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ABSTRACT

Metagenomic characterization of microbial commu-
nities has the potential to become a tool to iden-
tify pathogens in human samples. However, soft-
ware tools able to extract strain-level typing infor-
mation from metagenomic data are needed. Low-
throughput molecular typing schema such as Mul-
tilocus Sequence Typing (MLST) are still widely used
and provide a wealth of strain-level information that
is currently not exploited by metagenomic methods.
We introduce MetaMLST, a software tool that recon-
structs the MLST loci of microorganisms present
in microbial communities from metagenomic data.
Tested on synthetic and spiked-in real metagenomes,
the pipeline was able to reconstruct the MLST se-
quences with >98.5% accuracy at coverages as low
as 1x. On real samples, the pipeline showed higher
sensitivity than assembly-based approaches and it
proved successful in identifying strains in epidemic
outbreaks as well as in intestinal, skin and gastroin-
testinal microbiome samples.

INTRODUCTION

High resolution microbial strain identification and tracking
is a key challenge both in a clinical and research settings.
One of the most popular methods for strain level typing of
microorganisms is multilocus sequence typing (MLST) (1),
which is based on sequencing a small number of species-
specific genomic loci (usually seven) which are known to be
present in all strains of the given target species. Thanks to its
simplicity and resolution, MLST approaches have been de-
fined and adopted for many prokaryotic (2,3) and eukary-
otic microbes (4). Databases of thousands of MLST profiles
and sequences are now available for a large number of mi-
crobial species most of which are (opportunistic) pathogens
(5,6).

The limiting factor that hampers the routine use of
MLST in a clinical setting is the need to isolate and culti-
vate each bacterial species of interest. The MLST protocol

(DNA extraction, polymerase chain reaction (PCR) ampli-
fication, purification and sequencing of the target loci) is
also expensive and laborious. With the increasing through-
put and decreasing cost of next generation sequencing tech-
nologies, the direct sequencing of the entire DNA content of
a sample (metagenomics (7)) is rapidly becoming an effec-
tive approach for the characterization of complex microbial
communities as it skips the time-consuming isolation and
cultivation steps. Metagenomic datasets contain sequence
information for all strains present in a given microbial com-
munity and can provide, in theory, typing data for all the
species of interest within the sample.

A possible strategy to achieve metagenomic MLST typ-
ing involves the use of metagenomics assemblies, where the
assembled metagenomics contigs are mapped against the
MLST databases. However, this approach can only uncover
the strains that are abundant (i.e. those that can have a
sufficient depth to be metagenomically assembled). More-
over, metagenomics assembly is computationally demand-
ing. Therefore, there is currently no method to easily and
efficiently extract MLST loci from metagenomes.

To combine the effectiveness of the MLST approach with
the ease of cultivation-free and high throughput metage-
nomics, we developed a novel computational pipeline for
microbial typing called MetaMLST. Given a template
database of MLST loci, for each species with an avail-
able MLST schema, MetaMLST performs an in silico con-
sensus sequence reconstruction of the allelic profile of the
microbial strains in a metagenomics sample. The recon-
structed loci (profiles) are then identified by comparing
them to a database of publicly available profiles maintained
in PubMLST (5). New alleles, i.e. absent in the database, are
determined by comparative sequence reconstruction using
the sequence internal database as a template and given a
confidence score. This mapping-based approach overcomes
the computational limitations and lowers the limit of de-
tection compared to metagenomic assembly. Following the
downstream standard MLST pipeline, samples are then
processed individually to determine the sequence types (ST)
profiles and combined for epidemiological analyses, possi-
bly integrating them with the large set of profiled strains
available in public databases. The software is freely available
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with supporting material at http://segatalab.cibio.unitn.it/
tools/metamlst/.

MATERIALS AND METHODS

The pipeline MetaMLST processes metagenomics samples
and identifies the most abundant MLST ST profiles of
target species in each sample (Supplementary Figure S1).
MetaMLST can also identify novel STs and alleles. The
pipeline is organized in four steps: (i) retrieval of the avail-
able MLST data; (i) mapping of the metagenomic reads
against the retrieved reference sequences; (iii) detection of
microbial targets and reconstruction of the sample-specific
MLST loci; (iv) ST calling and downstream comparative
analysis. Step (i) is routinely performed and made available
at the MetaMLST website, and users can thus skip this first
step and download the MetaMLST database directly.

