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Abstract—Spectrum sensing data falsification (SSDF) attacks5
represent a major challenge for cooperative spectrum sensing6
(CSS) in cognitive radio (CR) networks. In an SSDF attack, a mali-7
cious user or many malicious users send false sensing results to the8
fusion center (FC) to mislead the global decision about spectrum9
occupancy. Thus, an SSDF attack degrades the achievable detec-10
tion accuracy, throughput, and energy efficiency of CR networks11
(CRNs). In this paper, a novel attacker-identification algorithm12
is proposed that is able to skillfully detect attackers and reject13
their reported results. Moreover, we provide a novel attacker-14
punishment algorithm that aims at punishing attackers by low-15
ering their individual energy efficiency, motivating them either to16
quit sending false results or leave the network. Both algorithms17
are based on a novel assessment strategy of the sensing perfor-18
mance of each user. The proposed strategy is called delivery-based19
assessment, which relies on the delivery of the transmitted data20
to evaluate the made global decision and the individual reports.21
Mathematical analysis and simulation results show promising22
performance of both algorithms compared with previous works,23
particularly when then the number of attackers is very large.24

Index Terms—Author, please supply index terms/keywords for25
your paper. To download the IEEE Taxonomy go to http://www.26
ieee.org/documents/taxonomy_v101.pdf.27

I. INTRODUCTION28

29 THE increase in wireless services is accompanied with an

AQ1

30

increase in demand for the radio spectrum, which is a re-31

source that cannot be expanded. Most useful radio spectrum has32

already been allocated; thus, it becomes extremely hard to find33

vacant bands for new services. However, measurements show34

that licensed spectrum is rarely used at full capacity at all times35

by its licensed users [1]. Aiming at solving the problems of36

spectrum scarcity and inefficient spectrum utilization, cognitive37

radio (CR) technology has been proposed [2], [3]. In CR, the38

Manuscript received April 16, 2014; revised March 11, 2015 and August 26,
2015; accepted October 26, 2015. This work was supported by the Research
Project GREENET under Grant PITN-GA-2010-264759. The review of this
paper was coordinated by Prof. D. H. C. Du.

S. Althunibat is with the Department of Communications Engineering,
Al-Hussein Bin Talal University, Ma’an, Jordan (e-mail: saud.althunibat@ahu.
edu.jo).

B. J. Denise is with Kyambogo University, Kampala, Uganda (e-mail: denise.
birabwa@gmail.com).

F. Granelli is with Department of Information Engineering and Computer
Science (DISI), University of Trento, 38123 Trento, Italy (e-mail: granelli@
disi.unitn.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2015.2497349

unlicensed users, which are also called cognitive users (CUs), 39

can opportunistically utilize the temporarily unused portions 40

of the licensed spectrum. CR has enabled and supported many 41

emerging application [4]. 42

In CR, as an initial step, CUs must sense the spectrum for 43

available opportunities, to avoid any collision or interference 44

with the licensed users [5]. However, individual spectrum sens- 45

ing suffers from shadowing and multipath fading, leading to 46

degraded performance represented by inducing interference at 47

the licensed users and inefficient utilization of the spectrum op- 48

portunities [6]. Therefore, cooperative spectrum sensing (CSS) 49

is proposed to improve the sensing performance [7], [8]. In 50

CSS, all CUs send their local sensing results, to a central entity, 51

which is called a fusion center (FC), which combines all results 52

and makes a global decision about spectrum availability. 53

Although CSS improves the reliability of a spectrum sensing 54

process, it introduces extra energy consumption [9], time delay 55

[10], and security threats [11]. In this paper, we handle the 56

security threat that is called spectrum sensing data falsification 57

(SSDF) attack [12]. The SSDF attacker is represented by a 58

CU that sends false spectrum sensing reports, trying to cause 59

a wrong global decision about spectrum availability at the FC 60

[13]. The motivation of SSDF attackers is to prevent other CUs 61

from exploiting the spectrum, such that they can increase their 62

own transmission opportunities [14]. However, some honest 63

CUs may appear like attackers because of their bad sensing 64

performance caused by either shadowing and fading, a noisy 65

reporting channel, or a malfunctioning sensor [15]. Such type 66

of CUs is called an unintentional attacker [16] Nevertheless, 67

both intentional and unintentional attackers degrade the detec- 68

tion accuracy, which in turn influences throughput and energy 69

efficiency of the other honest CUs. Therefore, it is of paramount 70

importance to eliminate these attackers from the network. 71

The two well-known approaches, i.e., Bayesian detection [17] 72

and Neyman–Person test [18], for signal detection are no longer 73

optimal in the presence of SSDF attacks [19]. In addition, 74

both approaches require a priori knowledge about the local 75

sensing performance. Several works have investigated the de- 76

fense against SSDF attacks. For example, in [14], an algorithm 77

is proposed to identify attackers by counting the number of 78

mismatches between each CU’s local decisions and the global 79

decision at the FC. Once the number of mismatches exceeds 80

a given threshold, the corresponding CU will be considered 81

an attacker; thus, its reports will be ignored. This approach 82

however becomes unreliable when the number of attackers is 83

large, giving an unreliable final decision. An outlier detection 84
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method is presented in [20], where the report history of each85

CU is represented in a high-dimensional space to detect any86

abnormalities. A detection scheme is proposed in [21], where87

it calculates a trust value and a consistency value for each CU88

based on its past reports. Once both values fall below predefined89

thresholds, the received reports from the corresponding CU are90

no longer considered in the fusion process. However, the algo-91

rithm is valid only for one attacker. In [22], an algorithm that92

involves setting randomly distributed evaluation frames is pro-93

posed. In each evaluation frame, the FC decides if the spectrum94

is free, irrespective of the reported local decisions. A CU is then95

scheduled for data transmission, and depending on its success,96

the actual status of the spectrum is defined, giving the ability for97

the FC to assess local decisions in that frame and assign to each98

CU a weight related to its actual performance. A drawback of99

this algorithm is that it causes interference to the licensed users100

during evaluation frames. Recently, an adaptive reputation-101

based clustering against collaborative attackers is proposed102

in [23]. It is based on clustering CUs into multiple clusters103

according to the sensing history and the reputation of each104

CU. Such a step separates attackers into one cluster (or more),105

alleviating their influence on the global decision since each106

cluster casts only one vote in global voting at the FC. The algo-107

rithm is developed to handle different scenarios of collaboration108

among attackers. Although a high performance has been shown,109

the adaptive clustering, internal voting, and reputation updating110

phases may induce high complexity and consume a significant111

amount of time and energy resources. It is worth mentioning112

that there are other promising algorithms against SSDF attacks113

in noncentralized networks. For example, in [24] and [25], a114

biologically inspired algorithm is proposed to detect attackers115

in ad-hoc CR networks (CRNs). The algorithm implies that,116

after exchanging the sensing results with the neighbors, each117

CU should identify the neighbor with the maximum deviation118

as an attacker. The algorithm is iteratively repeated until a119

consensus is reached.120

Identifying attackers is a very crucial process that should be121

carefully carried out to avoid detecting honest CUs as attackers.122

Thus, attacker identification should be built on a reliable base123

that cannot be affected if the number of attackers is large. In124

this paper, we consider the delivery of the transmitted data125

as a base of evaluating the individual performance and, con-126

sequently, identifying attackers. Notice that, in infrastructure-127

based CRNs, the data transmission is performed through the128

base station (BS) [26]. Thus, it is easy to ensure if the trans-129

mitted data are successfully delivered or not; hence, the actual130

spectrum status will be known at the FC. Using the obtained131

spectrum status, all the individual sensing results can be evalu-132

ated accordingly. Based on the evaluated performance of each133

CU, attackers can be seamlessly detected and removed from the134

fusion process at the FC.135

Identifying attackers possess an initial step to alleviate their136

effects on the network performance. However, a further action137

should be taken against identified attackers in the subsequent138

data transmission phase. Depriving attackers of scheduling op-139

portunity in data transmission phase is a bad choice. This is be-140

cause the attacker identification is an imperfect process, where141

a false identification of an honest CU as an attacker is probable.142

Moreover, an identified attacker could be an honest CU that suf- 143

fers from poor sensing performance. On the other hand, keeping 144

all CUs honest and attackers equal in scheduling probability 145

is unfair with respect to the honest CUs. In this paper, we 146

propose a scheduling policy based on assigning a scheduling 147

probability to each CU related to its sensing performance. For 148

attackers, such policy establishes a punishment strategy, where 149

a low scheduling probability is assigned to them, and hence, 150

the policy reduces individual throughput and energy efficiency. 151

Thus, the proposed punishment policy is aiming at motivating 152

attackers to quit reporting false reports. On the other hand, 153

honest CUs will gain proportional fair distribution of data 154

transmission, corresponding to their local sensing performance. 155

Although the considered setup is challenging, as it will be 156

described later, both proposed policies show promising results 157

even in the worst-case scenario where the number of attackers is 158

very large. Mathematical analysis and simulation results explore 159

the significant improvement in the overall performanceachieved 160

by the proposed policies compared with previous works. The 161

contributions of this paper can be summarized as follows: 162
163

• introducing data delivery as a base for evaluating the per- 164

formance of the individuals in infrastructure-based CRNs 165

as delivery-based assessment is a novel strategy and has 166

never been proposed before to the best of our knowledge; 167

• proposing a novel attacker-identification algorithm that is 168

able to skillfully detect attackers and completely eliminate 169

their influence on the CRN; 170

• proposing an attacker-punishment algorithm that is based 171

on lowering the energy efficiency of the attacker, motivat- 172

ing it either to quit attacking or to leave the CRN. 173

The initial idea of this paper has been proposed earlier in 174

our work [27]. However, in addition to the expanded litera- 175

ture review, introduction, and motivations, there are several 176

differences/increments over our previous work [27], which are 177

summarized as follows. 178
179

• The proposed identification policy in [27] is based on 180

instantaneous check, whereas in this paper, the mismatch 181

counters are checked after T sensing rounds. Such a 182

difference results in a completely different performance 183

between the two policies. 184

• In this paper, an extensive mathematical analysis of per- 185

formance of the proposed identification and punishment 186

polices has been presented, whereas the earlier work in 187

[27] lacks the mathematical analysis. 188

• Unlike this paper, the optimization of the identification 189

threshold has not been addressed in [27] neither math- 190

ematically nor by simulations. Moreover, the worst-case 191

scenario has been investigated in this paper for both: the 192

identification algorithm and the punishment policy. 193

• Simulation results in [27] have been focused on the energy 194

efficiency performance of the attacker/honest users. It 195

means that the attention was mostly paid for the pun- 196

ishment policy performance. However, in this paper, a 197

detailed evaluation of both the identification and punish- 198

ment policy has been presented in terms of the detection 199

accuracy and energy efficiency. 200
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A related work is [14]. However, several differences should201

be highlighted as follows.202203

• In [14], an identification algorithm for attackers is pre-204

sented by evaluating their sensing performance based on205

the majority decision. Such an algorithm can work well206

in the presence of a low number of attackers. However,207

when the number of attacker is large, the reliability of208

majority decision is highly degraded as the majority are209

attackers. Such a drawback has motivated us to find an al-210

ternative evaluation base rather than the majority decision.211

Thus, in this paper, the data delivery has been used to as-212

sess the sensing performance of users. Employing data de-213

livery in such a purpose is a novel contribution that should214

be accounted for in this paper. Employing data delivery215

has shown very good performance results even in the case216

of the large number of attackers (worst-case scenario).217

• The optimization of the removal (ignoring) threshold in218

[14] has yet to yield a closed-form expression of the219

optimal threshold, whereas a closed-form mathematical220

expression of the optimal removal threshold has been221

presented in this paper, which maximizes the difference222

between the ignoring probability of attackers and honest223

users.224

• The work in [14] is only an identification algorithm,225

whereas this paper includes a punishment policy for attack-226

ers. Punishing attackers by lowering their energy efficiency227

is a novel contribution has not been presented before.228

The mathematical and simulation results have proved the229

effectiveness of the proposed punishment policy.230

The remainder of this paper is organized as follows. Section II231

describes the system model and the attacker model, fol-232

lowed by the employed evaluation metrics, whereas Section III233

presents the proposed delivery-based assessment approach.234

The proposed attacker-identification algorithm is discussed in235

Section IV along with the necessary mathematical framework236

and the analysis of the worst-case scenario. Section V proposes237

the attacker-punishment algorithm. Performance evaluation and238

simulation results are presented in Section VI, and conclusions239

are drawn in Section VII.240

II. SYSTEM MODEL241

Consider a CRN consisting of N CUs cooperating to oppor-242

tunistically access the licensed spectrum whenever it is free.243

The CRN is considered an infrastructure-based type [13], where244

the CSS and data transmission is coordinated by the BS. An245

example of such network is IEEE 802.22 [28]. The adopted CR246

model in this paper is Interweave model, where both CUs and247

licensed users coexist on the same geographical area, and CUs248

can use the spectrum only if it is unoccupied by the licensed249

users [29]. For simplicity, the licensed spectrum is modeled250

as a single channel, although it can be easily extended to a251

multiple-channel scenario. In each CSS round, each CU senses252

the licensed spectrum, and depending on its sensing result, it253

solves a hypothesis testing problem deciding on one of two254

hypotheses: either H0 that implies spectrum is unused or H1 for255

spectrum is used. It then reports its binary local decision un =256

{1 ≡ “used,” 0 ≡ “unused”} to the FC that is located at the BS.257

The reliability of the local decision of a CU is evaluated 258

by two indicators: local detection probability Pdn and local 259

false-alarm probability Pdf . While the former represents the 260

probability of identifying a used spectrum as used, the latter 261

denotes the probability of identifying an idle spectrum as used. 262

As CSS demands, all CUs report their local decisions to the 263

FC, which combines and issues a final decision about spectrum 264

occupancy according to a specific fusion rule (FR). The general 265

FR for binary local decisions is called K-out-of-N rule [30]. 266

Based on this FR, if the number of local decisions of 1 is 267

larger or equal to the threshold K , the global decision should 268

be 1 (used). Otherwise, the global decision is 0 (unused). If 269

we denote the local decision in the ith round by un,i, then the 270

global decision of that round Ui is made as follows: 271

Ui =

{
1 ≡ used, if

∑N
n=1 un,i ≥ K

0 ≡ unused, if
∑N

n=1 un,i < K.
(1)

