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Abstract

This work is concerned with existence of weak solutions to discon-
tinuous stochastic differential equations driven by multiplicative Gaus-
sian noise and sliding mode control dynamics generated by stochastic
differential equations with variable structure, that is with jump nonlin-
earity. The treatment covers the finite dimensional stochastic systems
and the stochastic diffusion equation with multiplicative noise.

1 Introduction

We consider here stochastic differential equations of the form

dX + AX dt+ f(X) dt = B(X) dW, t ∈ (0, T )
X(0) = x,

(1.1)

in a real separable Hilbert space H, where A : D(A) ⊂ H → H is self-adjoint,
positive definite such that A−1+δ is of trace class for some δ ∈ (0, 1), W is a
cylindrical Wiener process of the form

W (t) =
∞∑
j=1

βj(t) ej. (1.2)
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Here {ej} is an orthonormal basis in H, Aej = λj ej and {βj}∞j=1 is a mutu-
ally independent system of Brownian motions in a probability space (Ω,F ,P)
endowed with a filtration (Ft)t≥0. The operator f : H → H is Borel measur-
able and locally bounded while the operator B : H → L2(H) is Lipschitzian,
where L2(H) is the space of Hilbert-Schmidt operators on H.

It should be said that under these general conditions equation (1.1) is not
well posed except the case of additive noise (B(X) = I) and f bounded, when
(1.1) has a unique weak (martingale) solution, see [7]. Equation (1.1) has
however a unique strong solution if f is Lipschitz or accretive and continuous,
see [6], or more generally if f is a maximal monotone graph in R × R with
domain D(f) = R, see [2].

Equations of the form (1.1) with discontinuous f describe systems with
variable structure and, in particular, closed-loop control systems with “slid-
ing” mode behaviour. Here we shall study from this perspective two special
cases.
The first one is the finite dimensional system

dX + f(X) dt = σ(X) dW
X(0) = x

(1.3)

where W is a n-dimensional Wiener process and f ∈ L∞loc(R
n,Rn), σ ∈

Lip(Rn, L(Rn,Rn)). (In this case H = Rn and B(X) ≡ σ(X).)
The second one is the stochastic partial differential equation

dX −∆X dt+ h(X) dt = b(X) dW, in (0, T )×O
X = 0, on (0, T )× ∂O
X(0, ξ) = x(ξ), ξ ∈ O

(1.4)

in a bounded and open domain O ⊂ Rd, d ≥ 1 with smooth boundary ∂O,
which is the special case of (1.1) in the space H = L2(O), where A = −∆,
D(A) = H1

0 (O)∩H2(O), f ≡ h, W is a cylindrical Wiener process of the form
(1.2) in H = L2(O) and the stochastic term b(X) dW is a formal expression
for b(X) dW (t) =

∑∞
j1 µj b(X) ej dβj(t). In other words B : H → L2(H) is

the realization of b in the space H, given by

B(x)y = b(x)
∞∑
j=1

µj〈y, ej〉2 ej, ∀y ∈ H = L2(O)

and its Hilbert-Schmidt norm is

‖B(x)‖2L2(H) =
∞∑
j=1

µ2
j |b(x) ej|22.
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Like in deterministic case, in order to have existence for the solution of
equation (1.4) one must extend it to a multivalued stochastic equation of the
form

dX −∆X dt+G(X) dt 3 b(X) dW, in (0, T )×O
X = 0, on (0, T )× ∂O
X(0, ξ) = x(ξ), ξ ∈ O,

(1.5)

here G : L2(O)→ L2(O) is the multivalued mapping defined by

G(X) = {η ∈ L2(O); η(ξ) ∈ F (X(ξ)), for ξ a.e. in O}

where F : R → 2R is the Filippov map associated with h, that is (see [8],
[9]):

F (r) = [m(hr),M(hr)], ∀r ∈ R
m(hr) = lim

δ→0
ess inf

u∈[r−δ,r+δ]
h(u)

M(hr) = lim
δ→0

ess sup
u∈[r−δ,r+δ]

h(u).

(1.6)

Roughly speaking, G is obtained from h by “filling” the jumps of h in
discontinuity points. If f ∈ L∞loc(R

n,Rn), where n ≥ 1, as in the case of
equation (1.3), the corresponding Filippov map F : Rn → 2R

n
is defined as

F (r) =
⋂
δ>0

⋂
m(N)=0

convf(Bδ(r) \N) (1.7)

where m is the Lebesgue measure and Bδ(r) is the ball of centre r and radius
δ. Of course F (r0) = f(r0) in all continuity points r0 of f . Then to get
existence in (1.3) one should replace f by F given by (1.7). If f is monotone
and measurable then F is maximal monotone in Rn×Rn and locally bounded
in Rn, see [1, Proposition 25], hence, as shown in [2, Theorem 2.2], equation
(1.3) has a unique strong solution (see also [3]). In the general case we
consider here, the best that we can however expect is only a martingale
solution for (1.3) (see Theorem 2.1, in which in general we do not have the
uniqueness of the solution).

Previously multivalued differential equations of this form with F of sub-
gradient type were studied in context of existence theory for stochastic vari-
ational equations or in a more general setting, see [4, 5, 12] for a few recent
works on this subject.

The main existence result for equation (1.3) is established in Section 2,
where it’s also given a “sliding mode” type result for this equation.

In Sections 3, 4 and 5 it is studied a similar problem for equation (1.5)
and also for a stochastic parabolic system.
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Systems of the form (1.1) with discontinuous nonlinear drift term f arises
when one applies in system dX + AX dt = B(X) dW a feedback controller
u = f(X) to force the trajectory of system to slide after some time on a
given manifold Σ. In such a way the system is forced to move on a space of
lower dimension than the original one and, as documented in literature, see
[15], a major advantage of this approach is the robustness of sliding mode
controller. In this paper we prove that there is a feedback controller for which
the corresponding closed loop system has a martingale (weak) solution which
moves on the manifold Σ after some time τ .

Notation We use the standard notation for the Sobolev spaces Hk(O),
k = 1, 2, H1

0 (O) and the Lebesgue integrable function spaces on O ⊂ Rn.
The norm of H1

0 (O) is denoted by ‖ · ‖1 and the norm of Lp(O) by | · |p
(1 ≤ p ≤ ∞). The scalar product of L2(O) and the duality pairing between
H1

0 (O) and the dual space H−1(O) is denoted by the same symbol 〈·, ·〉2. We
denote by C([0, T ];H) the space of all continuousH-valued functions on [0, T ]
and we also refer to [6] for basic results pertaining stochastic processes with
values in Hilbert spaces. Finally, we denote by Ck

b (R), k = 0, 1, the space
of functions of class Ck on R, with continuous and bounded derivatives up
to order k. The norm in R or Rn is denoted by the same symbol | · |, the
difference being clear from the context.

2 Weak solution and “sliding” mode for equa-

tion (1.3)

We shall study here system (1.3) where W is a n-dimensional Wiener process
defined on a probability space (Ω,F , (Ft)t≥0,P) and f ∈ L∞loc(Rn;Rn), σ ∈
Lip(Rn;L(Rn;Rn)).
We consider the Filippov map F : Rn → Rn associated with f which was
introduced in (1.7).