Retrieval and curation of available MLST protocols and data

The available MLST sequences and profile were re-
trieved from the public archives of PubMLST (5) and
mist.net (6). Sequences were semi-manually curated to
standardize the names of the loci across the database
(species_locus_alleleID). Profiles and alleles were checked
for consistency: profiles containing sequences of non-
existing alleles, sequences of very low complexity (e.g. all-
adenines), artefacts and sequences with inconsistent length
(i.e. different in length by the majority of the alleles of the
locus) were all removed from the internal database.

The retrieved MLST reference information was then or-
ganized in a SQLite 3 database. Additionally, the database
can be expanded and personalized by the user starting from
MLST sequences and profiles, respectively in FASTA for-
mat and Tab-separated format as described in the software
repository.

Mapping phase

The pipeline accepts as input sequence files in FASTQ for-
mat which are subsequently mapped against all or part of
the MLST loci present in the MetaM LST SQLite database.
In this operation the pipeline extracts sequences of all loci
present in the database and the MetaM LST-index module
assembles a Bowtie2 index using the bowtie2-build tool.
The metagenomes are then mapped against the index using
Bowtie2 v. 2.2.6 (8). The resulting mapping file (in BAM for-
mat) is then processed by the downstream MetaMLST steps
(below). For MetaMLST we recommend using Bowtie2
with local mapping using the following parameters: -a —no-
unal -D 20-R 3-N 0 -L 20 -1 S,1,0.50 (—very-sensitive-local).

MLST alleles reconstruction phase

The core of MetaMLST is the reconstruction of the MLST
loci from the metagenomic reads. First, the algorithm con-
siders the alignments of the reads against the internal
database of MLST loci (mapping phase) to find the closest
(or identical) reference MLST allele in the sample for each
species of interest. This is done by computing the mapping
score for each allele and selecting the allele that maximizes
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this score. The score of an allele k is defined as the aver-
age alignment score (as provided by Bowtie2) of the reads
that map against the sequence of the allele k penalized by a
value proportional to the number of reads that map against
another allele other than k. The weight of the penalization is
controlled by a parameter p. In our validation experiments,
we assessed varying parameter p from 30 to 80 (the mini-
mum score threshold that MetaMLST applies to select suc-
cessful Bowtie2 alignments) and found it did not affect the
selection of the best reference allele, thus we recommend 50
as a default value. Specifically, the tool defines the reference
allele (Ref_Allele) as:

> 1(Ski) - N- nk)
nj P nj

where ny is the number of reads aligning to that allele ‘%,
Sk 1s the Bowtie2 alignment score of the i-th read against
that allele ‘k” (AS:1: <N> field in the Bowtie2 SAM data for-
mat), N - ny is the difference between the number of reads
aligning to at least one allele of that locus (N) and the num-
ber of reads aligning to the specific allele £ (n), and p is
a penalty parameter regulating the impact of non-perfect
matches (default: 50).

Once the reference allele for each locus of each MLST-
target species in the sample has been identified, the pipeline
reconstructs the sample-specific sequence of the loci basing
on the reference allele. A consensus sequence is built start-
ing from the reads aligning to the locus, and using a major-
ity rule to determine the nucleotide in each position. Specif-
ically, the aligned reads, grouped by species and locus, pass
through the samtools-mpileup tool v 0.1.19 (9) (primary
and secondary alignments are considered equally). Then,
if the reads do not cover the full length of the locus, the
sequence of the reference allele is used to infer the nucleo-
tidic sequence for the positions at zero coverage (i.e. with
no aligning-reads) and the corresponding non-perfect con-
fidence Cj. for the locus k is set to:

Ref _Allele = argmax (

where: By is the number of uncovered position in the lo-
cus k and Ly is the length of the locus £.

