the graph) are formed, 
strengthened and maintained in a manner that is insensitive to global activity (low collectivity), the 
variance of edge strengths is largely uncoupled to nodal strength heterogeneity and quasi-idempotence 
is accordingly low ( 1  in subsection III.A). If on the other hand, links between nodes reflect how 

intensely these co-participate in a coherent activity mode or in a coherent structure yielding them a 
certain level of centrality in the network (high collectivity), then the variance of edge strengths is 
largely determined by nodal strength heterogeneity, and quasi-idempotence is high ( 1  in 

subsection III.A). This appears to be the case for spontaneously-developing in-vitro neural networks, 
wherein maturation is associated with increasingly frequent generation of bursts of network-wide 
coherent activity, and correspondingly higher quasi-idempotence emerging alongside other 
topological features.30,31 As regards to structural connectivity and neural plasticity, quasi-idempotence 
can be supported by Hebb’s rule, according to which neurons that are driven to discharge in 
synchrony by collective dynamics develop strong direct connection.57 Another perspective is yielded 
by considering that quasi-idempotence represents a scenario wherein the efficiency of information 
transfer between any two given nodes is coupled, whether transfer takes place directly between them 
or diffusely via the rest of the network, which could maximise network resilience.58,59 “Economic” 
arguments about network efficiency and resilience should however considered cautiously when 



examining the significance of quasi-idempotence, considering that this property was also clearly 
observed in simulated and physical oscillator networks, whose features do not reflect an evolutionary 
response to environmental pressure as may be the case for neural networks in-vivo and in-vitro.9 
Quasi-idempotence could, nevertheless, represent a form of “minimum energy configuration”, 
towards which collective dynamics are drawn regardless of the nature of the system.60  
 
Future theoretical, numerical and experimental investigations are motivated to understand the 
underlying causes and the consequences of this kind of network self-similarity for collective 
dynamics, and to better clarify the distinction between and implications of “shallow” and “deep” 
quasi-idempotence (which herein remained defined qualitatively, without a rigorous, formal criterion), 
as well as the relationship to other topological properties. In particular, while this study has focused 
on small, complete graphs, there is a need to determine whether this form of self-similarity is also 
observed in the very large, sparse topologies that are typical of social, transportation and biological 
networks which feature well-understood properties such as small-worldness and scale-freeness; 
element-wise correlation appears poorly suitable for such networks, hence alternative measures of 
similarity may be required.1,19,20,61 
 
In this study, only the case l=1 was considered, in other words paths were represented exclusively by 
triangles, leading to the question of what would be observed for longer paths. We posit that even 
though for small number of iterations n the number of intermediate nodes l may have substantial 
impact, in n    it does not since the ergodic limit is reached regardless of l. This assertion requires 
verification in future work, and more generally there is a need to investigate other potential measures 
of quasi-idempotence (sensitive, for example, to non-linear correlation), and the influence of network 
size and edge strength distribution (including sparsity). Further, the empirical correspondence 
between correlation of matrix elements after infinitely-repeated squaring ( ( )  ) and canonical 

analysis of variance ( ANVr ) is particularity striking given that the latter is yielded by a close-form 

expression, and requires deeper investigation, also given that the correspondence was not universally 
valid as typified by results in sparse networks and by the pathological case of perfectly modular 
networks with evenly-sized communities, which have ( ) 1   but ANV 0r  . It will furthermore be 

necessary to confirm the present results in the context of a careful evaluation of the effects of 
connectivity matrix calculation methods on quasi-idempotence, in particular in the context of 
macroscopic brain networks by determining the effects of data filtering, cortical parcellation density, 
weight scaling and thresholding choices.62 
 
Further work is also necessary to elucidate the relevance of quasi-idempotence to neural networks 
probed at finer scale via synaptic maps and single-cell recordings, and other graphs such as gene 
regulatory networks and protein-protein interactions. The present observations also point to quasi-
idempotence as a possible basis for novel network integrity biomarkers, particularly in the context of 
neuropsychiatric disease connectomics: since strong expression of quasi-idempotence requires tight 
coupling between edge and nodal strengths, effectively indexing local and global aspects of brain 
connectivity, alterations affecting either level should be readily detectable.63 For instance, lower 
quasi-idempotence is expected in autism due to weaker influence of global activity on regional 
plasticity, and in Alzheimer’s disease, wherein synaptic loss preferentially targets the highest-node 
degree hubs, gradually dissolving the nodal heterogeneity which drives edge strengths in networks 



that possess strong quasi-idempotence.64,65 Re-analysis of existing datasets and computational 
investigations in this direction appear motivated. 
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Captions 
 

Figure 1. Example calculation of graph ˆ (1,1)G from graph G, wherein each edge ,ˆ i jg  is redefined as 

the sum of the connectivity between nodes i and j via all triangles spanning the rest of the network, 
e.g. 