Three popular FRs are derived for this rule, namely, OR rule 272

(K = 1), AND rule (K = N), and majority rule (K = N/2) 273

[31]. Similar to the local decision, the reliability of the final 274

decision is measured by two metrics, the overall detection 275

probability PD and the overall false-alarm probability PF . 276

Both are defined as at the local level but regarding the final 277

decision rather than the local decision. Both PD and PF can 278

be combined to describe the global detection accuracy in one 279

metric called error probability (Pe) given as follows [30]: 280

Pe = P0PF + P1(1 − PD) (2)

where P0 and P1 are the probabilities that the spectrum is 281

unused or used, respectively. 282

Upon issuing the final decision, a CU will be scheduled for 283

data transmission only if the final decision is “unused,” whereas 284

in the case of identifying the spectrum as “used,” the FC will 285

not schedule any of the CUs to avoid interference to the licensed 286

users. 287

A. Attacker Model 288

As in other wireless networks, CRNs are usually vulnerable 289

to different security threats. One of these threats, which is 290

not typical in the other wireless networks, is the SSDF attack 291

(see Fig. 1). In the SSDF attack, a malicious CU sends false AQ2292

reports about the spectrum availability to the FC to mislead 293

the final decision. The motivation behind such attack is to 294

exploit the spectrum holes for their own transmission. To satisfy 295

this motivation, the optimal attack strategy is to always report 296

the spectrum as “used,” also called “Always-Yes” attack [32]. 297

However, such strategy is easy to detect at the FC. Thus, smarter 298

attackers usually follow a different strategy to elude the FC and 299

avoid detection and negligence. The smart strategy is based on 300

inverting the actual local sensing result in a selective manner. 301

Specifically, an attacker decides in each CSS round to attack, or 302

not, with a probability, which is denoted Pm. If the attacker 303

decides to attack in a specific round, it simply flips its own 304

local decision and reports it to the FC. Such attacker model is 305

usually termed as Byzantine attackers [32]–[34]. The sensing 306
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Fig. 1. Example of a CRN in the presence of SSDF attackers.

performance, i.e., Pdn and Pfn, of an attacker as it appears at307

the FC based on such strategy can be mathematically modeled308

as follows [14]:309

Pdn =Pm (1 − P ac
dn) + (1 − Pm)P ac

dn (3)

Pfn =Pm (1 − P ac
fn ) + (1 − Pm)P ac

fn (4)

where P ac
dn and P ac

fn represent the actual (honest) detection and310

false-alarm probabilities, respectively. Notice that this model is311

valid for an honest CU if we set Pm to zero.312

For simplicity, let us assume that all honest CUs are identical313

in their sensing performance, i.e., Pdn = Pdh and Pfn = Pfh.314

Likewise, the attackers are considered to have identical perfor-315

mance, i.e., Pdn = Pda, and Pfn = Pfa.316

Since the main motivation of attackers is to increase their317

achievable throughput while degrading the throughput of the318

honest CUs, the attacker will exploit the case of false alarm to319

perform individual transmission without coordination from the320

BS. Specifically, we consider that the attackers will cooperate321

among themselves to make their own global decision based322

on their honest performance. Accordingly, once a false alarm323

occurs at the FC, if their own global decision does not agree324

with the decision of the FC, the attackers will select one of325

them randomly to transmit its own data individually. From now326

on, we denote the detection and false-alarm probabilities of the327

global decision of attackers by PA
D and PA

F , respectively.328

The following steps summarize the function of the attacker329

model considered in this paper.330
331

1) At each sensing round, all attackers will sense the spec-332

trum (as the honest users do), and each attacker will333

individually make a local decision regarding the spectrum334

occupancy.335

2) Each attacker will individually decide to send a false 336

report or not (attack or not) with a probability Pm. 337338

a) If an attacker has decided to attack, it will invert its 339

local decision and report it to the FC. 340

b) Otherwise (if the attacker has decided not to attack), it 341

will send its actual (honest) local decision to the FC. 342

3) Directly, attackers will share their actual (honest) local 343

decisions and decide internally a global decision (let us 344

call it the global attackers’ decision). 345

4) If the FC has made a global decision that the spectrum is 346

unused, one of the users (it could be an attacker) will be 347

scheduled for data transmission in this round. 348

5) If the FC has made a global decision that the spectrum is 349

used, then attackers will check their own global decision 350

(global attackers’ decision). If it is different from the 351

global decision of the FC, one of the attackers will be 352

scheduled for data transmission in this round. 353

Notice that the cooperation among attackers assumed in this 354

paper is different from other assumptions in the literature. The 355

cooperation assumed here includes sharing the local decisions 356

among attackers to exploit the spectrum hole missed by the FC, 357

if any. Other assumptions may imply sharing the local decisions 358

before reporting them to the FC, aiming at deciding if local 359

decisions should be changed or not [23]. 360

B. Throughput and Energy Efficiency 361

According to the considered CRN model, an honest CU 362

has the chance to transmit only if it has been legitimately 363

scheduled by the FC. On the other hand, an attacker can 364

get a transmission opportunity in two cases: if it has been 365

legitimately scheduled by the FC and if it has been selected 366

by the other attackers to transmit in the case of a false alarm 367

at the FC. We call the achievable throughput in the first case 368

the legitimate throughput, whereas the illegitimate throughput 369

is the throughput achieved in the second case. 370

Notice that increasing the false-alarm probability, which is a 371

result of SSDF attackers, will increase the illegitimate through- 372

put of attackers, which in turn degrades the achievable through- 373

put of the honest CUs. However, increasing the throughput is 374

always accompanied with more energy consumption. There- 375

fore, for evaluation purposes, we use the individual energy 376

efficiency of the CU as a comparison metric between attackers 377

and honest CUs. Individual energy efficiency of a CU is defined 378

as the ratio of the individual throughput achieved in bits to 379

the individual energy consumed in Joules. According to the 380

considered setup, it is expected that the individual achievable 381

throughput, the individual energy consumption and the individ- 382

ual energy efficiency will be different for an honest CU and an 383

attacker. 384

C. Example 385

Let us consider a CRN of five honest CUs with identical 386

detection and false-alarm probabilities equal to 0.8 and 0.1, 387

respectively. The final decision is made based on majority rule. 388

In Fig. 2, we plot the effects on the detection accuracy and 389
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Fig. 2. Example of (a) the error probability versus the number of attackers and
(b) the throughput versus the number of attackers.

the achievable throughput if a number of attackers has joined390

the CRN. The local detection and false-alarm probabilities of391

attackers are identical and equal to 0.1 and 0.8, respectively.392

Fig. 2(a) shows the error probability of the final decision as an393

indicator of the detection accuracy versus the number of joined394

attackers, whereas Fig. 2(b) shows the achievable throughput395

of an attacker and an honest CU versus the number of joined396

attackers. The achievable throughput is divided into two parts:397

legitimate throughput resulting from scheduling by the BS398

and illegitimate throughput achieved by individual transmission399

without coordination of the BS. Clearly, the increase in the error400

probability and the degradation in the achievable throughput401

of honest CUs increase as the number of attackers increases.402

On the other hand, the throughput of attackers increases due403

to the high false-alarm probability that they can cause. Such404

a simple example explores the importance of encountering the405

attackers in CRNs.406

III. DELIVERY-BASED ASSESSMENT407

Most of the previous work depends either on a priori knowl-408

edge about the local performance of the CUs or the final409

decision reliability to detect attackers and remove them. The410

a priori knowledge is not always available, and the global411

decision lacks reliability in the presence of a large number of412

attackers. Instead, in this paper, we propose a novel approach413

that can seamlessly evaluate the sensing performance of each414

CU, and consequently, identify attackers. The proposed ap-415

proach is based on the delivery of the transmitted data of the416

scheduled CU. Specifically, if the licensed channel has been417

decided as unused and one of the CUs has been scheduled418

for data transmission, the successful delivery of the transmitted419

data reveals that the global decision was correct and that the420

channel is actually unused. In the other case, if the transmitted421

data cannot be successfully delivered, the global decision is 422

identified as incorrect, and the channel is actually occupied. 423

Notice that, in both cases, the FC has doubtlessly realized 424

the actual channel status, which can be used to assess all the 425

received local decisions as correct or not. 426

Delivery-based assessment continues in each data transmis- 427

sion phase to formalize a performance indicator for each CU, 428

which can be further employed to identify attackers and honest 429

CUs. The reader should note that considering data delivery 430

as an evaluation base is much more reliable than the global 431

decision, even in the case of large number of attackers. 432

From implementation point of view, the delivery-based as- 433

sessment approach can be easily applied in infrastructure-based 434

CRNs with a BS coordinating the data transmission, as assumed 435

in this paper. However, for centralized CRNs without a BS, 436

where CUs individually access the spectrum, the data delivery 437

can be verified by an additional monitoring process during data 438

transmission performed by the FC itself or another delegated 439

trusted CU. Notice that the monitoring process is much easier 440

than spectrum sensing since the transmitting user is known at 441

the FC. Another option that can verify the data delivery is re- 442

questing a feedback from the scheduled CU. However, it should 443

be taken into account the probability that the scheduled CU 444

is an attacker providing false feedback. To avoid any induced 445

drawback in the delivery-based assessment approach, we con- 446

sider only infrastructure-based CRNs in this paper, which has 447

been widely adopted in the literature [26], [35]–[40], whereas 448

the applicability of a delivery-based approach on other men- 449

tioned CRN types is left as future work. 450

In the following, we describe two novel policies: the attacker- 451

identification policy and the attacker punishment policy. Both 452

of them are developed based on the delivery-based assessment 453

approach. While the attacker-identification policy aims at de- 454

tecting attackers and ignoring their reported local decision in 455

the fusion process, the attacker punishment policy is a schedul- 456

ing policy that leads to a proportional resource distribution 457

according to the evaluated individual performance of each CU. 458

Such a fair scheduling policy acts as a punishment for attackers 459

and a reward for honest CUs. 460

IV. ATTACKER-IDENTIFICATION POLICY 461

Attacker identification is a key factor to improve the overall 462

performance of the CRNs either in terms of detection accuracy 463

or energy efficiency. Attacker identification should be carefully 464

carried out to avoid incorrectly identifying honest CUs as 465

attackers. Once an attacker is identified, it should be removed 466

from the fusion process at the FC, where its reports should be 467

ignored. Here, we propose a novel attacker-identification policy 468

that is able to identify the attackers, whatever their number in 469

the network is. 470

The proposed policy is based on assessing the local decisions 471

according to the delivery of the transmitted data of the sched- 472

uled CU. In detail, once the spectrum is identified as “unused,” 473

a CU will be scheduled for data transmission. Consequently, 474

based on the success of delivering the transmitted data, the 475

actual spectrum status can be correctly defined and used to 476

evaluate the local decisions. Thus, the local decisions reported 477
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in that round can be classified false or correct. If the local478

decision is false, a corresponding counter will be incremented479

by one. After a sufficient amount of time, e.g., T CSS rounds,480

if a counter of a specific CU exceeds a predefined threshold, it481

will be considered an attacker; hence, its reports will be ignored482

at the fusion process.483

Following the proposed policy, a zero-initialized counter,484

which is denoted by Bn,i, for each CU is updated at each CSS485

round as follows:486

Bn,i =

{
Bn,i−1 + 1, if Ui = 0 & Si �= un,i

Bn,i−1, Otherwise
(5)

where the subscript n refers to the CU index, the subscript i487

refers to the sensing round index, and Si represents the actual488

status of the spectrum. The final value of the counter after489

T rounds Bn,T follows a binomial distribution function, as490

follows:491

Prob.{Bn,T = b} =

(
T

b

)
λb
n(1 − λn)

T−b (6)

where b = 0, 1, 2 . . . , T , and λn denotes the probability that492

the counter B will be incremented by one (the probability that493

the local decision of nth user is wrong given that the global494

decision is “unused”), which can be derived as follows:495

λn =P (Bn,i = Bn,i−1 + 1)

=P (H0 ∩ un,i=1 ∩ Ui=0)+P (H1 ∩ un,i=0 ∩ Ui=0).
(7)