The MetaMLST.py script outputs the list of the species
detected in the sample, the reconstructed sequences of their
MLST loci, and for each locus a confidence score and the
percentage of single nucleotide variants (SNV) from the
closest reference over the whole locus length. Selectable
thresholds allow the user to filter Bowtie2 alignments be-
low a certain length (min_length) or score (minscore) and
above a certain amount of SNVs with respect to the clos-
est reference allele (max_xM). Min_length was set to 90nt
in order to remove shorter alignments (considering original
Illumina reads of 100 bps). The default values for max_xM
and minscore (respectively 5 and 80) were chosen based on
a grid search strategy (values in {3,5,8,10} for max_xM and
{40,60,80,100} for minscore) performed on synthetic data
maximizing the percentage identity of the predictions com-
pared to the original genomes (Supplementary Table S1).
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Merging and comparing profiles

MetaMLST then analyzes the upstream-generated data
and assigns an ST to each sample (MetaMLST-merge.py
script). By comparing the reconstructed sequences with
the database, we identify putative new alleles not already
present in the MLST repositories. New alleles are assigned
if they differ by no more than three SNVs compared to
any of the reference alleles. This conservative user-selectable
threshold corresponds to the allelic intra-locus sequence di-
vergence observed for 75% of the alleles (Supplementary
Figure S2): samples containing new alleles exceeding this
value are discarded from the downstream analysis, as these
loci are likely to belong to a different organism. If the same
new allele occurs in more than one sample, the pipeline is
able to track it and assigns the same identifier.

In MLST, each referenced ST is defined by a combination
of alleles; MetaMLST can identify both reference profiles
and novel profiles (i.e. containing one or more new alleles, or
a new combination of existing ones). If the same combina-
tion of alleles occurs in more than one sample, MetaM LST-
merge.py tracks it and assigns the same ST to all of the
identical profiles, allowing the user to track these new types
across multiple samples.

Construction of the synthetic and semi-synthetic datasets
used for validation

For the synthetic metagenome validation, 12 metagenomes
were generated from reference genomes (20 million reads,
50 microbial species each). The 50 abundance values were
randomly sampled from a lognormal distribution and nor-
malized to produce the relative abundances with an Illu-
mina error model (10). We assigned the top n relative abun-
dances to the n MLST-target microbes (4 < n < 5, Supple-
mentary Table S2), and the remaining to non-MLST-target
species. The reconstruction step of MetaMLST was run on
the metagenomes and the reconstructed sequences were ex-
tracted and mapped with BLAST (11) against the reference
genomes used to compose the corresponding metagenome.
For every metagenome, the identity score was calculated for
each locus of each target species.

To generate the semi-synthetic metagenomes used to val-
idate the pipeline’s results at various coverages, we selected
six target species and six metagenomes from the Human Mi-
crobiome Project (HMP) which resulted negative for those
species when analyzed with MetaPhlAn 2 (12,13) (an ap-
plication specifically designed for the detection, but not for
the typing, of microbial species in metagenomes). We gen-
erated a set of synthetic reads at various coverages (Supple-
mentary Table S4) and merged them with the correspond-
ing metagenome. MetaMLST.py was run on the resulting
samples and the reconstructed sequences were mapped with
BLAST as for the synthetic validation mentioned above.

Post-processing and visualization analysis

Minimum Spanning Trees were obtained with PHYLOViZ
v. 1.1 using the eBURST Full-MST algorithm (14,15).
The trees for phylogenetic analysis were elaborated with
RAXML v8 (16) using (-m GTRCAT -p 1234), and then
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plotted with GraPhlAnv. 1.1 (17), using the metadata asso-
ciated with each sample. The principal component analysis
(PCA) plots were computed using the scikit-learn package
(18) providing the multi-loci concatenated alignments built
using MUSCLE v3.8.31 (19) as arrays of binary features.
For the analysis on the ancient Helicobacter pylori
metagenomic reads from ‘Otzi The Iceman’, we mapped the
available reads from Maixner et al. (20) against the database
of H. pylori alleles from PubMLST (5). Before mapping
human reads were removed using Bowtie2 (8) against the
human genome (hgl9) in end-to-end mode and selecting
only the non-aligning reads against the hgl9 index (—un-bz2
option). MetaMLST was then applied on the alignments.
We carried out the PCA analysis as mentioned above on
the only sample that passed the strict thresholds applied by
MetaMLST (sample C0057 from the original study), which
had a confidence score of 95.94% according to the pipeline.

Code and data availability

MetaMLST is Open Source, released in Bitbucket and freely
available with supporting material, tutorials, and scripts at:
http://segatalab.cibio.unitn.it/tools/metamlst. The synthetic
metagenomes used in the method’s validation are available
under BioProject PRINA339720.