Definition 2.1. The system (Ω,F ,P, (Ft)t≥0,W,X) is said to be a mar-
tingale solution to (1.3) if (Ω,F , (Ft)t≥0,P) is a filtered probability space on
which it is defined an (Ft)t≥0-Wiener process W and X is an (Ft)t≥0-adapted,
Rn-valued, continuous process that satisfies P-a.s. the equation

X(t) +

∫ t

0

η(s) ds = x+

∫ t

0

σ(X(s)) dW (s), ∀t ≥ 0 (2.1)

where η = η(t) is an Rn-valued (Ft)t≥0-adapted process such that

η ∈ L2((0, T )× Ω), ∀T > 0, η ∈ F (X), a.e. in (0,∞)× Ω.
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This definition extends verbatim to infinite dimensional equation (1.1),
see Definition 3.1 below. In literature such a solution is also called weak
solution. A martingale solution which is F̄Wt -adapted, where F̄Wt is the
completed natural filtration of W is called strong solution, see [7].
We have

Theorem 2.1. Assume that f : Rn → Rn is measurable and that

|f(r)| ≤ a1 |r|+ a2, ∀r ∈ Rn (2.2)

where a1, a2 ≥ 0. Then for each x ∈ Rn there is at least one martingale
solution (Ω̃, F̃ , (Ft)t≥0, P̃, W̃ , X̃) to (1.3) which satisfies the estimate

Ẽ sup
t∈[0,T ]

|X̃(t)|2 ≤ CT (|x|2 + 1), x ∈ Rn. (2.3)

Proof. Consider the approximating equation

dXε + fε(Xε) dt = σ(Xε) dW, t ∈ [0, T ]
X(0) = x

(2.4)

where fε is a smooth approximation of f given by

fε(r) =

∫
Rn

f(r − ε θ) ρ(θ) dθ, ∀ε > 0, r ∈ Rn. (2.5)

Here ρ ∈ C∞0 (Rn) is any mollifier such that

ρ(r) ≥ 0, ρ(r) = ρ(−r), ρ(r) = 0 for |r| ≥ 1,

∫
Rn

ρ(r) dr = 1. (2.6)

Let Xε ∈ L2(Ω;C([0, T ];Rn)) be the strong solution to (2.4) (See Lemma
6.1). By (2.2) and Itô’s formula it follows that

1
2
|Xε(t)|2 ≤ 1

2
|x|2 + C

∫ t

0

(1 + |Xε(s)|2) ds

+ 1
2

∫ t

0

Tr(σ(Xε(s))σ
∗(Xε(s))) ds+

∫ t

0

Xε(s) · σ(Xε(s)) dWs, t ≥ 0

and so by the Burkholder-Davis-Gundy theorem (see e.g. [6]) we have

E
[

sup
t∈[0,T ]

|Xε(t)|2
]
≤ C (1 + |x|2), ∀ε > 0 (2.7)

(Here and everywhere in the following we shall denote by C several positive
constants independent of ε.)

5



We set Yε = (Xε,W ) and we consider νε = L(Yε) (the law of Yε) that is
νε(Γ) = P[Yε ∈ Γ] for each Borelian set Γ ⊂ C([0, T ];Rn)×C([0, T ];Rn). Let
us show that {νε} is tight in (C([0, T ];Rn))2 = C([0, T ];Rn)×C([0, T ];Rn).
This means that for each δ > 0 there is a compact subset Γ of (C([0, T ];Rn))2

such that νε(Γ
c) ≤ δ for all ε > 0. We take for r > 0, γ > 0,

Γ = Br,γ = {y ∈ (C([0, T ];Rn))2 : |y(t)| ≤ r,∀t ∈ [0, T ],

|y(t)− y(s)| ≤ γ |t− s|
1
2 , ∀t, s ∈ [0, T ]}

Clearly, by the Ascoli-Arzelà theorem, Br,γ is compact in (C([0, T ];Rn))2.
On the other hand, by (2.4) we have, via Itô’s formula applied to the process
t→ |Xε(t)−Xε(s)|2,

1
2
E|Xε(t)−Xε(s)|2 + E

∫ t

s

fε(Xε(θ)) · (Xε(θ)−Xε(s)) dθ

≤ C E

∫ t

s

|Xε(θ)|2 dθ, 0 ≤ s ≤ t ≤ T.

Taking into account estimate (2.7), we obtain via Gronwall’s lemma that

E|Xε(t)−Xε(s)|2 ≤ C

∫ t

s

|Xε(θ)|2 dθ ≤ C |t− s|. (2.8)

By estimates (2.7), (2.8) and by the well known inequality

ρ P[|Y | ≥ ρ] ≤ E|Y |, ∀ρ > 0,

we see that there are γ, r independent of ε such that νε(B
c
r,γ) ≤ δ, as desired.

Then by the Skorohod’s theorem there exist a probability space (Ω̃, F̃ , P̃)
and random variables X̃, X̃ε, W̃ε, W̃ such that L(X̃ε, W̃ε) = L(Xε,Wε) and
for P̃-almost every ω ∈ Ω̃

W̃ε → W̃ , X̃ε → X̃ in C([0, T ];Rn)

σ(X̃ε)→ σ(X̃) in C([0, T ];Rn)
(2.9)

as ε → 0. We have also L(fε(X̃ε)) = L(fε(Xε)) and so by (2.2), (2.5) it
follows that on a subsequence, denoted by {εn},

fεn(X̃εn)→ η̃ weakly in L2((0, T )× Ω̃). (2.10)

Let us show that

η̃ ∈ F (X̃), dt× dP̃-a.e. in (0, T )× Ω̃. (2.11)
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We have by (2.5),

fε(X̃ε(t, ω)) =

∫
Rn

f(X̃ε(t, ω)− ε θ) ρ(θ) dθ ∈ convf(Bε(X̃ε(t, ω))),

dt× dP̃-a.e. in ∈ [0, T ]× Ω̃,

and this implies that

Σ(t, ω) =
{
w− lim

εn→0
fεn(X̃ε(t, ω))

}
⊂ F (X̃(t, ω)), dt×dP̃-a.e. in [0, T ]× Ω̃.

By (2.10) and by Mazur’s theorem (see e.g., [17, pag. 120]) it follows that
there is a convex combination of fεn , that is

ϕn(t, ω) =
kn∑
i=1

α
(n)
i fεi(X̃εi(t, ω)),

∑kn
i=1 α

(n)
i = 1, 0 ≤ α

(n)
i ≤ 1, which is strongly convergent in L2((0, T ) × Ω̃)

to η̃ and so on a subsequence again denoted by {n}, we have

lim
n→∞

ϕn(t, ω) = η̃(t, ω), a.e. (t, ω) ∈ (0, T )× Ω̃.

Since limn→∞ ϕn(t, ω) ∈ F (X̃(t, ω)) we obtain (2.11) as claimed.
If we define

F̃ εt = σ
(
X̃ε(s), W̃ε(s); 0 ≤ s ≤ t

)
, t ≥ 0,

F̃t = σ
(
X̃(s), W̃ (s); 0 ≤ s ≤ t

)
, t ≥ 0,

then it follows that (W̃ε, F̃ εt ) and (W̃ , F̃t) are Wiener processes and that
P-a.s.,

X̃ε(t) +

∫ t

0

fε(X̃ε(s)) ds = x+

∫ t

0

σ(X̃ε(s)) dW̃ε(s), ∀t ∈ [0, T ].

Taking into account (2.10) and that P-a.s (see Lemma 3.1 in [10])

lim
ε→0

∫ t

0

σ(X̃ε(s)) dW̃ε(s) =

∫ t

0

σ(X̃(s)) dW̃ (s), ∀t ∈ [0, T ],

we obtain that P̃-a.s.

X̃(t) +

∫ t

0

η̃(s) ds = x+

∫ t

0

σ(X̃(s)) dW̃ (s), ∀t ∈ [0, T ].
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This means that the system (Ω̃, F̃ , {F̃t}t≥0, P̃, W̃ (t), X̃(t)) is a martingale
solution to (1.3). The estimate (2.3) follows by (2.7) which in turn implies
that

Ẽ sup
t∈[0,T ]

|X̃ε(t)|2 ≤ C (1 + |x|2), ∀ε > 0, t ∈ [0, T ].

Such a process X̃ can be extended to all of (0,∞).

Remark 2.1. If f and σ are in L∞(Rn), σ is Lipschitzian and σ∗σ is uni-
formly elliptic, that is

n∑
i,j=1

(σ∗σ)ij(x) ξiξj ≥ α

n∑
i=1

ξ2i , ∀ξ = (ξi) ∈ Rn, (2.12)

for some α > 0, then, as shown by A. Yu. Veretennikov [16], equation (1.3)
has a unique strong solution X; on these lines see also [10]. It should be
said however that for the applications we have in mind and more precisely
for existence of a sliding mode, the nondegeneracy condition (2.12) is too
restrictive.

