SR
Az UNIVERSITY

Department of B OF TRENTO - Italy

Information Engineering
and Computer Science

DISI - Via Sommarive 5 - 38123 Povo - Trento (ltaly)
http://disi.unitn.it

Applying BDI To Serious Games:
The PRESTO Experience

Paolo Busetta?, Paolo Calanca?, Marco Robol?®

! Delta Informatica SpA, paolo.busetta@deltainformatica.eu
2 Delta Informatica SpA, paolo.calanca@deltainformatica.eu
3 Universita’ di Trento, marco.robol@unitn.it

December 2016

Technical Report # DISI-16-011
Version 2.0



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

Applying BDI To Serious Games:
The PRESTO Experience

Paolo Busetta, Paolo Calanca, Marco Robol

Abstract—This article summarizes the main results of PRESTO, a 4-year industrial research project ending in 2016. Its main objective
was the development of an environment for the authoring and control of training sessions in 3D-based serious games, especially in the
domain of emergency management. PRESTO adopts artificial intelligence and reusable components (models of behavior of NPCs and

game-level scripts) and offers end-user tools for their development, in addition to programming frameworks and APIs. The starting
point was the authors’ experiences with the BDI (Belief, Desire, Intention) agent architecture and its cognitive extensions. Given the
relative immaturity of the selected game environments (Unity and XVR) from a behavioral Al perspective, a significant number of
challenges concerning semantics, perception and control had to be tackled. Results presented here include game-agnostic
semantization, composition of tactical agents from reusable behavioral models, agent-level scripting for game-specific behaviors,
game-level scripting to represent agent and game strategies, and graphical development environments directed at game and domain
specialists rather than software engineers. An analysis methodology and a few pilot studies are introduced. The PRESTO suite, used
for the development of commercial training services, is currently available only on request, for both commercial and research uses.

Index Terms—BDI, Autonomous Agents, Artificial Intelligence, Virtual Reality, Simulation, Serious Games, Behavioral Models.

1 INTRODUCTION

RESTO (Plausible Representation of Emergency Sce-

narios for Training Operations) was an industrial R&D
project, led by Delta Informatica SpA, based in Trento
(Italy), and involving various research centers specialized in
knowledge capture, representation and cognitive modelling,
including the University of Trento. The idea at the basis
of PRESTO was to create an all-round development envi-
ronment for NPC’s behaviours, starting from the authors’
experiences in multi-agent systems for decision-support and
for developing “intelligent opponents”, mostly for small-
scale military 3D serious games. With NPC’s behaviours,
we refer to decision-making at cognitive level, specifically
focusing on tactical reasoning concerning how to achieve
goals, rather than either instantaneous, instinctive behavior
or long-term planning. The main technical objectives of the
project were: enabling NPC’s model reusability; creating
modeling environments designed for trainers rather than
software engineers; supporting the intervention of a trainer
on the PRESTO-controlled game to influence decisions and
the unfolding of events. The main business objective was
to ease adoption of serious games in non-military emer-
gency training and other serious and entertainment do-
mains requiring NPCs to show complex, believable behav-
iors adapted to specific needs (i.e. ad-hoc training scenarios
for a small group of trainees) with very limited budget and
time with respect to commercial videogames made for mass
markets.

Progress towards these ambitious goals was hampered

e P. Busetta and P. Calanca work for Delta Informatica Spa, Trento, Italy.
E-mail Busetta: paolo.busetta@deltainformatica.eu;
E-mail Calanca: paolo.calanca@deltainformatica.eu

e M. Robol is at the University of Trento, Italy.
E-mail: marco.robol@unitn.it

by a number of unanticipated obstacles and research chal-
lenges greater than expected. Concerning specifically NPC
decision-making, the encountered issues can be classified in
three main areas:

o Immaturity of the chosen game environments
(Unity! and XVR?), if not of game engines in general,
concerning common behaviours, most importantly
navigation. Many more resources than originally
planned had to be spent on the latter and on other
relatively low-level behaviors, e.g. avatars’ posture
and low-level actions such as pushing and pulling,
also to influence them with cognitive states. Some
interesting results have been reached (see e.g. [1]),
which are not going to be discussed here;

o Immaturity, or perhaps excessive genericity, of the
chosen BDI (Belief Desire Intention [2]) systems,
JACK® and CoJACK* [3] [4] [5], with respect to the
requirements of an agent architecture for PRESTO.
To this end, meta-data and meta-level reasoning fa-
cilities had to be added, semantic services were inte-
grated, and various technological issues with multi-
language developments (Java and C#) had to be dealt
with, as briefly mentioned later;

e Immaturity of methodologies for modeling behav-
iors and training scenarios in BDI terms. While
agent-oriented analysis methodologies are available

1. Unity, unity3d.com [Accessed 19 Sep 2016]

2. XVR, www.xvrsim.com [Accessed 19 Sep 2016]

3. AOS JACK, www.aosgrp.com/products/jack [Accessed 19 Sep
2016]

4. AOS CoJACK, www.aosgrp.com/products/cojack [Accessed 19
Sep 2016]



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

(see e.g. Tropos® and Prometheus®), they are rarely
adopted in industrial practice; further, going be-
yond a procedural or simple rule-based represen-
tation of expected behaviors to methodically cap-
ture e.g. emotion-driven or skill-driven differences
among people is a challenge. Some initial work un-
dertaken in PRESTO is discussed later.

Notwithstanding the difficulties mentioned above,
PRESTO has produced a significant software base, embod-
ied in prototypes of tools at various stages of readiness,
experimented in three pilots (a hospital risk-management
course, delivered in multiple editions to hundredths of
trainees, and two University laboratories on game devel-
opment that produced more than 40 student projects), and
reported in a few research publications. While one can argue
about how far its objectives are from being achieved, in our
opinion the current results show that they are reachable.
PRESTO’ main contributions to the state-of-the-art can be
summarized as follows:

e Semantics: entities and locations in the VR are not
simply classified but can be dynamically tagged to
enable arbitrary reasoning, including on actions and
goals, by observed entities. This is exploited to dy-
namically detect situations, representing a further
abstraction that allows the writing of truly adaptable,
reusable models;

e Modular and dynamically adaptable agent architec-
ture: thanks to meta-data and to its agent frame-
work, a NPC-controlling agent in PRESTO can be
built by composing an arbitrary number of models,
potentially achieving the same goals but in differ-
ent ways, and dynamically selecting a profile that
determines the NPC’s current behaviours. In turn,
this profiling supports the creation of meta-models
of coordination, emotions and other physiological or
social factors without having to hardcode them in the
logic of behaviours;

e End-user programming environments: meta-data
and goal-oriented programming allow the introduc-
tion of high-level languages that allow a domain or
game expert to write custom agent plans and game
scripts that submit sequences of goals and control
their execution according to events unfolding in the
game. To make this language suitable to a non-
programmer, generality is traded-off for expressivity
and graphical editors are provided.

1.1 Article structure

This report, at its second version (the previous one was
extended with more details on semantics and scripting)
summarizes PRESTO’s main outcomes and discusses its
pilot studies that are the basis for Delta Informatica’s
virtual-reality based training services. Next section gives
an overview of PRESTO, its architecture and main compo-
nents. Sec. 3 discusses semantic representations available in
PRESTO, while Sec. 4 provides more details on a specific

5. Tropos, www.troposproject.org [Accessed 19 Sep 2016]

6. Prometheus, sites.google.com/site/rmitagents [Accessed 19 Sep
2016]

2

one, called “situations”. Sec. 5, 6 and 7 focus on PRESTO’s
behavior engine, called DICE, with a closer look at its
features for reusability and meta-modelling. Sec. 8 presents
PRESTO’s game-level scripting environment. The pilot stud-
ies are briefly presented in Sec. 9. Sec. 10 introduces a
methodology for behavior and script development.
December, 2016

2 OVERVIEW OF PRESTO

PRESTO started in 2013 and concluded in November 2016.
PRESTO was led by Delta Informatica and was subsidized
by a grant of the local government: the Provincia Autonoma
di Trento (PAT), Italy. It involved three local research centers:
FBK, DISI of University of Trento, and CIMEC. Its objective
was the creation of a development environment for reusable,
game- and platform-independent NPC behaviours, enabling
adaptation by the end-user and eventually a marketplace of
models. The anticipated modality of use of PRESTO was
to enhance virtual environments with “intelligent” NPCs to
support serious games development. To cover the widest
possible range of development requirements, various game
modalities had been taken into consideration, e.g. multi-
player training games with a supervisor (a trainer or game
master) determining the unfolding of events, unsupervised
single-player games, simulations with no players involved
in first person but rather acting on configurations and game
plot. The main domain of application, as in the pilot project
described later, was emergency management training (EMT)
directed in particular to operatives and coordinators of
public facilities (e.g. hospitals).