Using the following theorem on conditional probability [41]:496

P (A1 ∩A2 ∩ A3) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) (8)

the first term in (7) can be expanded as follows:497

P (H0 ∩ un,i = 1 ∩ Ui = 0)

= P (H0)P (un,i = 1|H0)P (Ui = 0|un,i = 1 ∩H0)

= P0PfnP (Ui = 0|un,i = 1 ∩H0). (9)

Likewise, the second term in (7) can be expanded as follows:498

P (H1 ∩ un,i = 0 ∩ Ui = 0)

= P (H1)P (un,i = 0|H1)P (Ui = 0|un,i = 0 ∩H1)

= P1(1 − Pdn)P (Ui = 0|un,i = 0 ∩H1) (10)

by substituting (9) and (10) in (7), λn can be rewritten as499

follows:500

λn = P0PfnP (Ui = 0|un,i = 1 ∩H0)

+ P1(1 − Pdn)P (Ui = 0|un,i = 0 ∩H1). (11)

The probability λn can be found for an honest CU, which 501

is denoted by λh, by substituting the following probabilities 502

in (11): 503

P (Ui = 0|un,i = 1 ∩H0)|honest

= 1 −
N−1∑

k=K−1

a2∑
j=a1

f(j,M, Pfa)f(k − j,H − 1, Pfh) (12)

P (Ui = 0|un,i = 0 ∩H1)|honest

= 1 −
N−1∑
k=K

a2∑
j=a1

f(j,M, Pda)f(k − j,H − 1, Pdh) (13)

where a1 = max(0, k −H + 1), a2 = min(k,M), H is the 504

number of honest CUs, M is the number of attackers, and 505

the function f(α, β, γ) denotes the binomial function [41], as 506

follows: 507

f(α, β, γ) =

(
β

α

)
γα(1 − γ)β−α. (14)

By the same way, the probability λn can be found for an 508

attacker, which is denoted by λa, by substituting the following 509

probabilities in (11): 510

P (Ui = 0|un,i = 1 ∩H0)|attacker

= 1 −
N−1∑

k=K−1

a4∑
j=a3

f(j,M − 1, Pfa)f(k − j,H, Pfh) (15)

P (Ui = 0|un,i = 0 ∩H1)|attacker

= 1 −
N−1∑
k=K

a4∑
j=a3

f(j,M − 1, Pda)f(k − j,H, Pdh) (16)

where a3 = max(0, k −H), a4 = min(k,M − 1). 511

Now, from (6), the average value of Bn,T of the nth CU, 512

which is denoted by Bn,T , can be derived as follows: 513

Bn,T =

T∑
b=0

b · Prob.{Bn,T = b}

=
T∑

b=0

b ·
(
T

b

)
λb
n(1 − λn)

T−b (17)

which can be simplified using the binomial law as follows: 514

Bn,T = Tλn. (18)

Moreover, if we denote the ignoring threshold by ζ, the 515

ignoring probability of the nth CU can be expressed as follows: 516

Pign,n ≡ Prob.{Bn,T ≥ ζ} =
T∑

b=ζ

(
T

b

)
λb
n(1 − λn)

T−b. (19)
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Accordingly, the average number of the remaining CUs after517

T CSS rounds, i.e., those CUs that have not been ignored, can518

be given as follows:519

NT =N−
N∑

n=1

Pign,n=H(1 − Pign,h) +M(1 − Pign,a) (20)

where Pign,h and Pign,a are the ignoring probabilities for an520

honest CU and an attacker, which can be obtained by substitut-521

ing λh and λa instead of λn in (19), respectively.522

A. Optimizing of ζ523

It is worth noting that ζ has a significant role in the proposed524

policy. Low values of ζ may result in identifying some honest525

CUs as attackers, whereas some attackers cannot be identified526

at high values of ζ. Therefore, ζ should be carefully optimized.527

An approach to optimize the threshold ζ is to maximize the528

difference between the ignoring probability of attackers and529

the ignoring probability of honest CUs. Mathematically, the530

maximization problem can be expressed as follows:531

max
ζ

Pign,a − Pign,h (21)

by substituting the values of Pign,a and Pign,h using (19), the532

maximization problem can be rewritten as follows:533

max
ζ

T∑
b=ζ

(
T

b

)
λb
a(1−λa)

T−b−
T∑

b=ζ

(
T

b

)
λb
h(1−λh)

T−b. (22)

The optimal value of ζ can be computed using the Lagrange534

method, where the derivative of the function with respect to ζ is535

equalized to zero. Since ζ is an integer, the derivative of Pign,a536

and Pign,h are respectively given as follows:537

∂Pign,a

∂ζ
= Pign,a(ζ+1)− Pign,a(ζ) = −

(
T

ζ

)
λζ
a(1 − λa)

T−ζ

(23)

∂Pign,h

∂ζ
= Pign,h(ζ+1)−Pign,h(ζ)=−

(
T

ζ

)
λζ
h(1 − λh)

T−ζ .

(24)

Accordingly, the first derivative of the function under optimiza-538

tion in (21) can be given as follows:539

∂

∂ζ
(Pign,a − Pign,h) = −

(
T

ζ

)
λζ
a(1 − λa)

T−ζ

+

(
T

ζ

)
λζ
h(1 − λh)

T−ζ = 0. (25)

The binomial coefficients can be canceled, and the equation can540

be rearranged as follows:541 (
λa(1 − λh)

λh(1 − λa)

)ζ

=

(
1 − λh

1 − λa

)T

. (26)

Now, by applying the natural logarithm to both sides, the542

optimal value of the ignoring threshold that maximizes the543

difference between the ignoring probabilities of attackers and 544

honest CUs, which is denoted by ζ∗, can be given as follows: 545

ζ∗ =

⎡
⎢⎢⎢T

ln
(

1−λh

1−λa

)
ln
(

λa(1−λh)
λh(1−λa)

)
⎤
⎥⎥⎥ (27)

where �·� is the ceiling operator that should be applied to ζ∗ to 546

make it an integer. 547

B. Worst-Case Scenario 548

To explore the high performance of the proposed attacker- 549

identification policy, we consider the worst-case scenario. The 550

worst-case scenario is represented when a large number of 551

attackers is present confronted by a low number of honest CUs 552

(i.e., M 	 H). 553

The performance can be clearly shown in terms of the 554

ignoring probability of attackers and honest CUs. From (19), 555

the ignoring probability of a CU mainly depends on its corre- 556

sponding λn probability. Considering the majority rule as the 557

employed FR, notice that both probabilities given in (11) can 558

be respectively approximated in such scenario as follows: 559

P (Ui = 0|un,i = 1 ∩H0)|wc
≈ 0 (28)

P (Ui = 0|un,i = 0 ∩H1)|wc
≈ 1. (29)

These approximations are valid since, in the case of M 	 H , 560

the probability of making a correct final decision [as in (28)] 561

is almost absent, and the probability of making a false final 562

decision [as in (29)] is almost one. 563

Now, by substituting (28) and (29) in (11), the probabilities 564

λh and λa can be computed as follows: 565

λh|wc
≈P1(1 − Pdh) (30)

λa|wc
≈P1(1 − Pda). (31)

Consequently, since Pdh → 1 and Pda → 0, then λh → 0 566

and λa → P1. Using (19), it is easy to show that Pign,h ≈ 0, 567

whereas Pign,a is still high; hence, attackers can be easily 568

detected with a proper choice of ζ even in the worst-case 569

scenario. 570

The optimal ignoring threshold in the worst-case scenario 571

ζ∗wc can be also approximated by substituting (30) and (31) in 572

(27) as follows: 573

ζ∗wc ≈

⎡
⎢⎢⎢T

ln
(

P0+P1Pdh

P0+P1Pda

)
ln
(

(1−Pda)(P0+P1Pdh)
(1−Pdh)(P0+P1Pda)

)
⎤
⎥⎥⎥ . (32)

V. ATTACKER-PUNISHMENT POLICY 574

Ignoring the reports received from the CUs identified as 575

attackers helps to improve the overall performance of the net- 576

work. However, a false identification is probable, where some 577

honest CUs might be identified as attackers by mistake. More- 578

over, as stated earlier, not all of attackers intentionally send 579

false reports to the FC. Some honest CUs suffer from multipath 580
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fading and shadowing during sensing or noisy reporting chan-581

nels, leading to a bad sensing performance. This type of honest582

CUs will appear like attackers at the FC side. Thus, depriving583

CUs that are identified as attackers from data transmission584

represents a harmful action toward the unintentional attackers.585

On the other hand, providing the same transmission chance586

among all CUs does not attain fairness from honest CUs’587

point of view. Instead, here, we provide a novel scheduling588

policy that distributes the spectrum resources among CUs in589

a proportional fair manner. The proposed scheduling policy590

allocates scheduling probability to each CU based on its sensing591

performance that appears at the FC. Such policy can be deemed592

as punishment for attackers, whereas it provides a fair resource593

distribution for honest CUs.594

The proposed policy is also based on delivery-based assess-595

ment as in the proposed attacker-identification policy. There-596

fore, the assigned scheduling probability for each CU depends597

on the instantaneous value of the counter B. The scheduling598

probability of the nth CU is computed at each CSS round as599

follows:600

Psn =
xi − Bn,i∑N

j=1(xi −Bj,i)
(33)

where xi represents the number of times in which the spectrum601

was identified as “unused” by the final decision until the ith602

CSS round, expressed as follows:603

xi =

{
xi−1 + 1, if Ui = 0

xi−1, if Ui = 1.
(34)

According to (33), an increase in the counter Bn,i for a CU604

implies a magnified punishment through reducing the schedul-605

ing probability. At the ith CSS round, the value of xi follows a606

binomial distribution, where its average value can be given as607

follows:608

xi = i · P (Ui = 0) (35)

where P (Ui = 0) is the probability that the spectrum will be609

identified as unused at the FC, which is expressed as follows:610

P (Ui = 0) = P0(1 − PF ) + P1(1 − PD)

= 1 − P0PF − P1PD. (36)

Consequently, using the average value of Bn,i given in (18),611

the average value of Psn at the ith round can be easily derived612

as follows:613

Psn =
i · P (Ui = 0)− i · λn∑N

j=1 (i · P (Ui = 0)− i · λj)

=
P (Ui = 0)− λn

NP (Ui = 0)−
∑N

j=1 λj

. (37)

The reader should note that the computation of P (Ui = 0)614

and λn before T are different from those after T . This is615

because, after T , some of the users will be identified as at-616

tackers; hence, their reports will be ignored while making the617

global decision at the FC. Moreover, it is worth mentioning that 618

scheduling probabilities are computed based on the accumu- 619

lated counters B and x, which should be kept updated as long 620

as the CRN lasts. 621

According to the proposed punishment policy, the average 622

achievable throughput for an honest CU, which is denoted by 623

Dh, can be expressed as follows: 624

Dh = P0(1 − PF )R · Tt · Psh (38)

where R is the data rate, Tt is the transmission time, and Psh is 625

the average scheduling probability for an honest CU. The factor 626

P0(1 − PF ) represents the case of no false alarm at the FC. 627

On the other hand, the average achievable throughput for an 628

attacker, which is denoted by Da, is divided into two parts, i.e., 629

legitimate and illegitimate, and can be expressed as follows: 630

Da=P0(1 − PF )R · Tt · Psa + P0PF (1 − PA
F )R · Tt ·

(
1
M

)
.

