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Abstract Can consolidation policy be made consistent with macro-prudential supervision? In this study,
we seek to provide new insights on this key-question using a network approach. We study how the re-
silience of a banking network evolves as we shock an initially homogenous competitive market with a
sequence of M&A activities that significantly alter the topology of the network. We study how different
M&A treatments impact on the structural vulnerabilities that can propagate through the system and we
show that the severity of contagion and default dynamics depends on the chosen treatment. The desir-
ability of alternative competitive settings (such as hub-centered market or a more concentrated and yet
symmetric market) are assessed against an homogenous benchmark case and we show that the choice
depends crucially on the size of the interbank market and the level of bank capitalization. The existence
of a large highly connected hub is beneficial in a capitalized network with a well-developed interbank
market but it can significantly weaken the system resilience in a poorly capitalized market. Antitrust and
competition authorities shall adopt a state-contingent approach to M&A activities according to the market
conditions in which banks operate.
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1 Introduction

The Global Financial Crises (GFC) of 2007-08 has put to the fore two additional dimensions to the
established trend of consolidation in the banking sector registered worldwide during the last three decades.

The first one has to do with the operational framework underlying the regulatory strategic response to
the GFC. A consensus is emerging among experts and practitioners on the idea that the tighter standards
for capital and liquidity requirements brought about by the Basel III agreement, as well as the investment
needed to comply with the regulation, will force a decrease in the returns on equity which will likely drive
a new wave of domestic and cross-border mergers among banks. !

Secondly, regulators urged by compelling considerations of systemic stability thoroughly arranged
- and in some cases forced - the acquisition of troubled banks by in-market competitors as a crisis-
management tool to be added to traditional resolution procedures and state-supported bailouts. While
this occurred repeatedly in the USA (see e.g. the acquisitions occurred between April and October 2008
of Bear Sterns by JP Morgan Chase, of Wachovia by Wells Fargo, and of Countrywide Financial and Mer-
rill Lynch by Bank of America), in the UK (where HBOS was taken over by Lloyds TSB in September
2008) and in the Euro area (where BNP Paribas acquired a 75% stake in Fortis in September 2008, and
a brand new institution called Bankia was created in Spain from the integration of seven regional cajas
in December 2010)?, very little is known on what consequences these actions may have on the financial
soundness of the newly created legal entities on the one hand, and on the stability of the banking system
as a whole on the other one.

Regardless of whether banking consolidation occurs through unassisted transactions under standard
market conditions or as emergency actions orchestrated by regulators as a means of resolving a banking
crisis, antitrust authorities and central bankers have the opportunity to shape the structure of the industry
by exercising their authority to recommend, approve or block any single merger. Our starting point is
that M&A activities alter the topology of a network of interbank lending-borrowing obligations for three
reasons: 1) large players are formed that did not exist before (i.e., the size distribution of nodes changes);
2) the total number of active banks decrease (i.e., the total number of nodes changes); 3) larger banks
typically have more borrowing-lending relationships than smaller banks (i.e., the degree distribution of the
network changes). Hence, in addition to affecting the competitive environment in which banks operate,
different strategic approaches followed by regulators in managing consolidation processes (let just one
very big bank to form by allowing it to acquire a large number of smaller banks; or limit the size of
each merger to just two small units at once) lead to different interbank network topologies, which could
in principle be characterized by different degrees of resilience to shocks and vulnerability to financial
contagion. If this is the case, banking consolidation policy can be conceived as an additional tool for
macroprudential regulation aimed at preventing or taming systemic crises.

In this paper we employ agent-based techniques to study the issues of the resilience to shocks and
the unfolding of systemic risk in an evolving interbank network, where we explicitly account for the
possibility that banks can be merged or forced to be separated (for instance, in terms of business lines) over
time. By developing a flexible computational platform, we perform a set of simulation experiments aimed
at assessing the potential for contagion associated to alternative M&A regulations. In particular, moving
from a benchmark structure with a given number of banks which are homogeneous both in terms of
size and of interbank connectivity, we compare three different network-changing M&A licensing policies
in order to evaluate their effect on the resilience of the system to an idiosyncratic shock causing the
insolvency of a node. In a first treatment, a single bank is allowed to expand its business and grow in size
by acquiring from time to time its smaller competitors. In the other two treatments we assume that a bank
can be dissembled and its activities evenly distributed to all other operating institutions, and that a merger
can be admitted only between two equally-sized small banks, respectively.

The three treatments we consider can be seen as epitomes of various strategies practically adopted by
regulators over time in managing the consolidation of the industry. While sequences of mergers leading

! Press reports on the emerging consensus abound. See for instance the ones published on the Bloomberg’s (Small banks
feel the urge to merge, Oct. 3, 2013) and the Reuters’ (Top bankers expect EU stress tests to reignite banking M&A, Jan. 26,
2014) websites.

2 A similar approach was adopted by local regulators during the 1997-98 Asian financial crisis (Shih (2003)).



Macroprudential Consolidation Policy in Interbank Networks 3

to regional or national champions characterized the banking sector in USA and Europe during the 1990s
(Boot (2003)), in many cases antitrust concerns forced the new post-merger entity to sell off several
branches (and all associated assets and liabilities) to other financial institutions, in order to preserve a
target level of market concentration (Pilloff (2002)). In turn, programs favoring the aggregation of small
banks by banning mergers among major banks have been followed until the 2000s in Australia and Canada
(IMF (2012)).

Our results suggest that the systemic properties of the interbank topologies emerging from different
approaches to drive market consolidation are not all alike, since they depend on key characteristics of the
system. For instance, the creation of a large highly interconnected bank operating as a hub turns out to
decrease systemic risk if institutions are well capitalized and interbank obligations represent a sufficiently
high share of banks’ total assets, but its effect on resilience is reversed in a poorly capitalized market. The
clear policy implication is that when deciding on how to manage the consolidation of the banking sector
a regulator shall closely monitor the evolution over time of the interbank network that ensues from the
deal, its interactions with capital requirements, and the structural funding policies followed by all banks
participating to the market.