At the end of the project, in addition to software architec-
tures and a methodology for capturing stories from domain
experts, PRESTO has produced:

e A modular and extendable framework for the inte-
gration of NPC-controlling agents in generic video-
games;

o a tool suite, described in this paper, for the produc-
tion and run-time control of models of behaviours of
NPCs and game scripts, including languages and ed-
itors directed to domain experts rather than software
programmers;

e a simulation game called PUG (PRESTO Unity
Game), built in-house with Unity 3D, and a PRESTO
plug-in for a commercial 3D EMT product, XVR by
XVR Simulation (formerly E-semble).

Figure 1 summarizes PRESTO and its expected usage
context. The boxes within the blue area are components
created by the project. They include:

o amethodological tool suite directed to a game writer
(the “training strategist” in the picture);

o aset of graphical editors for scripting the behavior of
individual NPCs as well as the overall game meant
to be used both by the game writer and by the game
master (the “instructor”) before running a session;

e a (third-party extensible) library of pre-built, com-
posable BDI models;

o two major engines (one for the agents, called DICE,
and one for the game, indicated as “Director Assis-
tant”) ;



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

Figure 1. PRESTO overview

Training Strategist Instructer

plans |

Training Planner ToolBox
[ %\ v

AR

prepares

?Q‘* |

customizes

Scenario-specific

Scruplsr and
Behaviours

Editors

i—l_i'

Cognitive Engine Director Assistant

Emergency Training
VR Platform | |

XVR°’
(@unit\f3

Behavioural
Models

'l

controls
. training

Student

PRESTO |8
Core

q Interacts with
Serious Gaming

Platform

e a set of editors and run-time APIs and facilities
(the PRESTO core) that allows agents and scripts to
interact with the virtual environment.

Notably, interaction with human players is outside of the
scope of PRESTO and left to the integrated games (e.g. XVR
or a generic Unity game), even if some initial work has been
done and is an area for future developments.

PUG (built as part of PRESTO itself) and XVR have been
used to test the tool suite in the pilot projects, as discussed
later. Further, PUG has been used as a base for a number
of experimental systems, of which two [6] [7] were student
projects exploring novel Uls directed at casual players not
familiar with videogames.

The team working on PRESTO has included: within
Delta Informatica, an average of one researcher, one senior
engineer, 2 developers for the entire lifetime of the project;
at least one research per each involved research centers
(three overall on two-year contracts each); further, a dozen
students of Computer Science and Engineering at various
course levels and with different purposes and modalities (4
to 8 weeks of professional stages, bachelor and Master thesis
lasting from 3 to 6 months, short studies of various length
for PhD-level research).

2.1 Architecture and baseline technologies

Figure 2 summarizes the major functional components of
PRESTO and how they are related. Blue boxes represent Al
run-time components, linked with the serious game; orange
cylinders, data structures; grey boxes, Uls and utilities used
both on- and off-line; finally, the black box is the graphics or
the simulation engine integrated with PRESTO.

PRESTO is based on many technologies, proprietary and
open-source. To mention the most important: the bulk of the
core and many utilities are C#, while agents are mostly a mix
of Java and AOS JACK. IKVM (www.ikvm.net) is adopted to
convert Javas bytecode in its C# equivalent, enabling both
languages to run in a single executable process. Network
connections among distributed components (e.g. control
GUIs to PRESTO core) adopt mostly ad-hoc protocols par-
tially built with open-source frameworks on top of TCP/IP

3
Figure 2. Component view
Ontology Editors /
! DICE Framewark
Simulation /
Gaming e—
. 2D visualizer, Situation pr—
Environment simulator Awareness : L e P!
PRESTO Scripti i i
ControlGUIs st e
DICE Editors /
wl%&‘

l P
| -

streams. PUG and part of the XVR plug-in have required
the usage of Unity 3D; non-3D Uls, including editors, are
mostly in C# with Microsofts WPF framework. Ontologies
are in OWL, edited with Protege (protege.stanford.edu) and
accessed with Sesame (currently called Eclipse RDF4J); also,
many internally built tools convert ontologies in various
forms of constants and configurations for Java and C#. XML
and related Java and C# frameworks are extensively used for
data storing. PRESTO has been tested and used on Windows
only, even if potentially its core components could run on
any Mono- and Unity 3D-supporting operating systems.
This very complex development environment has, un-
avoidably, a number of drawbacks. To mention a few: IKVM
enables the support of JACK and Sesame in C# programs
but creates a number of hassles concerning in particular
debugging and version compatibilities when integrating
with games and game platforms. This includes a quite in-
efficient develop / compile / debug cycle, partially worked
around by the implementation of interpreters (DICE Parts
and PRESTO Script, discussed later). On a design level,
networking within the core components has to be carefully
reexamined in particular to support the distribution of
agents, since even minimal latency is unacceptable given
the strict real-time requirements of perception and gaming.

2.2 Main software artifacts

A few of the software elements developed within PRESTO
are worth mentioning on their own:

o the DICE agent framework, including its DICE Parts
interpreted language, for the implementation of tac-
tical behavior of NPCs (see Sections 5 and 6);

o some reusable behavioral models and underlying
semantics of objects and actions, including cognitive
path planning [1] and implicit coordination (Sec. 7);

e PRESTO Script, which includes an engine, a con-
troller UI and an editor (Sec. 8) and is complemented
by the situation engine (Sec. 4), for overall game
control;

e semantic representation formats and structures as
well as a number of complementary meta-data



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

schemas that are independent of the background
technology and that may reusable in the design of
other game Al middleware (see Section 3 and 4 in
particular, but meta-data is pervasive in PRESTO).

All of the above relies on a large software base, repre-
sented by the PRESTO Core box in Figure 2 above, that
supports integration of game engines, abstraction of their
entities and extraction of semantically annotated streams of
perceptions and other data. All components are largely con-
figurable; in particular, DICE supports configuration down
to each individual agent.

Not all elements mentioned above have reached the
same level of maturity at the end of the project. For instance,
the DICE Part language and its editor are still subject to
revisions, while the PRESTO Script environment is ready to
the point of being considered for non-gaming uses.

3 VIRTUAL ENVIRONMENT SEMANTICS

To agents controlling NPCs’ behaviours and to scripts over-
seeing parts of the entire game, PRESTO offers abstractions
of the virtual environment that are enriched with data
that include (but exceed) graphic appearance, instantaneous
movements in space, physics and other properties managed
by the game engine. Further, these abstraction are meant
to be understandable both by domain experts, including
trainers, and by developers.

PRESTO distinguishes entities, representing physical ob-
jects or phenomena in the game and typically corresponding
to individual or groups of graphical entities, from locations,
which are geometrical areas of relevance to reasoning. Dif-
ferently from entities, locations do not have any represen-
tation in the 3D world; they are configured and known
only within PRESTO. Even if they are not forced to coincide
with anything in the game, the locations should identify
semantically meaningful spaces of the 3D world (such as
places, rooms, navigation areas...) required by models and
scripts to take decisions; e.g., a hospital’s “bedroom” and
a “operating theatre” are both rooms but with well distin-
guished functionality; a “safe zone” for a fire procedure may
simply be a nondescript corner of a parking area.

PRESTO supports three forms of semantic information,
referring to specific entities or locations or overall states
of the game. These are: (i) classifications, (ii) qualities, (iii)
situations.

