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Abstract

An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in 

prostate cancer involves epithelial plasticity, wherein tumor cells demonstrate low to absent AR 
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expression and often neuroendocrine features. The etiology and molecular basis for these 

“alternative” treatment-resistant cell states remain incompletely understood. Here, by analyzing 

whole exome sequencing data of metastatic biopsies from patients, we observed significant 

genomic overlap between castration resistant adenocarcinoma (CRPC-Adeno) and neuroendocrine 

histologies (CRPC-NE); analysis of serial progression samples points to a model most consistent 

with divergent clonal evolution. Genome-wide DNA methylation revealed marked epigenetic 

differences between CRPC-NE and CRPC-Adeno that also designated cases of CRPC-Adeno with 

clinical features of AR-independence as CRPC-NE, suggesting that epigenetic modifiers may play 

a role in the induction and/or maintenance of this treatment-resistant state. This study supports the 

emergence of an alternative, “AR-indifferent” cell state through divergent clonal evolution as a 

mechanism of treatment resistance in advanced prostate cancer.

Prostate cancer remains a leading cause of male cancer death worldwide
1
. The mainstay of 

therapy for patients with metastatic spread, including castration resistant disease, is 

hormonal therapy targeting the AR
2-4. Enzalutamide and abiraterone are potent AR-targeted 

therapies approved for the treatment of men with CRPC
5,6. While significantly improving 

survival and quality of life, most patients ultimately develop resistance to these agents
7
. 

Thus, predictive biomarkers to help distinguish responders from non-responders prior to 

starting the next line of hormonal therapy are urgently needed. We and others have observed 

that a subset of resistant tumors show small cell carcinoma or neuroendocrine features on 

metastatic biopsy (CRPC-NE)
8-10

. This phenomenon may therefore reflect an epithelial 

plasticity that enables tumor adaptation in response to AR-targeted therapies
11-14

. Prognosis 

of CRPC-NE is poor due to late recognition, heterogeneous clinical features, and lack of 

effective systemic therapies
15,16

.

One major hurdle in the diagnosis and treatment of androgen-independent prostate cancer 

including CRPC-NE is our lack of understanding of the genetic and epigenetic 

underpinnings of this aggressive subset. To address this, we interrogated 114 metastatic 

tumor specimens from 81 individuals including 51 with clinical and histologic features of 

castration resistant adenocarcinoma (CRPC-Adeno), and 30 with CRPC-NE as confirmed by 

pathologic consensus criteria
8
; we studied matched normal cells from all patients, multiple 

tumor biopsies from 17 patients and a single tumor biopsy from 64 patients. We 

hypothesized that CRPC-NE could be distinguished from CRPC-Adeno based on distinct 

molecular alterations and that this information could improve upon and supplement the 

current often challenging diagnostic features reliant on morphology
17

. We also hypothesized 

that CRPC-NE that develops after therapy arises clonally from a CRPC-Adeno precursor, 

rather than from selection of pre-existing neuroendocrine clones. Lastly, we hypothesized 

that AR-independent prostate adenocarcinomas that share CRPC-NE-specific molecular 

alterations may represent tumors at high risk for progression or in transition towards CRPC-

NE.

Results

We evaluated biopsies from a wide range of metastatic sites, with a predominance of bone 

biopsies in CRPC-Adeno compared to CRPC-NE (31% CRPC-Adeno vs. 2% CRPC-NE, P 
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< 0.05, binomial test) (Fig. 1a). Clinical and pathologic features are summarized in 

Supplementary Table 1 and Supplementary Fig.1. As expected, CRPC-NE demonstrated 

on average lower protein expression of the AR by immunohistochemistry (Fig. 1b). We also 

quantified AR signaling status by measuring expression of mRNAs included in a previously 

defined AR signature
18

 (Supplementary Table 2) and observed overall lower abundance in 

CRPC-NE compared to CRPC-Adeno (Fig. 1b); however, there was significant overlap with 

a wide range of values observed within each subtype, suggesting that there is a spectrum of 

AR signaling in advanced prostate cancer that spans pathologic subtypes.

To deepen our understanding of AR independence in general —and of the CRPC-NE 

phenotype in particular— we first performed whole exome sequencing (WES) of 114 

metastatic tumor-normal pairs. The mutational landscape of CRPC-NE was similar to 

CRPC-Adeno, but also consistent with published studies of CRPC-NE (Fig. 1c) including 

enrichment of RB1 loss (deleted in 70% of CRPC-NE and 32% of CRPC-Adeno, P = 0.003, 

proportion test) and mutation or deletion of TP53 (66.7% CRPC-NE versus 31.4% CRPC-

Adeno, P = 0.0043, proportion test). Loss of RB1 is common in primary small cell prostate 

and lung carcinomas, and promotes small cell carcinoma pathogenesis when concurrent with 

TP53 mutation
19,20

; in our series, concurrent RB1 and TP53 loss was present in 53.3% of 

CRPC-NE vs.13.7% of CRPC-Adeno (P < 0.0004, proportion test).

Another feature distinguishing CRPC-NE from CRPC-Adeno was a paucity of somatic 

alterations involving the AR gene in the former (P < 0.0001, Wilcoxon test, Fig. 1d-e). 

Genomic amplification, activating point mutations, and splice variants involving the AR are 

commonly observed in CRPC-Adeno and associated with treatment resistance to AR-

directed therapies
21-23

. This observation was confirmed in our cohort; 29 cases showed AR 
focal amplification or point mutation and 21 cases had alterations in known AR co-activators 

(FOXA1, NCOR1/2, ZBTB16). In contrast, AR point mutations were notably absent in 

CRPC-NE and gains when present were of low level and explained by tumor polyploidy. 

Although potentially affected by differences in prior therapies, we speculate that the absence 

of AR genomic alterations in CRPC-NE may be due to clonal selection of non-amplified 

CRPC-Adeno tumor subpopulations through selective pressure (in the context of AR-

directed therapies). The ARv7 splice variant was observed in both CRPC-Adeno and CRPC-

NE tumors, and although overall AR expression was lower in CRPC-NE, the ARv7 to wild 

type AR ratio was significantly decreased in CRPC-NE compared to CRPC-Adeno (P = 

0.0025, Wilcoxon test) (Supplementary Fig. 2). These data suggested that AR signaling is 

attenuated in CRPC-NE. Together with the frequent loss of RB1 and TP53 in this subtype, 

these genetic findings imply distinct biological properties associated with CRPC-NE. The 

overall spectrum of genomic alterations, however, was similar between the two castration 

resistant subtypes (Supplementary Fig. 2) and maintained after controlling for site of 

metastasis and prior chemotherapy (Supplementary Fig. 3). There were no significant 

differences in rate of non-silent point mutations, polyploidy or copy number genomic burden 

between CRPC-Adeno and CRPC-NE (on average more than 30% of the genome was 

aberrant), and both subtypes showed a significantly higher number of clonal point mutations 

compared with clinically localized prostate cancer
24,25

. The median number of non-silent 

SNVs in metastatic samples was 41 (range: 2-729) (Supplementary Tables 3-4). Five of the 
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six samples with the highest number of SNVs (115-663) showed genetic and/or protein 

expression alterations involving DNA mismatch repair genes (Supplementary Fig. 4) 
consistent with prior studies

26
. Recurrent alterations are shown in Fig. 1c and putative gene 

fusions (determined by RNASeq) in Supplementary Table 5.