Remark 2.2. If besides (2.2) one assumes that f is monotone from Rn to
itself, that is

(f(r)− f(r̄)) · (r − r̄) ≥ 0, ∀ r, r̄ ∈ Rn,

then the corresponding Filippov mapping F is maximal monotone (see [1,
pag. 46]) and by a standard argument it follows that equation (1.3) has a
unique strong solution X obtained as

X = lim
λ→0

Xλ in L2(Ω;C([0, T ];Rn)),

where Xλ is the solution to approximating equation

dXλ + Fλ(Xλ) dt = σ(Xλ) dW, t ∈ (0, T ),
Xλ(0) = x

and Fλ = 1
λ
(I − (I + λF )−1) is the Yosida approximation of F .

A typical example of differential systems with variable structure of the
form (1.3) is

f(r) =

{
f1(r) if g(r) ≥ 0

f2(r) if g(r) < 0
∀r ∈ Rn (2.13)
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where g ∈ C2(Rn), f1,f2 ∈ C1(Rn,Rn). We assume here that fi, i = 1, 2
and σ ∈ Lip(Rn,L(Rn,Rn)) satisfy the following conditions

|fi(r)| ≤ a1i |r|+ a2i, ∀r ∈ Rn, i = 1, 2 (2.14)

sup
r∈Rn

{|∇g(r)|+ |D2g(r)|} <∞ (2.15)

∇g(r) · f1(r) ≥ α in {r ∈ Rn : g(r) > 0} (2.16)

∇g(r) · f2(r) ≤ −α in {r ∈ Rn : g(r) < 0} (2.17)

|σ∗(r)σ(r)|
(
|∇g(r)|2 + |g(r)||D2g(r)|

)
≤ C∗ |g(r)|2, ∀r ∈ Rn (2.18)

where α > 0 and C∗ > 0. In particular (2.18) implies that |σ∗σ||∇g(r)|2 = 0
on {r : g(r) = 0}, which in general does not imply σ = 0 on [g = 0]. We
note also that by (2.15)–(2.17) it follows that Σ = {r ∈ Rn : g(r) = 0} is a
n− 1 dimensional C2-manifold. We have

Theorem 2.2. Under assumptions (2.14)–(2.18) for each x ∈ Rn there is a
martingale solution (Ω̃, F̃ , (F̃t)t≥0, P̃, W̃ , X̃) to (1.3) with the following prop-
erties:
(i) if g(x) = 0 then P̃-a.s. g(X̃(t)) = 0, ∀t ≥ 0;
(ii) if g(x) 6= 0 and τ = inf{t > 0 : g(X̃(t)) = 0} then

P̃(τ > t) ≤ C̃

α
(1− e−C̃ t)−1 |g(x)|, ∀t > 0, (2.19)

where C̃ = C1C
∗, C1 a positive constant independent of g and σ. If C∗ = 0

then
P̃(τ > t) ≤ (α t)−1|g(x)|, ∀t > 0.

Theorem 2.2 amounts to say that the switching manifold Σ = {x : g(x) =
0} is invariant for stochastic system (1.3) with f given by (2.13) and that
for x /∈ Σ the solution X̃ have reached the manifold Σ by time t with a
probability greater or equal to 1 − (α t)−1 |g(x)|. In the classical automatic
control terminology (see, e.g., [15]) this means that g(x) = 0 is a “sliding
mode” equation for system (1.3) and Σ is a switching surface for this system.
As a matter of fact this is typical “sliding” mode behaviour for the solution
X = X̃(t) and its dynamics has two phases: the first phase is on time interval
(0, τ) until X reaches the surface Σ and the second one for t ≥ τ in which
X(t) evolves on the sliding surface Σ. The reaching time τ = τ(ω) is a
stopping time determined by (2.19).

Proof of Theorem 2.2. We note first that the function f can be written as

f(r) = f1(r)H(g(r)) + f2(r)H(−g(r)), ∀r ∈ Rn, g(r) 6= 0
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where H is the Heaviside function, while the corresponding Filippov multi-
valued function F corresponding to f (see (1.7)) is just

F (y) =

f(y) for g(y) 6= 0

conv
[
f1(y), lim

z→y
g(z)<0

f2(z)
]

for g(y) = 0 (2.20)

Let X̃ be the martingale solution to (1.3) given by (2.9) where f is as in
(2.13). In order to prove the theorem we need a few apriori estimates on the
solution Xε to (2.4) which will be obtained by applying Itô’s formula to the
function φλ(u) = ϕλ(g(u)), where ϕλ ∈ C2(R) is defined as

ϕλ(r) = (r2 + λ2)
1
2 , λ > 0, ∀r ∈ R. (2.21)

Taking into account that, ∀u, v ∈ Rn, one has

Dφλ(u) = ϕ′λ(g(u))∇g(u) = (|g(u)|2 + λ2)−
1
2 g(u)∇g(u),

D2φλ(u)(v) = ϕ′′λ(g(u))(∇g(u) · v)∇g(u) + ϕ′λ(g(u))D2g(u)(v)

= −(|g(u)2 + λ2)−
3
2 |g(u)|2(∇g(u) · v)∇g(u)+

(|g(u)|2 + λ2)−
1
2 ((∇g(u) · v)∇g(u) + g(u)D2g(u)(v))

(2.22)

and therefore

dϕλ(g(Xε(t))) + (|g(Xε(t))|2 + λ2)−
1
2 g(Xε(t))fε(Xε(t)) · ∇g(Xε(t)) dt

=1
2

Tr[σ∗(Xε(t))σ(Xε(t))D
2φλ(Xε(t))] dt

+ (|g(Xε(t))|2 + λ2)−
1
2 g(Xε(t))σ(Xε(t)) dW (t) · ∇g(Xε(t)).

We note that in virtue of (2.18), (2.22) we have

Tr[σ∗(Xε)σ(Xε)D
2φλ(Xε)] ≤ C |σ∗(Xε)σ(Xε)|

(
|∇g(Xε)|2+

|g(Xε)||D2g(Xε)|
)

(|g(Xε(t))|2 + λ2)−
1
2 ≤ C C∗ |g(Xε)|

Letting λ→ 0 we obtain that for 0 ≤ s ≤ t <∞

|g(Xε(t))|+
∫ t

s

fε(Xε(θ)) · ∇g(Xε(θ)) sgn(g(Xε(θ))1[|g(Xε(θ))|>0] dθ

≤ |g(Xε(s))|+ 1
2
C C∗

∫ t

s

|g(Xε(θ))| dθ

+

∫ t

s

σ(Xε(θ))dW (θ) · ∇g(Xε(θ)) sgn(g(Xε(θ)))1[|g(Xε(θ))|>0] dθ.

(2.23)
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By (2.5) and (2.13) we have

fε(Xε(t)) · ∇g(Xε(t)) sgn(g(Xε(t)))

=

∫
[g(Xε(t)−εθ)>0]

f1(Xε(t)− εθ) · ∇g(Xε(t))ρ(θ) dθ

+

∫
[g(Xε(t)−εθ)<0]

f2(Xε(t)− εθ) · ∇g(Xε(t))ρ(θ) dθ

and so taking into account (2.14)–(2.16) we get

fε(Xε(t)) · ∇g(Xε(t)) sgn(g(Xε(t))) ≥ α− δ(ε)(1 + |Xε(t)|), ∀t ≥ 0

where δ(ε)→ 0 as ε→ 0. Taking into account (2.23) this yields

|g(Xε(t))|+ α

∫ t

s

1[|g(Xε(θ))|>0](1− δ(ε)|Xε(θ)|) dθ

≤|g(Xε(s))|+
∫ t

s

1[|g(Xε(θ))|>0]sgn(g(Xε(θ)))∇g(Xε(θ)) · σ(Xε(θ)) dW (θ)

+ C C∗
∫ t

s

|g(Xε(θ))| dθ.