(39)

Notice that the first term (legitimate throughput) is identical 631

to the honest CU except the difference in the scheduling 632

probability, whereas the second term includes the illegitimate 633

throughput. The factor P0PF (1 − PA
F ) represents the case that 634

a false alarm occurs at the FC and that no false alarm is made 635

by the attackers’ global decision. 636

Likewise, the average energy consumption for an honest CU, 637

which is denoted by Eh, is expressed as follows: 638

Eh = ess + P (Ui = 0)et · Psh (40)

where ess and et are the energy consumed in spectrum sensing 639

and data transmission, respectively. For an attacker, the average 640

energy consumed Ea is given as follows: 641

Ea = ess + P (Ui = 0)et · Psa

+
(
P0PF

(
1 − PA

F

)
+ P1PD

(
1 − PA

D

))
et ·

(
1
M

)
(41)

where the first, second, and third terms refer to the energy 642

consumed in spectrum sensing, legitimate transmission, and 643

illegitimate transmission, respectively. 644

As a comprehensive metric, the individual energy efficiency 645

can be introduced as the ratio of the average achievable through- 646

put to the average energy consumption as follows: 647

μ =
D

E
. (42)

It is obvious from the proposed attacker-punishment policy 648

that an attacker will be punished by reducing its scheduling 649

probability that yields in lowering the achievable throughput 650

and consequently poor energy efficiency. Such punishment can 651

generate a reaction at the attacker side if its energy efficiency 652

falls below a specific threshold. The expected reaction is rep- 653

resented by either leaving the CR or quitting the attack and 654

switching to an honest mode. 655
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A. Worst-Case Scenario656

Considering the worst-case scenario (M 	 H), the analysis657

can be divided into two cases: Case I) before removing the658

identified attackers (i ≤ T ) and Case 2) after removing the659

identified attackers (i > T ):660

Case 1—i ≤ T : As the number of attackers is very large,661

then both PD and PF approximately equal to 0 and 1, respec-662

tively. Substituting that in (36), it can be simplified as follows:663

P (Ui = 0)|wcI
≈ P1. (43)

Using (43) and the approximated values of λh and λa, given664

in (30) and (31), the scheduling probability for an honest CU665

in the worst-case scenario before removing identified attackers666

can be approximated as follows:667

Psh |wcI
≈ P1 − P1(1 − Pdh)

NP1 −MP1(1 − Pda)−HP1(1 − Pdh)

≈ Pdh

MPda +HPdh
. (44)

Likewise, the scheduling probability for an attacker in the668

worst-case scenario before removing the identified attackers669

can be approximated as follows:670

Psa |wcI
≈ Pda

MPda +HPdh
. (45)

As Pdh is usually much larger than Pda, the scheduling671

probability for an honest CU should be larger than an attacker,672

according to (44) and (45).673

Case 2—i > T : The analysis of this case is different form the674

previous one since the ignored attackers are no longer affecting675

the global decision. For simplification, we consider that all676

attackers have been removed, and none of the honest CUs are677

incorrectly removed. This assumption is reasonable and can be678

attained by the proposed attacker-identification policy with a679

proper adjustment of ζ. Moreover, we consider that the CRN680

contains a sufficient number of honest CUs that can attain high681

global detection probability (≈ 1) and low global false-alarm682

probability (≈ 0) after removing attackers. By applying these683

assumptions to (11) and (36), the following approximations can684

be obtained:685

λh|wcII
≈ P0Pfh (46)

λa|wcII
≈ P0Pfa (47)

P (Ui = 0)|wcII
≈ P0. (48)

However, these approximations cannot be directly applied to686

(37) since the counters are affected by the first case (i ≤ T ).687

Instead, it can be applied to (33), taking into account the effect688

of the first case. Accordingly, the scheduling probability for689

an honest CU in the worst-case scenario after removing the690

identified attackers can be seamlessly obtained by substituting691

the approximations in (37). It can be noticed that the scheduling692

probability for an honest CU is larger than the scheduling693

probability for an attacker since Pdh > Pda and Pfh < Pfa.694

TABLE I
SIMULATION PARAMETERS

Fig. 3. Counter’s incrementing probability for honest CUs λh and attackers
λa versus the total number of attackers M . T = 30.

VI. PERFORMANCE EVALUATION 695

AND SIMULATION RESULTS 696

Here, we provide a comprehensive evaluation of the two 697

proposed policies. In particular, we show the performance of 698

the proposed attacker-identification policy compared with the 699

proposed policy in [14]. Briefly, the proposed attacker identifi- 700

cation in [14] has the same procedure as ours, except that the 701

evaluation is based on the agreement with the global decision 702

taken at the FC. Regarding the proposed attacker-punishment 703

policy, as there is no similar policy in the literature, we explore 704

the performance by comparing the individual energy efficiency 705

between attackers and honest CUs. 706

A CRN of a fixed number of honest CUs (H=5) is considered. 707

The number of attackers is left variable to show its influence 708

on the different system parameters and probabilities. The sim- 709

ulation parameters regarding the licensed spectrum occupancy, 710

energy consumption, and local sensing performance are kept 711

fixed, as shown in Table I. Other parameters that differ among 712

figures are listed in the caption of the corresponding figure. 713

A. Attacker-Identification Policy 714

The probability of incrementing the Bn counter λn plays 715

a key role in the proposed attacker-identification policy. 716

Fig. 3 plots λn for honest CUs and attackers versus the total 717
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Fig. 4. Ignoring probability for honest CUs and attackers versus the ignoring
threshold ζ . T = 30, and M = 1.

number of attackers present in the CRN. The large difference718

between λh and λa, even for the whole range of M , is due to719

the reliable evaluation base, i.e., the data delivery, by which the720

counters are updated. Notice that, even in the case of a large721

number of attackers, the honest CUs still have low probability722

of incrementing their counters compared with the attackers. The723

initial fluctuation in both curves is due to the FR and odd–even724

of the total number of CUs (N). For example, at M = 2 and725

M = 3, the total numbers of CUs are N = 7 and N = 8,726

respectively, whereas the FR in both cases is K = 4. However,727

the induced fluctuation diminishes as M increases. Another im-728

portant note is on the range of M 	 H , where both λh and λa729

stay constant and to the values obtained in (30) and (31),730

respectively, which verifies the approximations we made in the731

worst-case scenario.732

The ignoring probability of attackers and honest CUs versus733

the ignoring threshold for the proposed policy and [14] is shown734

in Fig. 4 at M = 1 and in Fig. 5 at M = 10. In both figures and735

for both types of CUs, the ignoring probability is a decreasing736

function of ζ. Considering our proposal in both figures, at low737

values of ζ (less than 3), both attackers and honest users have738

a high ignoring probability. This is because ζ is low, which is739

the number of mismatches, and any normal user can exceed it.740

At high values of ζ (more than 15), both attackers and honest741

users will not be able to exceed the threshold; thus, they will not742

be ignored. At medium values of ζ, which is the critical range,743

honest users will not exceed it, whereas attackers will exceed744

the ignoring threshold. Moreover, notice that when the honest745

CUs represent the majority, as shown in Fig. 4, both policies746

present a good performance, and all attackers can be identified747

without ignoring any of the honest CUs when ζ is properly748

adjusted. However, when the attackers pose the majority of the749

CUs, as shown in Fig. 5, the ignoring probability of honest750

CUs is more than that of the attackers in the policy proposed751

in [14], whereas our proposal is still able to provide Pign,a = 1752

Fig. 5. Ignoring probability for honest CUs and attackers versus the ignoring
threshold ζ . T = 30, and M = 10.

and Pign,h = 0 with a proper choice of ζ. This is because the 753

global decision is used in [14] as an evaluation base, which is 754

mainly affected by the majority of CUs, whereas our proposal 755

is approximately unaffected by the majority of CUs. 756

An interesting property of the proposed policy is that the 757

proper ζ is not only one value, whereas it can take a wider 758

range. In other words, the selection of ζ is not very critical 759

(sensitive). For example, as shown in Fig. 4, ζ can take the 760

values from 4 to 9 while keeping the ignoring probability of an 761

attacker above 90% and the ignoring probability of an honest 762

user is less than 10%. 763

One of the major problems of attackers is increasing the 764

interference at the licensed users, which is caused by increas- 765

ing the missed-detection probability at the global decision. In 766

Fig. 6, we show the performance of the proposed attacker- 767

identification policy in terms of the missed-detection and false- 768

alarm probabilities versus the ignoring threshold ζ. It can be 769

noted that the missed detection can be hugely reduced by 770

employing the proposed policy. However, an eye should be kept 771

on the resulting false-alarm probability since it represents an 772

important performance metric. Fortunately, our proposal can 773

achieve a very low missed-detection probability and, simulta- 774

neously, keep a low false-alarm probability for a wide range 775

of ζ (from 4 to 11). Moreover, the superiority of our proposal 776

with respect to [14] is evident, which proves the high perfor- 777

mance of the proposed policy, even if the attackers represent 778

the majority. 779

The difference between the ignoring probabilities for attack- 780

ers and honest CUs, which is used as optimization objective, 781

is shown versus ζ at different durations of the evaluation time 782

window T in Fig. 7. The curve show a convex shape that 783

achieves its maximum at the optimal ignoring threshold ζ∗. 784

In Figs. 4, 5, and 7, the importance of optimizing ζ is clear. 785

Thus, we use the optimal ζ that maximizes the difference be- 786

tween Pign,a and Pign,h for the two policies to find the number 787
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Fig. 6. Missed-detection and false-alarm probabilities versus the ignoring
threshold ζ for the proposed attacker-identification policy and the proposal
in [14]. T = 30, and M = 10.

Fig. 7. Difference between ignoring probability for attackers Pign,a and
honest CUs Pign,a versus the ignoring threshold ζ for different values of T .
M = 1.

of ignored attackers and honest CUs versus the total number of788

attackers, as shown in Fig. 8. Regarding our proposal, almost789

all attackers can be identified whatever their number, and at790

the same time, none of the honest CUs will be incorrectly791

identified as an attacker. On the other hand, the proposal in [14]792

works well only when the majority of CUs are honest. In the793

case of the majority being attackers, the proposal in [14] either794

identifies all CUs as attackers or identifies none of the CUs as795

attackers.796

B. Attacker-Punishment Policy797

As we have shown the performance of the proposed attacker-798

identification policy in the previous results, we now investi-799

gate on the performance of the attacker-punishment policy. In800

particular, the influence on the individual energy efficiency of801

Fig. 8. Average number of ignored honest CUs and attackers at the optimal
ignoring threshold ζ∗ versus the total number of attackers M for the proposed
attacker-identification policy and the one proposed in [14]. T = 30, and
ζ = ζ∗.

Fig. 9. Individual energy efficiency of an honest CU and an attacker versus the
total number of attackers M before removing the identified attackers i ≤ T .
T = 30.

attackers and honest CUs will be shown before and after re- 802

moving the identified attackers from the fusion process. Notice 803

that, as the energy efficiency combines both the throughput and 804

energy consumption together, there is no need to show them 805

individually. 806

Fig. 9 shows the individual energy efficiency of an attacker 807

and honest CU versus the total number of attackers before 808

removing the identified attackers, i.e., when i ≤ T . The individ- 809

ual energy efficiency of honest CUs decreases as the number of 810

attackers increases due to the increase in the false-alarm and the 811
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Fig. 10. Individual energy efficiency of an honest CU and an attacker versus
the ignoring threshold ζ after removing the identified attackers (i > T ).
M = 1, and T = 30.

missed-detection rates. Increasing the false-alarm rate degrades812

the achievable throughput, whereas increasing the missed-813

detection rate wastes the energy consumption. The individual814

energy efficiency of an attacker initially increases and then815

starts decreasing as the number of attacker increases, as shown816

in Fig. 9. There are two reasons of the initial improvement.817

The first reason is that increasing the number of attackers will818

increase the false-alarm rate in the global decision taken at the819

FC, which increases their chances to exploit the unoccupied820

channel in an illegitimate transmission. The second reason is821

decreasing the false-alarm rate in the decision made coopera-822

tively by the attackers themselves. However, at large number823

of attackers, the individual energy efficiency degrades as they824

equally share the illegitimate transmission. An important note825

is that, if we equally distribute the legitimate transmission826

opportunities among all CUs, i.e., without punishment, an827

attacker will legitimately achieve the same energy efficiency828

as an honest CUs, and due to the illegitimate transmission,829

attackers will achieve higher energy efficiency than honest CUs.830

In Fig. 9, the proposed attacker-punishment policy succeeds831

in reducing the energy efficiency of attackers at a low number832

of attackers. However, in the presence of a large number of833

attackers, the proposed policy cannot provide the desired per-834

formance unless the attackers are removed. Figs. 10 and 11835

plot the individual energy efficiency of an attacker and an836

honest CU versus the ignoring threshold ζ after removing837

the identified attackers at M = 1 and M = 10, respectively.838

Apparently, ζ has a significant role in the performance of839

the attacker punishment after removing the identified attackers840

(i > T ). A proper choice of ζ can remove all attackers from841

the fusion process and leave only the honest CUs. Hence, the842

former effect of the attackers on the sensing performance (PD843

and PF ) will be completely eliminated, which, consequently,844

reduces the illegitimate throughput of attackers. Notice that,845

Fig. 11. Individual energy efficiency of an honest CU and an attacker versus
the ignoring threshold ζ after removing the identified attackers (i > T ).
M = 10, and T = 30.