Entities and locations are classified with respect to an
ontology [8], [9], defined with W3C’s OWL. A game-
independent top-level classification exists but it can be ex-
tended per game. Association of game objects to ontological
classes is typically done at game’s bootstrap: the PRESTO
integration layer scans all entities and builds an association
table that provides the classification of a perceived object
together with perception data to the agents. [8] discusses the
facilities that have been built to semi-automatically classify
the objects in the rich XVR library for emergency training,
while a trivial hand-made procedure has been followed for
PUG, which has a limited variety of objects. Ontological
queries are supported at run-time, so it is possible to write
conditions such as “is entity type E a human character?” or
“is location type L an office?”.

4

In addition to being classified and having a limited set of
universal properties (mostly geometrical, e.g. position, size,
rotation), entities and locations can have ontological proper-
ties called qualities, containing any form of data needed by
agents for their reasoning. Qualities are defined in the on-
tology (using the owl:ObjectProperty and owl:DataProperty
types) and are assigned to entities and locations at run-time.

Qualities can be “functional”, that is, take a single value,
or “relational”, that is, take multiple values. Functional qual-
ities often represent game-specific information, synchro-
nized in both directions (game to PRESTO and viceversa)
by the PRESTO integration layer. They include states (such
as posture of avatars, open/close position of doors) and
attributes enabling actions (such as “crossable” for doors
and any object that needs to be opened during navigation).
Relational qualities are mostly used to represent relation-
ships between entities and locations, for example spatial
(“isInside” or “hasInside”), and coordination information
(such as “engaging” entities [10], [11]). Qualities are also
exploited, by DICE (described later) and the PRESTO inte-
gration layer, to reduce the need for intention recognition,
by publishing selected goals and on-going actions in the
“isPerforming” quality of the related NPC.

Situations represent high level information about the
state of the virtual world shared among all PRESTO com-
ponents. Technically, a situation is a tuple representing a
predicate, i.e. “name (parameters)”, whose truth value can
be asserted by any PRESTO component or automatically
monitored by the so-called situation engine while the game
evolves. Further, the situation engine makes all true situa-
tions visible to all components, thus implementing a form of
blackboard system [12]. Situations can be used to simplify
reasoning within the agents (e.g. “Fire-In-Room (Room-3)”
may represent an accident situation without the need for
agents to infer it from perception), to maintain shared cog-
nitive information (e.g. “Firefighter-team-engaged (Team-1,
Room-3)” may represent who is doing what and where),
and to support the overall game’s choreography by coor-
dinating concurrently running scripts (e.g. “Fire-Handling-
Procedure-Active()” may represent which section of a train-
ing script is currently in progress).

In order to enable syntax checking and automatic mon-
itoring, the situation engine and the PRESTO graphical
editors use situation templates defined in configuration files,
described in detail below (Sec. 4). In short, a template
specifies the name of a situation as well as the names and
types of its parameters. Further, the template for a situation
to be automatically monitored contains a boolean expression
and, optionally, one or more symbols that are bound to
entities and locations according to filtering patterns before
the expression is evaluated by the situation engine. As
described later, this expression may contain quantifiers and
checks on the qualities of the objects bound to symbols and
parameters; for instance, the template for “Fire-in-Room”
may have a “$room” parameter which is a location’s name,
a symbol “’$fire” to be bound to entities classified as fires, a
symbol “$victim” to be bound to avatars, and an expression
meaning “at least one entity in $fire has the quality isInside
$room and at least one $victim isPerforming coughing”.

At run-time, agents and scripts invoke the situation
engine to assert or retract a situation or to ask to monitor



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

its truth, specifying the values of its parameters. The engine
notifies its subscribers of changes to any situation and to
its associated symbols. The engine adopts efficient, game-
specific algorithms to decide when to evaluate the expres-
sions of monitored situtations, e.g., by installing listeners on
the objects specified as parameters that are invoked when
their qualities change. Automatically monitored situations
are suited to capture dynamic configurations of the virtual
world, while asserting or retracting situation from code is
appropriate for coordinating agents and game-controlling
scripts.

4 SITUATION RECOGNITION

As mentioned earlier, situations are one of the three forms of
semantic representation provided by PRESTO. This section
focuses on their declaration language and on the engine that
maintains their truth value.

4.1 Templates, Symbols and Expressions

Situation templates, edited with a specialized editor, are
used to declare classes of situations to be used by agents
and scripts. A template specifies the name of a situation
and its formal parameters, i.e. the parameters’ names and
types that have to be assigned at run-time. For example, a
template for the situation “fire_inside_room” may have a
“room” parameter; a script may declare that the situation
“fire_inside_room (room = reception)” is true.

To enable automatic monitoring, a situation template
must contain an expression defined with the situation lan-
guage described below. In short, this supports boolean ex-
pressions that contain template-specific symbols and pa-
rameters names, ontological classes, qualities. A symbol is
described within the template by specifying filtering criteria
used to match entities or locations at run-time, similarly to
script symbols described later. Filtering criteria may include
an entity’s or location’s name, its ontological class, its as-
sociated agent role and type (described with DICE later).
At run-time, before evaluating the expression of a situation,
its symbols are bound to the set of entities or locations
that satisfy their filters; for instance, a “firefigthing_team”
symbol could specify that the entities to be bound must be
classified as “Emergency Personnel” and must support the
role of “Firefigther”.

Figure 3 shows a screenshot of the situation editor. The
left side shows a definition of parameters and symbols while
the right side contains the expression editor, where the user
can write an expression by typing or dragging symbols from
the left panel and combining them with the operators. The
expression is parsed interactively to check for syntax errors
(e.g. undefined symbols, parenthesis mismatches, wrong
types or wrong number of operator arguments), which are
shown in the panel beneath.

4.2 Situation Language

The situation language allows the writing of boolean expres-
sions concerning the virtual world’s state, in terms of items
(entities or locations), their properties (functional qualities)
and relations (relational qualities). These boolean expression
are composed by predicates, which allow the comparison

Figure 3. Situation defined in the PRESTO Editor

Name smokelevel

Description

* New smoke //smokelevel < max END smoke //smo¥elevel >= 12
min & m
max ra |
smoke ra |

(- W - W --W wo [ nor | -}
BEED EEOn -} /]

invalid argument: Single >= Int32
the correct syntax is: number >= number

Qualities

Concepts

between items’ properties and base values and relations
among items. In addition to usual boolean operators, the
language supports quantifiers (existential, universal and
counting), but their application is restricted to single predi-
cates and refers to entities and locations symbols. Counting
quantifiers can also be used to count the items that have a
specific relation with a specified item.

Formally, the situation language is defined by the pair (S,
G), that is, a context-free grammar G and a set of symbols S
composed by:

e Binary predicates: and, or, not

o Comparison predicates (COMP): ==, ! =, <, <=, >,
>=

o Binary operation functions (OP): +, -, ¥, /

o Parenthesis: (,)

o Constants (CONST): floating point numbers end-
ing with ’f’, integer numbers, boolean values
(true/false), strings enclosed by ”’

e An operator to access qualities: //

o A predicate to check inclusion: contains

e Quantifiers: all, any, count

o Functional qualities (FQ), defined in the ontology in

use

o Relational qualities (RQ), defined in the ontology in
use

o Ontological classes (CLASS), defined in the ontology
in use

o Entities symbols (ENTITIES), defined within the sit-
uation; they refers to one or more entities according
to specified filters

e Locations symbols (LOCATIONS), defined within
the situation; they refers to one or more locations

o Parameters (PARAM), defined within the situation
and identified with a name. Supported parame-
ter types are: base values (VALUE_PARAM), quali-



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

ties (FQ_PARAM, RQ_PARAM), entities (E_PARAM)
and locations (L_PARAM).