The ideas in this paper are related to several strands of earlier work. One branch of the literature has
extensively used mean-field approximation and simulation techniques to assess the issue of contagion
in banking systems (Nier et al (2007); May and Arinaminpathy (2010); Gai et al (2011); Battiston et al
(2012) and Krause and Giansante (2012)). One key finding is the existence of a non-monotonic (inverted
M or U-shape) relation between the degree of connectivity and the number of defaults due to failure
cascades occurring in a network of mutual financial obligations. Connectivity acts first as a means to
increase the contagion effect, but beyond a certain threshold it contributes to enhance risk-sharing and
eventually the resilience of the system. Although contagion dynamics is central to our story as well,
we differ from these other works by explicitly exploring how the propagation of idiosyncratic shocks
may be affected by different regulations aimed at altering the topology of the network through M&A
transactions. Furthermore, we add to the literature balancing the “stability” and the “fragility” views
on how market structure and competition policies in the banking sector affect financial stability (Beck
(2008); Berger et al (2009); Vives (2011)) a perspective focused on how the complex web of balance-sheet
interdependencies among financial institutions can be altered to tame systemic risks, thus reinforcing
the case for a macroprudential approach to bank consolidation policy (Ratnovski (2013)). Finally, we
extend previous work analyzing bank merger decisions in stressed financial networks (Leitner (2005);
Rogers and Veraart (2013)) by adopting an ex-ante approach. Previous studies focus on the conditions
under which the private sector in a distressed scenario would have an incentive to save defaulting banks
by acquiring their assets and taking on their losses as well. Whilst Leitner (2005) focus on the endogenous
optimal formation of links, Rogers and Veraart (2013) take the network as given and show that viable
banks have both the incentives and the means to intervene whenever the cost of rescuing a failed institution
is smaller than the losses they would have incurred in, had contagion spread through the system. This
ex-post approach allows one to understand whether and under what conditions the banking sector can
effectively self-regulate and put in place damage-control interventions in the form of private rescuing.
Nonetheless, it is silent about the resilience of the new self-organized system that may emerge as a result
of these private bail-outs. The desirability of the new entities born as a result of the post-default merges
is yet to be assessed especially from a macro-prudential viewpoint and this paper is a first attempt to do
this. Without an a-priori knowledge of which bank will fail, merge or will be acquired by one another
(during a future crisis or before a crisis?), a regulator aimed at deploying a consolidation (emergency)
plan should compare alternative approaches to consolidation policies, in order to gauge which one has
superior properties in terms of macroprudential objectives.

On top of this, our paper clearly speaks to the need of securing a stable financial system as a prereq-
uisite for sustainable economic growth. The causal process moves from the reduction of uncertainty as
regards prospective financial distress, to the strengthening of the credibility of private financial institu-
tions and an improvement of the overall macroeconomic environment, to an increase of investment rates
causing an acceleration of growth (Kliesen (2013) ).

The structure of the paper is as follows. Section 2 introduces a model of the banking system and
shows how idiosyncratic shocks can propagate through the network of interbank obligations. Section 3
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discusses the design of the three treatments we use to simulate alternative M&A rules, and describes how
different consolidation policies alter the topology of the network. Section 4 presents the results we obtain
from Monte Carlo simulations and Section 5 provides robustness checks. Finally, Section 6 concludes
with some final remarks.

2 The Model Set-Up

The network generating process and the shock propagation mechanism used in this paper draw upon
Gaffeo and Molinari (2014). Hence here we only outline their basic features and the interested reader
may refer to it for further details. Consider a banking network populated by n banks. Each bank i € n is
assumed to have a balance-sheet as the one depicted in Table 1. Bank Assets comprise interbank assets
(IA;) and a broad category labeled external assets (EA;) that capture the sum of all non-interbank assets
such as loans to firms and households, treasury bonds and other risk-free assets, cash-reserves etc. The
liabilities are made up by core liabilities (see Hahm et al (2013)) in the form of retail deposits (D;), and
interbank liabilities (/L;) as an additional source of funding. In our model the “interbank market” is just a
short-cut for a set of instruments comprising overnight transactions, short-term and long-term interbank
debt and wholesale funding. The accounting identity between assets and liabilities is ensured by the bank
equity or net-worth (NW,).

Table 1 Bank i’s Balance Sheet

Assets  Liabilities

NW;
EA; D;
IA; IL;

Each entry of each bank’s balance-sheet is retrieved in the following way. First, we create a weighted
liability matrix X! of mutual exposures.

X1,1 X12 *** X1,j XLn
x2,1 x2,2 ...... xln

Each element xf ; reads the interbank fund borrowed by bank i from bank j. By construction, this is
equal to the amount lent by bank j to bank i. As a benchmark, we use a random Erdds-Rényi scheme
in which each element x;; takes up a positive value with a given independent probability p. A variant of
the model in which the network obeys to a preferential attachment scheme is presented in Section 5 as a
robustness check.

Once the liability matrix is specified, the interbank liabilities /L; of each bank are computed as:
ILi=Y x; Q)

and the interbank assets /A; as:

1A; =Y x; 2)
1
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It follows that the deepness of the interbank market is given by:
n n
IB=Y IA; =Y IL; 3)
i=1 i=1

External assets are imputed as a fixed proportion of interbank assets EA = a/B. The capital buffer is
assumed to be homogenous across all banks and is governed by the parameter 8 that defines the equity
ratio with respect to total assets: NW; = B[EA; +IA;].