The significant overlap between CRPC-Adeno and CRPC-NE in terms of the overall somatic 

copy number landscape was noteworthy in light of the marked genomic differences between 

adenocarcinomas and small cell carcinomas observed in other tissue subtypes (e.g., lung, 

gastrointestinal tract)
27-29

 (Fig. 1f). After correcting for admixture of non-tumor cells and 

for ploidy
30

, we sought to identify regions of the genome differentially altered and noted 

deletions that are enriched in CRPC-NE and conversely preferential regions of gain in 

CRPC-Adeno (Supplementary Tables 6-7). Putative cancer genes
31

 within differentially 

deleted regions and concordant down regulation at the mRNA level (FDR<10% both for 

DNA and mRNA) are highlighted in Fig. 1f with the most significant gene being CYLD 
(verified by fluorescence in situ hybridization, Supplementary Fig. 5). The CYLD gene, 

deleted in 51% of CRPC-NE samples, encodes cylindromatosis, a deubiquinating enzyme 

reported as a tumor suppressor involved in negative regulation of multiple signaling 

pathways including nuclear factor kB (NF-kB)
32

, TGF-β
33

 and Notch
32

. We found that 

genomic loss of CYLD is associated with decreased mRNA expression and a modest 

decrease in expression of AR signaling genes in this study as well as the CRPC SU2C/PCF 

cohort and in cell lines (Supplementary Fig. 5), suggesting that CYLD loss alone may be 

insufficient but might cooperate with other alterations to promote AR- indifference. 

Extending the computational framework of CLONET
24,30

 to assess allele specific copy 

number clonality (Supplementary Notes), we found both focal and broad copy-neutral or 

copy-aberrant loss of heterozygosity across our cohort (Supplementary Figure 5) including 

focal allelic imbalance of the DEK gene in CRPC-NE compared to CRPC-Adeno (P = 0.04, 

binomial test). DEK belongs to a class of DNA topology modulators; we and others recently 

described an oncogenic role in prostate cancer, including in CRPC-NE
34,35

.

In principle, several possible models could explain tumor evolution from a prostate 

adenocarcinoma to CRPC-NE (Fig. 2a). This process may rely on linear expansion of 

subclonal tumor cell populations originating from the primary tumor with sequential 

acquisition of genomic alterations (linear)
36

. Alternatively, independent subclones within the 

primary or metastasis could give rise to parallel and distinct resistant tumor populations 

(independent)
37

. Finally, there may be genetic diversification in the primary or in the 

metastatic lesion as a mechanism of adaptation leading to selective pressure and divergent 

clonal evolution (divergent). While prior studies had demonstrated concordance of 

TMPRSS2-ERG fusion
9
 and other single gene alterations

17,38
 between adenocarcinoma and 

neuroendocrine foci in mixed tumors suggesting a common cell of origin, these complex 

patterns of genetic evolution have not been more rigorously evaluated. To address this and 

infer clonal expansion dynamics, we studied serial tumor samples from individual subjects 

during the course of their disease. Patient WCMC7520 underwent prostatectomy for 

clinically localized Gleason 9 prostate adenocarcinoma with local lymph node involvement 

treated initially with adjuvant androgen deprivation therapy (ADT) followed by 

chemotherapy at the time of metastatic disease and castration resistance (Fig. 2b). 29 
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months after starting ADT, he developed CRPC-NE diagnosed by pelvic soft tissue biopsy. 

Primary, lymph node, and CRPC-NE metastases from two time-points were evaluated. 

Homozygous deletion of BRCA2 and mutation of TP53 were present in all sites suggesting 

a common ancestor, while DNA allele specific analysis highlighted diverse genomic states 

of other key genes such as MYCN (Fig. 2b). MYCN, which encodes the N-myc oncogene, 

has been previously described as oncogenic in CRPC-NE
11

. When sites were compared, the 

patient's primary prostate harbored lesions that suggested divergent but clonal paths towards 

lymph node and both distant metastases. However, from these data we cannot definitively 

rule out metastasis–to–metastasis seeding as recently proposed as a mechanism of tumor 

progression
39

. Patient WCMC161 progressed after multiple lines of therapy for CRPC-

Adeno including the development of new visceral metastases while on abiraterone and liver 

biopsy showing small cell carcinoma (Fig. 2c, Supplementary Fig. 6). Comparison of 

metastases from three different time points: CRPC-Adeno (adenocarcinoma, lymph node 

metastasis), CRPC-Adeno (adenocarcinoma, bone metastasis), and CRPC-NE (small cell 

carcinoma, liver metastasis at progression on abiraterone therapy) suggested divergent clonal 

evolution as exemplified by the allelic state of the aberrant gene SBDS (Fig. 2c) supporting 

that the bone and liver metastases did not arise from the earlier lymph node. Phylogenetic 

trees from additional multi-tumor cases outlining disease evolution from adenocarcinoma to 

a neuroendocrine phenotype in individual patients are shown in Supplementary Fig. 6, 

which collectively rule against a parallel evolutionary model. Based on these temporal case 

series, the high degree of clonality in CRPC, and the overall similarity between CRPC-

Adeno and CRPC-NE genomic profiles, the most parsimonious model that explains the data 

is divergent clonal evolution of metastatic CRPC towards either an AR-driven or AR-

indifferent state (Figure 2a, model V). In other words, CRPC-NE tumors appear clonal in 

origin with a clonal ancestry traceable back to a CRPC-Adeno precursor.