Fig. 12. Individual energy efficiency of an honest CU and an attacker at the
optimal ignoring threshold ζ∗ versus the total number of attackers M after
removing the identified attackers (i > T ). T = 30, and ζ = ζ∗.

at ζ = T , none of the attackers nor the honest CUs will be 846

removed; thus, the obtained values will be exactly as in the 847

case of i ≤ T . 848

The optimization of ζ should be carried out to avoid pun- 849

ishing honest CUs rather than attackers. In Fig. 12, ζ is set 850

to the optimal value, and the individual energy efficiency of 851

an attacker and an honest CU are found versus the number 852

of attackers. The high performance of the proposed attacker- 853

punishment policy clearly appears in the difference in the en- 854

ergy efficiency, even in the case of a large number of attackers. 855
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The individual energy efficiency of an honest CU slightly de-856

creases as the number of attackers increases due to the increase857

in the probability of not detecting some of the attacker as their858

number increases. However, the energy efficiency of an honest859

CU is still more than twice the energy efficiency of an attacker.860

VII. CONCLUSION861

Two policies to combat SSDF attackers in infrastructure-862

based CRNs have been proposed. The first policy is an attacker-863

identification policy that aims at detecting attackers and864

ignoring their reported sensing results, whereas the second is an865

attacker-punishment policy that redistributes the transmission866

opportunities among users based on their local performance.867

Both policies are developed based on a novel approach for868

assessing the local performance according to the delivery of869

the transmitted data. Analytical and simulation results have870

shown that the attacker-identification policy is able to identify871

attackers whatever their number in the network and that the872

attacker-punishment policy is able to punish attackers by de-873

grading their individual energy efficiency compared with the874

honest users.875

Future work will include the evaluation of the performance876

of the proposed policies in presence of different attackers’877

strategies. Indeed, an open challenge for any security policy is878

to consider the case when attackers may learn from the outcome879

of their previous decisions and act adaptively.880
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Identification and Punishment Policies for Spectrum
Sensing Data Falsification Attackers Using

Delivery-Based Assessment
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Saud Althunibat, Birabwa Joanitah Denise, and Fabrizio Granelli, Senior Member, IEEE4

Abstract—Spectrum sensing data falsification (SSDF) attacks5
represent a major challenge for cooperative spectrum sensing6
(CSS) in cognitive radio (CR) networks. In an SSDF attack, a mali-7
cious user or many malicious users send false sensing results to the8
fusion center (FC) to mislead the global decision about spectrum9
occupancy. Thus, an SSDF attack degrades the achievable detec-10
tion accuracy, throughput, and energy efficiency of CR networks11
(CRNs). In this paper, a novel attacker-identification algorithm12
is proposed that is able to skillfully detect attackers and reject13
their reported results. Moreover, we provide a novel attacker-14
punishment algorithm that aims at punishing attackers by low-15
ering their individual energy efficiency, motivating them either to16
quit sending false results or leave the network. Both algorithms17
are based on a novel assessment strategy of the sensing perfor-18
mance of each user. The proposed strategy is called delivery-based19
assessment, which relies on the delivery of the transmitted data20
to evaluate the made global decision and the individual reports.21
Mathematical analysis and simulation results show promising22
performance of both algorithms compared with previous works,23
particularly when then the number of attackers is very large.24

Index Terms—Author, please supply index terms/keywords for25
your paper. To download the IEEE Taxonomy go to http://www.26
ieee.org/documents/taxonomy_v101.pdf.27

I. INTRODUCTION28

29 THE increase in wireless services is accompanied with an

AQ1

30

increase in demand for the radio spectrum, which is a re-31

source that cannot be expanded. Most useful radio spectrum has32

already been allocated; thus, it becomes extremely hard to find33

vacant bands for new services. However, measurements show34

that licensed spectrum is rarely used at full capacity at all times35

by its licensed users [1]. Aiming at solving the problems of36

spectrum scarcity and inefficient spectrum utilization, cognitive37

radio (CR) technology has been proposed [2], [3]. In CR, the38
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unlicensed users, which are also called cognitive users (CUs), 39

can opportunistically utilize the temporarily unused portions 40

of the licensed spectrum. CR has enabled and supported many 41

emerging application [4]. 42

In CR, as an initial step, CUs must sense the spectrum for 43

available opportunities, to avoid any collision or interference 44

with the licensed users [5]. However, individual spectrum sens- 45

ing suffers from shadowing and multipath fading, leading to 46

degraded performance represented by inducing interference at 47

the licensed users and inefficient utilization of the spectrum op- 48

portunities [6]. Therefore, cooperative spectrum sensing (CSS) 49

is proposed to improve the sensing performance [7], [8]. In 50

CSS, all CUs send their local sensing results, to a central entity, 51

which is called a fusion center (FC), which combines all results 52

and makes a global decision about spectrum availability. 53

Although CSS improves the reliability of a spectrum sensing 54

process, it introduces extra energy consumption [9], time delay 55

[10], and security threats [11]. In this paper, we handle the 56

security threat that is called spectrum sensing data falsification 57

(SSDF) attack [12]. The SSDF attacker is represented by a 58

CU that sends false spectrum sensing reports, trying to cause 59

a wrong global decision about spectrum availability at the FC 60

[13]. The motivation of SSDF attackers is to prevent other CUs 61

from exploiting the spectrum, such that they can increase their 62

own transmission opportunities [14]. However, some honest 63

CUs may appear like attackers because of their bad sensing 64

performance caused by either shadowing and fading, a noisy 65

reporting channel, or a malfunctioning sensor [15]. Such type 66

of CUs is called an unintentional attacker [16] Nevertheless, 67

both intentional and unintentional attackers degrade the detec- 68

tion accuracy, which in turn influences throughput and energy 69

efficiency of the other honest CUs. Therefore, it is of paramount 70

importance to eliminate these attackers from the network. 71

The two well-known approaches, i.e., Bayesian detection [17] 72

and Neyman–Person test [18], for signal detection are no longer 73

optimal in the presence of SSDF attacks [19]. In addition, 74

both approaches require a priori knowledge about the local 75

sensing performance. Several works have investigated the de- 76

fense against SSDF attacks. For example, in [14], an algorithm 77

is proposed to identify attackers by counting the number of 78

mismatches between each CU’s local decisions and the global 79

decision at the FC. Once the number of mismatches exceeds 80

a given threshold, the corresponding CU will be considered 81

an attacker; thus, its reports will be ignored. This approach 82

however becomes unreliable when the number of attackers is 83

large, giving an unreliable final decision. An outlier detection 84

0018-9545 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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method is presented in [20], where the report history of each85

CU is represented in a high-dimensional space to detect any86

abnormalities. A detection scheme is proposed in [21], where87

it calculates a trust value and a consistency value for each CU88

based on its past reports. Once both values fall below predefined89

thresholds, the received reports from the corresponding CU are90

no longer considered in the fusion process. However, the algo-91

rithm is valid only for one attacker. In [22], an algorithm that92

involves setting randomly distributed evaluation frames is pro-93

posed. In each evaluation frame, the FC decides if the spectrum94

is free, irrespective of the reported local decisions. A CU is then95

scheduled for data transmission, and depending on its success,96

the actual status of the spectrum is defined, giving the ability for97

the FC to assess local decisions in that frame and assign to each98

CU a weight related to its actual performance. A drawback of99

this algorithm is that it causes interference to the licensed users100

during evaluation frames. Recently, an adaptive reputation-101

based clustering against collaborative attackers is proposed102

in [23]. It is based on clustering CUs into multiple clusters103

according to the sensing history and the reputation of each104

CU. Such a step separates attackers into one cluster (or more),105

alleviating their influence on the global decision since each106

cluster casts only one vote in global voting at the FC. The algo-107

rithm is developed to handle different scenarios of collaboration108

among attackers. Although a high performance has been shown,109

the adaptive clustering, internal voting, and reputation updating110

phases may induce high complexity and consume a significant111

amount of time and energy resources. It is worth mentioning112

that there are other promising algorithms against SSDF attacks113

in noncentralized networks. For example, in [24] and [25], a114

biologically inspired algorithm is proposed to detect attackers115

in ad-hoc CR networks (CRNs). The algorithm implies that,116

after exchanging the sensing results with the neighbors, each117

CU should identify the neighbor with the maximum deviation118

as an attacker. The algorithm is iteratively repeated until a119

consensus is reached.120

Identifying attackers is a very crucial process that should be121

carefully carried out to avoid detecting honest CUs as attackers.122

Thus, attacker identification should be built on a reliable base123

that cannot be affected if the number of attackers is large. In124

this paper, we consider the delivery of the transmitted data125

as a base of evaluating the individual performance and, con-126

sequently, identifying attackers. Notice that, in infrastructure-127

based CRNs, the data transmission is performed through the128

base station (BS) [26]. Thus, it is easy to ensure if the trans-129

mitted data are successfully delivered or not; hence, the actual130

spectrum status will be known at the FC. Using the obtained131

spectrum status, all the individual sensing results can be evalu-132

ated accordingly. Based on the evaluated performance of each133

CU, attackers can be seamlessly detected and removed from the134

fusion process at the FC.135

Identifying attackers possess an initial step to alleviate their136

effects on the network performance. However, a further action137

should be taken against identified attackers in the subsequent138

data transmission phase. Depriving attackers of scheduling op-139

portunity in data transmission phase is a bad choice. This is be-140

cause the attacker identification is an imperfect process, where141

a false identification of an honest CU as an attacker is probable.142

Moreover, an identified attacker could be an honest CU that suf- 143

fers from poor sensing performance. On the other hand, keeping 144

all CUs honest and attackers equal in scheduling probability 145

is unfair with respect to the honest CUs. In this paper, we 146

propose a scheduling policy based on assigning a scheduling 147

probability to each CU related to its sensing performance. For 148

attackers, such policy establishes a punishment strategy, where 149

a low scheduling probability is assigned to them, and hence, 150

the policy reduces individual throughput and energy efficiency. 151

Thus, the proposed punishment policy is aiming at motivating 152

attackers to quit reporting false reports. On the other hand, 153

honest CUs will gain proportional fair distribution of data 154

transmission, corresponding to their local sensing performance. 155

Although the considered setup is challenging, as it will be 156

described later, both proposed policies show promising results 157

even in the worst-case scenario where the number of attackers is 158

very large. Mathematical analysis and simulation results explore 159

the significant improvement in the overall performance achieved 160

by the proposed policies compared with previous works. The 161

contributions of this paper can be summarized as follows: 162
163

• introducing data delivery as a base for evaluating the per- 164

formance of the individuals in infrastructure-based CRNs 165

as delivery-based assessment is a novel strategy and has 166

never been proposed before to the best of our knowledge; 167

• proposing a novel attacker-identification algorithm that is 168

able to skillfully detect attackers and completely eliminate 169

their influence on the CRN; 170

• proposing an attacker-punishment algorithm that is based 171

on lowering the energy efficiency of the attacker, motivat- 172

ing it either to quit attacking or to leave the CRN. 173

The initial idea of this paper has been proposed earlier in 174

our work [27]. However, in addition to the expanded litera- 175

ture review, introduction, and motivations, there are several 176

differences/increments over our previous work [27], which are 177

summarized as follows. 178
179

• The proposed identification policy in [27] is based on 180

instantaneous check, whereas in this paper, the mismatch 181

counters are checked after T sensing rounds. Such a 182

difference results in a completely different performance 183

between the two policies. 184

• In this paper, an extensive mathematical analysis of per- 185

formance of the proposed identification and punishment 186

polices has been presented, whereas the earlier work in 187

[27] lacks the mathematical analysis. 188

• Unlike this paper, the optimization of the identification 189

threshold has not been addressed in [27] neither math- 190

ematically nor by simulations. Moreover, the worst-case 191

scenario has been investigated in this paper for both: the 192

identification algorithm and the punishment policy. 193

• Simulation results in [27] have been focused on the energy 194

efficiency performance of the attacker/honest users. It 195

means that the attention was mostly paid for the pun- 196

ishment policy performance. However, in this paper, a 197

detailed evaluation of both the identification and punish- 198

ment policy has been presented in terms of the detection 199

accuracy and energy efficiency. 200
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A related work is [14]. However, several differences should201

be highlighted as follows.202203

• In [14], an identification algorithm for attackers is pre-204

sented by evaluating their sensing performance based on205

the majority decision. Such an algorithm can work well206

in the presence of a low number of attackers. However,207

when the number of attacker is large, the reliability of208

majority decision is highly degraded as the majority are209

attackers. Such a drawback has motivated us to find an al-210

ternative evaluation base rather than the majority decision.211

Thus, in this paper, the data delivery has been used to as-212

sess the sensing performance of users. Employing data de-213

livery in such a purpose is a novel contribution that should214

be accounted for in this paper. Employing data delivery215

has shown very good performance results even in the case216

of the large number of attackers (worst-case scenario).217

• The optimization of the removal (ignoring) threshold in218

[14] has yet to yield a closed-form expression of the219

optimal threshold, whereas a closed-form mathematical220

expression of the optimal removal threshold has been221

presented in this paper, which maximizes the difference222

between the ignoring probability of attackers and honest223

users.224

• The work in [14] is only an identification algorithm,225

whereas this paper includes a punishment policy for attack-226

ers. Punishing attackers by lowering their energy efficiency227

is a novel contribution has not been presented before.228

The mathematical and simulation results have proved the229

effectiveness of the proposed punishment policy.230

The remainder of this paper is organized as follows. Section II231

describes the system model and the attacker model, fol-232

lowed by the employed evaluation metrics, whereas Section III233

presents the proposed delivery-based assessment approach.234

The proposed attacker-identification algorithm is discussed in235

Section IV along with the necessary mathematical framework236

and the analysis of the worst-case scenario. Section V proposes237

the attacker-punishment algorithm. Performance evaluation and238

simulation results are presented in Section VI, and conclusions239

are drawn in Section VII.240

II. SYSTEM MODEL241

Consider a CRN consisting of N CUs cooperating to oppor-242

tunistically access the licensed spectrum whenever it is free.243

The CRN is considered an infrastructure-based type [13], where244

the CSS and data transmission is coordinated by the BS. An245

example of such network is IEEE 802.22 [28]. The adopted CR246

model in this paper is Interweave model, where both CUs and247

licensed users coexist on the same geographical area, and CUs248

can use the spectrum only if it is unoccupied by the licensed249

users [29]. For simplicity, the licensed spectrum is modeled250

as a single channel, although it can be easily extended to a251

multiple-channel scenario. In each CSS round, each CU senses252

the licensed spectrum, and depending on its sensing result, it253

solves a hypothesis testing problem deciding on one of two254

hypotheses: either H0 that implies spectrum is unused or H1 for255

spectrum is used. It then reports its binary local decision un =256

{1 ≡ “used,” 0 ≡ “unused”} to the FC that is located at the BS.257

The reliability of the local decision of a CU is evaluated 258

by two indicators: local detection probability Pdn and local 259

false-alarm probability Pdf . While the former represents the 260

probability of identifying a used spectrum as used, the latter 261

denotes the probability of identifying an idle spectrum as used. 262

As CSS demands, all CUs report their local decisions to the 263

FC, which combines and issues a final decision about spectrum 264

occupancy according to a specific fusion rule (FR). The general 265

FR for binary local decisions is called K-out-of-N rule [30]. 266

Based on this FR, if the number of local decisions of 1 is 267

larger or equal to the threshold K , the global decision should 268

be 1 (used). Otherwise, the global decision is 0 (unused). If 269

we denote the local decision in the ith round by un,i, then the 270

global decision of that round Ui is made as follows: 271

Ui =

{
1 ≡ used, if

∑N
n=1 un,i ≥ K

0 ≡ unused, if
∑N

n=1 un,i < K.
(1)