The grammar G is defined by the followings production
rules:

predicate: P = (P)]| true | false
P = not P|P and P|P or P
P = V COMP V|VS contains (V)
value set: VS = ITEM // RQ | ITEM // RQ_PARAM
value: V = CONST | VALUE_PARAM |V OP V/
V = ITEM // FQ | ITEM // FQ_PARAM
V = count (VS) | count (ITEM)
items: ITEM = all I | any I | I

I = E_PARAM | L_PARAM | ENTITIES | LOCATIONS

The quality operator (//) reads the quality specified as
second parameter that is associated to its first parameter
and returns a single value in case of a functional quality
or a set of values in case of a relational quality. In the
second case, contains can be applied to check if that set
contains a specific item. For example, to check the relation
(fire, isInside, reception):

fire / /isInside contains (reception)
To compare functional qualities and values:
fire / /intensity > 3.5 f

The following expression describes the fact that the recep-
tion has at least one item inside:

count ( reception //haslnside ) >=1

The number of items bound to an entity symbol can be
compared to a value:

count (firefighter) > 0

Universal or existential quantifier can be applied to entities
and locations symbols; for example, the following expres-
sion checks the fact that all items bound to the firefighter
symbol, whose filtering criteria may specify that they belong
to the “Firefighter” class, are inside the reception:

all firefighter //isInside contains (reception)

The universal and existential quantifiers are resolved after
that their enclosed sub-expression (which may include qual-
ity operators, OP functions, COMP and contains predicates)
is evaluated on all items bound to their first parameter.

4.3 Situation Engine

The situation engine is the component that, at run-time,
monitors the situations tuples, updates their truth values
and notifies subscribers (which may be agents and the
script engine described later) of changes to these values.
The subscribers request the engine to evaluate a tuple by
providing the situation’s name and the values of the param-
eters; optionally, subscribers may also manually provide the
truth values. If a situation expression is found within the
template of a situation, the truth value for a requested tuple
is automatically updated. To this end, the situation engine
uses four components: (i) a symbol resolver, (ii) a parser, (iii)
an interpreter, (iv) a situation monitor.

(i) Initially, the symbol resolver looks for entities and
locations that match with the symbol descriptors and stores
them.

(ii) The expression is then parsed. The parser first checks
for syntax errors and, if there are none, it builds an ex-
pression tree where each node represents on operator and
its children its parameters, which in turn can be other
operators.

(iii) The expression tree is then used by the interpreter
to evaluate the situation. The interpreter and the expression
tree are implemented using the efficient .NET Dynamic
Language run-time facilities which allows to define the tree
operators and parameters and to dynamically generate the
corresponding code. This is stored and then used each time
the situation needs to be evaluated.

(iv) The situation monitor updates the truth values of a
situation by evaluating its expression when necessary, that
is, when a quality used in the expression changes for one
of the items in the situation’s symbols and parameters or
when an item that matches a symbol descriptor is added or
removed from the virtual reality (both these types of events
are notified by the PRESTO core).

5 THE DICE AGENT FRAMEWORK

PRESTO relies on autonomous agents to bring Al to video
games, in particular to control NPCs. DICE [8] [13] is a BDI
agent framework built on top of JACK for controlling NPCs
of a game encapsulated by PRESTO, which offers services
such as situation awareness and game-independent action
execution. Typically, a DICE agent controls one NPC. DICE
supports the needs of PRESTO’s scripting: ideally, DICE
models (by their BDI nature) should look after agent-specific
tactics to achieve goals, while scripting should represent
multi-agent strategies. In practice, things are rarely so clear-
cut; nothing prevents the development of fully autonomous,
strategical agents (e.g. by exploiting the “default” and “idle”
goals automatically submitted by DICE to an agent’s so-
called “prevailing” role) as well as of scripts that represent
detailed procedures at the tactical level and even manipulate
graphical details.

DICE’s core implements an update / decide / act loop,
reminding of the classic OODA (Observe / Orient / Decide
/ Act) loop [14], driven by the perception flow generated by
PRESTO’s situation awareness; this flow is used to refresh
short-term memory and advance the agent’s state. DICE’s
core loop is designed to guarantee critical sections between



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

Figure 4. A (simplified) snapshot of a DICE agent

Navigation Intention

Body Posture Intention

Interaction Intention

Decision-Making Intentions DICE
) Engine

updates (corresponding to the “cognitive steps” of Co-
JACK)), to trigger any model-specific reaction at well-known
times and to schedule decision-making intentions in well-
defined, non-preemptive order. DICE adopts a simplistic
cognitive model in which an agent pursues at most one
high-level goal at the time (which may have been forced by
a game script) and urgently deals with at most one interrup-
tion (such as an alarming situation) that must be fully han-
dled before continuing with the high-level goal. The control
of independent body functions (e.g., eye gaze, head move-
ments, speech, hand gestures, locomotion) is performed by
intentions called “executors” running concurrently with the
decision-making ones, with the latter delegating goals to
the former and coordinating their execution. With respect
to JACK, DICE greatly simplifies changing goals, which
is required to support sudden changes of mind (possibly
in reaction to events) and to promptly act when receiving
commands from the outside world, including scripts. Figure
4 illustrates an example of an agent pursuing a high level
goal (“shop s visited”) whose current plan, in turn, has
submitted the “people greeted”, “door opened”, and “place
reached” goals to the relevant executors; the perception of
the noise of something dangerous has started a reaction that
will pause the main goal until over, most likely changing
the goals of the executors in the meantime.

As discussed later, DICE provides various types of
meta-data and introspection facilities on top of JACK that
enable model composition, plan interpretation, emotional
influences, game-level scripting. Introspection is available
as an API for user-written meta-level models. Further, goals
and plans can be annotated with one or more ontological
concepts, which are automatically published as qualities of
a NPC when its controlling agent activates an instance (i.e.
it starts pursuing a certain goal or intends to execute a cer-
tain plan) and unpublished when deactivated. This specific
meta-data is exploited, among other things, for recognition
of activities by other agents, by the situation engine, to
support multi-agent coordination, all in a model-neutral
way since the ontology is written from the perspective of an
external observer with no knowledge of the inner workings
of the different types of agents (e.g., a generic “operating

7

device D” concept may be used to annotate very different
plans or goals applied by different agent models when
performing any task that requires using a device of type
D).

6 AGENT BEHAVIORAL PROFILE. PART SCRIPTING

A DICE agent type is constructed as a composition of roles
and behavioral models; a role defines a set of goals, while a
behavioral model implements the tactics required to achieve
the goals of a specific role. In turn, behavioral models may
depend on other roles, so starting from one or more high
level roles for an agent (one of which is dynamically selected
as prevailing) a graph of roles and models is derived, partly
automatically (because of dependencies) and partly by the
modeler’s choice. As mentioned above, DICE automatically
submits a goal, called “default”, to the prevailing role when
an agent is created and the “idle” goal when there is no (or
no longer a) high-level goal to be satisfied. This allows the
modeler to easily build fully autonomous NPCs that know
what to do by themselves, while not managing “default”
and “idle” will simply leave the NPC waiting for goals.

An agent can be equipped with multiple behavioral
models implementing the same role; the set of active models
(called the current behavioral profile) is defined dynami-
cally, according either to internal rules or to external API
calls. This mechanism greatly simplifies the approach to
handling cognitive states, which in CoJACK mainly acts
at plan selection level. It allows to equip a single agent
with the ability to pursue its goals with different skills
levels or performance characteristics according to cogni-
tive parameters changing over time. So-called moderators
(which are simply percentages) are exploited to represent
emotions or physiological factors, such as fear and fatigue
levels, and can dynamically trigger the selection of a specific
behavioral model between the available ones. For instance,
a role “hospital nurse” that accepts goals such as “take care
of patient P” may be implemented by a “highly skilled,
calm” model, an “intermediate skilled, tense” model, and
a “poorly skilled, careless” model; a generic “nurse” agent
type will select which one to activate according to the de-
sired behavior of a specific NPCs, which in turn may depend
on a combination of the fear and fatigue moderators.

A few experiments, whose results are yet to be published
at the time of writing, have been performed to identify
a representation and a computational model to provide
DICE agents with an emotional state. Emotions have been
represented in a PAD (Pleasure, Arousal, Dominance) space,
as proposed by Becker-Asano et al in (WASABI, 2004) [15].
A computational model has been developed to describe
evolution of emotions over time, according to PAD values
associated to events occurring during a game session (see
the methodology section later). The resulting emotion have
been exploited to dynamically adjust values of moderators
and other cognitive parameters and, consequently, to induce
behavioral profile change. Given the immaturity of this
approach, in current practice the behavioral profile for a
specific NPC is chosen according to defaults and explicitly
changed only via scripting (e.g., in the example above, an
NPC configured as a highly skilled nurse at the beginning



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

may be forced to a lower quality behavioral profile by a
game script when this generates a stressing situation).