While informative, the observed DNA changes did not appear to fully explain the clinical 

aggressiveness of CRPC-NE. We therefore posited that this phenotype may also be mediated 

by epigenetic changes. Towards this end, we generated data to evaluate CpG-rich 

methylation genome wide by single cytosine resolution DNA methylation (eRRBS). In 

contrast to the largely similar genomic data, the CRPC-NE and CRPC-Adeno subtypes 

showed strong epigenetic segregation by unsupervised analysis using unselected methylation 

sites (Fig. 3a, Supplementary Table 8, Supplementary Fig. 7). In addition, methylation of 

first exons and gene promoters was associated with significant changes in gene expression 

(Supplementary Fig. 8). Overall, a greater fraction of concordant epigenetic and 

transcriptomic events were observed with increasing significance by differential expression 

analysis (Supplementary Fig. 8) and 22% of the top dysregulated transcripts in CRPC-NE 

demonstrated concordant changes in DNA methylation (P < 0.0002). This raised the 

possibility that the transition to, or advent of, the CRPC-NE subtype is associated with 

epigenetic dysregulation. In fact, the epigenetic signal identified three cases with clinical 

features of AR-independence that were binned as adenocarcinoma based on standard 

pathology but segregated with CRPC-NE on unsupervised analysis (Fig. 3a, 
Supplementary Fig. 8). All three of these patients demonstrated radiographic progression in 

the setting of a stable or low serum level of the androgen-regulated protein prostate specific 

antigen (PSA). These data suggest that clustering prediction based on DNA methylation may 
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provide additional information associated with AR independence and CRPC-NE that 

potentially improves upon tumor morphology.

By functional enrichment analysis of differentially methylated genes, we identified 

epigenetically dysregulated pathways including neuronal, cell-cell adhesion, developmental, 

epithelial-mesenchymal transition (EMT), and stem cell programs (Fig. 3b), pathways 

thought to be relevant for CRPC-NE progression
40

. Amongst significant findings 

(Supplementary Fig. 7), we observed hypermethylation and under-expression of the tumor 

suppressor gene SPDEF in CRPC-NE (P < 10−9, Wilcoxon test) (Fig. 3c). SPDEF (prostate-

derived Ets factor) is a transcriptional activator and regulator of cellular differentiation 

involved in suppression of tumor metastasis through inhibition of EMT in prostate cancer. 

We confirmed promoter methylation of the SPDEF gene and downregulation of mRNA 

expression in the neuroendocrine prostate cancer cell line NCI-H660 compared to prostate 

adenocarcinoma (LNCaP) (Supplementary Fig. 9).

Expression of mRNA encoding the histone methyltransferase EZH2, previously associated 

with aggressive disease in prostate cancer
41-44

, was 2 fold higher in CRPC-NE compared to 

CRPC-Adeno (P < 10−6, Wilcoxon test); EZH2 protein was also more abundant in CRPC-

NE (Supplementary Fig. 9). These findings add to its differential status previously reported 

comparing CRPC-NE to localized prostate cancer
9,45

. Furthermore, EZH2-repressed target 

genes
46,47

 were significantly down-regulated in CRPC-NE (P < 10−7, Wilcoxon test) (Fig. 
3d) including WNT signaling genes such as DKK1 (P = 0.0002, Wilcoxon test), NKD1 (P = 

0.0046, Wilcoxon test), and HOX genes (P = 0.001, Wilcoxon test). Treatment with the 

EZH2 inhibitor GSK343 resulted in a preferential decrease in cellular viability of NCI-H660 

compared to other non-NE prostate cancer cell lines (Fig. 3e) with significant down-

regulation of several CRPC-NE associated genes after treatment including NCAM (CD56), 

MYCN
9
, and PEG10

48
 (Supplementary Fig. 9). Overall these data support a key role of the 

epigenome in the emergence and/or maintenance of CRPC-NE.

Based on the current gaps in the clinical and molecular assessment of CRPC-NE, we used 

these data to develop a molecular classifier to potentially improve upon the often 

challenging diagnosis of CRPC-NE
8,17

. This integrated 70 gene neuroendocrine prostate 

cancer (NEPC) classifier was developed by exploiting expression data of genes prioritized 

by genomic, transcriptomic or epigenomic status (Fig. 4a,b, Supplementary Fig. 10, 
Online Methods) and demonstrated both a precision and recall of >0.99 in identifying 

CRPC-NE in our discovery cohort (Fig. 4c,d, Supplementary Table 9). Included within the 

classifier were also genes we had previously described as overexpressed in CRPC-NE
9
, 

AURKA (P < 10−5, Wilcoxon test) and MYCN (P < 10−4, Wilcoxon test) (Supplementary 
Fig. 10). Interrogation of transcriptome data of 683 prostate samples (Supplementary Table 
10) using datasets from The Cancer Genome Atlas (TCGA)

49
, Grasso et al

21
 (Michigan 

2012), Robinson et al
23

 (SU2C/PCF 2015), and internal published data
9,50

 (WCMC 

2011/14) revealed an elevated NEPC classifier score in up to 8% of metastatic tumors 

(n=191) and none of treatment naïve prostate adenocarcinoma (n=460) or benign prostate 

(n=32) (Fig. 4d and Supplementary Fig. 10 and 11). Of those with an elevated classifier 

score, we reviewed the pathology and found over 80% had pathologic features of CRPC-NE 

(the remaining 20% were adenocarcinoma) (Fig. 4d, Supplementary Fig. 12). Although 
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there were relatively small numbers of CRPC-NE cases in the validation cohorts, the 

integrated NEPC classifier demonstrated superior precision and/or recall across datasets 

compared to other variables such as conventional neuroendocrine markers (ie., CGHA, SYP, 
NSE, CD56 transcript) plus PSA (Supplementary Fig. 12), AR mRNA expression, AR 

signaling status, and highly ranked differentially expressed genes (such as SPDEF) (Fig. 4c). 
Though recognizing the influence of other factors, including differences in prior therapies, 

on gene expression changes we posit that castration resistant tumors with moderate or rising 

NEPC score may represent tumors with AR-independent features either in transition or at 

high risk for CRPC-NE progression under treatment pressure with AR therapies. In fact, a 

subpopulation of prostate adenocarcinoma cells (LNCaP) treated long term with 

enzalutamide acquired molecular features of CRPC-NE (ie., methylation of SPDEF) 

(Supplementary Fig. 8 and 13).

Discussion

Though there were also cases identified with low AR-signaling and low NEPC classifier 

score and we cannot exclude a less common alternatively distinct subset, our data favors a 

continuum of progression from an AR-driven state towards AR-independence associated 

with neuroendocrine molecular features. These findings warrant larger clinical evaluation to 

further investigate the potential superiority and applicability of the classifier over 

conventional diagnostic criteria and verify whether this could be useful as a prognostic or 

predictive biomarker (associated with lack of response to AR therapies). Notably, this 

approach is amenable to metastatic prostate cancer biopsies in which tissue availability is 

limited and multiple immunohistochemical assays for current diagnostic methods often 

impractical. Incorporation of different layers helps apply the classifier to different datasets 

when only parts are available (DNA, RNA, or methylation) (Supplementary Table 9) and 

paves the way for future studies that might apply the classifier to types of samples (such as 

circulating tumor DNA
51

). If CRPC-NE alterations could be detected earlier during CRPC-

Adeno disease progression, for instance, such individuals could potentially be selected for 

CRPC-NE-directed (such as platinum chemotherapy) rather than AR-targeted systemic 

therapies, or potentially co-targeting therapeutic approaches. Further, these data set the stage 

for dynamic testing of the reversibility of the CRPC-NE state with early intervention or 

epigenetic modifiers possibly including EZH2 inhibitors.