Three popular FRs are derived for this rule, namely, OR rule 272

(K = 1), AND rule (K = N), and majority rule (K = N/2) 273

[31]. Similar to the local decision, the reliability of the final 274

decision is measured by two metrics, the overall detection 275

probability PD and the overall false-alarm probability PF . 276

Both are defined as at the local level but regarding the final 277

decision rather than the local decision. Both PD and PF can 278

be combined to describe the global detection accuracy in one 279

metric called error probability (Pe) given as follows [30]: 280

Pe = P0PF + P1(1 − PD) (2)

where P0 and P1 are the probabilities that the spectrum is 281

unused or used, respectively. 282

Upon issuing the final decision, a CU will be scheduled for 283

data transmission only if the final decision is “unused,” whereas 284

in the case of identifying the spectrum as “used,” the FC will 285

not schedule any of the CUs to avoid interference to the licensed 286

users. 287

A. Attacker Model 288

As in other wireless networks, CRNs are usually vulnerable 289

to different security threats. One of these threats, which is 290

not typical in the other wireless networks, is the SSDF attack 291

(see Fig. 1). In the SSDF attack, a malicious CU sends false AQ2292

reports about the spectrum availability to the FC to mislead 293

the final decision. The motivation behind such attack is to 294

exploit the spectrum holes for their own transmission. To satisfy 295

this motivation, the optimal attack strategy is to always report 296

the spectrum as “used,” also called “Always-Yes” attack [32]. 297

However, such strategy is easy to detect at the FC. Thus, smarter 298

attackers usually follow a different strategy to elude the FC and 299

avoid detection and negligence. The smart strategy is based on 300

inverting the actual local sensing result in a selective manner. 301

Specifically, an attacker decides in each CSS round to attack, or 302

not, with a probability, which is denoted Pm. If the attacker 303

decides to attack in a specific round, it simply flips its own 304

local decision and reports it to the FC. Such attacker model is 305

usually termed as Byzantine attackers [32]–[34]. The sensing 306
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Fig. 1. Example of a CRN in the presence of SSDF attackers.

performance, i.e., Pdn and Pfn, of an attacker as it appears at307

the FC based on such strategy can be mathematically modeled308

as follows [14]:309

Pdn =Pm (1 − P ac
dn) + (1 − Pm)P ac

dn (3)

Pfn =Pm (1 − P ac
fn ) + (1 − Pm)P ac

fn (4)

where P ac
dn and P ac

fn represent the actual (honest) detection and310

false-alarm probabilities, respectively. Notice that this model is311

valid for an honest CU if we set Pm to zero.312

For simplicity, let us assume that all honest CUs are identical313

in their sensing performance, i.e., Pdn = Pdh and Pfn = Pfh.314

Likewise, the attackers are considered to have identical perfor-315

mance, i.e., Pdn = Pda, and Pfn = Pfa.316

Since the main motivation of attackers is to increase their317

achievable throughput while degrading the throughput of the318

honest CUs, the attacker will exploit the case of false alarm to319

perform individual transmission without coordination from the320

BS. Specifically, we consider that the attackers will cooperate321

among themselves to make their own global decision based322

on their honest performance. Accordingly, once a false alarm323

occurs at the FC, if their own global decision does not agree324

with the decision of the FC, the attackers will select one of325

them randomly to transmit its own data individually. From now326

on, we denote the detection and false-alarm probabilities of the327

global decision of attackers by PA
D and PA

F , respectively.328

The following steps summarize the function of the attacker329

model considered in this paper.330
331

1) At each sensing round, all attackers will sense the spec-332

trum (as the honest users do), and each attacker will333

individually make a local decision regarding the spectrum334

occupancy.335

2) Each attacker will individually decide to send a false 336

report or not (attack or not) with a probability Pm. 337338

a) If an attacker has decided to attack, it will invert its 339

local decision and report it to the FC. 340

b) Otherwise (if the attacker has decided not to attack), it 341

will send its actual (honest) local decision to the FC. 342

3) Directly, attackers will share their actual (honest) local 343

decisions and decide internally a global decision (let us 344

call it the global attackers’ decision). 345

4) If the FC has made a global decision that the spectrum is 346

unused, one of the users (it could be an attacker) will be 347

scheduled for data transmission in this round. 348

5) If the FC has made a global decision that the spectrum is 349

used, then attackers will check their own global decision 350

(global attackers’ decision). If it is different from the 351

global decision of the FC, one of the attackers will be 352

scheduled for data transmission in this round. 353

Notice that the cooperation among attackers assumed in this 354

paper is different from other assumptions in the literature. The 355

cooperation assumed here includes sharing the local decisions 356

among attackers to exploit the spectrum hole missed by the FC, 357

if any. Other assumptions may imply sharing the local decisions 358

before reporting them to the FC, aiming at deciding if local 359

decisions should be changed or not [23]. 360

B. Throughput and Energy Efficiency 361

According to the considered CRN model, an honest CU 362

has the chance to transmit only if it has been legitimately 363

scheduled by the FC. On the other hand, an attacker can 364

get a transmission opportunity in two cases: if it has been 365

legitimately scheduled by the FC and if it has been selected 366

by the other attackers to transmit in the case of a false alarm 367

at the FC. We call the achievable throughput in the first case 368

the legitimate throughput, whereas the illegitimate throughput 369

is the throughput achieved in the second case. 370

Notice that increasing the false-alarm probability, which is a 371

result of SSDF attackers, will increase the illegitimate through- 372

put of attackers, which in turn degrades the achievable through- 373

put of the honest CUs. However, increasing the throughput is 374

always accompanied with more energy consumption. There- 375

fore, for evaluation purposes, we use the individual energy 376

efficiency of the CU as a comparison metric between attackers 377

and honest CUs. Individual energy efficiency of a CU is defined 378

as the ratio of the individual throughput achieved in bits to 379

the individual energy consumed in Joules. According to the 380

considered setup, it is expected that the individual achievable 381

throughput, the individual energy consumption and the individ- 382

ual energy efficiency will be different for an honest CU and an 383

attacker. 384

C. Example 385

Let us consider a CRN of five honest CUs with identical 386

detection and false-alarm probabilities equal to 0.8 and 0.1, 387

respectively. The final decision is made based on majority rule. 388

In Fig. 2, we plot the effects on the detection accuracy and 389
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Fig. 2. Example of (a) the error probability versus the number of attackers and
(b) the throughput versus the number of attackers.

the achievable throughput if a number of attackers has joined390

the CRN. The local detection and false-alarm probabilities of391

attackers are identical and equal to 0.1 and 0.8, respectively.392

Fig. 2(a) shows the error probability of the final decision as an393

indicator of the detection accuracy versus the number of joined394

attackers, whereas Fig. 2(b) shows the achievable throughput395

of an attacker and an honest CU versus the number of joined396

attackers. The achievable throughput is divided into two parts:397

legitimate throughput resulting from scheduling by the BS398

and illegitimate throughput achieved by individual transmission399

without coordination of the BS. Clearly, the increase in the error400

probability and the degradation in the achievable throughput401

of honest CUs increase as the number of attackers increases.402

On the other hand, the throughput of attackers increases due403

to the high false-alarm probability that they can cause. Such404

a simple example explores the importance of encountering the405

attackers in CRNs.406

III. DELIVERY-BASED ASSESSMENT407

Most of the previous work depends either on a priori knowl-408

edge about the local performance of the CUs or the final409

decision reliability to detect attackers and remove them. The410

a priori knowledge is not always available, and the global411

decision lacks reliability in the presence of a large number of412

attackers. Instead, in this paper, we propose a novel approach413

that can seamlessly evaluate the sensing performance of each414

CU, and consequently, identify attackers. The proposed ap-415

proach is based on the delivery of the transmitted data of the416

scheduled CU. Specifically, if the licensed channel has been417

decided as unused and one of the CUs has been scheduled418

for data transmission, the successful delivery of the transmitted419

data reveals that the global decision was correct and that the420

channel is actually unused. In the other case, if the transmitted421

data cannot be successfully delivered, the global decision is 422

identified as incorrect, and the channel is actually occupied. 423

Notice that, in both cases, the FC has doubtlessly realized 424

the actual channel status, which can be used to assess all the 425

received local decisions as correct or not. 426

Delivery-based assessment continues in each data transmis- 427

sion phase to formalize a performance indicator for each CU, 428

which can be further employed to identify attackers and honest 429

CUs. The reader should note that considering data delivery 430

as an evaluation base is much more reliable than the global 431

decision, even in the case of large number of attackers. 432

From implementation point of view, the delivery-based as- 433

sessment approach can be easily applied in infrastructure-based 434

CRNs with a BS coordinating the data transmission, as assumed 435

in this paper. However, for centralized CRNs without a BS, 436

where CUs individually access the spectrum, the data delivery 437

can be verified by an additional monitoring process during data 438

transmission performed by the FC itself or another delegated 439

trusted CU. Notice that the monitoring process is much easier 440

than spectrum sensing since the transmitting user is known at 441

the FC. Another option that can verify the data delivery is re- 442

questing a feedback from the scheduled CU. However, it should 443

be taken into account the probability that the scheduled CU 444

is an attacker providing false feedback. To avoid any induced 445

drawback in the delivery-based assessment approach, we con- 446

sider only infrastructure-based CRNs in this paper, which has 447

been widely adopted in the literature [26], [35]–[40], whereas 448

the applicability of a delivery-based approach on other men- 449

tioned CRN types is left as future work. 450

In the following, we describe two novel policies: the attacker- 451

identification policy and the attacker punishment policy. Both 452

of them are developed based on the delivery-based assessment 453

approach. While the attacker-identification policy aims at de- 454

tecting attackers and ignoring their reported local decision in 455

the fusion process, the attacker punishment policy is a schedul- 456

ing policy that leads to a proportional resource distribution 457

according to the evaluated individual performance of each CU. 458

Such a fair scheduling policy acts as a punishment for attackers 459

and a reward for honest CUs. 460

IV. ATTACKER-IDENTIFICATION POLICY 461

Attacker identification is a key factor to improve the overall 462

performance of the CRNs either in terms of detection accuracy 463

or energy efficiency. Attacker identification should be carefully 464

carried out to avoid incorrectly identifying honest CUs as 465

attackers. Once an attacker is identified, it should be removed 466

from the fusion process at the FC, where its reports should be 467

ignored. Here, we propose a novel attacker-identification policy 468

that is able to identify the attackers, whatever their number in 469

the network is. 470

The proposed policy is based on assessing the local decisions 471

according to the delivery of the transmitted data of the sched- 472

uled CU. In detail, once the spectrum is identified as “unused,” 473

a CU will be scheduled for data transmission. Consequently, 474

based on the success of delivering the transmitted data, the 475

actual spectrum status can be correctly defined and used to 476

evaluate the local decisions. Thus, the local decisions reported 477
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in that round can be classified false or correct. If the local478

decision is false, a corresponding counter will be incremented479

by one. After a sufficient amount of time, e.g., T CSS rounds,480

if a counter of a specific CU exceeds a predefined threshold, it481

will be considered an attacker; hence, its reports will be ignored482

at the fusion process.483

Following the proposed policy, a zero-initialized counter,484

which is denoted by Bn,i, for each CU is updated at each CSS485

round as follows:486

Bn,i =

{
Bn,i−1 + 1, if Ui = 0 & Si �= un,i

Bn,i−1, Otherwise
(5)

where the subscript n refers to the CU index, the subscript i487

refers to the sensing round index, and Si represents the actual488

status of the spectrum. The final value of the counter after489

T rounds Bn,T follows a binomial distribution function, as490

follows:491

Prob.{Bn,T = b} =

(
T

b

)
λb
n(1 − λn)

T−b (6)

where b = 0, 1, 2 . . . , T , and λn denotes the probability that492

the counter B will be incremented by one (the probability that493

the local decision of nth user is wrong given that the global494

decision is “unused”), which can be derived as follows:495

λn =P (Bn,i = Bn,i−1 + 1)

=P (H0 ∩ un,i=1 ∩ Ui=0)+P (H1 ∩ un,i=0 ∩ Ui=0).
(7)

Using the following theorem on conditional probability [41]:496

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) (8)

the first term in (7) can be expanded as follows:497

P (H0 ∩ un,i = 1 ∩ Ui = 0)

= P (H0)P (un,i = 1|H0)P (Ui = 0|un,i = 1 ∩H0)

= P0PfnP (Ui = 0|un,i = 1 ∩H0). (9)