As it will become clearer later, the interbank liabilities of a troubled institution act in our model as
the channel through which financial distress can spread to affect other healthy nodes. This is the reason
why we want to have perfect control over the size of interbank exposures. To this end, we need to make
some adjustments to the weighted liability matrix in order to constrain the elements of each row to sum up
to the same amount. This implies that all banks borrow the same interbank amount and we let interbank
assets be determined endogenously in a fashion similar to Gai and Kapadia (2010) or Gai et al (2011). As
a consequence some banks will be net borrowers and some will be net lenders in the interbank market. In
order to achieve this result, we set ex-ante the value of non-zero elements and divide this number by the
number of links that each bank has in each realization of the network. In this way, IL; is given for each
bank and it is evenly distributed across all creditors, but the size of the single interbank loan is not fixed
ex-ante and may vary across banks.

Following the literature (see, for instance, Nier et al (2007) and Gai and Kapadia (2010)), we trigger
contagion at time ¢ = 1 with a targeted shock (7;) that wipes out the external assets of one bank in the
system. Our assumption can be motivated as a large idiosyncratic shock due to credit or operational losses
that, although rare, can in fact occur (like the Leeson’s affair that drove Barings to bankruptcy in 1995)
or, alternatively, as the outcome of a common shock resulting in a loss for a single institution so severe to
force it into default, while leaving all the others viable.

The propagation of losses throughout the network works as follows: whenever a bank i is buffeted, it
fails if it does not have enough capital to cope with the shock. Bank distress is managed under a resolution
scheme whose main purpose is that of avoiding the premature closure of the financial institution, in
order to preserve specific know-how and asset value without recurring to taxpayers funds. In particular, a
supervisory authority forces a recapitalization of the bank at the expense of the creditors with a conversion
of external debt into equity. This allows to restore a minimum viability threshold aimed at ensuring an
ordered resolution.’

The dynamic adjustment works as follows: At time t=1, we set into default the a random bank i by
exogenously destroy its external assets. In the following time-round, t+1 each bank j holding interbank
claims against that failing institutions will be required to bail-in and some (or all) of their interbank assets
will be written off. We define as non-distressed claims those interbank assets that are not marked down
for bail-in purposes. Starting from the initial weighted liability matrix, we build a new matrix of non-
distressed claims (NDC) updated according to the following rule of motion of interbank exposures:

NDCji(t+1) = [1—6,(t)]NDCj;(t) @

3 Alternative contagion dynamics and channels can of course be envisaged. In their seminal work, Nier et al (2007) rely
on a liquidation mechanism in which failed nodes are simply removed from the network. On top of this, several amplification
mechanisms have been discussed in the literature, such as fire-sales (Anand et al (2013)) funding shocks triggered by recall-
ing interbank assets (Krause and Giansante (2012)), financial accelerator (Battiston et al (2012)), haircuts (Gai et al (2011)).
Distress can also be managed via a public bail-out and this has occurred several times during the last crisis. Both these so-
lutions requires some sort of outside money to be poured into the system. A substantial amount of state funds (or tax-payer
money) is required to finance bail-out and liquidation implicitly assumes that someone from outside is willing to purchase the
liquidated assets. Our mechanism does not rely on such infusion of external funds (that may not necessarily be there when
needed). Gaffeo and Molinari (2014) provide a comparative analysis of the system resilience under the resolution scheme
described above and the more standard liquidation rule and show that the former scheme is more effective in shielding the
network from default cascades and is hence more coherent with the macro-prudential vision that is at the core of this paper.
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where NDCj;(t) is the value of the outstanding loan at time ¢ made from bank j to bank i and 6 is
loss-given-default.*
The total value of interbank (non-distressed) assets for each bank j at each time-round ¢ is simply
computed as:
NDC;(t) = Y NDCj(1) (5)
i#j

and:

’ (6)

o) = {1 — el KO0 if 11,(1) — [max((r) — NWi(z),0)] > 0
0 i IL,(1) — [max(%(e) ~ NWi(1),0)] < 0

1 — 6;(¢) is the share of non-distressed loans made to bank i at each time-round during the contagion
process and one can think of it the recovery rate at time ¢ for the banks connected to the failing bank i.
1 — 6;(¢) is bank-specific, time-varying and consistent with a par condicio creditorum principle. Those
neighbor banks that suffer a residual loss larger than their equity base will enter a bail-in scheme and
contagion will spread to their creditors.”Higher-order default avalanches can unravel through the network
and contagion stops when 1 — 6;(¢) equals one for all banks at a given time t+k.

This set-up is now modified to embed the possibility to alter the structure of the network via a series
of M&A shocks and the next section provides an accurate description of these experiments.

3 Treatments Design

In our view, competition policy should be explicitly recognized as part of the macroprudential toolkit to
safeguard the banking system, for reasons which go far beyond crisis-management purposes. The exten-
sive microprudential regulation to which banks are submitted (Basel I-II, plus national legislations) - in
terms of codes of conduct, laws, rules, standards as well as capital and liquidity requirements - implies
severe compliance costs Ellichausen (1998). Since a large part of compliance costs are fixed costs, there
are huge economies of scale to be exploited. A further increase of compliance costs associated with new
regulatory reforms due to be applied in the next few years (Basel III) could force (especially small) banks
(for instance, cooperative and savings&loans banks) to merge for reasons different from the pursue of
efficiency in lending and borrowing activities. Since mergers among banks are scrutinized and approved
by antitrust authorities and central banks, these latter have the opportunity to design the structure of the
industry by choosing how banks are allowed to merge.

We design a flexible network platform that allows us to measure how the resilience of an interbank
network changes as we implement three different types of M&A treatments. We define Vertical Merge
Process (henceforth VMP) one in which there is only one big bank in the system and such bank is the
only one allowed to acquire other banks so that it becomes larger and larger; a pure Horizontal Merge
Process (henceforth HMP) as one in which, a bank is disassembled and its shares are evenly distributed
to all other surviving institutions. And finally an intermediate or semi-horizontal (SHMP) case in which
a merge is only allowed between two small banks. For exposition purposes, we present the as SHMP
treatment I, the VMP as treatment II and the HMP as treatment I11.