In summary, our data supports divergent evolution of CRPC-NE from one or more CRPC-

Adeno cells (adaptation) rather than linear or independent clonal evolution, with selective 

pressure of AR-wild-type subclonal populations and acquisition of new genomic and 

epigenomic drivers associated with decreased AR signaling and epithelial plasticity. 

However, there are also other possibilities that cannot be fully excluded, such as de-

differentiation of adenocarcinoma to a more progenitor-like cell state (with some cells 

subsequently adopting neuroendocrine features due to local effects).
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ONLINE METHODS

Code availability

The source code for the study clonality analysis is accessible from the Bitbucket version 

controlled repository (https://bitbucket.org/; CLONET).

Cohort description and pathology classification

Tumor specimens were obtained prospectively through clinical protocols approved by the 

Weill Cornell Medicine (WCM) Institutional Review Board (IRB) with informed consent 

(IRB #1305013903, #1210013164) or retrospectively (IRB #0905010441) and germline 

DNA obtained from either peripheral blood mononuclear cells (PBMCs) or benign tissue. 

The total number of subjects enrolled in this study was 81, all of male gender; no blinding, 

randomization, or exclusion criteria were used. All fresh/frozen tissues were processed as 

previously described
26,52

. All hematoxylin and eosin stained slides were reviewed by board-

certified pathologists (J.M.M., M.A.R.). Tumors were classified based on histomorphology 

as adenocarcinoma (A) or CRPC-NE (B-E) based on a published pathologic classification 

system
8
 (Supplementary Fig. 1). Category A represents usual prostate adenocarcinoma 

without neuroendocrine differentiation, Category B represents usual prostate 

adenocarcinoma with neuroendocrine differentiation > 20%, Category C represents small 

cell carcinoma, Category D represents large cell neuroendocrine carcinoma, and Category E 

represents mixed small cell carcinoma – adenocarcinoma. Clinical and pathologic features of 

the cohort are summarized in Supplementary Table 1 and Supplementary Fig. 1.

Immunohistochemistry

Immunohistochemistry (IHC) was performed on a Bond III automated immunostainer 

(Leica Microsystems, IL, USA) with the following antibodies and dilutions: anti-AR (clone 

MU256-UC, BioGenex, CA, USA; dilution 1:800 with casein); anti-synaptophysin (clone 

RM-9111-S, Thermo Scientific; dilution 1:100), anti-chromogranin A (clone MU126-UC, 

BioGenex, CA, USA; dilution 1:400); anti-CD56 (clone NCL-SD56-504, Leica Biosystems, 

IL, USA); anti-PSA (clone MU014-UC, BioGenex, CA, USA; dilution 1:400); anti-PSAP 

(clone MU013-UC, BioGenex, CA, USA; dilution 1:250), anti-PSMA (clone M3620, Dako, 

CA, USA; dilution 1:100); anti-Ki67 (clone M7240, Dako, CA, USA; dilution 1:50); anti-

ERG (clone ab92513, Abcam, MA, USA; dilution 1:100); anti-EZH2 (clone 612667, BD 

Biosciences, CA, USA; dilution 1:20); anti-MLH1 (clone 554073, BD Biosciences, CA, 

USA; dilution 1:400), anti-PMS2 (clone 556415; BD Biosciences; dilution 1:100); anti-

MSH2 (clone NA27, Calbiochem, CA, USA; dilution 1:100) and anti-MSH6 (clone 610919, 

BD Biosciences, CA, USA; dilution 1:800), using the Bond Polymer Refine detection kit 

(Leica Microsystems, IL, USA). Antigen retrieval was performed using heat-mediated pH6 

retrieval for anti-ERG, anti-PSA and anti-PSMA; pressure-cooker pH6 retrieval for anti-

EZH2, no retrieval for anti-chromogranin A and anti-PSAP, and heat-mediated pH9 retrieval 

for all the other antibodies. Study pathologists performed semi-quantitative evaluation for 

protein expression in nuclear (AR, ERG, MLH1, MSH2, MSH6, PMS2), cytoplasmic 

(synaptophysin, chromogranin A), or both (EZH2) compartments, using a four-tier grading 

system: negative (0), weakly positive (1+), moderately positive (2+), and strongly positive 

(3+). The extent of positivity (percentage) was recorded. For evaluation of ERG and MMR 
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protein expression, IHC was defined as either positive or negative. For the other antibodies, 

the following cut-offs were considered to determine a positive expression: >20% of cells for 

synaptophysin and chromogranin A; >10% of nuclei for AR; and >10% of cells for EZH2.

DNA extraction, tumor purity, and exome sequencing

Slides were cut from frozen or FFPE tissue blocks and examined by the study pathologists to 

select high-density cancer foci and ensure high purity of cancer DNA. We employed 

previously developed protocols
53

 successfully used in our earlier genomic studies
23-26,52

. 

Following this protocol, each case was quantified for tumor purity, and annotated for 

discrete areas of macrodissection avoiding regions of necrosis or high stromal content. All 

cases were also quantified for tumor purity using a recently developed algorithm 

CLONET
24,30

. CLONET was developed and validated to specifically deal with 

heterogeneous tumor samples, enabling optimal objective tumor purity and ploidy estimates 

by taking the germline heterozygous SNP genotype data from whole exome sequence 

coverage to quantify the percentage of reads supporting the considered aberration
30

. The 

resultant tumor purity values are used to adjust the genomic data for downstream processing 

and analysis. Extraction and sequencing were performed as previously described
54

. Briefly, 

DNA was extracted using Promega Maxwell 16 MDx. DNA was stored at −20 degrees 

Celsius. Whole exome capture libraries were constructed from tumor and normal tissue after 

sample shearing, end repair, and phosphorylation and ligation to barcoded sequencing 

adaptors. Ligated DNA was size selected for lengths between 200-350 bp and subjected to 

either exonic hybrid capture using SureSelect v2/v4 Exome bait (Agilent) or HaloPlex 

Exome (Agilent) (Supplementary Table 11-12). The samples (70 CRPC-Adeno samples 

from 51 individuals and 44 CRPC-NE from 30 individuals) were multiplexed and sequenced 

using Illumina HiSeq for an intended mean target exome coverage of 100X for the tumor 

and germline samples. All BAM files generated for this study are available at dbGap 

phs000909.v.p1.