RESULTS
The MetaMLST pipeline for strain-level typing

MetaMLST is a software pipeline that processes metage-
nomic reads to provide a cultivation-free version of the
MLST approach (1) (Supplementary Figure S1). For each
microbial species with an available MLST schema, the
pipeline is able to identify and track the dominant strain of
that species in a complex microbiome sample. MetaMLST
adopts the set of loci (typically between 5 and 10) designed
in the organism-specific MLST protocols and uses the se-
quence variants (alleles) of these loci that are available from
public databases (5,6).

In the first step of the pipeline, we collect the entire MLST
sequence repertoire from public sources removing dupli-
cated or chimeric sequences (see ‘Materials and Methods’
section) and we provide the user with the output of this ini-
tial pre-processing. Next, reads from the metagenomic sam-
ples are aligned against the MLST sequence database using
Bowtie2 (8). A microbial species is considered detected if all
its MLST loci are found in the sample (see ‘Materials and
Methods’ section): partially detected species are thus dis-
carded from the downstream analysis. From the alignments
we build a consensus sequence for each locus using a simple
majority rule. If low coverage prevents the determination of
the nucleotide sequence at a limited number of positions, the
closest allele from the reference database is used to guide the
definition of the consensus sequence. This only occurs when
these positions are at the terminal parts of the sequence (i.e.
the first or last regions of each locus). These terminal parts
are typically highly conserved, but a confidence score re-
flecting the potential uncertainty introduced by this proce-
dure is provided by the tool for each reconstructed locus (see
‘Materials and Methods’ section). The stringency threshold
of this score can be set by the user to limit the fraction of
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reconstructed nucleotides permitted. The reconstructed loci
are then processed as per the standard MLST procedure by
assigning a MLST sequence-type (ST) (5) to each detected
strain (see ‘Materials and Methods’ section). If the tool de-
tects a set of alleles that do not correspond to known STs
in the reference database, new alleles and STs are defined.
These new alleles and profiles can be included in the internal
database, to be used in future analyses or to cross compare
different metagenomics samples.

Validation on synthetic and semi-synthetic metagenomes

We first evaluated the accuracy of MetaMLST by identify-
ing the STs from a set of 12 synthetic metagenomes which
comprised, in total, 240 million reads (Supplementary Ta-
ble S2). Each synthetic metagenome contained 50 species,
5 of which represented target species present in the MLST
reference databases. The relative abundances of the species
followed a lognormal distribution with the abundance of
the target species being randomly selected (see ‘Materials
and Methods’ section and Supplementary Table S2). Even
though some target strains were only present at low cov-
erages, MetaMLST correctly identified more than 96% of
the target STs (Figure 1A , Supplementary Table S3). For
example, Salmonella enterica was correctly recognized even
when at low abundance in the synthetic metagenome (0.87%
corresponding to 174k reads and a coverage of 3.7x, Sup-
plementary Tables S2 and 3). On the other hand, in this val-
idation, MetaMLST was always run for all species with an
available MLST scheme and it never detected and/or typed
species not present in the synthetic sample, thus achieving
a 100% specificity.

To further validate the performances of the pipeline we
generated semi-synthetic metagenomes by mixing real mi-
crobiome samples and synthetic reads taken at variable cov-
erages (from 0.5 to 25x, see Supplementary Table S4). Syn-
thetically generated reads from six MLST-trackable organ-
isms, each representative of a body site sampled by HMP,
were merged at various coverages with six HMP samples
from the respective body sites (see ‘Materials and Methods’
section). As expected, the average accuracy of reconstruc-
tion by MetaMLST shows a coverage-dependent behavior,
but even at a coverage as low as 3x the accuracy reaches
>99.85% (Figure 1B and Supplementary Table S5).

As well as bacterial typing, standard MLST approaches
are also used to type fungi (4,21,22). To ascertain if
MetaMLST can successfully track fungal strains we applied
it to both synthetic and semi-synthetic metagenomes con-
taining Candida albicans. Even at low coverage MetaMLST
showed high accuracy in detecting and typing C. albi-
cans (Figure 1B). However, we noticed a decreased accu-
racy of reconstruction in a subset of C. albicans strains,
due to the divergence of the two alleles of its diploid
genome (e.g. AATla and ZWF1b loci). Thus, we recom-
mend MetaMLST only for typing of haploid organisms.