Our starting point, equal for the three treatments, consists of a symmetric banking system populated
by N=25 homogeneous small banks characterized by the same probability P = 0.2 of forming a link
between one another.® Haldane (2013) provides evidence that most modern banking systems exhibit high
levels of concentration that have also increased over the last 20 years. The top 3 banks account for a
market share of 40% in the USA, 60% in Switzerland, 70% in Germany, reaching an remarkable value of

4 Let us assume that the exogenous shock is given to bank i at time 7 = 1. This means that NDC Gi(1) = Xl.lj Vi, j. The rule
of motion as in equation 1 allows us to fill in the matrix of non-distressed loans (NDCj;(t)) for ¢ > 1) at each time-round
during the contagion process.

5 The residual loss for any bank j ¥;(t +k) for any k is defined a ;(t +k) = ¥,.; NDCj;(t +k — 1) — ¥..; NDCji(t + k)

6 We call this a symmetric system because banks belong to the same size-class and share the same probability of being
connected to one another.



Macroprudential Consolidation Policy in Interbank Networks 7

80 in the UK. Manna and Iazzetta (2009) report that the top 20 banking groups in Italy accounted for 80%
of the market and the top 5 groups had a share higher than 55 percent in 2007. Finally, Gai et al (2011)
characterize the network of large exposures between UK banks in 2008 with 24 nodes. With these trends
in mind, we feel that a network of 25 financial institution is a reasonable choice to start with.

Our experiments are based on 9 “merge-rounds”. The benchmark banking network just described
is found at merge-round 1 and we simulate one merge at each of the following 8 merge-rounds. From
merge round 2 onwards, links are formed with probabilities that are adjusted to keep the expected number
of links constant. In such a way, we can perform our resilience-analysis in a controlled environment in
which the aggregate size of the network, that of the interbank market and the aggregate level of net-worth
(which can be taken as a proxy for absorbing capacity net of network effects) are kept fixed for any given
level of interconnectedness. To the extent that the M&A regulatory strategy varies the number of channels
trough which contagion can diffuse or the aggregate quantity of net-worth available as shock-absorbing
buffer, our experiments would by construction alter the ex-ante degree of resilience. Here we shall want to
keep that constant and we check instead the ex-post resilience which only depends on the within-network
distribution of such links and equity.

Let us define Py as the probability of forming a borrowing link for a small bank. When large banks
are formed, each one of them is assumed to have a borrowing probability P, > P, to be connected to
other banks. As an illustrative example, let us consider the vertical merging process. Let N=25 be the
total number of banks in the homogenous case. The expected number of links in this case is equal to
E(L) = PN(N —1). In merge round 2, we now have 24 banks, out of which 23 will be small banks and
1 large bank, whose interbank liabilities will be twice as large as those of the other small banks. In the
third round there will be 23 banks, out of which 22 will be small and one with interbank liabilities three
times as large. Let Ny be number of small banks and »; the number of large banks in the asymmetric
network. The aggregate assets(S) remain unchanged S =) " | S, + ):ﬁ\ll S; (where S; is the value of assets
of a small bank and ; is the value of assets for a large one.) and so does the aggregate net-worth. In order
to keep E(L) constant, the following condition must be satisfied at all merge rounds:

PN(N — 1) = PiNs(Ns — 1) + PIN; (N, — 1) 4 Py (NyNp) + P (NN ) (N

The left-hand side of Equation 7 is the expected number of links in the benchmark case. The right-hand
size gives us the expected number of links in subsequent merge-rounds when the network is possibly
populated by large (N;) and/or small banks (N;). In this heterogenous environment, the total number of
expected links is given by the sum of the expected links that small banks can form with the other Ny — 1
small banks P;N;(Ns — 1) or with large banks P;(N;N;) plus the expected links that a large bank can form
with other N; — 1 large banks P,N;(N; — 1) or with all the other small banks P, (N;N;).

One important remark is in order: P; and P, are the probabilities of borrowing for a small bank and
a large one respectively. In the homogenous network P is also the probability of lending but in asym-
metric networks the lending probabilities are endogenously determined and no longer coincide with the
borrowing probabilities.”

Let us point out that the treatments impact on two dimensions: on the one hand, we alter concentration
level in the market. As shown in figure 1, the Herfindahl index is increasing at each round (see figure 1).
Let us point out that we tried to work with sensible concentration levels that resemble values observed
across Europe.® On the other hand, the treatments have an impact on the degree of asymmetry of the net-
work. The asymmetry can be measured along three different dimensions: the difference in size (between
large and small banks), the difference in the number of large and small banks, and the difference in inter-
connectedness. Let us note that neither aggregate assets nor the number of expected links are affected by
the treatments.

7 Let us define the probability of lending for a small bank PX and PIL the probability of borrowing for a large bank. These
probabilities are computed as: PE = [BN; + Ps(Ns — 1)](Ny +N; — 1)~ and PF = [P/(N; — 1) + PNy (N, +N; — 1) 71

8 The ECB report on banking structures ECB (2010) reports information on the Herfindahl index for most EU countries
from 2005 to 2009. The average is around 11 percent but there is a great deal of cross-country heterogeneity. Italy (along with
Germany and Luxembourg) stands out as a market with low concentration with values increasing from 2.3 percent in 2005
to 3.53 in 2009. The Netherlands (or even more Finland) appear at the other end of the spectrum with a market concentration
starting at 17 percent in 2005 up to 20 percent in 2009.
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The difference in size is captured by the size adjustment coefficient @ (R) that we use it at each merge
round R to determine the size of interbank liabilities of large banks relative to that of small banks and
external assets are adjusted accordingly. The size of a large bank at each merge-round depends on the
chosen treatment. Let us define the number of large banks at merge-round R N;(R) as the number of
banks to which the size-adjustment coefficient @(R) is applied. @ (R) is worked out in a way such that
aggregate interbank liabilities (and hence aggregate network assets) are kept constant across treatments
and across mergers. Our benchmark network is homogenous with respect to total interbank liabilities, so
that each bank has a total interbank exposure equal to IL(1) at merge-round I. The following condition on
the aggregate value of interbank liabilities must then hold for all treatments and at any Merge-Round.