A few other aspects of DICE have been inspired from
CoJACK, most importantly memory management. Indi-
vidual agents are configured with their own background
knowledge, which boils down to a-priori knowledge about
entities, locations, and other environmental data defined
by means of semantic queries. Short term memory is fed
from perceptions and is periodically cleaned up by a be-
havioral model for cognitive management according to a
number of parameters. Consequently, agents of the same
type may behave differently because they know different
things, possibly because they forgot them, or because they
have a different behavioral profile.

Goals for the agent are dispatched by DICE to the appro-
priate behavioral model according to the current behavioral
profile. Goals may be generated internally to the agent by
a running plan or arrive from the outside world. Internal
goals are typically sub-goals and thus pushed on the same
decision-making or execution intention stack of the submit-
ting plan. By contrast, all externally generated goals (e.g. a
command pushed by a script) as well as properly marked
internal goals (e.g. a reaction to a new situation, a new
navigation destination determined by a decision-making
intention) are handled as root goals for their destination
intention stack, causing the controlled shutdown of the
previous root goal in the same stack if there was one. This is
implemented via the maintenance condition mechanism of
JACK.

DICE supports two interpreted languages aimed at end-
user development for the rapid creation of ad-hoc proce-
dures rather than for complex, reusable modelling, which is
better left to native JACK programming. The first one is a
very simple textual language that allows the concatenation
of goals to be achieved in sequence, with optional durations
and non-conditional loops. It allows writing simple linear
procedures such as (using a simplified syntax for readabil-
ity) “go to place P; repeat (do something for 5 secs; say
hello)” as a single string that can be given to an agent. This
language is interpreted by a module external to DICE but
pre-built in all agents, composed by a runtime interpreter
behavioral model and role defining an execute goal. Game-
level scripts can submit the execute goal to the agent with
the text to be interpreted in input.

The second language is called DICE Part, where “part”
is a term taken from theatre to refer to the text that an actor
has to interpret in a play. A DICE Part file, syntactically rep-
resented in XML but more easily edited with an ad-hoc GUI
[16] (Figure 5), implements a complete behavioral model;
in its current version, it must contain a procedure (called
a DICE Part, indeed) for each of the goals supported by its
role and optionally reactions to specific events, including the
detection of situations. A DICE Part is a sequence of steps
and of a few conditional statement types (IF and WHILE).
Each step can submit at most one decision-making subgoal
and at most one root goal per each executor. Conditions
are themselves based on events, including perceptions of
specific types of entities, changes in internal state (repre-
sented e.g. by moderators), changes in situations, timers.
Further, a FOR EACH statement allows cycling over entities
known to the agent filtered according to semantic criteria

Figure 5. Snapshot of the DICE Part editor. Cells are multi-goal steps;
_available goals on the left bar

5
§

TITIT

(in particular, their ontological classification and storage in
short-term memory rather than background knowledge).
No user-declared variable is supported; only parameters of
the triggering event, inputs / outputs of invoked goals, and
iterators of loops are available. This syntax allows writing
procedures such as the following pseudo-code (SIT stands
for “situation”, described in Sec. 3):

// React to an evacuation situation
// (most likely, game script-controlled)
WHEN SIT <EVACUATION_IN_PROGRESS> TRUE:
// Do what follows while alarm on
WHILE SIT <FIRE_ALARM_ON> TRUE:
// For all those you see at this time
FOREACH PERCEIVED <PERSON>:

// ... achieve these goals in parallel:

BEGIN STEP
// animate head as if talking
STARTED CHAT WITH <CURRENT PERSON>
// ... while moving the person out
EVACUATED <CURRENT PERSON>
TO <FIRE_SAFE_AREA>
END STEP
END FOREACH
END WHILE
END WHILE

In terms of expressiveness, DICE Part is very powerful
and compact with respect to JACK and thus often adopted
by developers in spite of missing common, programmer-
expected features such as simple Boolean expressions and
assignments to local variables. A revision and possibly an
evolution into two different dialects (one modeler-oriented,
the other end-user / customization oriented) is likely as
experience is collected. Worth noting is that DICE Parts
could be easily generated by a planner or a code synthesizer,
thus opening the way to the introduction of strategical Al,
learning-by-example techniques, and so on, in addition to
alternative editors to the default one.

7 IMPLICIT COORDINATION. “AGENTIFICATION”
OF THE HUMAN PLAYER

The goal-oriented nature (based on BDI) and the facilities
provided by DICE have allowed the exploration of a novel



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

technique for coordination within the environment, inspired
by analogy with what humans commonly do, without the
need for explicit, vocal negotiations. Its objectives were:
(i) avoiding rewriting ad-hoc algorithms for common cases
such as two or more NPCs having to cross a small door,
going thru a narrow bridge, queuing at a counter, and others
were humans commonly coordinate silently; (ii) introducing
cultural and contextual sensitivity; (iii) supporting the agent
paradigm by adopting a non-centralized approach which,
in the long term, will allow to integrate also human players.
The result of this work is the INCA framework [10] [11],
which exploits DICE’s scheduler and introspection facilities
and PRESTO'’s qualities. DICE’s introspection has enabled
reasoning on the actions being performed by the NPC, while
PRESTO qualities have simplified the process of intention
recognition. Coordination information is modelled at meta-
level, i.e. independently of the actual actions they express
which meta-action is currently performed (one of approach-
ing, waiting, engaging), on each resource on which agents
are coordinating; the ground actions may be as diverse
as, for instance, confusedly crowding rather than orderly
queuing in front of a gate when waiting, opening a door
rather than pushing a button on a food distributor when
engaging, and so on. The meta-level model reduces the
coordination problem to determining which is the next NPC
that can perform the engaging meta-action; this is decided
autonomously by each agent by applying a non domain-
specific policy. An agent uses its NPC'’s perceptions to know
with whom it has to coordinate. If all NPCs involved in
a coordination adopt the same policy and have the same
information, coordinated behavior will result. Importantly,
partial information (e.g., not seeing another NPC) and dif-
ferent policies (e.g. strictly FIFO vs “FIFO but with prece-
dence to women and the elderly” vs “ignore everybody
else”) may cause inconsistencies among agents, as in real
life; these are typically solved by handling lower-level issues
such as hitting obstacles. The policy for a coordination
problem is chosen dynamically; a default one is specified
by the modeler to represent the culture of a character but
considerations about the internal state of the agent, e.g.
the level of the “fear” moderator mentioned above, or the
current context, e.g. being on the street rather than within a
hospital, may lead to the adoption of a different one.

Of course, avatars controlled by human players by
means of traditional HCI devices do not publish the INCA-
specific meta-information, which is perhaps easily deducible
by humans but nearly impossible algorithmically when
relying only on visual perceptions of 3D models. The ap-
proach currently being investigated tackles a much larger
problem: non-gamer-friendly HClIs for 3D virtual reality, an
important issue in the EMT courses held by Delta where
trainees are often neither tech-savvy nor young. Rather
than operating (potentially many and distracting) input
devices to eventually simulate what a puppeteer does with
a puppet, the player should “tell” his avatar what to do via
simpler, adaptive and context-sensitive interfaces, possibly
at a very high cognitive level. In the current experiments
[6] [7], a DICE agent completely controls the player’s avatar
but shows to the player a set of buttons corresponding each
to a goal of the agent’s prevailing role; mouse-clicking to
select objects or locations in the VR allows to filter goals

9

and fill up their parameters. This UI approach essentially
delegates most lower-level activities to the agent and leaves
decision-making to the player, pretty much at the same
abstraction level at which DICE Parts should be (ideally)
developed. One of its side effects is the use of INCA by the
avatar-controlling DICE agent, thus automatic coordination
with NPCs ensues. Research is needed to understand if this
approach to Ul improves immersivity and thus training
effectiveness (since the player needs not to focus on low-
level controls) or the opposite (since the player’s own iden-
tification with her avatar may be partially lost).