Altogether, our validation showed that MetaMLST can
successfully type bacterial and fungal strains with high ac-
curacy in complex metagenomics datasets, even at low cov-
erages. Additionally, no nucleotide errors were detected for
coverages >5x in our validations. Importantly, this valida-
tion test demonstrated that the confidence scores provided
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by MetaMLST are highly precise i.e. a high score correlated
with an accurate performance whereas a low score suggests
that the results should be interpreted with caution (Sup-
plementary Figure S3). Overall, these findings indicate that
MetaMLST provides an easy and accurate pipeline for the
typing of microbial species from complex metagenomes.

Comparing MetaMLST against the assembly-based ap-
proach

To further validate the pipeline we compared the results of
MetaMLST with assembled metagenomes available from
the HMP (23). Assembly is the only other available ap-
proach to identify MLST STs from metagenomes (24) al-
though it is substantially more demanding (both in terms
of memory and computational time) and requires higher
sequence coverages of the target organisms. We selected
four bacterial species commonly found at high abundan-
cies in the HMP skin and stool datasets (Staphylococcus au-
reus, Propionibacterium acnes, Staphylococcus epidermidis
and E. coli). The assemblies of these organisms were down-
loaded from the HMP website and mapped using BLAST
(11) against the MLST reference sequences from PubMLST
(5) to identify their MLST profile. We then compared the re-
sults against the profiles ascribed by MetaMLST applied to
the raw reads. MetaMLST successfully identified the tar-
get species in all of the 31 metagenomes tested. In con-
trast to these alleles that were successfully reconstructed by
MetaMLST, the metagenomic assembly approach failed to
assign an ST to the target organism in 16 cases (i.e. failure to
detect all the MLST loci, presumably due to a lack of suf-
ficient coverage) (Figure 1C). Newer metagenomic assem-
blers like metaSPAdes (25) and MegaHIT (26) may provide
higher quality assemblies, but assembly will always have a
minimum required coverage that is higher than consensus
sequence estimation via mapping. Where STs were assigned
both by MetaMLST and assembly-based analyses they were
found to be in perfect agreement except in three cases (four
loci) where the consensus sequence was different (Supple-
mentary Table S6). Specifically, when comparing the se-
quences of all the loci for those three cases, the number of
single nucleotide differences was generally very low: 2 out
of 3003 nucleotides for S. epidermidis, 1 out of 4253 for P.
acnes and 9 out of 2954 for E. coli. Additionally, all the dif-
ferences in the four loci of these three cases were located in
positions where multiple different nucleotide choices were
supported by the mapping reads suggesting the presence of
more than one strain at comparable abundances (Supple-
mentary Figure S4). This confirms that, in a minority of
the cases (here 4 out of 233 loci), the presence of multiple
strains at very similar abundance can produce non-perfect
ST calls. Therefore, MetaMLST demonstrated that on the
same metagenomics datasets it can equal and even surpass
the performance of an assembly-based approach at a frac-
tion of the time effort and of the coverage often required
to perform a metagenomic assembly (27) (Supplementary
Table S6).
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Figure 1. Application of MetaMLST on synthetic and semi-synthetic metagenomes highlights the high accuracy of the approach. (A) Frequency histogram
for the reconstruction accuracy of MLST profiles (black) and of single MLST loci (blue and red) reconstructed by MetaMLST on synthetic metagenomes.
We used a total of 12 synthetic metagenomes (2 Gbps depth each, 100 nt read length), sampled from reference genomes using an Illumina error model (10).
The accuracy (i.e. percentage of identity to the reference genomes) was computed for known MLST alleles (i.e. present in existing MLST databases, in red)
and for unknown MLST alleles (blue). We consider a sequence type (ST) correctly identified when >99% of the sequence is identical to the corresponding
reference genomes. (B) Reconstruction accuracy of MLST loci from semi-synthetic datasets at increasing sequence coverages. Color-intensity represents the
average of the confidence scores attributed by MetaMLST to the reconstruction of each locus (see ‘Materials and Methods’ section). (C) Number of known
ST detected by MetaMLST and by metagenomic assembly in the samples. STs detected by both approaches are in the intersections and marked with an
asterisk when one of the predictions is in disagreement. We used here a subset of HMP samples (i.e. samples from anterior nares, retroauricolar crease and
stool) for which a metagenomic assembly was run successfully (23). The two methods disagreed for one case in Propionibacterium acnes, Staphylococcus
epidermidis and Escherichia coli (marked with an asterisk) and agreed in all other cases. However, MetaMLST often (16 out of 31 cases) identifies more

targets compared to metagenomic assembly.