Likewise, the second term in (7) can be expanded as follows:498

P (H1 ∩ un,i = 0 ∩ Ui = 0)

= P (H1)P (un,i = 0|H1)P (Ui = 0|un,i = 0 ∩H1)

= P1(1 − Pdn)P (Ui = 0|un,i = 0 ∩H1) (10)

by substituting (9) and (10) in (7), λn can be rewritten as499

follows:500

λn = P0PfnP (Ui = 0|un,i = 1 ∩H0)

+ P1(1 − Pdn)P (Ui = 0|un,i = 0 ∩H1). (11)

The probability λn can be found for an honest CU, which 501

is denoted by λh, by substituting the following probabilities 502

in (11): 503

P (Ui = 0|un,i = 1 ∩H0)|honest

= 1 −
N−1∑

k=K−1

a2∑
j=a1

f(j,M, Pfa)f(k − j,H − 1, Pfh) (12)

P (Ui = 0|un,i = 0 ∩H1)|honest

= 1 −
N−1∑
k=K

a2∑
j=a1

f(j,M, Pda)f(k − j,H − 1, Pdh) (13)

where a1 = max(0, k −H + 1), a2 = min(k,M), H is the 504

number of honest CUs, M is the number of attackers, and 505

the function f(α, β, γ) denotes the binomial function [41], as 506

follows: 507

f(α, β, γ) =

(
β

α

)
γα(1 − γ)β−α. (14)

By the same way, the probability λn can be found for an 508

attacker, which is denoted by λa, by substituting the following 509

probabilities in (11): 510

P (Ui = 0|un,i = 1 ∩H0)|attacker

= 1 −
N−1∑

k=K−1

a4∑
j=a3

f(j,M − 1, Pfa)f(k − j,H, Pfh) (15)

P (Ui = 0|un,i = 0 ∩H1)|attacker

= 1 −
N−1∑
k=K

a4∑
j=a3

f(j,M − 1, Pda)f(k − j,H, Pdh) (16)

where a3 = max(0, k −H), a4 = min(k,M − 1). 511

Now, from (6), the average value of Bn,T of the nth CU, 512

which is denoted by Bn,T , can be derived as follows: 513

Bn,T =

T∑
b=0

b · Prob.{Bn,T = b}

=

T∑
b=0

b ·
(
T

b

)
λb
n(1 − λn)

T−b (17)

which can be simplified using the binomial law as follows: 514

Bn,T = Tλn. (18)

Moreover, if we denote the ignoring threshold by ζ, the 515

ignoring probability of the nth CU can be expressed as follows: 516

Pign,n ≡ Prob.{Bn,T ≥ ζ} =

T∑
b=ζ

(
T

b

)
λb
n(1 − λn)

T−b. (19)
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Accordingly, the average number of the remaining CUs after517

T CSS rounds, i.e., those CUs that have not been ignored, can518

be given as follows:519

NT =N−
N∑

n=1

Pign,n=H(1 − Pign,h) +M(1 − Pign,a) (20)

where Pign,h and Pign,a are the ignoring probabilities for an520

honest CU and an attacker, which can be obtained by substitut-521

ing λh and λa instead of λn in (19), respectively.522

A. Optimizing of ζ523

It is worth noting that ζ has a significant role in the proposed524

policy. Low values of ζ may result in identifying some honest525

CUs as attackers, whereas some attackers cannot be identified526

at high values of ζ. Therefore, ζ should be carefully optimized.527

An approach to optimize the threshold ζ is to maximize the528

difference between the ignoring probability of attackers and529

the ignoring probability of honest CUs. Mathematically, the530

maximization problem can be expressed as follows:531

max
ζ

Pign,a − Pign,h (21)

by substituting the values of Pign,a and Pign,h using (19), the532

maximization problem can be rewritten as follows:533

max
ζ

T∑
b=ζ

(
T

b

)
λb
a(1−λa)

T−b−
T∑

b=ζ

(
T

b

)
λb
h(1−λh)

T−b. (22)

The optimal value of ζ can be computed using the Lagrange534

method, where the derivative of the function with respect to ζ is535

equalized to zero. Since ζ is an integer, the derivative of Pign,a536

and Pign,h are respectively given as follows:537

∂Pign,a

∂ζ
= Pign,a(ζ+1)− Pign,a(ζ) = −

(
T

ζ

)
λζ
a(1 − λa)

T−ζ

(23)

∂Pign,h

∂ζ
= Pign,h(ζ+1)−Pign,h(ζ)=−

(
T

ζ

)
λζ
h(1 − λh)

T−ζ .

(24)

Accordingly, the first derivative of the function under optimiza-538

tion in (21) can be given as follows:539

∂

∂ζ
(Pign,a − Pign,h) = −

(
T

ζ

)
λζ
a(1 − λa)

T−ζ

+

(
T

ζ

)
λζ
h(1 − λh)

T−ζ = 0. (25)

The binomial coefficients can be canceled, and the equation can540

be rearranged as follows:541 (
λa(1 − λh)

λh(1 − λa)

)ζ

=

(
1 − λh

1 − λa

)T

. (26)

Now, by applying the natural logarithm to both sides, the542

optimal value of the ignoring threshold that maximizes the543

difference between the ignoring probabilities of attackers and 544

honest CUs, which is denoted by ζ∗, can be given as follows: 545

ζ∗ =

⎡
⎢⎢⎢T

ln
(

1−λh

1−λa

)
ln
(

λa(1−λh)
λh(1−λa)

)
⎤
⎥⎥⎥ (27)

where �·� is the ceiling operator that should be applied to ζ∗ to 546

make it an integer. 547

B. Worst-Case Scenario 548

To explore the high performance of the proposed attacker- 549

identification policy, we consider the worst-case scenario. The 550

worst-case scenario is represented when a large number of 551

attackers is present confronted by a low number of honest CUs 552

(i.e., M 	 H). 553

The performance can be clearly shown in terms of the 554

ignoring probability of attackers and honest CUs. From (19), 555

the ignoring probability of a CU mainly depends on its corre- 556

sponding λn probability. Considering the majority rule as the 557

employed FR, notice that both probabilities given in (11) can 558

be respectively approximated in such scenario as follows: 559

P (Ui = 0|un,i = 1 ∩H0)|wc
≈ 0 (28)

P (Ui = 0|un,i = 0 ∩H1)|wc
≈ 1. (29)

These approximations are valid since, in the case of M 	 H , 560

the probability of making a correct final decision [as in (28)] 561

is almost absent, and the probability of making a false final 562

decision [as in (29)] is almost one. 563

Now, by substituting (28) and (29) in (11), the probabilities 564

λh and λa can be computed as follows: 565

λh|wc
≈P1(1 − Pdh) (30)

λa |wc
≈P1(1 − Pda). (31)

Consequently, since Pdh → 1 and Pda → 0, then λh → 0 566

and λa → P1. Using (19), it is easy to show that Pign,h ≈ 0, 567

whereas Pign,a is still high; hence, attackers can be easily 568

detected with a proper choice of ζ even in the worst-case 569

scenario. 570

The optimal ignoring threshold in the worst-case scenario 571

ζ∗wc can be also approximated by substituting (30) and (31) in 572

(27) as follows: 573

ζ∗wc ≈

⎡
⎢⎢⎢T

ln
(

P0+P1Pdh

P0+P1Pda

)
ln
(

(1−Pda)(P0+P1Pdh)
(1−Pdh)(P0+P1Pda)

)
⎤
⎥⎥⎥ . (32)

V. ATTACKER-PUNISHMENT POLICY 574

Ignoring the reports received from the CUs identified as 575

attackers helps to improve the overall performance of the net- 576

work. However, a false identification is probable, where some 577

honest CUs might be identified as attackers by mistake. More- 578

over, as stated earlier, not all of attackers intentionally send 579

false reports to the FC. Some honest CUs suffer from multipath 580
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fading and shadowing during sensing or noisy reporting chan-581

nels, leading to a bad sensing performance. This type of honest582

CUs will appear like attackers at the FC side. Thus, depriving583

CUs that are identified as attackers from data transmission584

represents a harmful action toward the unintentional attackers.585

On the other hand, providing the same transmission chance586

among all CUs does not attain fairness from honest CUs’587

point of view. Instead, here, we provide a novel scheduling588

policy that distributes the spectrum resources among CUs in589

a proportional fair manner. The proposed scheduling policy590

allocates scheduling probability to each CU based on its sensing591

performance that appears at the FC. Such policy can be deemed592

as punishment for attackers, whereas it provides a fair resource593

distribution for honest CUs.594

The proposed policy is also based on delivery-based assess-595

ment as in the proposed attacker-identification policy. There-596

fore, the assigned scheduling probability for each CU depends597

on the instantaneous value of the counter B. The scheduling598

probability of the nth CU is computed at each CSS round as599

follows:600

Psn =
xi −Bn,i∑N

j=1(xi −Bj,i)
(33)

where xi represents the number of times in which the spectrum601

was identified as “unused” by the final decision until the ith602

CSS round, expressed as follows:603

xi =

{
xi−1 + 1, if Ui = 0

xi−1, if Ui = 1.
(34)

According to (33), an increase in the counter Bn,i for a CU604

implies a magnified punishment through reducing the schedul-605

ing probability. At the ith CSS round, the value of xi follows a606

binomial distribution, where its average value can be given as607

follows:608

xi = i · P (Ui = 0) (35)

where P (Ui = 0) is the probability that the spectrum will be609

identified as unused at the FC, which is expressed as follows:610

P (Ui = 0) = P0(1 − PF ) + P1(1 − PD)

= 1 − P0PF − P1PD. (36)

Consequently, using the average value of Bn,i given in (18),611

the average value of Psn at the ith round can be easily derived612

as follows:613

Psn =
i · P (Ui = 0)− i · λn∑N

j=1 (i · P (Ui = 0)− i · λj)

=
P (Ui = 0)− λn

NP (Ui = 0)−
∑N

j=1 λj

. (37)

The reader should note that the computation of P (Ui = 0)614

and λn before T are different from those after T . This is615

because, after T , some of the users will be identified as at-616

tackers; hence, their reports will be ignored while making the617

global decision at the FC. Moreover, it is worth mentioning that 618

scheduling probabilities are computed based on the accumu- 619

lated counters B and x, which should be kept updated as long 620

as the CRN lasts. 621

According to the proposed punishment policy, the average 622

achievable throughput for an honest CU, which is denoted by 623

Dh, can be expressed as follows: 624

Dh = P0(1 − PF )R · Tt · Psh (38)

where R is the data rate, Tt is the transmission time, and Psh is 625

the average scheduling probability for an honest CU. The factor 626

P0(1 − PF ) represents the case of no false alarm at the FC. 627

On the other hand, the average achievable throughput for an 628

attacker, which is denoted by Da, is divided into two parts, i.e., 629

legitimate and illegitimate, and can be expressed as follows: 630

Da=P0(1 − PF )R · Tt · Psa + P0PF (1 − PA
F )R · Tt ·

(
1
M

)
.

(39)

Notice that the first term (legitimate throughput) is identical 631

to the honest CU except the difference in the scheduling 632

probability, whereas the second term includes the illegitimate 633

throughput. The factor P0PF (1 − PA
F ) represents the case that 634

a false alarm occurs at the FC and that no false alarm is made 635

by the attackers’ global decision. 636

Likewise, the average energy consumption for an honest CU, 637

which is denoted by Eh, is expressed as follows: 638

Eh = ess + P (Ui = 0)et · Psh (40)

where ess and et are the energy consumed in spectrum sensing 639

and data transmission, respectively. For an attacker, the average 640

energy consumed Ea is given as follows: 641

Ea = ess + P (Ui = 0)et · Psa

+
(
P0PF

(
1 − PA

F

)
+ P1PD

(
1 − PA

D

))
et ·

(
1
M

)
(41)

where the first, second, and third terms refer to the energy 642

consumed in spectrum sensing, legitimate transmission, and 643

illegitimate transmission, respectively. 644

As a comprehensive metric, the individual energy efficiency 645

can be introduced as the ratio of the average achievable through- 646

put to the average energy consumption as follows: 647

μ =
D

E
. (42)

It is obvious from the proposed attacker-punishment policy 648

that an attacker will be punished by reducing its scheduling 649

probability that yields in lowering the achievable throughput 650

and consequently poor energy efficiency. Such punishment can 651

generate a reaction at the attacker side if its energy efficiency 652

falls below a specific threshold. The expected reaction is rep- 653

resented by either leaving the CR or quitting the attack and 654

switching to an honest mode. 655
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A. Worst-Case Scenario656

Considering the worst-case scenario (M 	 H), the analysis657

can be divided into two cases: Case I) before removing the658

identified attackers (i ≤ T ) and Case 2) after removing the659

identified attackers (i > T ):660

Case 1—i ≤ T : As the number of attackers is very large,661

then both PD and PF approximately equal to 0 and 1, respec-662

tively. Substituting that in (36), it can be simplified as follows:663

P (Ui = 0)|wcI
≈ P1. (43)

Using (43) and the approximated values of λh and λa, given664

in (30) and (31), the scheduling probability for an honest CU665

in the worst-case scenario before removing identified attackers666

can be approximated as follows:667

Psh|wcI
≈ P1 − P1(1 − Pdh)

NP1 −MP1(1 − Pda)−HP1(1 − Pdh)

≈ Pdh

MPda +HPdh
. (44)

Likewise, the scheduling probability for an attacker in the668

worst-case scenario before removing the identified attackers669

can be approximated as follows:670

Psa|wcI
≈ Pda

MPda +HPdh
. (45)

As Pdh is usually much larger than Pda, the scheduling671

probability for an honest CU should be larger than an attacker,672

according to (44) and (45).673

Case 2—i > T : The analysis of this case is different form the674

previous one since the ignored attackers are no longer affecting675

the global decision. For simplification, we consider that all676

attackers have been removed, and none of the honest CUs are677

incorrectly removed. This assumption is reasonable and can be678

attained by the proposed attacker-identification policy with a679

proper adjustment of ζ. Moreover, we consider that the CRN680

contains a sufficient number of honest CUs that can attain high681

global detection probability (≈ 1) and low global false-alarm682

probability (≈ 0) after removing attackers. By applying these683

assumptions to (11) and (36), the following approximations can684

be obtained:685

λh|wcII
≈ P0Pfh (46)

λa|wcII
≈ P0Pfa (47)

P (Ui = 0)|wcII
≈ P0. (48)

However, these approximations cannot be directly applied to686

(37) since the counters are affected by the first case (i ≤ T ).687

Instead, it can be applied to (33), taking into account the effect688

of the first case. Accordingly, the scheduling probability for689

an honest CU in the worst-case scenario after removing the690

identified attackers can be seamlessly obtained by substituting691

the approximations in (37). It can be noticed that the scheduling692

probability for an honest CU is larger than the scheduling693

probability for an attacker since Pdh > Pda and Pfh < Pfa.694

TABLE I
SIMULATION PARAMETERS

Fig. 3. Counter’s incrementing probability for honest CUs λh and attackers
λa versus the total number of attackers M . T = 30.