Sequence data processing and quality control

A fraction of study samples (n = 78) were pre-processed with the analytical pipeline of the 

Englander Institute for Precision Medicine at Weill Cornell/New York Presbyterian Hospital 

(IPM-Exome-pipeline v0.9)
52

. FastQC was run on the raw reads to assess the quality of the 

raw reads as previously described
52

. The remaining 36 samples were processed using the 

Broad Institute Firehose infrastructure (http://www.broadinstitute.org/cancer/cga/

Firehose)
23,26

. Cross-contamination between samples from other individual subjects 

sequenced in the same flow cell was monitored with the ContEst algorithm
55

. Normal/tumor 

pairs were checked for consistency using SPIA
56

. Processing pipelines returned segmented 

files for somatic copy-number aberrations (SCNAs) (Supplementary Table 6). No 

differences were observed in the results of the two pipelines (P = 0.75, Kolmogorov-

Smirnov test).

Mutation calling and identification of significantly mutated genes

To identify and characterize somatic single-nucleotide variants (SNVs) in targeted exons, we 

first applied MuTect from the Broad Institute Genome Analysis Toolkit
57

, based on 
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Bayesian statistical analysis to nominate putative SNVs upon coverage, allelic fraction, and 

base qualities extraction. Next, we utilized Oncotator
58

 to annotate point mutations with 

variant- and gene-centric information relevant to cancer and last MutSig
59

 to identify genes 

harboring a greater number of mutations than expected by chance, given the background 

mutation rate, the sequence context and the genomic territory. For each gene identified 

(Supplementary Table 3), it returns the p-value adjusted for multiple hypotheses testing 

with Benjamini-Hochberg procedure (q-value). Genes with q-value below 0.1 are considered 

significant. Finally, we searched for mutations enriched in one pathology class by means of 

binomial test adjusted with Benjamini-Hochberg procedure (q-value) (Supplementary 
Table 4).

Tumor ploidy, purity and copy number estimates

Segmented data was used by CLONET to estimate ploidy and purity for each tumor sample 

as previously described
30

. Each segment is represented by the log2 of the ratio between 

values proportional to the tumor and normal local coverage within the genomic segment. 

Briefly, the ploidy of an individual tumor, defined as the mean number of sets of 

chromosomes of a cell, is assessed using the mean coverage observed in an individual as a 

proxy of the number of observed alleles; CLONET recognizes shifts in the SCNAs log2 

ratio distribution reflective of an aneuploidy genome and used to then estimate tumor ploidy. 

Next, a local optimization approach based on putative clonal mono-allelic deletions and 

germline heterozygous SNP loci (called informative SNPs and identified by means of 

ASEQ
60

) is applied to assess the purity (1-admixture) of each sample; the difference 

between observed and expected allelic fraction (AF) at informative SNPs (the latter being 

either 0 or 1) is proportional to tumor purity. Finally, CLONET computes a purified copy 

number profile adjusting each segment to account for both aneuploidy and tumor purity. 

Purified segments with mean log2 ratio below −0.4 or greater than 0.4 were categorized as 

copy number loss or gain, respectively.

Allele-specific copy number analysis by CLONET

To determine the copy number landscape of a tumor sample, allele-specific copy number 

analysis was applied within the CLONET framework. In a 100% pure tumor sample, the 

empirical distribution of the AFs within a genomic segment reflects the aggregated signal 

from multiple cell populations. If a segment S is copy number neutral and both alleles are 

represented, sequenced DNA fragments equally sample the reference and the alternative 

bases, i.e., the AF around 0.5. If a segment S represents a 100% clonal mono-allelic 

deletion, the AF is either 0 or 1 depending on which allele is lost. Combinations of diverse 

representations of the two alleles of a diploid genome and subclonality lead to AFs in 

between. Low DNA purity further dilutes the signal from the expected values. CLONET 

uses a variable beta that represents the disproportion in the AF of informative SNPs within a 

segment S; beta values can be computed from the empirical distribution of the AFs. 

Importantly, the beta value of a genomic segment is independent from its log2 ratio and the 

two measures can be used to infer the allele specific copy number and the clonality state of 

each segment of a tumor genome. CLONET alos provides a space transformation from the 

beta vs log2 ratio to the cnB vs cnA (Supplementary Notes, Supplementary Fig. 14), 

where each segment is visualized at coordinates representing the number of copies of allele 
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A and allele B. In the absence of parental allelic information, we consider cnA ≥ cnB. Non 

integer values of cnA and/or cnB indicate that the copy number signal results from the 

convolution of the copy number states of multiple subclonal tumor cell populations. Finally, 

the cnB vs cnA space allows for direct comparison of allele-specific copy number profiles of 

different tumor samples by mean of the Euclidean distance, irrespective of tumor ploidy and 

tumor purity.

RNA extraction, sequencing and processing

RNA was extracted from frozen material for RNA-sequencing (RNA-seq) using Promega 

Maxwell 16 MDx instrument, (Maxwell 16 LEV simplyRNA Tissue Kit (Cat. # AS1280)). 

Specimens (34 CRPC-Adeno samples from 33 individuals and 15 CRPC-NE samples from 

10 individuals) were prepared for RNA sequencing using TruSeq RNA Library Preparation 

Kit v2 as previously described
9,50

. RNA integrity was verified using the Agilent Bioanalyzer 

2100 (Agilent Technologies). cDNA was synthesized from total RNA using Superscript III 

(Invitrogen). Each sample was then sequenced with the HiSeq 2500 to generate 2x75bp 

paired-end reads. Details of the sequencing results are reported in Supplementary Table 13. 

Reads (FASTQ files) were mapped to the human genome reference sequence (hg19/GRC37) 

using STAR v2.3.0e
61

, and the resulting BAM files were subsequently converted into 

Mapped Read Format (MRF) using RSEQtools, a suite of tools for RNA-seq data processing 

and analysis
62

. MRF files include only the primary alignments as determined by STAR and 

do not include reads mapped to the mitochondrial chromosome. Quantification of gene 

expression was performed via RSEQtools using GENCODE v19 (http://

www.gencodegenes.org/releases/19.html) as reference gene annotation set. A composite 

model of genes based on the union of all exonic regions from all transcripts of a gene was 

used resulting in a set of 20,345 protein-coding genes. Expression levels (FPKM) are 

estimated by counting all nucleotides mapped to each gene and normalized by the total 

number of mapped nucleotides (per million) and the gene length (per kilobase). Differential 

expression analysis was performed using the Mann-Whitney Wilcoxon test after 

transforming the FPKMs via log2 (FPKM+1). Multiple hypothesis testing was considered by 

using Benjamini-Hochberg (BH, FDR) correction. For downstream analyses (differential 

copy number and Integrated NEPC Score), genes with low expression in both CRPC-Adeno 

and CRPC-NE samples (mean + standard deviation less than 1 FPKM) were discarded.