MetaMLST accurately detects E. coli sequence types in com-
plex gut metagenomes

We further investigated the performance of MetaMLST by
applying it to a set of 531 gut microbiome samples. This set
included samples from Type-II Diabetes affected Chinese
patients (including the healthy controls) (28), from patients
infected by the Shiga toxin-producing E. coli O104:H4 from
the 2011 German outbreak (29) and healthy subjects from
the HMP dataset (23). We focused on E. coli as this is one
of the most abundant species in the human gut. MetaMLST
was able to reconstruct 78 MLST E. coli profiles, of which 31
were known and 47 novel STs. Cross-referencing the STs in-
ferred by MetaMLST with the available metadata, we iden-
tified common STs across the different metagenomics sam-
ples using PCA (Figure 2A) and minimum spanning trees
(Figure 2B). The analysis across datasets highlighted a high
prevalence of a subset of E. coli STs belonging to the ST-
complex 10, a common group of commensal E. coli STs
comprising the majority of Group A E. coli (30,31) (Fig-
ure 2B). In total 19 different samples showed the presence
of a ST included in the complex, of which 10 were classified
as E. coli ST10.

Importantly, MetaMLST was also able to track the
pathogenic agent responsible for the 2011 E. coli outbreak
in Germany correctly identifying the strain as ST-678, thus
confirming the results of Loman et al. (29) that were ob-
tained by looking at the MLST loci on the manually cu-
rated metagenomic assemblies. In total we detected E. coli
ST-678 in six samples from the outbreak dataset. For two of
the outbreak-positive samples as determined by qPCR (29)

we detect a non-pathogenic ST due to its presence at higher
abundances than ST-678 as highlighted elsewhere (32) This
confirms that MetaM LST detects the most dominant strain
for a given species in each sample. MetaMLST also de-
tected ST-678 in one subject enrolled in the Chinese diabetes
study that did not present with symptoms of intestinal infec-
tion (Figure 2B). Exploring further, by mapping the metage-
nomic reads against the genome of the ST-678 outbreak iso-
late (32,33), we found that the E. coli ST-678 identified in the
Chinese subject did not possess the Shiga-toxin genes re-
sponsible for pathogenicity. Therefore, despite the usual en-
terohemorrhagic phenotype of this ST and its known pres-
ence only in patients affected by acute gastroenteritis, hem-
orrhagic colitis or hemolytic-uremic syndrome according
to the MLST records ((5) from http://mlst.warwick.ac.uk/
mlst/ as of April 2016) and other typing approaches (34,35),
strain ST-678 can also appear as an asymptomatic gut col-
onizer when the Shiga-toxin gene is not present.

MetaMLST applied to the skin microbiome highlights micro-
bial body-site type and subject specificity

We next applied MetaMLST on an extended set of human
skin metagenomic samples which included all those from
the HMP (23) and from Oh et al. (36) (473 total samples, see
Supplementary Table S7). Both datasets included samples
taken from the same subjects at different body-sites. Focus-
ing on one of the most prevalent skin inhabitants, S. epider-
midis, 100 metagenomes resulted positive with MetaM LST
identifying 79 different ST of which 60 were putatively
novel. The phylogenetic tree built on the reconstructed alle-
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the abundance of the ST. Circles represent known STs, while triangles represent new types. The pathogenic type ST-678 associated with the German 2011
outbreak and the benign type ST-10 are highlighted and tracked by MetaMLST. (B) Minimum Spanning Tree on the ST, computed with PHYLOViZ full
MST algorithm (see “Materials and Methods’ section) and colored by dataset. The size scales with the abundance of each ST and the color is proportional
to the contribution of each dataset to that ST. New types detected by MetaMLST are circled in black. Members of the non-pathogenic Clonal Complex
10 are circled in blue to highlight its high prevalence in the Chinese population.