0 0 1 1 2 2, , , , , , ,
ˆ i j i k k j i k k j i k k jg g g g g g g    . 

 
Figure 2. Relationship between quasi-idempotence and nodal strength heterogeneity, measured with 
respect to edge strengths variance, demonstrated through synthetic networks. a) When 1  , edge 

strengths variance was closely determined by nodal strength heterogeneity: the initial matrix had a 
“striped” structure which was preserved by squaring, yielding high (1)  and ( )  . b) When 1  , edge 

strengths variance was less closely determined by nodal strength heterogeneity: the matrix had a 
weaker “striped” structure, which was selectively enhanced by squaring, yielding intermediate (1) and 

( )  . c) When 1  , edge strengths variance was largely unrelated to nodal strength heterogeneity, 

thus squaring elicited a “striped” pattern not resembling the initial matrix, yielding low (1) and ( )  . 

d) and e) Accordingly, quasi-idempotence as assessed after one ( (1) ) and infinitely many ( ( )  ) 

squaring iterations gradually decreased, in unison, with η. f) Near-perfect linear correlation was 
observed between ( )  and the ANOVA rANV-value representing the level of nodal strength 

heterogeneity, with ANV( ) 2r   . For each matrix in a)-c), the colour-map was separately scaled 

between 5th-95th percentiles to aid visualization. 
 
Figure 3. Quasi-idempotence of the emergent synchronization patterns formed by mean-field 

Kuramoto networks with noise. a) Average synchronization ,i jr  increased with coupling strength λ 

and decreased with noise intensity , delineating regions of complete desynchronization, incomplete 

synchronization and complete synchronization. b) Standard deviation of the nodal strengths i j
r

was maximised in the region of incomplete synchronization, and c) ANOVA accordingly revealed 
maximum level of nodal strength heterogeneity. d) and e) The synchronization patterns featured 
varying levels of “deep” quasi-idempotence, with (1) ( )   , peaking in the region of incomplete 

synchronization in accord with ANV( ) 2r   . f) and g) Initial and infinitely many-times squared 

matrices exemplifying emergent synchronization patterns that yielded high levels of “deep” quasi-

idempotence, (f) for λ=0.26, =0.41  and (g) for λ=0.64, =0.74; colour-map between 0.005-0.015, 
matrices normalized to unit norm. 
 
Figure 4. Quasi-idempotence of the emergent synchronization patterns formed by cycle amplitude 
fluctuations in an experimental ring of electronic chaotic oscillators. a) As a function of internal 

oscillator loop gain G6 and coupling gain G7, the average correlation dimension of the signals 2D  

delineated a “chaotic band”, within which diverse synchronization patterns emerged. b) Average 
synchronization of amplitude fluctuations, measured as maximum time-lag cross correlation 

coefficient ,max ( )i jC    , increased with coupling strength G7 and was markedly heterogeneous 

within the “chaotic band”. c) According to ANOVA , nodal strength heterogeneity tended to be 
maximised in regions of the “chaotic band” having intermediate or high average synchronization 
strength. d) and e) As revealed by (1) and ( )  , “shallow” quasi-idempotence was pervasively 



represented, but “deep” quasi-idempotence was manifest only for narrower control parameter regions. 
f) and g) Examples of “deep” quasi-idempotence ( (1) ( )   ), supported by islands of remote 

synchronization that introduced substantial nodal strength heterogeneity in the initial synchronization 
matrix. h) and i) Examples of “shallow” quasi-idempotence ( ( ) (1)   ), showing that substructures 

yielded by other types of remote synchronization, by cluster synchronization and synchronization 
gradients were dissipated during repeated squaring. 
 
Figure 5. Quasi-idempotence of the emergent synchronization patterns formed by spontaneously-
developing networks of dissociated neurons. a) and b) The number of active electrodes (network size 

N)  and average coincidence index ,CI i j  increased steadily between 10 and 30 days in-vitro (DIV), 

reflecting the growth of new connections among the initially-dissociated neurons. c) The nodal 
strength heterogeneity (ANOVA rANV) accordingly increased, most markedly between 10 and 20 DIV,  
settling on a high level afterwards. d) and e) As revealed by (1) and ( )  changing in unison and 

closely tracking rANV, the cultured networks spontaneously developed “deep” quasi-idempotence. f) 
Example synchronization pattern observed at DIV 10, demonstrating random-like structure which was 
dissipated by squaring. g) Example synchronization pattern observed at DIV 24, demonstrating a 
high-strength node and a large community, which conferred the network a moderate degree of quasi-
idempotence. h) and i) Example synchronization patterns observed at DIV 24 and DIV 34, 
demonstrating high nodal strength heterogeneity and correspondingly high degree of “deep” quasi-
idempotence. Colour-maps between 0.02-0.05 (f), 0.02-0.06 (g), 0.015-0.035 (h) and 0.01-0.03 (i), 
matrices normalized to unit norm. 
 