NanoString assay—We employed a custom NanoString assay for cases without sufficient 

material for RNA-seq to evaluate for expression of AR signaling genes, TMPRSS2-ERG 

fusion transcript, and neuroendocrine associated genes. FFPE samples were cut onto 10μM 

thick slides, annotated by the study pathologist, and RNA was extracted using the Ambion 

RecoverAll™ Total Nucleic Acid Isolation Kit. RNA quality control was performed on the 

Agilent 2100 Bioanalyzer system by annotating total RNA concentration and percentage of 

RNA greater than 300 nucleotides (nt) in length. For samples with more than 50% of total 

RNA greater than 300 nt, 100ng input RNA was used; for samples with less than 50% of 

total RNA greater than 300 nt, the input RNA was proportionally increased according to the 

level of degradation. Samples were run on the NanoString nCounter® Analysis System 

according to the manufacturers directions. Briefly, total RNA was hybridized overnight at 

65°, then run on the Prep Station at max sensitivity. Cartridges were then scanned on the 
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Digital Analyzer at 555 fields of view. Raw count data was normalized using the nSolver™ 

analysis software version 2.0, which normalizes samples according to positive and negative 

control probes and the geometric mean of the 6 housekeeping primers.

Differential copy number analysis

For each gene in a panel of more than 19,000 RefSeq genes, we computed the log2 ratio 

adjusted by ploidy and tumor purity and then we aggregated the mutation frequencies by 

specimen (Supplementary Table 7). Deletions and amplifications are defined using the 

thresholds on log2 ratio as described above. The relative frequencies of in CRPC-NE and 

CRPC-Adeno specimens are compared by means of binomial test adjusted for multiple 

hypotheses testing with Benjamini-Hochberg procedure (FDR). For each gene, 

Supplementary Table 7 also reports the mean expression level in CRPC-NE and CRPC-

Adeno samples together with the Mann-Whitney Wilcoxon p-value and FDR correction of 

the likelihood that the expression in the classes is different.

Androgen Receptor signaling

We assessed AR signaling using the expression levels of 30 genes (Supplementary Table 2) 

previously reported as defining the pathway
18

. For each specimen with expression levels 

available, either from RNA-seq or Nanostring, we considered its correlation to a reference 

sample known to have active AR signaling. This reference sample was based on LNCaP 

cells and was generated by taking the average values of the 30 AR-regulated genes across 

three replicates on the Nanostring assay. We then computed the Pearson's correlation 

coefficient for each specimen to this reference sample and we considered this as the “AR 

signaling”. To validate the approach, we tested prostate cancer cell lines with known AR 

activity (Supplementary Fig. 15).

Fusion detection and ERG rearrangement status

In order to detect ERG rearrangement status we employed several assays, including 

fluorescence in situ hybridization (FISH) break-apart assay and/or immunohistochemistry 

(IHC) as previously described
63

. Whole exome sequencing copy number analysis (WES) 

and Nanostring/RNA-sequencing (RNA-seq) were also used to assess ERG deletion and 

fusion transcript levels, respectively. If ERG fusion was detected at either DNA, mRNA, or 

protein level, the sample was considered positive. For other non-canonical and canonical 

fusion transcript detection, FusionSeq was employed as previously described
64

.

CYLD fluorescence in situ hybridization (FISH)

To assess CYLD deletion in tissues, we developed a dual-color FISH assay consisting of a 

locus specific probe (RP11-327F22) plus reference probe spanning a stable region of the 

chromosome (RP11-488I20). All clones were tested on metaphase spreads
9,65

. CYLD 
deletion was defined by the absence at least 1 copy on average per nucleus compared to two 

reference signals. At least 100 nuclei were evaluated per tissue section using a fluorescence 

microscope (Olympus BX51; Olympus Optical, Tokyo, Japan).
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Methylation profiling and data processing

Sample preparation for enhanced reduced representation bisulfite sequencing (eRRBS) was 

performed at the Weill Cornell Medical College Epigenomics Core Facility as previously 

described
66

 and included 18 CRPC-Adeno samples from 10 individuals and 10 CRPC-NE 

from 8 individuals. In brief, the preparation steps included: 1) MspI enzyme digestion; 2) 

end repair of digested DNA; 3) adenylation; 4) adapter ligation, with pre-annealed 5-

methylcytosine-containing Illumina adapters; 5) isolation of library fragments of 150 to 400 

bp from a 1.5% agarose gel; 6) bisulfite conversion using the EZ DNA Methylation Kit 

(Zymo Research, Irvine, CA); 7) polymerase chain reaction (PCR) amplification; each 

library was prepared with FastStart High Fidelity DNA Polymerase (Roche, Indianapolis, 

IN) and Illumina PCR primers PE1.0 and 2.0. PCR products were isolated using Agencourt 

AMPure XP (Beckman Coulter, Brea, CA) beads per manufacturer's protocol (Agencourt) 

Amplified libraries were evaluated using a Qubit 1.0 fluorometer and Quant-iT dsDNA HS 

Assay Kit (Invitrogen, Grand Island, NY) for quantitation and bioanalyzer visualization 

(Agilent 2100 Bioanalyzer; Agilent, Santa Clara, CA). After filtering out genomic regions of 

somatic homozygous deletions (log2 ratio < −1.1) as inferred from the corresponding WES 

data (Supplementary Table 6), differentially methylated sites (CRPC-NE versus CRPC-

Adeno) were identified by methylKit
67

. Differentially methylated genes were identified by 

annotating with BedTools
68

 differentially methylated regions on gene promoters (defined as 

2 Kbp genomic regions upstream the set of 5’ gene coordinates), first exons, gene bodies, 

CpG islands (UCSC table browser) and CpG shores (2 Kbp genomic regions upstream and 

downstream of CpG islands). GENCODE v19 was used as gene set. ToppFun
69

 was used to 

perform functional enrichment analysis. Supplementary Table 8 lists differentially 

methylated genes and includes genomic feature annotations.

Site-directed CpG methylation

Targeted CpG methylation analysis for SPDEF was performed using OneStep qMethyl PCR 

Kit per manufacturer's protocol (Zymo Research, Irvine, CA). 20ng of genomic DNA from 

cell lines was used for qMethyl PCR. Primers used for qMethyl PCR were:

Primer1 forward:CCGGTGACATCCGTGTGTTC,

Primer1 reverse:AATCGCCGGTACACTCCTTG,

Primer2 forward:GATTCTGCTCTCCCACCTCTC,

Primer2 reverse:CCAGCAGCCCTCAAAGCAAC.

Amplification parameters were: 45 cycles (Denaturation: 95oC, 30 sec, Annealing: 64oC, 30 

sec, Extension: 72oC, 30 sec).