les (using RAXML (16), Figure 3A) showed an association
between phylogenetic subtrees and body site type (moist, se-
baceous and mixed). Minimum Spanning Tree analysis (15)
also shows a clear separation based on body-site (Figure
3B). This segregation confirms the observation by the au-
thors of one of the datasets included in the analysis (36)
and further strengthens the idea of S. epidermidis body-
site specificity. Samples associated with the toe nails have
been reported previously (36) to show a mixed—neither
fully-sebaceous, nor fully-moist—aggregation in the human
microbiome. Interestingly, in our dataset all the toe-nails-

associated S. epidermidis types were closer to moist ST, both
according to the phylogeny and the Minimum Spanning
Tree.

We then extended our analysis to two other commonly
skin-associated microbes: P. acnes and S. aureus. We found
these organisms STs are highly subject-specific and that
these subject specific types are common at different body
locations, (Figure 4). For example, for S. aureus we found
that samples from subjects shO1 (nine samples) and hv10
(eight samples) either belonged to the same ST or were phy-
logenetically very closely related (Figure 4A). These types
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Figure 3. MetaMLST applied to Staphylococcus epidermidis on 473 metagenomic samples. (A) Phylogenetic tree on the concatenated loci reconstructed by
MetaMLST. Oh et al. (light gray) and HMP (dark gray) samples are associated with their metadata: Body-site type (outer ring) and Subject ID (intermediate
ring). New STs are marked in green in the inner ring. The ‘moist’ and ‘sebaceous’ subtrees are highlighted in red and yellow, respectively. (B) Minimum
Spanning Tree on the ST, computed with PHYLOViZ full MST algorithm and colored by body-site type. Each node represents an ST and the size scales
with the abundance of that ST in the dataset. STs detected in more than one body-site type and their relative proportion at each site is indicated in the inner
node represented as a pie chart. Two groups of mainly-moist and mainly-sebaceous associated STs are visible at the top and bottom edges of the MST.

could be identified at moist, sebaceous and dry body sites.
The same trend could be seen for P. acnes, in particular ST
70 was highly conserved and prevalent on a single subject,
while other STs (1, 2, 3, 4) were highly prevalent on multiple
subjects, even across different datasets. New STs could be
detected in both analyses, and often represented minor vari-
ations of known STs, with few nucleotides changing from
reference alleles. The identification of highly prevalent STs,
the segregation of clusters of strains according to the body-
site type, as well as the conservation of the same ST in differ-
ent body sites, all highlight the potentialities of MetaMLST
in tracking strains among subjects in clinical or epidemio-
logical settings.

MetaMLST identifies sequence types of pathogens from ar-
chaeological samples

We extended our analysis to provide evidences of the use-
fulness of MetaMLST also in contexts where microbial
cultivation, and thus a traditional MLST analysis, is not
possible, such as in an archaeological setting. We applied
MetaMLST to the metagenomic samples originally ex-
tracted from the stomach of ‘Otzi the Iceman’, a 5300-
year-old mummy found in a melting glacier in north-
ern Italy (20). Analyzing the original metagenomes with
MetaMLST, we were able to demonstrate the presence of

H. pylori, confirming the results of Maixner et al. (20), and
reconstructed its MLST profile. MetaMLST assigned a new
ST to the H. pylori strain present in the Iceman’s stomach;
the ST was however phylogenetically very close to other Eu-
ropean STs available in publicly available datasets (5). By
comparing the reconstructed profiles with public available
MLST types, the ancient H. pylori is placed at the bound-
aries of the European and Asian clusters (Figure 5 and Sup-
plementary Figure S5). The closest non-European STs be-
long to the hpAsia2 structure population, similarly to what
reported by Maixner and colleagues in their original analy-
sis of the dataset (20). MetaMLST reconstructed the MLST
loci of the ancient H. pylori with a confidence score of 96%,
providing evidences about the possibility to efficiently iden-
tify and study ancient microbes from archaeological sam-
ples with MetaMLST.