8 GAME-LEVEL SCRIPTING

PRESTO Script is, in a sense, the tip of the PRESTO iceberg,
since it provides end-users with an efficient way to develop
parts of game logic (or even the entire logic in open-world
virtual realities or simulations, as in the case of XVR) and
multi-agent strategies. It exploits all PRESTO and DICE
metadata, including roles, situations and ontologies. Its
main design goal was to enable a specialist (e.g. the training
strategist of Figure 1) to create or customize sessions for
specific training scenarios to be executed possibly with an
instructor’s supervision. These scripted training sessions
have to be executed within an existing virtual environment,
exploiting available NPC models (which themselves may
have been customized with DICE Parts, described previ-
ously) as well as any pre-built script handling e.g. common
cases or team strategies.

The PRESTO Script suite includes a high-level language,
a visual editor, an engine, and a controller. The engine and
the controller are tools conceived to be used only at run-
time; the engine interfaces with PRESTO and interprets the
scripts, while the controller provides a Ul to a supervisor
that allows to start and stop scripts and to take choices in-
teractively. The editor is an off-line tool that supports a spe-
cialist in the development of scripts. Editor and controller
can run on different machines than those with the game
engine, the PRESTO Script Engine and the rest of PRESTO,
enabling distributed development and remote game control.
The scripting language permits the description of a possible
story as a graph of scenes where goals are delegated to
agents and commands are submitted to the virtual reality
engine; a walk in the graph identifies the unfolding of a
story, which happens according to the situations occurring
in the game (Sec. 3) as well as interactive choices and
timers, independently of the execution and outcomes of
the commands and goals delegated at each step. Thus, the
engine acts as the director of a choreography performed
by entities in the game (which includes the human player
acting within the environment) rather than the mere execu-
tor of a workflow; further, by means of the controller UI,
it allows a supervisor (e.g. a trainer) to run an arbitrary
number of scripts concurrently, to terminate any of them
at any time and, if supported by the underlying graphical
engine, to restore the state of the virtual environment as
it was at predefined points of the scripts. The ability of
choosing scripts, selecting alternative paths and returning
to previous states gives full control on training sessions
and enables the interactive exploration of alternative stories
within a single virtual environment.



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT
8.1 Overview of the language

Technically, PRESTO Script is a simple event-driven lan-
guage for submitting goals to NPCs, asserting situations or
changing properties of game entities according to progresses
in the game or choices of a director (e.g. the instructor of
Figure 1). Its syntax is XML-based (similarly to the DICE
Part language). A script contains a set of prerequisites and
a directed graph of scenes connected by events; the graph
admits arbitrary connections, including cycles.

The prerequisite section has the double purpose of (i)
checking that the virtual environment contains the objects
(entities and locations) expected by the script and (ii) bind-
ing these objects to symbols usable from scenes. Similarly to
situation templates (Sec. 4.1), a symbol contains the criteria
to be matched against objects (name, classification, agent
role and agent type as well as position relative to the items
bound to other symbols); further, it can impose cardinality
constraints (none, one, 1, at least or no more than #) and a
boolean expression on the qualities of the bound entities (a
subset of what discussed in Sec. 4.2). At run-time, a failure
in binding a symbol (i.e. in finding the required number of
entities matching its criteria and satisfying its expression)
implies that a prerequisite is not satisfied, so the engine will
report an error and will not run the script. This version of
the language does not support user defined variables other
than symbols.

Scenes, ie. the nodes of a script’s graph, can be of
different types. There are two command-executing scene
types. The first is called “plain” and contains one or more
commands to be applied when the node is reached. A
command can be a property change (which is assumed
to happen instantaneously), a goal delegated to an agent
(without waiting for the latter to process it), the creation
or removal of entities, the assertion of the truth value of
situations. The symbols declared in the prerequisite sec-
tion are used to specify the performers and parameters
of commands. The second command-executing scene type,
called “subscript”, invokes another script. Parameters can be
passed; their names correspond to the subscript’s symbols,
whose matching criteria and constraints are used to check
the values passed as input rather than to search objects
in the virtual environment. Subscripts can be invoked syn-
chronously, i.e. as if they conceptually expanded the calling
graph, or asynchronously, i.e. to run concurrently with the
invoker. A script execution terminates when reaching a
scene of type “success” or “fail”; when reached within a
synchronous subscript, these nodes generate an event to be
handled by the invoker to continue its own execution.

Events label the edges between scenes. They include the
expiration of timers, the conclusion of goals submitted by
the originating nodes, the truth value of situations (true or
false), and user choices. At run-time, the engine examines
each edge outgoing from a node that has just been processed
and registers appropriate event-catching listeners. In the
case of situations, the situation engine is invoked to query
their current truth values and, if they do not match what is
required by the events, to subscribe to change notifications.
Choices are delegated to the controller UI, which will show
their destination scenes to the user and will notify the engine
when one is selected.

10

The way multiple edges originating from a node are
treated at run-time when one of their events occur depend
on the node’s type. Those from a command-executing scene
(plain and subscript, discussed above) are considered as the
start of alternative branches of a story (similarly to Finite
State Machines). This means that, at run-time, a walk in the
graph will follow the edge whose event is captured first by
the engine, discarding all other paths; if the latter include
a choice edge, the controller Ul is notified to remove its
destination among those allowed.

Parallel walks are supported by “fork” scenes. Forks
do not submit commands; simply, they visually represent
a point from where concurrent paths start. At run-time,
all edges from a fork will be followed in the order their
respective events occur; this means that all their destination
nodes will eventually be processed, possibly at very differ-
ent times. The opposite of a fork is a “join” scene, of which
there are two specializations. Also this type of scene does
not submit commands; it is considered ready for processing
when reached by any of its incoming edges (“join-any”) or
by all of them, possibly at very different times (“join-all”).
Processing consists of blocking walks on all still active paths
(if any) that started from the fork specified in the join itself.
The edges outgoing from a join are treated as alternatives, as
in command-executing scenes. Observe that a parallel walk
started by a fork and closed by a join-any can be used to
implement activities such as parallel searches to be stopped
as soon as a result is found, while a fork closed by a join-all
is appropriate e.g. for the distribution of equally important
tasks among members of a team and synchronizing on their
conclusion.

As an example, the left side of Figure 6 shows a snapshot
of the graph view of an example of PRESTO Script as shown
by the script editor. A fork node (yellow square) is the
starting point of three parallel paths: the rightmost one
starts a subscript “firefighter_control” when the situation
“started_fire” becomes true, the central one starts the sub-
script “fire_control” immediately (0-seconds timeout), the
leftmost one is followed if and when the director decides
to do so, in which case a goal (not visible from the dia-
gram) is given to an NPC by the orange scene. The join-all
point (green square) allows further progress only when all
its incoming paths have been traversed; as an alternative
option, not shown here, a join-any would be satisfied by the
first path traversed, causing the others to be immediately
abandoned.

It is worth highlighting that symbols and subscripting
within the language, in addition to the PRESTO abstractions
represented by roles and qualities, enable the development
of scripts that can be reused multiple times and in different
environments. Script-asserted situations can be used to co-
ordinate scripts running in parallel, in addition to abstract
them from the specifities of the environment and game state.

Scenes can be marked as “checkpoints”. When a check-
point scene is reached, if supported by the virtual environ-
ment, the engine takes a snapshot of the state of the world
(including goals being performed by the agents) and the
controller Ul is notified, allowing the user to ask to restore
the state of the environment and of the running scripts at a
later time.



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

11

Figure 6. Example of script for EMT training (left) and snapshot of the controller (right)

started fire

8.2 Semantics

Formally, the semantics of scripting can be described as
transformations on three sets maintained by the engine: ac-
tive scripts, edges waiting to be crossed and active situations
(i.e. whose truth value is true). These sets are global because
they concern the entire game in progress; in other words,
PRESTO Scripts should be analyzed as sets of cooperating
procedures rather than in insulation.