IL(1)N = NJL(1) + N, @ (R)IL(1) (8)

The reader can verify that once Ns and N, have been set as shown in Table 2, ®(R) is computed ex-
post in order to satisfy equation 8. Table 2 sums up how each treatment impact on these dimensions of the
network’s asymmetry and Table 3 provides a summary of the main variables, parameters and acronyms
used in the paper.

Fig. 1 Herfindahl Index

——T1
—v— T2
—*—T3

0.15

Herfindahl Index

Merge Rounds

4 Contagion Simulations

In this Section we present the simulation results of our paper. In what follows, we measure the resilience
of the system to an exogenous idiosyncratic disturbance that randomly hits one bank. Let us stress that
the size of the shock does not change as we implement the three treatments and it does not depend on the
size of the buffeted bank. In the benchmark case we randomly pick one small bank, whereas along each
M&A treatment we concentrate on shocking a large institution because this is where the mutation of the
network is most visible and hence where new structural vulnerabilities or additional resilience are likely
to develop. We consider three different alternative scenarios for the banking system: a robust environment
characterized by a 4 percent level of bank capitalization (8 = 0.04)) and interbank market that attracts
16 percent of the the banking system’s assets (& = 5). A second case in which we expand the size of the
interbank assets up to about one third of total assets (&« = 2) and keep aggregate net-worth still at 4 percent.
At last, we investigate the properties of a more fragile environment in which banks are undercapitalized

(B =0.01).
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Table 2 Summary table of the treatments
Merge 3] ‘ N; ‘ N, ‘ Py P,
Rounds R
Tl T2 T3 TI T2 T3 | T1 T2 T3 | Tl T2 T3 T1 T2 T3
1 1 1 1 25 25 25 0 0 0 | 02 0.2 0.2 na na na
2 2 2 1.0417 | 23 23 0 1 1 24 | 0.2 0.2 na | 0.617 0.617 0.218
3 2 3 1.0870 | 21 22 0 2 1 23 | 0.2 0205 na | 0.627 1 0.237
4 2 4 1.1364 | 19 21 0 3 1 22 1 02 0224 na | 0.638 1 0.260
5 2 5 1.1905 | 17 20 0 4 1 21 | 0.2 0250 na | 0.650 1 0.286
6 2 6 1.2500 | 15 19 0 5 1 20 | 02 0280 na | 0.663 1 0.316
7 2 7 1.3158 | 13 18 0 6 1 19 | 02 0315 na | 0.677 1 0.351
8 2 8 1.3889 | 11 17 0 7 1 18 | 0.2 0356 na | 0.694 1 0.392
9 2 9 1.4706 | 9 16 17 8 1 17 | 02 0406 na | 0.712 1 0.441

{

‘ Y
I | S5+ 5,L | S = 1500 Y Merge Rounds and Treatments

Average Number of Links=120 V Merge Rounds and Treatments

Table 3 Summary Table of Network Variables, Parameters and Acronyms

Banking Network

EE R

Number of Nodes/Banks (Benchmark Case)
Number of Large Nodes (Banks)
Number of Small Nodes (Banks)

Interbank-borrowing-link Probability (Benchmark Case)
Interbank-borrowing-link Probability for a Large Bank
Interbank-borrowing-link Probability for a Small Bank

Parameters

R IR

Interbank Deepness
Equity Ratio
Size-Adjustment Coefficient
Initial Trigger Shock

Balance-sheet Items

Interbank Liabilities
Interbank Assets
Net-Worth (Capital Buffer)
External Assets
Costumer Deposits

M&A Treatments

SHMP
VMP
HMP

Semi-Horizontal Merge Process (Treatment I)
Vertical Merge Process (Treatment II)
Horizontal Merge Process (Treatment III)

Network Matrices

Xl

n.n

NDC,,

Weighted Liability Matrix
Non-Distressed Claim Matrix

Interbank Contagion

CD
DD

Contagion Dynamics
Default Dynamics

Figure 2 displays the average contagion multiplier computed as the (averaged over 100 Monte Carlo
runs) ratio between dislocated assets (at the end of the default cascade) and the initial exogenous shock.
Contagion Multipliers do not always provide the full story and there is more to the picture.
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A more detailed analysis is hence presented in Figure 3. In each panel, we display the contagion
profiles obtained at merge-round I (benchmark case - homogenous system of 25 small banks), IV and
IX for Treatment I (Ieft column), Treatment II (middle column), Treatment III (right column). The three
rows of Figure 3 corresponds to the three scenarios (defined by the parameters o and f3) discussed above.
The contagion profile allow us to sum up the distribution of the Monte Carlo experiments in a single plot.
Indeed, one can track how value of the banking network (i.e. the sum of total assets of all banks) evolves
at different time-steps of the contagion process and easily compare the profiles across merge-rounds and
across treatments. Let us note that we plot the entire distribution obtained trough 100 Monte Carlo runs
with a boxplot for each time-step. The pre-shock status is captured at time-step I. At time-step II, the
system takes an exogenous idiosyncratic shock and the aggregate value falls by the size of this shock.
At time-round III the residual loss (if any) is transmitted to other institutions connected to the first bank
and this is what we call contagion dynamics (henceforth CD). At time-step IV, we capture the first round
of default dynamics (henceforth DD). In fact, at time-round IV there are two possible scenarios. In one
case, neighbor banks that carry the residual loss at time-round III, do withstand the shock and survive.
Hence no default dynamics are triggered and, the contagion profile flattens out (see , for instance, the
top-right panel at merge-round 4). Or else, they do not have enough net-worth to absorb the shock and
hence they also fail. Shall this be the case, further losses sweep through the network and the contagion
profile keeps falling down even further. We also display the final time-step at the end of the adjustment
process, when the spread of default is finished. The more severe (higher-order) default dynamics are, the
lower the boxplot will be.