The same inequality remains of course true for (X̃ε, W̃ε) and so letting ε→ 0
we get /////that again the same inequality for X̃ given by (2.9). Taking into
account (2.18) we get

|g(X̃(t))|+ α

∫ t

s

1[|g(X̃(θ))|>0] dθ ≤ |g(X̃(s))|+ C C∗
∫ t

s

|g(X̃(θ))| dθ

+

∫ t

s

1[|g(X̃(θ))|>0]sgn(g(X̃(θ)))∇g(X̃(θ)) · σ(X̃(θ)) dW̃ (θ),

0 ≤ s ≤ t <∞, P̃-a.s.

and so (see Lemma 6.3)

e−C̃ t|g(X̃(t))|+ α

∫ t

s

e−C̃ θ1[|g(X̃(θ))|>0] dθ ≤ e−C̃ s|g(X̃(s))|+∫ t

s

e−C̃ θ1[|g(X̃(θ))|>0]sgn(g(X̃(θ)))∇g(X̃(θ)) · σ(X̃(θ)) dW̃ (θ),

0 ≤ s ≤ t <∞.

(2.24)

In particular, it follows by (2.24), with s = 0 and taking the expectation,
that if g(x) = 0 then g(X̃(t)) = 0 P̃-a.s. for all t ≥ 0. Moreover, by (2.24)
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it follows that Z(t) = |g(X̃(t))|e−C̃ t is a nonnegative super-martingale and
therefore for any couple of stopping times τ1 < τ2 we have Z(τ1) ≥ Z(τ2).
This implies that if τ = inf{t > 0 : |Z(t)| = 0} we have that Z(t) = Z(τ),
P̃-a.s. for t > τ . On the other hand, by (2.24) it follows that

ẼZ(t) + α

∫ t

0

e−C̃ sP̃(τ > s) ds ≤ |g(x)|+ C̃

∫ t

0

ẼZ(s) ds, ∀t ≥ 0

and therefore

P̃(τ > t) ≤ C̃

α
(1− e−C̃ t)−1 |g(x)|, ∀t > 0,

which is just (2.19). This shows that X̃(t) reaches the manifold Σ in stopping
time τ and remains there for t > τ with a probability P̃ greater or equal
C̃
α

(1− e−C̃ t)−1 |g(x)|. The proof is complete.

Remark 2.3. If conditions (2.16), (2.17) are satisfied with α = 0 in Theorem
2.2 then only the invariance part (i) follows. We note also that if fi, i = 1, 2
are monotone then so is f and so, as noted earlier in Remark 2.2, equation
(1.3) has a unique strong solution X for which the conclusions of Theorem
2.2 hold.

Remark 2.4. As follows by the proof, assumption (2.18) were imposed by
the Itô formula and can be avoided if take the stochastic differential equation
(1.3) in the Stratonovich sense, that is if one replaces σ(X) dW by σ(X)◦dW .

Theorem 2.2 can be used to design feedback controllers for stochastic
differential systems with a sliding mode dynamics on a given surface Σ =
{x : g(x) = 0}. Such an example is presented below.

Example 2.5. Consider the controlled stochastic second order system

Ẍ + a Ẋ = σ0(X, Ẋ)β̇ + u in (0,∞). (2.25)

We assume that σ0 ∈ Lip(R2).
Our aim is to find a feedback controller u = −f0(X, Ẋ) such that the

corresponding closed loop system

Ẍ + a Ẋ + f0(X, Ẋ) = σ0(X, Ẋ)β̇

X(0) = x0, Ẋ(0) = x1
(2.26)

has the sliding mode equation

aX + Ẋ = 0. (2.27)
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Here β is a Brownian motion in a probability space (Ω,F ,P) and β̇ is the
associated white noise.

We choose

f0(r1, r2) = α sgn(a r1 + r2), ∀(r1, r2) ∈ R2 (2.28)

where α > 0 and rewrite equation (2.26) as

dX1 −X2 dt = 0
dX2 + aX2 dt+ α sgn(aX1 +X2) dt = σ0(X1, X2) dβ

(2.29)

for t ≥ 0, where as usually sgn(u) = u
|u| for u 6= 0.

Equation (2.29) is a “jump” system of the form (1.3) where

f(r1, r2) =

(
−r2

a r2 + α sgn(a r1 + r2)

)
, ∀(r1, r2) ∈ R2,

σ(r1, r2) =

(
0

σ0(r1, r2)

)
, ∀(r1, r2) ∈ R2,

and so f is of the form (2.13) where

f1(r) =

(
−r2

a r2 + α

)
, f2(r) =

(
−r2

a r2 − α

)
, r = (r1, r2) ∈ R2

g(r) = a r1 + r2, r = (r1, r2).

We assume that

σ2
0(r1, r2) ≤ C (a r1 + r2)

2, ∀(r1, r2) ∈ R2.

It is easily seen that conditions (2.14)–(2.18) hold and so Theorem 2.2 is
applicable to the present case. We get

Corollary 2.3. The stochastic closed loop system (2.29), equivalently (2.26),
(2.28), has the “sliding mode” (2.27). More precisely, for every (x0, x1) ∈ R2

there is a martingale solution (X1(t), X2(t)) which reaches the surface Σ =
{(x1, x2) : a x1 + x2 = 0} in time t with a probability ≥ 1− (α t)−1|a x0 + x1|,
and remains P̃-a.s. on this surface after that time.

This describes a typical “sliding-mode” behaviour for solutions X to
(2.26), namely

aX(t) + Ẋ(t) = 0

on (t0,∞)×Ω0 where P̃(Ω0) ≥ 1− (α t0)
−1|a x0 + x1|. We refer to [11], [13],

[14], for references and other significant results on “sliding-mode” behaviour
of stochastic differential systems.
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3 Existence of a weak solution to heat equa-

tion (1.4)

The following hypotheses will be assumed throughout in the sequel.

(i) h ∈ L∞loc(R) and |h(r)| ≤ a1|r|+ b1, ∀r ∈ R

(ii) W is the cylindrical Wiener process (1.2) where {ej}∞j=1 is an orthonor-
mal basis in L2(O) given by −∆ej = λjej in O; ej = 0 on ∂O and

∞∑
j=1

µ2
j |ej|2∞ <∞ (3.1)

(iii) b ∈ C2(R)∩Lip(R), b(0) = 0.

It follows by (3.1) that in this case the operator B defined in section 1 is
Hilbert-Schmidt.

Definition 3.1. Let x ∈ L2(O). We call weak (martingale) solution to
(1.4) a tuple (Ω,F , (Ft)t≥0,P,W,X), where (Ω,F , (Ft)t≥0,P) is a filtered
probability space where there are defined a (Ft)t≥0-Wiener process W and a
continuous (Ft)t≥0-adapted L2(O)-valued process X = (X(t))t≥0 such that,
P-a.s.,

X(t) = e−tAx+

∫ t

0

e−(t−s)Aη(s) ds+

∫ t

0

e−(t−s)A b(X(s)) dW (s), (3.2)

where η ∈ L2((0, T ) × O × Ω) is an L2(O)-valued (Ft)t≥0-adapted process
such that

η ∈ G(X), a.e in (0, T )×O × Ω, ∀T > 0. (3.3)

Here A = −∆ with D(A) = H1
0 (O) ∩ H2(O), e−A t is the C0-semigroup on

L2(O) generated by −A and G : R→ 2R is the Filippov map (1.6).

The construction of a weak (martingale) solution. We consider the
approximating equation

dXε −∆Xε dt+ hε(Xε) dt = b(Xε) dW, in (0, T )×O
Xε = 0, on (0, T )× ∂O
Xε(0, ξ) = x(ξ), ξ ∈ O

(3.4)

where ε > 0 and, as in the finite dimensional case (see (2.5)),

hε(r) =
1

ε

∫ ∞
−∞

h(s) ρ( r−s
ε

) ds =

∫ ∞
−∞

h(r − ε θ) ρ(θ) dθ, ∀r ∈ R. (3.5)
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Here ρ ∈ C∞0 (R) is such that

ρ(θ) ≥ 0 ρ(θ) = ρ(−θ), ρ(θ) = 0 for |θ| ≥ 1,

∫ ∞
−∞

ρ(θ) dθ = 1. (3.6)

Clearly by (i) we have

hε ∈ C1(R), |hε(r)| ≤ a1 |r|+ b1 + a1 ε, ∀r ∈ R, ε > 0. (3.7)

By Lemma 6.2 equation (3.4) has a unique strong solution

Xε ∈ L2(Ω;C([0, T ];L2(O))) ∩ L2(Ω;L2(0, T ;H1
0 (O))). (3.8)

By Itô’s formula we get P-a.s.