DISCUSSION

Identifying and tracking microbial strains is an important
task for several biomedical settings including pathogen de-
tection and disease outbreak characterization (37). MLST
is one of the most successful approaches in microbial identi-
fication and tracking (1), and it has been extensively applied
in the last twenty years (38,39). MLST provides strain-level
resolution, it is highly reproducible across different labora-
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Figure 4. MetaMLST applied to Staphylococcus aureus (A) and Propionibacterium acnes (B) on 473 metagenomic samples. Phylogenetic tree on the
concatenated loci reconstructed by MetaMLST. Oh et al. (light gray) and HMP (dark gray) samples are associated with their metadata: Subject ID
(intermediate ring) and body-site type (outer ring). New STs are marked in green in the inner ring. S. aureus tree (A) was computed together with available
reference genomes. Particularly, subjects sh01 (nine samples, light blue) and hv10 (eight samples, purple) were colonized with either the same or very closely
related S. aureus. In P. acnes we show instead both STs that are highly conserved in one subject (ST-70, blue arc) as well as STs that are highly prevalent

across different subjects (STs 2, 3, 4 and 1). Prevalence in the cohort and occurrence within each subject are reported in Supplementary Table S8.
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Figure 5. PCA plot of the public available MLST types for Helicobac-
ter pylori, colored by aggregated structure population. The concatenated
MLST-loci sequences of those H. pylori isolates that could be associated
with a structure population in the PubMLST database (5) were analyzed
in PCA space. The colors represent continental groups of structure popu-
lations; the black triangle indicates the Iceman metagenomically-inferred
MLST type. The ancient H. pylori reconstructed loci are at the bound-
aries between European (orange) and Asian (yellow green) types. Values
in brackets of PC1 and PC2 represent the amount of explained variance of
the PCA analysis.

portunistic) pathogens are available (5,6). This approach re-
mains however very time-consuming especially due the need
of isolate and cultivate each target species separately.

Here we present MetaMLST, a fast approach for micro-
bial strain tracking and identification applicable directly
to complex metagenomic samples taken directly from a
given environment. MetaMLST takes advantage of the
publicly available information on MLST alleles and pro-
files, which can be used to guide epidemiological and
clinical investigation. Importantly, the tool can be ex-
tended to recently proposed MLST protocols comprising
more loci (e.g. eMLST (40) and rMLST (41)). We val-
idated MetaMLST on semi-synthetic metagenomes, and
were able to identify all microbial targets with >95% iden-
tity (>99.85% with spiked-in isolates in real metagenomes
at 3x coverage), substantially improving the performances
achievable with a metagenomics assemblies-based analysis.
Compared to assembly-free strain profiling (32,42-44) our
method is the first estimating MLST profiles and it enables
rapid analysis of metagenomics samples. MetaMLST pro-
cessed the metagenomes at an average speed of ~35 000
reads/sec/CPU which makes it suitable for the analysis of
very large metagenomic datasets. Moreover, the method
takes advantage of the publicly available MLST sequences,
profiles and isolates, which are orders of magnitude more
available than reference genomes. MetaMLST is designed
to identify the most abundant strain of each trackable (i.e.
MLST referenced) microbial species, which is normally the
case in traditional MLST analysis, where the typing is per-
formed on a single isolated microbial colony. Strains from
the same species are rarely comparably abundant in a sam-
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ple, but MetaMLST would provide noisy results in those
cases. The MetaMLST method, however, is faster and po-
tentially cheaper in the long term, as it does not require the
time consuming isolation of each microbe.

We applied MetaMLST to hundreds of gastrointesti-
nal, oral and skin metagenomes to highlight the potential-
ities of the approach. Using this method we have already
shown body site specificity and tropism in oral Neisseria
spp. (45), and here we see a similar ecological behavior for
skin associated S. epidermidis populations, in agreement
with previous studies (36). Moreover, MetaM LST provided
insights on the pathogenic E. coli strain (ST-678) when ap-
plied to gut metagenomes from patients of the Germany
2011 outbreak, and showed the longitudinal persistence of
uropathogenic and necrotizing enterocolitis-related E. coli
strains among preterm-born infants (46). Interestingly, the
pipeline was able to identify an ancient H. pylori strain from
the metagenomes of a 5300 years old mummy, extracted
from Maixner et al., confirming the result of the original
work (20). These results strongly confirm the effectiveness
of MetaMLST, which allows accurate microbial strain typ-
ing without the need of isolation and cultivation, directly
from metagenomic samples.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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