Let us point out that the randomness of the network generating process is only visible at time-round
IV onwards when DD start to kick in. At time-steps I, II and III the boxplots are in fact squeezed to a
single line and this reflects the fact that there is no variation across the Monte Carlo runs. For example, in
each run the starting value of aggregate assets is always 1500 and the Merge-Rounds and Treatments are
implemented in a way such that we can perfectly control and set ex-ante the aggregate size of the network.

——T1
——T2
——T3

=2, B=0.01

Dislocated Assets
Dislocated Assets
Dislocated Assets

5 5 6 4 5
Merge Rounds. Merge Rounds Merge Rounds

Fig. 2 Contagion Multipliers - Treatment I (SHMP), II (VMP) and III (HMP)

Let us start with the robust environment, i.e. one in which banks comply with the minimum 4 percent
of capital and interbank assets only account for 16 percent of total assets, shown in the top row panels
in Figure 3. We observe that the M&A treatments make the system more prone to contagion dynamics
but less subject to default dynamics and this is true regardless the chosen treatment. At time-step III, both
the contagion profiles consistent with Merge-Rounds IV and IX appear to be lower than that obtained
with Merge-Round I. This means that contagion dynamics are stronger for the former ones. Yet, default
dynamics are not recorded and the contagion profiles remain flat in subsequent time-rounds. With Merge-
Round I instead, the boxplots at time-step IV and in the final step reveal default dynamics are not as rare
and in some case contribute to a non-negligible erosion of network assets.

One could argue that in this scenario the HMP (treatment III, top-right panel in Figure 3) performs
best. Although we observe some default cascades at M&A round 4 and 9, they are rather small in mag-
nitude and rare (they appear as dotted outliers in the box-plot). Even though default dynamics disappear
under the SHMP (treatment I) and VMP (treatment II), contagion dynamics are stronger and contribute
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to a greater aggregate loss and this is particularly evident under the VMP. This is so because as the large
bank size increases, so does its interbank borrowing and thus its strength as a shock-spreader. Of course,
it is possible for a bank to become so large that its role of shock-spreader is diminished by the enhanced
value of its network. Indeed this is precisely what we observe in treatment 2. With this treatment, from
merge round 4 onwards (see the left panel in Figure 2) one can fully appreciate how the shock-absorbing
capacity of the large bank more than offsets its strength as a shock-spreading unit so that the contagion

multiplier starts to fall.
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Fig. 3 Contagion Profiles

A number of interesting remarks are worth making. First, a more concentrated market is generally
more stable even though contagion multipliers are higher than in the benchmark case at M&A round 1
and this is so in a robust environment. Second, a concentrated and yet symmetric market does a better job
at curtailing CD. An HMP is hence to be preferred ex-ante to other consolidation rules consistent with the
creation of a more asymmetric network. Nonetheless, if the market is already dominated by a large bank,
the regulator shall favor the formation of a big hub that could keep contagion multipliers under control.
The upside of having a hub can be even greater with a deep interbank market (see Figure 2 middle panel).
In this case, the shock absorbing capacity of the hub becomes so strong that its presence enhances the
resilience of the system to the point where contagion multipliers become smaller than that observed in the
benchmark case.

Given the topological structure induced by each treatment, we can analytically derive an expected
value for the magnitude of contagion and first-order default dynamics. We compute CD and first-order
DD for each treatment as explained below and Figure 4 columns 2 and 3 display the results. One can
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directly compare them with the contagion multipliers shown in column 1, here reported again for ease of
comparison.

Let us recall that /L(1) is the value of total interbank for a small bank at Merge-Round R = 1 and
@(R) is the size-coefficient adjustment applied at Merge-Round R. The value of interbank liabilities for
a large bank at any Merge-Round R is computed as

IL(R) = ®(R)IL(1) €))

Let us stress that @(R), N;(R) and Ny(R) are treatment specific and change as shown in Table 2. The
following two equations show how Contagion dynamics (CD) and first-order default dynamics (DD) are
computed at each Merge-Round R. In order to simplify notation, let us drop the Merge-Round index R,
so that CD(R) = CD, ®(R) = @, IL(R) =IL, P(R) = P;, N/(R) = Ny, etc.

CD = min(IL,y— ®S,B)VR (10)

Y— PS8, represent the residual shock, i.e. the part of the exogenous shock that has not been absorbed
by the first bank equity. The size of a large bank is approximated as S; = @S and its networth is as usual
a fraction B of its size.

ta B CcD B B CD _
DD = maxlPNy 1) e — B = DS, @L 0] max{(N,) o~ RON)SI.0] (D)
P;(N; + Ny — 1) gives the expected number of borrowing links of the first bank. W hence

represents the expected value of dislocated assets that is passed on to neighbor connected banks. Some of
these dislocated assets will possibly affect the other (N; — 1) large banks with probability P, and some of
the losses will instead be borne by the N; small banks with the same probability P,. So P;(N; —1)S;P(R)
and P;(N;)Ssp are the expected aggregate pools of networth available respectively to large and small banks
that can be used as buffer against the residual shock.