Integrated NEPC score

The Integrated Neuroendocrine Prostate Cancer (NEPC) score estimates the likelihood of a 

test sample to be CRPC-NE. It is calculated as the Pearson's correlation coefficient between 

the test vector and a reference CRPC-NE vector based on a set of 70 genes (Supplementary 

Table 9, Supplementary Fig. 10 and 15) using normalized FPKM values of the test sample. 
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The gene set stems from the integration of differentially deleted/amplified and/or expressed 

and/or methylated genes in CRPC-NE and CRPC-Adeno. Specifically, 16 differentially 

deleted genes were selected among putative cancer genes
31

 (see Differential copy number 
analysis). The following strategy was used to identify both differentially expressed genes 

that better distinguish CRPC-NE and CRPC-Adeno samples. We selected differentially 

expressed protein coding genes with FDR ≤ 1e-2, resulting in a total of 2425 genes, 

corresponding to 1301 over- and 1124 under-expressed. For each gene, we performed a 

Receiver Operator Curve (ROC) analysis using the normalized FPKMs as threshold 

parameter and calculated the Area Under the Curve (AUC). ROCs were built by considering 

only samples sequenced excluding two samples (7520 and 4240) that were previously 

published
9
.leaving 34 CRPC-Adeno and 13 CRPC-NE. Only those differentially expressed 

genes with AUC ≥ 0.95 and with a fold-change greater than 2 or lower than 0.5 were 

included in the classifier, resulting in a list of 49 genes (25 over- and 24 under- expressed in 

CRPC-NE vs. CRPC-Adeno), 21 of which found as differentially methylated between 

CRPC-NE and CRPC-Adeno. Concordant information between RNA and Methylation was 

found for 11 genes (see Supplementary Table 9). In addition, we considered 2 genes 

(MYCN and AURKA) that we previously described as associated with CRPC-NE 

phenotype
9
, EZH2 (FDR = 7.9*10−4) and DNMT1 (FDR = 6.9*10−5) for their role in 

controlling DNA methylation
70

 and RB1 (FDR = 0.056), reported as a key driver in the 

pathogenesis of CRPC-NE
9,45

. For each of the resulting 70 genes, we calculated the mean of 

the normalized FPKM across the 13 CRPC-NE samples with RNA-seq data and defined the 

resulting set of averages as reference CRPC-NE vector. The Integrated NEPC score was 

tested across 719 prostate samples with available transcriptome data from multiple datasets 

(Supplementary Table 10). RNA-seq data were processed as described above. Processed 

SU2C-PCF
26

 and Grasso et al
21

 (Michigan 2012) data were downloaded from cBioPortal
71

. 

Since data for 4 genes (ARHGAP8, BRINP1, C7Orf76 and MAP10) were not available from 

cBioPortal, for Michigan 2012 we used a reduced version of Integrated NEPC Score 

(indicated as Integrated NEPC Score*). Samples with Integrated NEPC Score greater than or 

equal to 0.40 (elevated Integrated NEPC score in main text) were nominated as putative 

CRPC-NE (Figure 4c, Supplementary Table 14). In order to take into account the lower 

signal-to-noise ratio and the reduced version of Integrated NEPC Score in Michigan 2012 

microarray data, in Figure 4d we consider as CRPC-NE – like those samples with 

Integrated NEPC Score ≥ 0.25 (significant Integrated NEPC score in Figure 4 legend). AR 

signaling and Integrated NEPC Score values per sample are reported in Supplementary 
Table 15.

Cell line studies

LNCaP clone FGC and NCI-H660 cells and media were purchased from ATCC and cultured 

at 37°C in 5% CO2. Cell line authentication was performed (DDC Medical, Fairfield, OH) 

and cells were tested for mycoplasma contamination. To create a resistant cell line, the AR-

dependent LNCaP line was grown in media containing 1μm enzalutamide for more than 6 

months. Dose response curve was performed by plating 2.5×10^3 cells in 10μl Matrigel® 

(Corning®) onto an Ibidi 96 well μ-plate and covering with 40μl media containing 

increasing doses of enzalutamide for 10 days (media changed every 4 days). Viability was 

analyzed using the CellTiter-Blue assay (Promega), Western blot analysis was performed 
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with 50μg protein stained with 1:1000 anti-NCAM (Abcam, ab137086), 1:500 anti-SPDEF 

(Biorbyt orb13642), and 1:10,000 anti-GAPDH (Millipore, AB2302). Site-directed CpG 

methylation of SPDEF was performed as described above. Cells were blocked in 5% BSA in 

PBS for one hour on ice, then stained with 5μg/ml Brilliant Violet 421 anti-human CD56 

(Biolegend) for one hour on ice in dark. Cells were washed twice with 8 ml PBS (8min × 

500g) and resuspended in FACS sorting buffer (1x PBS, 1mM EDTA, 25 mM HEPES pH 

7.0, 1% FCS (heat inactivated), 1% pluronic). 0.5 μg/ml DAPI was added immediately prior 

to sorting to stain dead cells. Cells were sorted on a BD FACSCalibur under the guidance of 

the WCMC Flow Cytometry core and analyzed with FloJo vX.0.7.

CYLD expression was silenced using ON-TARGET plus CYLD siRNA (Dharmacon 

L-004609-00-0005). ON-TARGET plus Non-targeting Pool (Dharmacon, D-001810-10-05) 

was used as control. RNAs from LNCaP cells were purified using Maxwell® 16 LEV 

simplyRNA Cells Kit (Promega) according to the manufacturer's instructions. cDNA was 

generated using the qScript™ cDNA SuperMix (Quanta BioSciences). SYBR Green-based 

qRT-PCR experiments were performed on a Roche LightCycler 480 II sequence detection 

system using Roche SYBR. The following oligonucleotides were used: Human CYLD: 5-

tttgcgtgtgttgaaagtacaat -3 (forward) 5- ttcctgcgtcacactctctg-3 (reverse). Human beta-actin: 5-

tccctggagaagagctacg-3 (forward) 5-gtagtttcgtggatgccaca-3 (reverse). CYLD relative 

expression was normalized using beta-actin.

LNCaP, NCI-H660, and DU145 cells and media were purchased from ATCC and used for 

GSK343 drug treatment studies using escalating doses (5, 7.5, 10uM). Cells were plated in 

Ibidi 96 well μ-plate embedded in 5μl Matrigel®. Matrigel droplets were then covered with 

40μl media. After 48h media was replaced with fresh media containing increasing doses of 

GSK343 for 14 days (media changed every 4 days) in three replicates. Viability was 

analyzed using the CellTiter-Blue assay (Promega) according to the manufacturer's protocol. 

Total RNA was isolated from the cells using the RNeasy Mini Kit (Qiagen, Valencia, CA) 

and NanoString was performed for quantitative analysis of mRNA expression of the reported 

genes.

Statistical analysis

For statistical tests, we used two-sided Mann–Whitney–Wilcoxon test (referred also as 

Wilcoxon test in the main text) to check for significant shift between two distributions. 