1
2
|Xε(t)|22 +

∫ t

0

‖Xε(s)‖21 ds+

∫ t

0

〈hε(Xε(s)), Xε(s)〉2 ds

= 1
2
|x|22 + 1

2

∫ t

0

∞∑
j=1

µ2
j |b(Xε(s)) ej|22 ds+

∫ t

0

〈b(Xε(s))dW (s), Xε(s)〉2,

∀t ∈ [0, T ],

and so by the Burkholder-Davis-Gundy formula we obtain by some calcula-
tion involving (i)–(iii)

E sup
t∈[0,T ]

|Xε(t)|22 + E

∫ t

0

‖Xε(s)‖21 ds ≤ C (|x|22 + 1), ∀ε > 0, (3.9)

where C is independent of ε. By (3.7) we also have

E sup
t∈[0,T ]

|hε(Xε(t))|22 ≤ C (|x|22 + 1).

Then on a subsequence, again denoted in the same way, we have for ε→ 0

Xε → X weak-star in L∞(0, T ;L2(Ω;L2(O))

weakly in L2(0, T ;L2(Ω;H1
0 (O))

(3.10)

hε(Xε)→ η weakly in L2((0, T );L2(Ω;L2(O))) (3.11)

b(Xε)→ b∗ weakly in L2(Ω;L2((0, T )×O)) (3.12)

and
dX −∆X dt+ η dt = b∗ dW in (0, T )×O,
X(0) = x in O,
X = 0 on (0, T )× ∂O,

(3.13)

15



that is

X(t)−
∫ t

0

∆X(s) ds+

∫ t

0

η(s) ds = x+

∫ t

0

b∗(s) dW (s), ∀t ∈ [0, T ], P-a.s.

(3.14)
where ∆ is taken in sense of distributions on O, hence by (3.10)

∆X ∈ L2(Ω;L2(0, T ;H−1(O))).

Since the weak convergences (3.10)-(3.12) are not sufficient to conclude that
(3.3) holds, then proceeding as in the proof of Theorem 2.1 we shall re-
place {Xε} by a sequence {X̃ε} of processes defined in a probability space
{Ω̃, F̃ , P̃, W̃} such that L(Xε) = L(X̃ε) where L is the law of the process.

To this end, consider the sequence {νε}ε≥0 of probability measures, νε =
L(Xε), that is νε(B) = P(Xε ∈ B) for any Borelian set B ⊂ C([0, T ];L2(O)).
We have

Lemma 3.1. Let x ∈ H1
0 (O). Then the sequence {νε}ε>0 is tight in the space

C([0, T ];L2(O)).

Proof. This means that for each δ > 0 there is a compact subset B of
C([0, T ];L2(O)) such that νε(B

c) ≤ δ for all ε > 0. We take for r > 0,
γ > 0,

B = Br,γ = {y ∈ C([0, T ];L2(O)) : |y(t)|2 ≤ r,∀t ∈ [0, T ],

‖y‖L∞(0,T ;H1
0 (O)) ≤ r, |y(t)− y(s)|2 ≤ γ |t− s|

1
2 , ∀t, s ∈ [0, T ]}

On the other hand, by (3.4) we have via Itô’s formula applied to the process
t→ |Xε(t)−Xε(s)|22

1
2
E|Xε(t)−Xε(s)|22 + E

∫ t

s

〈∇Xε(θ),∇(Xε(θ)−Xε(s))〉2 dθ

+ E

∫ t

s

〈hε(Xε(θ)), Xε(θ)−Xε(s)〉2 dθ

≤ C E

∫ t

s

|Xε(θ)|22 dθ 0 ≤ s ≤ t ≤ T.

Taking into account estimates (3.7), (3.9) we obtain via Gronwall’s lemma
that

E|Xε(t)−Xε(s)|22 ≤ C

∫ t

s

(|Xε(θ)|22 + |∇Xε(θ)|22) dθ ≤ C |t− s|. (3.15)
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Clearly, by Ascoli-Arzelà theorem, Br,γ is compact in C([0, T ];L2(O)).
By estimate (3.9), taking into account that

ρ P[|Y | ≥ ρ] ≤ E|Y |, ∀ρ > 0,

we infer that there are γ, r independent of ε such that νε(B
c
r,γ) ≤ δ, as

desired.

Then by the Skorohod theorem (see, e.g., Theorem 2.4 in [6]) there are a
probability space (Ω̃, F̃ , P̃) and stochastic processes X̃, {X̃ε}ε>0 on (Ω̃, F̃ , P̃)
such that the law L(X̃ε) of X̃ε coincides with L(Xε) and P̃-a.s.

X̃ε → X̃ in C([0, T ];L2(O)) (3.16)

as ε → 0. We have also L(X) = L(X̃). Since L(hε(Xε)) = L(hε(X̃ε)),
L(σ(Xε)) = L(σ(X̃ε)) by (3.16) and (3.5) we see that

hε(X̃ε)→ η̃,

b(X̃ε)→ b∗(X̃),
a.e. in (0, T )×O × Ω̃, (3.17)

where L(η̃) = L(η) and

η̃ ∈ G(X̃), a.e. in (0, T )×O × Ω̃. (3.18)

The latter follows as in the proof of Theorem 2.1 taking into account that in
this case G is given by (1.5), but we omit the details.
We set

Mε(t) = Xε(t)− x−
∫ t

0

∆Xε(s) ds+

∫ t

0

hε(Xε(s)) ds, t ∈ [0, T ] (3.19)

and

M̃ε(t) = X̃ε(t)− x−
∫ t

0

∆X̃ε(s) ds+

∫ t

0

hε(X̃ε(s)) ds, t ∈ [0, T ]. (3.20)

It turns out that M̃ε is a square integrable martingale on (Ω̃, F̃ , P̃) with
respect to the filtration Ft = σ{X̃s; s ≤ t}. Actually, since L(M̃ε) = L(Mε)
and Mε is a square integrable martingale on (Ω,F ,P) we have

E
[
(X̃ε(t)− X̃ε(s)−

∫ t

s

∆X̃ε(θ) dθ +

∫ t

s

hε(X̃ε(θ)) dθ)
]

= 0. (3.21)

Passing to the limit in (3.20) and taking into account (3.16)–(3.18) one ob-
tains that the process

M̃(t) = X̃(t)− x−
∫ t

0

∆X̃(s) ds+

∫ t

0

η̃(s) ds, t ≥ 0,
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where ∆X̃ ∈ L2(Ω;L2(0, T ;H−1(O))), is an L2(O)-valued martingale with
respect to filtration F̃t = σ{X̃(s), s ≤ t}, t ∈ [0, T ], with finite quadratic
variation, see [6, pag. 234]. Then by the representation theorem 8.2 in

[6] there is a larger probability space ( ˜̃Ω, ˜̃F , ˜̃
P), a filtration { ˜̃Ft}t≥0 and an

L2(O)-cylindrical Wiener process ˜̃W (t) on it such that, ˜̃
P-a.s.,

M̃(t) =

∫ t

0

b∗(X̃(s)) d ˜̃W (t), t ∈ [0, T ].