Figure 6. Quasi-idempotence of the macroscopic structural and functional brain networks. a) Human 
structural connectivity, demonstrating high strength for nodes in the precuneus and posterior cingulate 
cortex: repeated squaring enhanced their preponderance and eventually dissolved all other 
substructures, revealing that the network had “shallow” quasi-idempotence ( ( ) (1)   ). Nodes 1-

499 left hemisphere, 500-998 right hemisphere, see Ref. (35) for labels. b) Human functional 
connectivity (synchronization of spontaneous activity), demonstrating subdivision into functional 
modules and higher strength of hub nodes principally in superior frontal, lateral frontal, and superior 
parietal regions; the difference between (1) and ( )  was smaller, denoting a situation of 

“intermediate” quasi-idempotence. Node order follows default-mode, visual, fronto-parietal and 
central modules, see Ref. (37) for labels. c) Human co-activation across active tasks (Jaccard scores 
from literature meta-analysis), having structure closely correlated to synchronization of spontaneous 
activity, and accordingly “intermediate” quasi-idempotence. Node order as in (b). d) Mouse structural 
connectivity, with well-evident modular structure delineating the isocortex, pallidum-diencephalon-
midbrain, and hindbrain; in this case, the network was relatively stable with respect to repeated 
squaring, revealing “deep” quasi-idempotence ( ( ) (1)   ) in apparent contrast with human structural 

connectivity in (a). Nodes 1-148 left hemisphere, 149-296 right hemisphere, see Ref. (44) for labels. 
Colour-maps between 0-0.015 (a), 0-0.003 (b), 0-0.005 (c) and 0-0.005 (d), matrices normalized to 
unit norm. 
 
Figure 7.  Topographical distribution of nodal strengths over the human brain cortex before squaring 
(left) and after infinitely-many squaring iterations (right). a) Structural connectivity demonstrated 
high strength for nodes in the precuneus and posterior cingulate cortex, and repeated squaring had the 



effect of “focusing” nodal strength onto these regions. b) Functional connectivity (synchronization of 
spontaneous activity) and c) co-activation across active tasks (Jaccard scores from literature meta-
analysis) by contrast yielded an initial nodal strength distribution which was appreciably more closely 
preserved by squaring, with high strength nodes principally in superior frontal, lateral frontal, and 
superior parietal regions. Blue-green-red colour-map and sphere radius represent rescaled nodal 
strength. 



Constituent 
units 

Kuramoto 
(phase) 
oscillators (in-
silico) 

Non-linear 
electronic 
circuits (in-
silico) 

Neurons (in-
vitro) 

Neurons (in-
vivo, human) 

Neurons (in-
vivo, human) 

Neurons (in-
vivo, human) 

Neurons (in-
vivo, mouse) 

System nature Simulated Electronic Biological Biological Biological Biological Biological 

Network scale 
Micro-scale  
(1 osc./node) 

Micro-scale  
(1 osc./node) 

Meso-scale 
(≈104 neur. 
/node) 

Macro-scale 
( 106 neur. 
/node) 

Macro-scale 
( 106 neur. 
/node) 

Macro-scale 
( 106 neur. 
/node) 

Macro-scale 
( 106 neur. 
/node) 

Link 
definition 

Sync.(spontane
ous activity) 

Sync.(spontane
ous activity) 

Sync.(spontane
ous activity) 

Structural 
connectivity 

Sync.(spontane
ous activity) 

Sync.(responses 
to stimuli) 

Structural 
connectivity 

Underlying 
signal 

Phase 

Voltage 
(continuous 
amplitude 
fluctuations) 

Voltage (inter-
spike intervals) 

Water self-
diffusion 
anisotropy 

Blood oxygen 
level-dependent 

Blood oxygen 
level-dependent

Water self-
diffusion 
anisotropy 

Form of 
quasi-

idempotence 
Deep Deep, shallow Deep Shallow Intermediate Intermediate Deep 

Strength of 
evidence 

Variable, 
maximum for 
intermediate 
sync. level 

Variable 
depending on 
control 
parameters 

Increasing with 
culture age 

Strong, possibly 
decreasing with 
age 

Strong Strong Strong 

 

Table 1. Conceptual comparison of the in-silico, in-vitro and in-vivo systems taken into consideration, 
with corresponding form of observed network quasi-idempotence (self-similarity) and level of 
evidence.  
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