When appropriate, we used Kolmogorov-Smirnov test to check for discrepancies in the 

compared distributions. The proportion test has been used to determine whether the 

deviations between the observed and the expected counts are significant. Finally, 

Supplementary Fig. 5e uses a t-test. The statistical test used is indicated in the respective 

figure legend or in the corresponding main text. All the tests are two sided. When 

appropriate, p-values were adjusted for multiple hypotheses testing with Benjamin-

Hochberg procedure. No statistical methods were used to predetermine sample size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clinical and mutational profile of the cohort
(a) Schematic illustrating sites of biopsy for CRPC-NE (dark pink) and CRPC-Adeno (light 

pink) subgroups. Numbers in circles indicate numerosity of samples from each site. (b) AR 

signaling (right) based on abundance of mRNA transcripts included in the AR signaling 

signature described in ref 19. Violin plots show the density of AR signaling. Each dot 

represents a sample; diamonds and solid lines represent the mean and 95% confidence 

interval, respectively. Representative immunohistochemistry (left) shows AR protein 

expression. Scale bars, 50 μm. (c) Significantly mutated genes. Each row represents a gene 

and each column an individual subject. Top light green bars correspond to the total number 

of non-silent SNVs in an individual. Left light green bars indicate the number of subjects 

harboring non silent corresponding mutations in the genes indicated on the right. Bottom 

panel reports the copy number status of selected genes. (d) Genomic location of AR 

mutations in samples from SU2C-2015 and this study. (e) Copy number status of AR locus. 

Color intensity and location are indicative of level and focality of amplification. (f) 
Frequency of copy number aberrations; concordant fractions (gray), CRPC-NE specific 

(dark pink) and CRPC-Adeno specific (light pink). Data adjusted for tumor ploidy and 

purity. Highlighted genes are significantly preferentially aberrant in one class and 

demonstrate concordant differential mRNA levels (for DNA and mRNA: FDR <= 10% for 

deletions and p-value <= 1% for amplifications).
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Figure 2. Tracing CRPC-NE emergence through allele specific analysis
(a) Potential models of evolution that occur during prostate cancer progression towards the 

neuroendocrine phenotype: linear progression from primary untreated adenocarcinoma to 

CRPC-Adeno to CRPC-NE; independent progression of two distinct clonal populations 

within the primary or metastatic CRPC-Adeno towards either CRPC-Adeno or CRPC-NE; 

divergent clonal evolution of CRPC-NE from either primary adenocarcinoma or CRPC-

Adeno. *indicates favored model. (b) Allele specific analysis of primary prostate 

adenocarcinoma and local lymph node metastasis removed at time of radical prostatectomy 

(RP) and two metastatic CRPC-NE (treated) tumors (3 years after RP) from subject 

WCMC7520. H&E pathology images and intervening therapies are shown in the timeline. 

Scale bars, 100 μm. (c) Allele specific analysis of tumors at three time points from patient 

subject WCMC161 during castration resistance: lymph node (CRPC-Adeno), bone biopsy 

(CRPC-Adeno), and liver biopsy (small cell CRPC-NE). H&E pathology images and 

intervening therapies are shown in the timeline. ADT= androgen deprivation therapy; EP= 

etoposide and cisplatin chemotherapy; Abi= abiraterone acetate with prednisone. Circos 

plots summarize genome-wide allele specific DNA quantity in tumor cells. Individual's 

tumor phylogeny sketched upon allele-specific analysis including genome-wide 

amplification and ploidy assessment. Scale bars, 100 μm.
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Figure 3. Methylation analysis of CRPC-NE and CRPC-Adeno
(a) Hierarchical clustering of 28 eRRBS samples data using (1 - Pearson's correlation) as 

distance measure on unselected sites. Clinical features of outlier cases are described. (b) 

Left, pie chart showing the number of differentially methylated genes, identified by 

annotating hyper- and hypo- methylated loci (number is reported between parentheses) on 

GENCODE version 19. Right, table shows a selection of terms enriched by differentially 

methylated genes. (c) Top, genome track of SPDEF. Hyper-methylated loci are reported in 

the annotation track. Bottom, box plot of expression levels of SPDEF samples for This 

Study (left) and SU2C/PCF 2015 (right) cohorts. (d) Bar plots highlight the effect of EZH2 
transcription activity across 487 samples with different pathology classification. The bars are 

relative to the mRNA level fold (with respect to benign prostate tissue samples) of 

homeobox genes under-expressed in CRPC-NE versus CRPC-Adeno (FDR < 0.1); a 

selection of EZH2 target genes (DKK1, NKD1, AMD1, HOXA13, HOXA11, NKX3-1); 

DNA methyltransferase genes - indicated as DNMTs (DNMT1, DNMT3B, DNMT3A, 

DNMT3L); EZH2. Significance of differences between CRPC-NE and CRPC-Adeno 

subgroups are shown (max P = 3*10−5 for DNMTs). When significant, p-values in 

SU2C/PCF cohort are shown. The number of samples for each pathology classification is 

reported inside the square symbols of the legend. (e) Cell viability in prostate 

adenocarcinoma cell lines (DU145, LNCaP) the neuroendocrine prostate cell line NCI-H660 

assessed at 48 hours after treatment with escalating does of the EZH2 inhibitor GSK343 (5, 

7.5, 10uM).
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Figure 4. Integrative DNA, RNA and Methylation analysis
(a) Weighted Venn diagram with the number of protein-coding genes significantly 

differentially observed in the three data layers. The superimposed pie chart reports the 

estimation of the impact of each layer upon the following priority rule: methylation overall 

and DNA over RNA. (b) Integrated NEPC score analysis across 604 samples from four 

different RNA-Seq prostate cancer datasets (This Study, SU2C/PCF 2015, WCMC 

2011/2014 and TCGA). Samples are ordered by decreasing values of Integrated NEPC score 

(only a fraction of data is shown, entire data are reported in Supplementary Fig. 10). Top, 

annotation tracks report original dataset and pathology classification. Middle, plot reports 

Integrated NEPC score (black line) and AR signaling (grey line) across samples. Bottom, 

heat map of normalized FPKMs for a selection of the 70 genes (in rows) across samples (in 

columns). (c) Prediction accuracy of CRPC-NE samples by precision and recall statistics for 

Integrated NEPC Score (circles), AR signaling (squares), mRNA level of SPDEF 
(diamonds), AR (triangles) in RNA-seq datasets: This Study (green), SU2C/PCF 2015 

(orange), WCMC 2011/14 (violet) and all datasets (black). Grey curves represent F-measure 

levels, defined as the harmonic mean of precision and recall. Due to the absence of CRPC-

NE samples (positive events), TCGA data were not reported here. (d) AR signaling versus 

Integrated NEPC score across 730 samples from five independent prostate datasets using 

transcriptome data as proxy. The old-rose shaded area refers to significant values of 

Integrated NEPC Score. Predicted CRPC-NE percentages calculated by excluding benign 

samples.
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