This means that the system (˜̃Ω, ˜̃F , { ˜̃Ft}t≥0, ˜̃
P, ˜̃W (t), X̃(t)) is a martingale

solution to (1.1). In the following we shall denote again this probability
basis by (Ω̃, F̃ , {F̃t}t≥0, P̃, W̃ , X̃). We have proved therefore

Theorem 3.2. Under Hypotheses (i), (ii), for each x ∈ H1
0 (O), there is at

least one martingale solution (Ω̃, F̃ , {F̃t}t≥0, P̃, W̃ , X̃) to equation (1.1) and
X̃ is given by (3.16). Moreover, we have

X̃ ∈ L2(Ω̃;L∞(0, T ;L2(O))) ∩ L2(Ω̃;L2(0, T ;H1
0 (O))). (3.22)

We note that (3.22) follows by (3.9) and (3.16).

Remark 3.1. Under additional assumptions on b (for instance if it is in-
dependent of X) it turns out that the martingale solution X̃ is the unique
strong solution, see [7]. Compare also Remark 2.1.

4 Sliding mode control of the stochastic heat

equation

For parabolic stochastic equations of the form (1.1) a “sliding” mode dynamic
arises for discontinuous (“jump”) functions h : R→ R of the form (2.13), that
is

h(r) =

{
f1(r) for g(r) ≥ 0

f2(r) for g(r) < 0
, r ∈ R (4.1)

where g, f1, f2 are given continuous functions.
As in the previous finite dimensional case, the objective of the “sliding-

mode” control is to design for the linear time invariant system

dX −∆X dt = du
X = 0
X(0) = x

in (0, T )×O
on (0, T )× ∂O
in O

(4.2)
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a stochastic feedback controller of the form

du = −h(X) dt+ b(X) dW (4.3)

such that the “sliding” motion occurs on the manifold Σ = {X : g(X) = 0}
which is also referred as “sliding” or “switching” manifold. Roughly speaking,
this means that there is a trajectory of the closed loop system (4.2)-(4.3),
which starts from initial state x, reaches the sliding manifold Σ at a certain
random time t0 and remains there for t ≥ t0. As a matter of fact, this last
phase of the dynamics is called “sliding mode”. The sliding mode is due
to both f1 and f2: if the solution enters the region of influence of f1, then
this function pushes the solution to cross the manifold; then, as it enters the
region of influence of f2, the solution is pushed back towards the manifold
again.

Of course in virtue of Theorem 3.2 a weak solution X to (4.2) in the sense
of Definition 3.1 exists for the extended multivalued closed loop system

dX −∆X dt+ F (X) dt = b(X) dW
X = 0
X(0) = x

in (0, T )×O
on (0, T )× ∂O
in O.

(4.4)

Here F : R → 2R is the multivalued Heaviside function (2.20) on R. To
begin with we shall prove first an invariance result for the manifold Σ =
{X : g(X) = 0}.

Theorem 4.1. Let g ∈ C2(R), f1, f2 be continuous functions which satisfy
assumption (i) and let b satisfies (iii). Assume further that

b2(r)(g g′′ + (g′)2)(r) ≤ C∗ g2(r), ∀r ∈ R (4.5)

g(r) g′′(r) + (g′(r))2 ≥ 0 ∀r ∈ R (4.6)

f1(r) g
′(r) ≥ 0 for g(r) > 0 (4.7)

f2(r) g
′(r) ≤ 0 for g(r) < 0. (4.8)

for some C∗ > 0. Then, for all x ∈ H1
0 (O) such that g(x) = 0 on O, there

is a martingale solution (Ω̃, F̃ , {{F̃t}t≥0, P̃, W̃ , X̃) to system (4.4) such that

g(X̃(t)) = 0, ∀t ∈ [0, T ], P̃-a.s.. (4.9)

Proof. We start with the approximating equation (3.4). We apply the Itô

19



formula to function x→ g2(x) and get∫
O
g2(Xε(t, ξ)) dξ

+ 2

∫ t

0

∫
O

(g g′′ + (g′)2)(Xε(s, ξ))|∇Xε(s, ξ)|2 dξ ds

+ 2

∫ t

0

∫
O
hε(Xε(s, ξ))g(Xε(s, ξ))g

′(Xε(s, ξ)) dξ ds

=

∫
O
g2(x) dξ

+
∞∑
j=1

µ2
j

∫ t

0

∫
O
|b(Xε(s, ξ)) ej|2|(g g′′ + (g′)2)(Xε(s, ξ))| dξ ds

+
∞∑
j=1

µj

∫ t

0

∫
O
b(Xε(s, ξ))g(Xε(s, ξ))g

′(Xε(s, ξ)) ej dξ dβj(s)

Taking into account (3.5),(3.7), we obtain that∫
O
hε(Xε)g(Xε)g

′(Xε) dξ =

∫
ρ(θ)( ∫

[g(Xε−εθ)>0]

f1(Xε − εθ)(gg′)(Xε − εθ) dξ+

∫
[g(Xε−εθ)<0]

f2(Xε − εθ)(gg′)(Xε − εθ) dξ
)
dθ + ζε(t), ∀t ∈ [0, T ],

where

ζε(t) ≤ C̃ ε

∫
O

(|Xε(t, ξ)|+ 1) dξ

with C̃ = C∗C, C > 0; thus, by (4.5)–(4.7), this yields

E

∫
O
g2(Xε(t, ξ)) dξ ≤ C E

∫ t

0

∫
O
g2(Xε(t, ξ)) dξ ds

+ δ(ε)E

∫ t

0

∫
O

(|Xε(t, ξ)|2 + 1) dξ ds, ∀t ∈ [0, T ]

where limε→0 δ(ε) = 0 and the constant C is independent of ε.
This yields, via Gronwall’s lemma,

E

∫
O
g2(Xε(t, ξ)) dξ ≤ δ(ε) exp(C t), ∀t ∈ [0, T ]. (4.10)
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If X̃ε is defined as in the proof of Theorem 3.1, that is L(X̃ε) = L(Xε) and
(3.16) holds, we get by (4.10) that

Ẽ

∫
O
g2(X̃ε(t, ξ)) dξ ≤ δ(ε) exp(C t), ∀t ∈ [0, T ], ∀ε > 0

where Ẽ is the expectation in probability space (Ω̃, F̃ , P̃). Hence, letting
ε tend to zero we get g2(X̃) = 0, dt × dξ × P̃-a.e. in (0, T ) × O × Ω̃ as
claimed.

Remark 4.1. In the particular case where the function

F (r) ≡ f1(r)H(g(r)) + f2(r)H(−g(r)), r ∈ R

is a maximal monotone graph in R × R with R(F ) = D(F ) = R, equation
(4.4) has a unique strong solution X. This happens for instance if fi, i = 1, 2,
are monotonically nondecreasing continuous functions such that f1 ≥ f2 on
R and g(x) = x (see [2]). Then the corresponding system (4.4)

dX −∆X dt+ (f1(X)H(X) + f2(X)H(−X)) dt =

b(X) dW, in (0, T )×O
X = 0, on (0, T )× ∂O,

(4.11)

has the invariant manifold X = 0.

Under stronger assumptions on g and b it turns out that the closed loop
system (4.2)–(4.3) (equivalently (4.11)) has a “sliding” mode dynamics with
the switching manifold Σ = {X : g(X) = 0}. Namely, we assume that

Hypothesis 4.2. fi, i = 1, 2 satisfy assumption (i) of page 14 and g ∈
C2(R), b ∈ C2(R) ∩ Lip(R) are such that

((g′(r))2 + |g′′(r)g(r)|) |b(r)|2 ≤ C∗ |g(r)|2, ∀r ∈ R, (4.12)

f1(r) g
′(r) ≥ α if g(r) > 0; f2(r) g

′(r) ≤ −α if g(r) < 0 (4.13)

g′, g′′ ∈ L∞(R), g′′ sgn g ≥ 0 on R, (4.14)

where α > 0, C∗ ≥ 0.