VI. PERFORMANCE EVALUATION 695

AND SIMULATION RESULTS 696

Here, we provide a comprehensive evaluation of the two 697

proposed policies. In particular, we show the performance of 698

the proposed attacker-identification policy compared with the 699

proposed policy in [14]. Briefly, the proposed attacker identifi- 700

cation in [14] has the same procedure as ours, except that the 701

evaluation is based on the agreement with the global decision 702

taken at the FC. Regarding the proposed attacker-punishment 703

policy, as there is no similar policy in the literature, we explore 704

the performance by comparing the individual energy efficiency 705

between attackers and honest CUs. 706

A CRN of a fixed number of honest CUs (H=5) is considered. 707

The number of attackers is left variable to show its influence 708

on the different system parameters and probabilities. The sim- 709

ulation parameters regarding the licensed spectrum occupancy, 710

energy consumption, and local sensing performance are kept 711

fixed, as shown in Table I. Other parameters that differ among 712

figures are listed in the caption of the corresponding figure. 713

A. Attacker-Identification Policy 714

The probability of incrementing the Bn counter λn plays 715

a key role in the proposed attacker-identification policy. 716

Fig. 3 plots λn for honest CUs and attackers versus the total 717
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Fig. 4. Ignoring probability for honest CUs and attackers versus the ignoring
threshold ζ . T = 30, and M = 1.

number of attackers present in the CRN. The large difference718

between λh and λa, even for the whole range of M , is due to719

the reliable evaluation base, i.e., the data delivery, by which the720

counters are updated. Notice that, even in the case of a large721

number of attackers, the honest CUs still have low probability722

of incrementing their counters compared with the attackers. The723

initial fluctuation in both curves is due to the FR and odd–even724

of the total number of CUs (N). For example, at M = 2 and725

M = 3, the total numbers of CUs are N = 7 and N = 8,726

respectively, whereas the FR in both cases is K = 4. However,727

the induced fluctuation diminishes as M increases. Another im-728

portant note is on the range of M 	 H , where both λh and λa729

stay constant and to the values obtained in (30) and (31),730

respectively, which verifies the approximations we made in the731

worst-case scenario.732

The ignoring probability of attackers and honest CUs versus733

the ignoring threshold for the proposed policy and [14] is shown734

in Fig. 4 at M = 1 and in Fig. 5 at M = 10. In both figures and735

for both types of CUs, the ignoring probability is a decreasing736

function of ζ. Considering our proposal in both figures, at low737

values of ζ (less than 3), both attackers and honest users have738

a high ignoring probability. This is because ζ is low, which is739

the number of mismatches, and any normal user can exceed it.740

At high values of ζ (more than 15), both attackers and honest741

users will not be able to exceed the threshold; thus, they will not742

be ignored. At medium values of ζ, which is the critical range,743

honest users will not exceed it, whereas attackers will exceed744

the ignoring threshold. Moreover, notice that when the honest745

CUs represent the majority, as shown in Fig. 4, both policies746

present a good performance, and all attackers can be identified747

without ignoring any of the honest CUs when ζ is properly748

adjusted. However, when the attackers pose the majority of the749

CUs, as shown in Fig. 5, the ignoring probability of honest750

CUs is more than that of the attackers in the policy proposed751

in [14], whereas our proposal is still able to provide Pign,a = 1752

Fig. 5. Ignoring probability for honest CUs and attackers versus the ignoring
threshold ζ . T = 30, and M = 10.

and Pign,h = 0 with a proper choice of ζ. This is because the 753

global decision is used in [14] as an evaluation base, which is 754

mainly affected by the majority of CUs, whereas our proposal 755

is approximately unaffected by the majority of CUs. 756

An interesting property of the proposed policy is that the 757

proper ζ is not only one value, whereas it can take a wider 758

range. In other words, the selection of ζ is not very critical 759

(sensitive). For example, as shown in Fig. 4, ζ can take the 760

values from 4 to 9 while keeping the ignoring probability of an 761

attacker above 90% and the ignoring probability of an honest 762

user is less than 10%. 763

One of the major problems of attackers is increasing the 764

interference at the licensed users, which is caused by increas- 765

ing the missed-detection probability at the global decision. In 766

Fig. 6, we show the performance of the proposed attacker- 767

identification policy in terms of the missed-detection and false- 768

alarm probabilities versus the ignoring threshold ζ. It can be 769

noted that the missed detection can be hugely reduced by 770

employing the proposed policy. However, an eye should be kept 771

on the resulting false-alarm probability since it represents an 772

important performance metric. Fortunately, our proposal can 773

achieve a very low missed-detection probability and, simulta- 774

neously, keep a low false-alarm probability for a wide range 775

of ζ (from 4 to 11). Moreover, the superiority of our proposal 776

with respect to [14] is evident, which proves the high perfor- 777

mance of the proposed policy, even if the attackers represent 778

the majority. 779

The difference between the ignoring probabilities for attack- 780

ers and honest CUs, which is used as optimization objective, 781

is shown versus ζ at different durations of the evaluation time 782

window T in Fig. 7. The curve show a convex shape that 783

achieves its maximum at the optimal ignoring threshold ζ∗. 784

In Figs. 4, 5, and 7, the importance of optimizing ζ is clear. 785

Thus, we use the optimal ζ that maximizes the difference be- 786

tween Pign,a and Pign,h for the two policies to find the number 787



IE
EE

Pr
oo

f

ALTHUNIBAT et al.: IDENTIFICATION AND PUNISHMENT POLICIES FOR SSDF ATTACKERS 11

Fig. 6. Missed-detection and false-alarm probabilities versus the ignoring
threshold ζ for the proposed attacker-identification policy and the proposal
in [14]. T = 30, and M = 10.

Fig. 7. Difference between ignoring probability for attackers Pign,a and
honest CUs Pign,a versus the ignoring threshold ζ for different values of T .
M = 1.

of ignored attackers and honest CUs versus the total number of788

attackers, as shown in Fig. 8. Regarding our proposal, almost789

all attackers can be identified whatever their number, and at790

the same time, none of the honest CUs will be incorrectly791

identified as an attacker. On the other hand, the proposal in [14]792

works well only when the majority of CUs are honest. In the793

case of the majority being attackers, the proposal in [14] either794

identifies all CUs as attackers or identifies none of the CUs as795

attackers.796

B. Attacker-Punishment Policy797

As we have shown the performance of the proposed attacker-798

identification policy in the previous results, we now investi-799

gate on the performance of the attacker-punishment policy. In800

particular, the influence on the individual energy efficiency of801

Fig. 8. Average number of ignored honest CUs and attackers at the optimal
ignoring threshold ζ∗ versus the total number of attackers M for the proposed
attacker-identification policy and the one proposed in [14]. T = 30, and
ζ = ζ∗.

Fig. 9. Individual energy efficiency of an honest CU and an attacker versus the
total number of attackers M before removing the identified attackers i ≤ T .
T = 30.

attackers and honest CUs will be shown before and after re- 802

moving the identified attackers from the fusion process. Notice 803

that, as the energy efficiency combines both the throughput and 804

energy consumption together, there is no need to show them 805

individually. 806

Fig. 9 shows the individual energy efficiency of an attacker 807

and honest CU versus the total number of attackers before 808

removing the identified attackers, i.e., when i ≤ T . The individ- 809

ual energy efficiency of honest CUs decreases as the number of 810

attackers increases due to the increase in the false-alarm and the 811
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Fig. 10. Individual energy efficiency of an honest CU and an attacker versus
the ignoring threshold ζ after removing the identified attackers (i > T ).
M = 1, and T = 30.

missed-detection rates. Increasing the false-alarm rate degrades812

the achievable throughput, whereas increasing the missed-813

detection rate wastes the energy consumption. The individual814

energy efficiency of an attacker initially increases and then815

starts decreasing as the number of attacker increases, as shown816

in Fig. 9. There are two reasons of the initial improvement.817

The first reason is that increasing the number of attackers will818

increase the false-alarm rate in the global decision taken at the819

FC, which increases their chances to exploit the unoccupied820

channel in an illegitimate transmission. The second reason is821

decreasing the false-alarm rate in the decision made coopera-822

tively by the attackers themselves. However, at large number823

of attackers, the individual energy efficiency degrades as they824

equally share the illegitimate transmission. An important note825

is that, if we equally distribute the legitimate transmission826

opportunities among all CUs, i.e., without punishment, an827

attacker will legitimately achieve the same energy efficiency828

as an honest CUs, and due to the illegitimate transmission,829

attackers will achieve higher energy efficiency than honest CUs.830

In Fig. 9, the proposed attacker-punishment policy succeeds831

in reducing the energy efficiency of attackers at a low number832

of attackers. However, in the presence of a large number of833

attackers, the proposed policy cannot provide the desired per-834

formance unless the attackers are removed. Figs. 10 and 11835

plot the individual energy efficiency of an attacker and an836

honest CU versus the ignoring threshold ζ after removing837

the identified attackers at M = 1 and M = 10, respectively.838

Apparently, ζ has a significant role in the performance of839

the attacker punishment after removing the identified attackers840

(i > T ). A proper choice of ζ can remove all attackers from841

the fusion process and leave only the honest CUs. Hence, the842

former effect of the attackers on the sensing performance (PD843

and PF ) will be completely eliminated, which, consequently,844

reduces the illegitimate throughput of attackers. Notice that,845

Fig. 11. Individual energy efficiency of an honest CU and an attacker versus
the ignoring threshold ζ after removing the identified attackers (i > T ).
M = 10, and T = 30.

Fig. 12. Individual energy efficiency of an honest CU and an attacker at the
optimal ignoring threshold ζ∗ versus the total number of attackers M after
removing the identified attackers (i > T ). T = 30, and ζ = ζ∗.

at ζ = T , none of the attackers nor the honest CUs will be 846

removed; thus, the obtained values will be exactly as in the 847

case of i ≤ T . 848

The optimization of ζ should be carried out to avoid pun- 849

ishing honest CUs rather than attackers. In Fig. 12, ζ is set 850

to the optimal value, and the individual energy efficiency of 851

an attacker and an honest CU are found versus the number 852

of attackers. The high performance of the proposed attacker- 853

punishment policy clearly appears in the difference in the en- 854

ergy efficiency, even in the case of a large number of attackers. 855
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The individual energy efficiency of an honest CU slightly de-856

creases as the number of attackers increases due to the increase857

in the probability of not detecting some of the attacker as their858

number increases. However, the energy efficiency of an honest859

CU is still more than twice the energy efficiency of an attacker.860

VII. CONCLUSION861

Two policies to combat SSDF attackers in infrastructure-862

based CRNs have been proposed. The first policy is an attacker-863

identification policy that aims at detecting attackers and864

ignoring their reported sensing results, whereas the second is an865

attacker-punishment policy that redistributes the transmission866

opportunities among users based on their local performance.867

Both policies are developed based on a novel approach for868

assessing the local performance according to the delivery of869

the transmitted data. Analytical and simulation results have870

shown that the attacker-identification policy is able to identify871

attackers whatever their number in the network and that the872

attacker-punishment policy is able to punish attackers by de-873

grading their individual energy efficiency compared with the874

honest users.875

Future work will include the evaluation of the performance876

of the proposed policies in presence of different attackers’877

strategies. Indeed, an open challenge for any security policy is878

to consider the case when attackers may learn from the outcome879

of their previous decisions and act adaptively.880
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