Let us point out that we only provide the general formulas that apply to all treatments with some
specific restrictions. For instance, in Treatment III N; is set to O from Merge-Round 2 onwards (See Table
2 ). This simply set to zero the second part of Equation 11. With Treatment II instead, N; = 1 from
Merge-Round 2 onwards and this implies that the first part of Equation 11 disappears.

We can use this analytical framework to enhance our understanding of contagion dynamics. Let us
discuss Treatment II as an example: the expected pool of networth of neighbor banks (given by P, (N,)Ssf3
in decline at each Merge Round (see Figure 6, bottom right panel) the shock-absorbing capacity of the
large bank is so large that it guarantees that the residual shock passed on to these other banks (given by
PZ(NS)W in Eq.1111) is smaller than their reduced equity base. Hence no default dynamics are
set in motion (See the analytical results on CD and DD presented in Figure 4). In such an environment
(0e =2, B = 0.04), the policymaker should have a preference for a hub-centered market. This is no longer
the case when the banking system is weakly capitalized. Here we present results obtained with a deep
interbank bank (o = 2).

As one can appreciate from Figure 3 middle-bottom panel, the hub in treatment II is now working as
a market de-stabilizer. Even though contagion dynamics and 1% order default dynamics are weaker than
those observed with SHMP (T1) (see Figure 4 bottom middle and right panel), contagion multipliers are
higher with T2. This is due to a stronger effect of complex higher-order default dynamics (which we do
not model analytically). As one can see, Figure 5 shows how first-order default dynamics (at time round 4)
are weaker with VMP (T2) but fifth-order losses (time round 8) and higher order losses are stronger with
VPM. Higher order losses are quantitatively important in a fragile environment as that depicted in Figure
2 right panel and Figure 4 bottom panels. In this environment, it is clear that policy makers should not
encourage mergers or the creation of larger institutions. If necessary at all, unassisted horizontal mergers
do provide a better alternative to other forms of M&A. Let us stress that HMP is better able to curb higher-
order default dynamics. The disruption brought about by higher-order default dynamics clearly depends
on the probability of being jointly hit by multiple shocks, while VMP and SHMP are characterized by a
higher level of interconnectedness and this significantly amplifies the chances of a bank taking on losses
from multiple counterparts. Under these circumstances, it follows that a low-interconnected competitive



Macroprudential Consolidation Policy in Interbank Networks 13

banking system maximizes the resilience of the system to higher-order distress so that authorities should
carefully ponder the desirability of any takeover, merges or acquisition that could significantly alter the
topology of the network.
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Fig. 4 Contagion Multipliers, Contagion Dynamics and 1% order Default Dynamics

5 Distribution Degree and Robustness Check

In Figure 7, we plot on a log-log scale the in-degree, i.e. the number of interbank borrowings, (top panels)
the out-degree, i.e. the number of interbank claims, (middle panels) distributions as well as the contract
size distribution of interbank exposures (bottom panels).’ In order to improve readability we overlay on
each panel only the distributions obtained at merge-round I, IV and IX. The square markers correspond to
merge-round I and this is the same for all treatments (apart from some random variation). This shows the
link distributions before any of the network-altering merge processes have occurred. A visual inspection
suggests that at this stage the in-degree and the out-degree distribution follow a similar truncated normal

9 These plots are obtained by pooling 100 Monte Carlo experiments in order to maximize the number of observations. In
these simulations, we set @ = 5 and 8 = 0.04.
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Fig. 6 Residual Shock and Absorbing Capacity

distribution (or Poisson) consistent with the random NGP (network generating process). The size distri-
bution of interbank exposures are skewed to the right with a the majority of contracts being rather small
(typically lower than 2 units) and this is not surprising given the constraint imposed on all banks on the
size of their total interbank exposure and the relatively high density of the network.
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As we implement the merge sequences according to the 3 treatments, the distributions start to depart
from the initial one and differences start to emerge across the three treatments as well as between the in-
and out-degree distribution within the same treatment. For example, one can appreciate how the in-degree
distribution in Treatment I ends up being bi-modal and this reflects to a large extent the balance between
the two types of banks populating the banking system. The bi-modality is not a feature of the in-degree
distribution for all treatments though. As a matter of fact, there is no evidence of this in Treatment III and
this is expected since this treatment is one that preserves the homogeneity among the banks operating in
the network. Treatment II yields a single peak on the right tail of the distribution and this captures the
large super-connected bank that gradually become bigger and bigger merge-round after merge-round.

It is worth pointing out that the in-degree distribution depends on the probabilities P, and Py set ex-
ante so that banks of different size have different probability of borrowing on the interbank market. On
the contrary the out-degree is determined endogenously and does not depend on the size of each bank.
This explains why the bi-modality does not emerge with respect to the out-degree. Let us also point out
that the out-degree distribution is very similar across the the three treatments and again this is reconcilable
with the fact that out-going links are determined with endogenous probability that do not change a priori
with the size of the bank nor change with the treatments implemented.

Note that shift to the right is clearly detectable in both the in and out-degree distribution. This is so
because the total number of links is kept constant across the merge-rounds and is redistributed among a
narrower set of banks, so that each bank ends up being more tightly connected to the others.

At each merge-round the network shrinks so that fewer and fewer banks are more connected to one
another and distribute a fixed aggregate volume of interbank resources. Given that series of merge-shocks
are constructed in a way such that the total number of links are preserved, the size of each single loan can
either decrease or increase and hence their distribution can potentially shift. The distributions for treatment
II and IIT are characterized by a shift to the left whilst the distributions consistent with T1 become more
erratic but does not clearly exhibit any movements in either directions.