We note that by Theorem 3.2, equation (4.11) has a martingale solution
X̃ given by (3.16).
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Theorem 4.3. Under Hypothesis 4.2, for each x ∈ H1
0 (O) there is a mar-

tingale solution (Ω̃, F̃ , P̃, W̃ , X̃) to (4.2), (4.3) such that for τ = inf{t :
|g(X̃(t))| = 0} we have

P̃(τ > t) ≤ C̃

α
(1− e−C̃ t)−1 |g(x)|22. (4.15)

where C̃ = C C∗ and C is independent of g, σ. Moreover, if g(x) = 0 a.e. in
O, then there is a martingale solution X̃ such that g(X̃(t)) = 0 for all t ≥ 0.

Proof. The proof is very similar to that of Theorem 2.2, so it will be sketched
only. If Xε is the solution to equation (3.4) and X̃ε such that L(Xε) = L(X̃ε),
we get via Itô’s formula applied to function x→ ψ(g(x)) where

ψλ(u) = (|u|22 + λ2)
1
2 , ∀u ∈ L2(O)

and
Dψλ(u) = (|u|22 + λ2)−

1
2u, ∀u ∈ L2(O)

D2ψλ(u)(v) = (|u|22 + λ2)−
1
2v − (|u|22 + λ2)−

3
2u〈u, v〉2

We get

dψλ(g(X̃ε(t)))+

(|g(X̃ε(t))|22 + λ2)−
1
2 〈g(X̃ε(t))g

′(X̃ε(t)),−∆X̃ε(t) + hε(X̃ε(t))〉2 dt =

〈b(X̃ε(t)) dW (t), g(X̃ε(t))g
′(X̃ε(t))〉2(|g(X̃ε(t))|22 + λ2)−

1
2 +

1
2

∞∑
j=1

µ2
j

∫
O
|D2ψλ(g(X̃ε))ej|2 dξ dt

Taking into account that by (4.14)

−〈g(X̃ε(t))g
′(X̃ε(t)),∆X̃ε(t)〉 ≥

∫
O
g(X̃ε(t))g

′′(X̃ε(t))|∇X̃ε(t)|2 dξ

and letting λ→ 0 we obtain that

d |g(X̃ε(t))|2 + α1[|g(X̃ε(t))|>0]dt ≤
〈b(X̃ε(t))dW (t), g′(X̃ε(t)) sgn(g(X̃ε(t))〉2 dt+

1
2

∞∑
k=1

µ2
j

∫
O

|b(X̃ε(t)) ej|2((g′(X̃ε(t)))
2 + |g′′(X̃ε(t))g(X̃ε(t))|) dξ dt

(4.16)

22



We have used here assumption (4.13) which, as we have seen in the proof of
Theorem 2.2, implies that

fε(X̃ε) g
′(X̃ε) sgn g(X̃ε) ≥ α− δ(ε)(1 + |X̃ε|).

Now using (4.12) and letting ε→ 0 we get

|g(X̃(t))|2 + α

∫ t

s

1[|g(X̃(θ))|>0]dθ ≤ |g(X̃(s))|2 + C̃

∫ t

s

|g(X̃(θ))|2 dθ+∫ t

s

〈b(X̃(θ))dW (θ), g′(X̃(θ)) sgn(g(X̃(θ))〉2 for 0 ≤ s ≤ t

for some constant C̃ > 0.
This yields (see (2.24))

e−C̃ t|g(X̃(t))|2 + α

∫ t

s

e−C̃ θ1[|g(X̃(θ))|>0] dθ ≤ e−C̃ s|g(X̃(s))|2+∫ t

s

e−C̃ θ1[|g(X̃(θ))|>0] 〈g
′(X̃(θ))sgn(g(X̃(θ))), σ(X̃(θ)) dW (θ)〉2,

0 ≤ s ≤ t <∞.

Here Z̃ = |g(X̃(t))|2 e−C̃ t is a nonnegative supermartingale and so Z̃(t) =
Z̃(τ) P̃-a.s. for t > τ = inf{t > 0 : |Z̃(t)| = 0}. Taking expectation, we get

ẼZ̃(t) + α

∫ t

0

e−C̃ sP̃[τ > s] ds ≤ |g(x)|2 + C̃

∫ t

0

ẼZ̃(s) ds

which implies the desired estimate (4.15).

Remark 4.2. By (4.14) we see that g is convex on [g > 0], concave on [g < 0]
and so [r : g(r) = 0] = [α1, α2] is a closed interval.
However, by (4.13) we see that α1 = α2 = g−1(0) and so the switching
manifold Σ = {X : g(X) = 0} reduces to the point g−1(0). Hence under
the assumptions (4.12)–(4.14) the closed loop system (4.2)–(4.3) has for each
x ∈ H1

0 (O) a martingale solution which reaches the state X = g−1(0) in time
t with probability estimated by (4.15) and remains there after that time.
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5 “Sliding” mode control of a stochastic pa-

rabolic systems

Consider here the parabolic system

dX −∆X dt+ f1(X, Y ) dt = b1(X, Y ) dW1, in (0, T )×O ∩ {g > 0}
dY −∆Y dt+ f2(X, Y ) dt = b2(X, Y ) dW2, in (0, T )×O ∩ {g < 0}
X(0) = x(ξ), Y (0) = y(ξ), ξ ∈ O
X = Y = 0, on (0, T )× ∂O

(5.1)
where fi ∈ C(R2) satisfy assumption (i), bi ∈ C2(R) ∩ Lip(R), i = 1, 2 and
W1, W2 are Wiener processes of the form (1.2) in the space H = L2(O) ×
L2(O). Let g : R2 → R, g ∈ C2(R2) be given.

System (5.1) is of the form (1.1) where H = L2(O)× L2(O), W =
(
W1

W2

)
A =

(
−∆ 0

0 −∆

)
, D(A) =

(
H1

0 (O) ∩H2(O)
)2

B =

(
b1(X, Y ) 0

0 b2(X, Y )

)

f(X, Y ) =

{
f1(X, Y ) if g(X, Y ) ≥ 0,

f2(X, Y ) if g(X, Y ) < 0.

The corresponding Filippov map is

G(X, Y ) =


f1(X, Y ) if g(X, Y ) ≥ 0,

f2(X, Y ) if g(X, Y ) < 0,

[f1(X, Y ), f2(X, Y )] if g(X, Y ) = 0.

Arguing as in the proof of Theorem 3.2 it follows that for each (x, y) ∈
H1

0 (O)×H1
0 (O), system (5.1) has a martingale solution (X̃, Ỹ ) obtained as

limit of solutions (X̃ε, Ỹε) to corresponding approximating system

d
(X
Y

)
+
(−∆ 0

0 −∆

)(X
Y

)
dt+Gε

(X
Y

)
dt =

(b1(X, Y ) dW1

b2(X, Y ) dW2

)
(X
Y

)
(0) =

(x
y

) (5.2)

where

Gε(r1, r2) =

∫
R2

ρ(r − εθ) f(θ) dθ, (r1, r2) ∈ R2, ε > 0.
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(Here ρ is a mollifier function in R2.)
Assume further that(
|∇g(r)|2 + |D2g(r)||g(r)|

)(
|b1(r)|2 + |b2(r)|2

)
≤ C∗ |g(r)|2, ∀r ∈ R2 (5.3)

f1(r) gr1(r) ≥ α in [r : g(r) > 0] (5.4)

f2(r) gr2(r) ≤ −α in [r : g(r) < 0] (5.5)

where α > 0 and (gr1 , gr2) = ∇g,

gr1r1 sgn g ≥ 0, (g2r1r2 − gr1r1gr2r2) sgn g ≤ 0. (5.6)

We have

Theorem 5.1. Under assumptions (5.3)–(5.6) for each (x, y) ∈ H1
0 (O) ×

H1
0 (O) there is a martingale solution {Ω̃, F̃ , P̃, W̃ , (X̃, Ỹ )} to (5.1) such that

if τ is the stopping time τ = inf{t : g(X̃(t), Ỹ (t)) = 0} then

P̃[τ > t] ≤ C̃

α
(1− e−C̃ t)−1|g(x, y)|(L2(O))2 (5.7)

for some constant C̃ > 0.

The proof is exactly the same as that of Theorem 4.3 where the approxi-
mating equation (3.4) is replaced by (5.2). We note that in this case the
corresponding inequality (4.16) is a consequence of hypothesis (5.6). The
details are omitted.