AS = {ala is a currently active script }

WE = {was|was is an instance of an edge from AS}

Sits = {s|s is a currently true situation }

Transformations are the application of a function Fy at
the occurrence of an event E that generates a new set of
edges waiting to be crossed, of situations and of active
scripts according to the rules described in the previous
section:

F,(E, WE, Sits, AS) — (WE, Sits, AS)

Indeed, at the occurrence of an event, one or more edges
may be removed, one or more scenes may be processed and
this, in turn, may cause other edges to be added as well
as situations to be declared true or false. Scenes may cause
scripts to start or terminate. Remember that delegating goals
to NPCs and changing properties in the virtual environment
are (conceptually) instantaneous and have no direct effect on
the state of the scripts.

Events are inputs to scripting and are generated in
bursts from various sources, thus transformations are ap-
plied by taking events one at the time in their order of
generation. Focusing on situation changes (which may have
been caused by scripting itself as well as being effects of a
game’s progress), a function I, computes a set of events by
comparing a set Sitsy valid at time ¢y and Sits; at time ¢,

ED - “
= ‘ @M fire control

W
o [ [

victim flees Jjoin

[CIE 1l =

i~

11

finefighters control

® ¢

o EON: |

start fire contral

0007

fire contral

0C:0T

fark

00T

start demo201560908

- A

each event reporting a situation for which the truth value is
changed:

Fe(SitSO, Sitsl) — {El, ceey En}

Operationally, the algorithm at the core of the script
engine maintains a queue of incoming events and the list of
instances of edges from the currently active scripts waiting
for events to occur and manipulates the tuple space of
situations (maintained by the situation engine described in
Sec. 4). Note that the same script may be running in more
than one instance simultaneously, e.g. as subscript invoked
by two other scripts; script instances may have different
bindings of their symbols, and their edges are differentiated
accordingly.

A simplified outline of the algorithm is in Figure 7.
Initialization (not shown) happens when the first script is
started, e.g. interactively (see the discussion on implemen-
tation later). When a script is started, the engine binds
its symbols and immediately processes its root node, thus
adding its outgoing edges to waitingEdges. The algorithm
is an infinite loop that takes an event out of the input
eventQueue, takes the matching edges out of the waiting
set as well as their alternatives in case they have been
queued by a command-executing scene or a join node,
and processes the destination nodes of the matching edges.
Processing (not shown) may queue new edges as well as
changing situations, giving commands or starting subscripts
as discussed above.

8.3 Implementation: editor, engine, controllers

The PRESTO Script editor, developed for Windows, is a GUI
that supports the editing of scripts as well as of situation
templates and includes browsers on PRESTO’s metadata,



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

1: var waitingEdges = set of edges;

2: var eventQueue = FIFO list of events;

3: while true do

wait UNTIL eventQueue NOT empty

for all evt IN eventQueue do

for all edge IN edgeList MATCHING evt do

remove edge FROM waitingEdges
remove alternatives FROM waitingEdges

: process edge’s destination node

10: end for

11: remove evt FROM eventQueue

12: end for

13: end while

4
5
6:
7:
8
9

Figure 7. Core scripting algorithm

including the ontology in use by the destination game for
classification and qualities, the available agent roles and
agent types of the NPCs, and so on. The editor integrates
a cross-referencing facilities that shows how scripts invoke
each other, which situations they share, and other details
useful for understanding dependencies.

The PRESTO Script Engine, implementing the logic de-
scribed above, offers APIs that can be called from anywhere
to start scripts; this may include a player’s Ul or an agent,
if desired. Further, it offers a network protocol that allows
to start and terminate scripts, to be notified of the scenes
that have been processed and of those that are waiting to be
processed as soon as an appropriate event occurs, to know
which choices are currently available and to select one, to be
notified of available checkpoints and to restore state to one
of them.

The network interface is used by two controller pro-
grams, which can run on different devices from where
the virtual environment is executing. Both controllers allow
their users to start any number of scripts at any time and to
decide which path to follow when a running script allows
a choice, as well as checking the current state of the engine
and to restore it to a past checkpoint scene. The right side
of Figure 6 is a snapshot of the Windows-based controller
GUI for the end-user, designed to be easily used by a
trainer. The snapshot has been taken just after traversing
the fork point of the graph on the left: the Timeline box
(bottom left) shows the scenes crossed so far, those marked
as checkpoints contains a button that can be clicked to return
back to that scene; the Automatic Scenes box (top right)
shows which scenes will be crossed next as soon as specific
events happen or timers expire; the Activable Scenes (top
left) are waiting for the director to decide whether to reach
them by clicking on the appropriate button. The information
box (bottom right) shows information about a scene selected
from the other boxes.

The second controller is meant for command-line use. It
was designed mainly to automate the invocation of scripts,
which is useful e.g. to execute test suites and to run PRESTO
as an unsupervised serious game or even as a simulation
without players when scripts do not contain interactive
choices.

Future work on the implementation will include the
integration of the Script editor with the DICE Part edi-
tor and other Uls required by PRESTO to support a full-

12

round development environment. Future research topics
include improving unsupervised script execution especially
for training, e.g. by using player performance parameters to
drive scripts. Also, PRESTO Script is being considered for
domains other than serious games, in particular decision
support and automation of procedures as a complement to
ECA (Event Condition Action) rules. For instance, PRESTO
Script may be appropriate for reactions to alarms when
the results of explorative actions or further events may
determine how to proceed. As an example, a “too many
connections” alarm by a load-balanced cloud service may
immediately start an additional instance on a new server;
however, if the alarm doesn’t terminate after a while, it may
be that a DDoS attack is in progress and further actions
or human supervision are required. This try-something-
and-see-what-happens logic could easily be programmed in
PRESTO Script.

9 PILOTS

Delta Informatica, in strict collaboration with the APSS
(Azienda Provinciale Servizi Sanitari, i.e. public health ser-
vices department) of the Province of Trento, Italy, has used
XVR with PRESTO to create a fire management course for
hospital staff. The course is delivered in a highly interactive
format by an instructor that shows the XVR screen via a
projector, walks and operates in the VR while trainees need
to take note of what they see and interactively answer
to questions or suggest actions to the trainer while the
situation unfolds. Various editions of this course (which
takes some 4 hours between theory and practice in VR)
have been run in two different hospitals, with some 400
trainees to date; in the after-course questionnaires, trainees
systematically reported a high level of satisfaction and
higher engagement with respect to traditional courseware.
Since trainees do not have to operate on XVR by them-
selves, HCI difficulties that non-videogame-savvies may
experience, especially given the short duration of the course,
are avoided. PRESTO has been used mainly to automate
manipulations of the VR, otherwise too complex to perform
via the native XVR mechanisms, and to introduce relative
simple but plausible behaviours of passers-by and team-
mates in place of the simple animations on fixed paths
supported by XVR. Overall, a dozen NPCs and a handful of
scripts (handling physical models such as smoke diffusion
in addition to progressing a training session) are in use.
Following customer contacts and emerging requirements,
other courses for emergency services are being prepared,
some as first-person, unsupervised serious games. One of
the objectives is to address the training requirements of
commanders supervising an intervention, which in turn
requires “smart” NPCs to play the role of team members
and other actors in complex scenarios.

PUG was used as practical of the Agent Oriented Soft-
ware Engineering courses held at the Computer Science
department of the University of Trento in 2015 and 2016.
In 2015, some 20 students had to model the autonomous
behaviours of different NPCs. The objective was to imple-
ment the coordinated procedures adopted by three types
of professionals in a health facility (receptionists, nurses,



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

doctors) to handle a flow of patients. The goal of the simu-
lation was to maximize income as computed by the game
logic according to the number of professionals involved
and patients successfully handled. Behaviours implement-
ing those procedures were written as DICE Parts, exploiting
the base behavioral models provided with PUG. In 2016,
another 20 students had to write PRESTO Scripts to handle
a few types of accident situations (fire breaking in different
places) within the setting of 2015 but only with pre-built
non-reactive NPC behaviours. Purpose of the simulation-
exercise was to prevent the death of the NPCs (automat-
ically determined by the game logic according to smoke
intake) by making the professionals act coordinately and
in strict accordance with (very generic) safety procedures
specified as requirement of the exercise. In both years, after
a few introductory lessons to JACK, serious games and
PRESTO, the lab consisted of 4 1,5-hour sessions on the
editors and PUG; the final assignment was given at the end
of the course and the students had two weeks to deliver
their projects. The work of each student was marked as part
of the final examination and evaluated both according to
the results of the simulations and to the readability of the
developed parts or scripts. Distribution of marks (including
a few non-passes) was according to expectations for this
type of course; top achievers demonstrated good creativity
in their solutions. On a course satisfaction questionnaire,
all participant reported the experience as positive. From the
perspective of PRESTO, these labs have been excellent tests
of the entire environment, highlighting its potentiality and
limitations; worth noting, from a performance perspective,
that the best simulations had up to a few tens of NPCs
running on average student notebooks. On the minus side,
the participants, being computer scientist master students,
were too familiar with computing concepts to consider the
results of the usability evaluations, especially on the part
and script editors, valuable indications for their use as end-
user development tools.