5.1 Robustness Check

The core results presented in the previous section are obtained from random networks in which each bank
(of the same type/size) has the same ex-ante probability of forming a borrowing link with another bank.
The empirical evidence does suggest though that this may not be an accurate account of real-world bank-
ing networks. The literature indeed shows that real interbank networks exhibit power-law degree distribu-
tions that arise as a result of a network generation process that is well described by the model presented
by Barabasi and Albert (1999).!0 Next we implement an endogenous mechanism of links formation that
embeds the two key features of such model, namely growth and preferential attachment. Starting from
a very small network with only five nodes, we let the bank population grow as follows: we rely on a
rewiring process in which at each time-step a new bank is added to the system and connected to some
old pre-existing nodes with some freshly created links assigned with a probability that is proportional to
the number of links that the latter nodes already have. The process continues until the desired size of the
network is reached, i.e. 25 banks at merge-round I, 23 at merge round II, etc. A few remarks are in order.
This rewiring process allows us to set the desired size of the network but does not permit to fix ex-ante
the density of the network. This forces us to fine-tune the rewiring process at each merge-round until we
obtain a network whose total number of links is comparable (although not exactly equal) to that used
in the previous section (i.e. 120 expected links). This guarantees internal consistency with our previous
result but some important caveats still apply to this exercise. Note that the rewiring process consistently
yields a power-law degree distribution when the final network is typically quite large (200 nodes or more)
and the density rather small. This is not guaranteed though with small and dense networks such as the
ones we work with in this paper and deviations are possible and becomes more and more frequent as
smaller networks are put in place through the merge treatments.'! Although the degree distributions ob-

10 The distribution properties of real banking networks are analyzed in Boss et al (2004) and Soramki et al (2007), among
others.

1" An alternative modeling strategy would be to create scale-free network with a power-law parameter in line with that
estimated using real data. This would yield a scale-free network even with a small sample size but the total number of links
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tained with preferential attachment and shown in Figure 8 are clearly different from the ones we obtain
with a random network, the left-tail of the distribution deviates from what would be predicted by a power
law. Also note that the limited size of the network rules out the occurrence of extreme values in the right
tail of the distribution. The rewiring process also affects the contract size distribution (see Figure 9) that
clearly departs from the benchmark case. Nonetheless the homogeneity across banks with respect to the
total size of their interbank liabilities still appears to drive the shape of the distribution and, again, its
departure from a power-law.

Once all the new links and nodes are added, we sort banks by the number of links (from the most
connected to the weakest ones) and the size adjustment coefficient (see Table 2) is applied to the first V;
nodes in each treatment.!? Hence, we now have an exact correspondence between bank size and degree.
At this stage, we ignite contagion dynamics via an exogenous shock that is targeted to the largest bank in
the market. As before, we consider three different possible scenarios and Figure 10 display the correspon-
dent contagion multipliers. A visual comparison with those presented in Figure 2reveals that the patterns
discussed in the previous sections remain qualitatively similar. Within each scenario, the evolution of the
contagion multipliers is fully consistent with our previous comments. The only noticeable difference in
this context is that the competitive network at merge-round I always exhibit the lowest contagion multi-
plier for any given setting of our parameters ¢ and f3.

would be much smaller than that required to have a meaningful comparison with the benchmark case presented in the previous
section.

12 Let us note that N, is both treatment and merge-round specific as it should be clear from Table 2



Macroprudential Consolidation Policy in Interbank Networks 17

In-Degree Distribution Out-Degree Distribution

107! L 10! L

10 10*
kDegree kDegree

Fig. 8 Degree Distributions for T1, T2 and T3 under Rewired Network with preferential Attachment.

Contract Size Distribution Contract Size Distribution Contract Size Distribution

o Merge-Round | o Merge-Round o Merge-Round
v Merge-Round IV v Merge-Round IV v Merge-Round IV
©_Merge-Round I © _Merge-Round I O Merge-Round I

Fig. 9 Left Panel:T1 - Middle Panel: T2 - Right Panel: T3

alpha=S, beta=0.04 alpha=2, beta=0.04 alpha=2, beta=0.01

Disiocated Assets
Disiocated Assets

1 2 3 a

5 5 5
Merge Rounds Merge Rounds Merge Rounds

Fig. 10 Contagion Multipliers under NGP with rewiring and preferential attachment

6 Concluding Remarks

In this paper we have aimed at shedding lights on the channels through which different competitive set-
tings can fuel default/contagion throughout an interbank network, in order to draw some conclusions
towards the provision of macroprudential-oriented consolidation policy rules.

Some remarks on the limitations of our analysis are in place, however. First, here we have focused
exclusively on a resolution mechanism assimilable to a bail-in scheme Gaffeo and Molinari (2014). When
studying an homogenous network, the value of dislocated assets and the number of defaults during a
contagion spiral tend to move hand in hand and hence the number of default is taken as a sufficient
statistics for network resilience. When the size can vary across banks though, the this may no longer be
the case and this is why we focus on dislocated assets. Let us also note that we have defined dislocated
assets as those assets that are wasted during the contagion process and the bail-in mechanism is consistent
with this idea. Other resolution mechanisms are not as suitable. If, for example, a failed bank is liquidated,
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some of its assets will be destroyed during the process (due to the initial shocks or further fire-sales) and
yet some assets are not lost as such but simply transferred outside the banking system (like the assets
used to pay back depositors). The simple measure of assets available to the banking system is in this case
an upward biased measure of contagion-induced stress. Under a bail-in scheme, the value of dislocated
assets provides an unbiased measure of distress because the assets wiped out of the banking system during
the episode of contagion are also lost by the economic system as a whole. Second, we have only studied
the propagation of a shock via interbank liabilities and we have provided an inspection of the role of
large banks as shock-spreader through this channel. In real network this may not necessarily be the case.
Indeed, structural vulnerabilities could also develop and propagate through interbank assets (rather than
liabilities) and these dynamics would be captured with a liquidation mechanism in which interbank assets
can be called back in and hence trigger a funding shock to neighbor debtors. These could of course amplify
the dynamics discussed in this paper and further research is certainly needed to fully shed light on this
aspect.
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