A particular example is

g(r1, r2) = α1 r1 + α2 r2, ∀r1, r2 ∈ R

which, for fi, bi, i = 1, 2 satisfying the condition

α1 f1(r) ≥ α in {α1 r1 + α2 r2 > 0}
α2 f2(r) ≤ −α in {α1 r1 + α2 r2 < 0}
|b1(r)|2 + |b2(r)|2 ≤ C∗ (α1 r1 + α2 r2)

2

where α > 0, imply that system (5.1) has a martingale solution (X̃, Ỹ ) that
reaches the linear manifold

Σ = {α1 X̃ + α2 Ỹ = 0}

in a time t with probability ˜̃
P ≥ 1 − C t−1|α1 x + α2 y|(L2(O))2 and remains

on this manifold afterwards.
As in Example 2.5 we may view the feedback controller u = G(X, Y )

as a sliding mode controller which forces the trajectory of system (5.1) to
move on a lower order manifold {(X, Y ) : g(X, Y ) = 0}. Of course the
above treatment is applicable to a n-dimensional stochastic system of the
form (5.1).
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6 Appendix

The results given below are without any doubt known in literature but we
mention them for reader’s convenience.

Lemma 6.1. Let W be a n-dimensional Wiener process in a probability
space (Ω,F ,P) and let σ ∈ Lip(Rn;L(Rn;Rn)) and ` : Rn → Rn be a local
Lipschitz function such that

|`(r)| ≤ C (|r|+ 1), ∀r ∈ Rn. (6.1)

Then for each x ∈ Rn the equation

dX + `(X) dt = σ(X) dW, t ∈ (0, T )
X(0) = x

(6.2)

has a unique strong solution X.

Proof. We set

`N(r) = `(r) for |r| ≤ N, `N(r) = `(N r
|r| ) for |r| > N.

Since `N is Lipschitz, the equation

dXN + `N(XN) dt = σ(XN) dW, t ∈ (0, T ),
XN(0) = x

(6.3)

has a unique strong solution XN . By Itô’s formula we have

1
2
d|XN(t)|2 + `N(Xn(t)) ·XN(t) dt = 1

2
Tr [σ∗σ] dt+ σ(XN) dW ·XN

and taking into account (6.1) we get via Burkholder-Davis-Gundy theorem

E
[

sup
t∈[0,T ]

|XN(t)|2
]
≤ C(1 + |x|2) (6.4)

where C is independent of N . Consider the stopping time

τj = inf{t ∈ (0, T ) : |XN(t)|2 ≥ j2}, j ∈ N. (6.5)

We have

d(XN −XM) + (`N(XN)− `M(XM)) dt = (σ(XN)− σ(XM)) dW
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and this yields

1
2
|XN(t)−XM(t)|2+∫ t

0

(`N(XN(s))− `M(XM(s))) · (XN(s)−XM(s)) ds =

1
2

∫ t

0

Tr[(σ(XN(s))− σ(XM(s)))(σ∗(XN(s))− σ∗(XM(s)))] ds

+

∫ t

0

(σ(XN(s))− σ(XM(s))) dW (s) · (XN(s)−XM(s))

(6.6)
Taking into account that for M, N ≥ j∫ t∧τj

0

(`N(XN)− `M(XM)) · (XN −XM) ds ≤ C j

∫ t∧τj

0

|XN(s)−XM(s)|2 ds

we find by (6.6) via BDG inequality that

XN(s)−XM(s) = 0, ∀s ∈ (0, τj).

We set
X(t) = XN(t), ∀t ∈ (0, τj), ∀N ≥ j.

We have

X(t ∧ τj) +

∫ t∧τj

0

`(X(s)) ds = x+

∫ t∧τj

0

σ(X(s)) · dW (s)

and since by (6.4) and (6.5) limj→∞ τj = T , P-a.s. we infer that X is a
solution to (6.2).
The uniqueness of solution X follows in a similar way taking into account that
suach a solution satisfies, by Itô’s formula and BDG theorem, the estimate
(6.4) and that ` is locally Lipschitz.

Lemma 6.2. Let W be the Wiener process (1.2), ` : R→ R be locally Lips-
chitz, b ∈ Lip(R) and (6.1) holds. Then for each x ∈ L2(O) the equation

dX −∆X dt+ `(X) dt = b(X) dW, in (0, T )×O
X(0) = x in O
X = 0 on (0, T )× ∂O

(6.7)

has a unique strong solution

X ∈ L2(Ω;C([0, T ];L2(O))) ∩ L2(Ω;L2(0, T ;H1
0 (O))) (6.8)
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Proof. If ` is Lipschitz the result is well known (se e.g., [6]). Here we replace
in (6.7) ` by `N , previously defined at pag. 25. Then the corresponding
equation (6.7) has a unique strong solution

XN ∈ L2(Ω;C([0, T ];L2(O))) ∩ L2(Ω;L2(0, T ;H1
0 (O))).

By Itô’s formula combined with the BDG theorem we get

E
[

sup
t∈[0,T ]

|XN(t)|22
]

+ E

∫ t

0

‖XN(s)‖21 ds ≤ C (1 + |x|22)

where C is independent of N .
We define as in previous case the stopping time

τj = inf{t ∈ [0, T ] : |XN(t)|22 ≥ j2}, ∀j ∈ N,

and obtain as above that for M, N ≥ j

XN(t) = XM(t) P-a.s. t ∈ (0, τj).

Then X : [0, T ]→ L2(O) defined by

X(t) = XN(t) ∀t ∈ (0, τj), ∀N ≥ j,

is a solution to (6.7). It follows also that (6.8) holds.

Lemma 6.3. Let ϕ, α : [0, T ] → R, ψ : [0, T ] → Rn be (Ft)t≥0-adapted
processes with continuous paths such that

ϕ(t) +

∫ t

s

α(θ) dθ ≤ A+ C

∫ t

s

ϕ(θ) dθ +

∫ t

s

ψ(θ) · dWθ,

where A is a Fs-random variable. Then

ϕ(t) +

∫ t

s

eC(t−θ)α(θ) dθ ≤ eC(t−s)A+

∫ t

s

eC(t−θ)ψ(θ) · dWθ

Proof. Define

γ(t) = −
∫ t

s

α(θ) dθ + A+ C

∫ t

s

ϕ(θ) dθ.

Then we have

ϕ(t) ≤ γ(t) +

∫ t

s

ψ(θ) · dWθ
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γ′(t) = −α(t) + Cϕ(t), γ(s) = A

γ′(t) ≤ −α(t) + C γ(t) + C

∫ t

s

ψ(θ) · dWθ(
e−Ctγ(t)

)′
≤ −e−Ctα(t) + Ce−Ct

∫ t

s

ψ(θ) · dWθ

e−Ctγ(t)− e−C sA ≤ −
∫ t

s

e−Cuα(u) du+

∫ t

s

Ce−Cu du

∫ u

s

ψ(θ) · dWθ

Now, by integration by parts, we get∫ t

s

Ce−Cu du

∫ u

s

ψ(θ) · dWθ = −e−Ct
∫ t

s

ψ(θ) · dWθ +

∫ t

s

e−Cθψ(θ) · dWθ

Hence

e−Ctγ(t)+

∫ t

s

e−Cuα(u) du ≤ e−C sA+

∫ t

s

e−Cθψ(θ) ·dWθ−e−Ct
∫ t

s

ψ(θ) ·dWθ

which implies the desired inequality.
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stochastic evolution equations in Hilbert spaces perturbed by a bounded
measurable drift, Annals of Probability 41 (5) 3306–3344 (2013)

[8] A. F. Filippov, Differential Equations with Discontinuous Right-hand
Sides, Mat. Sbornik (N.S.) 51 (93), 99-128 (1960), Amer. Math. Soc.
Transl. 42, 199-231 (1964)

[9] A. F. Filippov, Differential Equations with Discontinuous Righthand
Sides, Kluwer Academic Publishers, Norwel, (1988)
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