10 METHODOLOGICAL CONSIDERATIONS: MOD-
ELING SESSIONS, BEHAVIORS, EMOTIONS

As described above, PRESTO covers many aspects of game
and simulation development, including some that are quite
novel to gaming if not to the entire software industry:
semantic-based, goal-driven, reusable behavioral modelling;
cognitive / emotional state evolution; training session /
game design around the concept of “situation” and with
the ability of a director to intervene on the fly.

A top-down analysis and design methodology for EMT
scenarios in an open-world game (such as XVR, where there
is no logic controlling progress) has been defined according
to a classic user-center approach. By means of interviews to
domain experts and trainers, training objectives are spelled
out (both positive, e.g. the procedures a trainee should
memorize, and negative, e.g. experiencing consequences of
errors), scenarios identified (including virtual environments
and objects within them), and the unfolding of training
sessions written in the form of stories, specifying what
each actor (trainee and NPC) is supposed to do. From the
stories, specifications of high-level behaviours of NPCs are
derived, in forms of team procedures and individual goals,

13

significant events and main procedures to be applied. A
number of templates and guidelines have been produced
to guide the analysts through this process.

Specifications are eventually given to the development
team to produce VR environments, agents’ roles and behav-
ioral models, situations and scenario scripts. No methodol-
ogy has been defined yet for this activity. At the moment,
work is driven by experience as well as by the available
library of reusable assets that may substantially influence
implementation choices. The major issue to be tackled is
the significant gap between high-level decision-making as
captured with the process described above and the practi-
calities of development on top of existing engines, requir-
ing even the most common human action to be designed
starting from animations and other graphic effects. The
machinery offered by PRESTO in terms of semantics and
reusable behaviours should help closing this gap over time
while models are incrementally developed. However, this
work implies a significant effort in defining abstractions
applicable over multiple scenarios and types of NPCs. For
instance, the pilots presented above, even if used in differ-
ent game platforms, share the same basic roles concerning
navigation (including relatively complex goals such “flee
to a certain type of location”, “follow that character”) and
certain common actions (taking, pushing and pulling certain
types of objects, pushing buttons, emergency actions such as
operating fire extinguishers, and so on).

As mentioned in Sec. 5, research has been spent to take
into consideration the emotional aspects of a story. In short,
this consists in annotating each situation of a story within
a matrix where, for each major event of a story captured as
above, PAD (Pleasure / Arousal / Dominance) values are
given for each involved character, according to its profes-
sional role and capability. Additionally, alternative reactions
should be specified according to the current emotional state
of the character. A computational model has been defined so
that, when an event occurs (triggered by a situation being
asserted), it takes in account moderators (fear and fatigue
in the specific examples) and situation-specific PAD values
to calculate the updated emotions and moderators values;
this determines the behavioral profile to apply, which in
turn contains the appropriate reaction to the event. More
research is needed to move from current proof-of-concepts
to reusable models of emotion and a methodology for do-
main experts rather than psychologists, for instance using
fuzzy categories for PAD values (currently in the range [-
1,1]) or classifying events appropriately e.g. as “scary” or
“comforting”.

11 CONCLUSION

PRESTO covered a lot of ground in the area between train-
ing conception and serious game development with current
virtual reality and 3D game engines. Its contributions are
mainly in the area of semantics for decision-making, NPC
behavior modelling technology, scenario scripting. Some of
the open research questions are purely technological but
most concern modelling methodologies, for instance con-
cerning the definition of reusable roles and the influence
of events on emotions. Some preliminary work towards
a non-gamer-friendly Ul, by which a player controls an



UNIVERSITY OF TRENTO - DISI - TECHNICAL REPORT

NPC accepting high-level commands, has been done, with

the

side effect of simplifying NPC / player coordination.

PRESTO is not available off-the-shelf but Delta Informatica
is willing to discuss research collaborations or commercial
exploitations. PRESTO was partially funded by a grant of
the Provincia Autonoma di Trento (PAT), Italy.

REFERENCES

(1]
(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

P. Calanca and P. Busetta, “Cognitive Navigation in PRESTO,” in
AlI&Games workshop @ AISB 2015, Canterbury (UK), 2015.

A. Rao and M. Georgeff, “BDI agents: From theory to practice.” in
Proceedings of the 1st international conference on multi-agents-systems
(ICMAS). Menlo (CA): AAAI Press, 1995, pp. 312-319.

F. Ritter, ]J. Bittner, S. Kase, and R. Evertsz, “CoJACK: A high-
level cognitive architecture with demonstrations of moderators,
variability, and implications for situation awareness,” Biologically
Inspired Cognitive Architectures, vol. 1, pp. 2-13, 2012.

R. Evertsz, M. Pedrotti, P. Busetta, and H. Acar, “Populating VBS2
with realistic virtual actors,” in Proceedings of the 18th Conference
on Behavior Representation in Modeling & Simulation (BRIMS), Sun-
dance Resort, Utah, 2009.

R. Evertsz, F. E. Ritter, P. Busetta, M. Pedrotti, and J. L. Bittner,
“CoJACK Achieving Principled Behaviour Variation in a Moder-
ated Cognitive Architecture,” in Proceedings of the 17th conference on
behavior representation in modeling and simulation, 2008, pp. 80-89.
M. Palma, “Studio e progettazione di un prototipo di Seri-
ous Game giocabile in prima persona utilizzando il Framework
PRESTO,” Tesi di Laurea Triennale in Informatica, Universita degli
Studi di Napoli Federico II, 2016.

F. Orioli, “Una Interfaccia Punta e Clicca per l'interazione tra
Unity3d e PRESTO,” Tesi di Laurea Triennale in Informatica,
Universita degli Studi di Napoli Federico II, 2016.

M. Dragoni, C. Ghidini, P. Busetta, M. Fruet, and M. Pedrotti,
“Using Ontologies For Modeling Virtual Reality Scenarios,” in
Proceedings of ESWC 2015.  Springer, 2015.

P. Busetta, M. Fruet, P. Consolati, M. Dragoni, and C. Ghidini,
“Developing an ontology for autonomous entities in a virtual
reality: the PRESTO experience,” in Proceedings of MESAS 2015
workshop. Prague (CZ): Springer LNCS, 2015.

M. Robol, P. Giorgini, and P. Busetta, “Applying social norms
to implicit negotiation among Non-Player Characters in serious
games,” in Proceedings of WOA 2016, Catania, 2016.

M. Robol, P. Giorgini, and P. Busetta, “Applying social norms to
high-fidelity pedestrian and traffic simulations,” in International
Smart Cities Conference (ISC2), Trento, 2016.

D. D. Corkill, “Blackboard systems,” 1991.

P. Busetta, C. Ghidini, M. Pedrotti, A. Angeli, and Z. Menestrina,
“Briefing virtual actors: a first report on the presto project,” in
Proceedings of the Al and Games Symposium at AISB, London, 2014.
J. Boyd, “The Essence of Winning and Losing,” A Discourse on
Winning and Losing, no. August, 1987.

C. Becker, S. Kopp, and I. Wachsmuth, “Simulating the emotion
dynamics of a multimodal conversational agent,” Affective Dia-
logue Systems, no. 2, pp. 154—-165, 2004.

Z. Menestrina, A. D. Angeli, A. De Angeli, and P. Busetta, “APE:
End User Development for Emergency Management Training,”
6th International Conference on Games and Virtual Worlds for Serious
Applications VS-GAMES 2014, 2014.

14



