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In this paper we propose a novel arbitrary high order accurate semi-implicit space-time
discontinuous Galerkin method for the solution of the three-dimensional incompressible
Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical
for space-time DG schemes, the discrete solution is represented in terms of space-time
basis functions. This allows to achieve very high order of accuracy also in time, which is
not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered
finite difference schemes, in our approach the discrete pressure is defined on the primary
tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual
grid. While staggered meshes are state of the art in classical finite difference schemes
for the incompressible Navier-Stokes equations, their use in high order DG schemes is
still quite rare. A very simple and efficient Picard iteration is used in order to derive a
space-time pressure correction algorithm that achieves also high order of accuracy in time
and that avoids the direct solution of global nonlinear systems. Formal substitution of the
discrete momentum equation on the dual grid into the discrete continuity equation on the
primary grid yields a very sparse five-point block system for the scalar pressure, which is
conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we
find that the linear system seems to be reasonably well conditioned, since all simulations
shown in this paper could be run without the use of any preconditioner, even up to very
high polynomial degrees. For a piecewise constant polynomial approximation in time and
if pressure boundary conditions are specified at least in one point, the resulting system
is, in addition, symmetric and positive definite. This allows us to use even faster iterative
solvers, like the conjugate gradient method.

The flexibility and accuracy of high order space-time DG methods on curved unstructured
meshes allows to discretize even complex physical domains with very coarse grids in both,
space and time. The proposed method is verified for approximation polynomials of degree
up to four in space and time by solving a series of typical 3D test problems and by
comparing the obtained numerical results with available exact analytical solutions, or with
other numerical or experimental reference data.
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To the knowledge of the authors, this is the first time that a space-time discontinuous

Galerkin finite element method is presented for the three-dimensional incompressible

Navier-Stokes equations on staggered unstructured tetrahedral grids.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The numerical solution of the three dimensional incompressible Navier-Stokes equations represents a very important and
challenging research topic, both from a numerical and from an application point of view. In the literature, there are many
different approaches that have been proposed for the solution of the incompressible Navier-Stokes equations, for example
using classical finite difference methods [1-4] or continuous finite element schemes [5-11]. Very recently, also different high
order discontinuous Galerkin (DG) methods have been presented for the solution of the incompressible and the compressible
Navier-Stokes equations. The first DG schemes that were able to solve the Navier-Stokes equations were those of Bassi and
Rebay [12] and Baumann and Oden [13,14]. Many other methods have been presented in the meantime, see for example
[12-27] for a non-exhaustive overview of the ongoing research in this very active field. In most DG schemes, the DG
discretization is only used for space discretization, while the time discretization uses standard explicit or implicit time
integrators known for ordinary differential equations, following the so-called method of lines approach. The method of lines
has also been used by Cockburn and Shu in their well-known series of papers [28-30] on DG schemes for time-dependent
nonlinear hyperbolic systems. In contrast to the method of lines approach, the family of space-time discontinuous Galerkin
finite element schemes, which was introduced for the first time by van der Vegt et al. in [31-33], treats space and time in
a unified manner. This is achieved by using test and basis functions that depend on both space and time, see [34-40] for
an overview of recent results. For a very early implementation of continuous space-time finite element schemes, the reader
is also referred to [41].

From an application point of view, it is very important to consider the fully three-dimensional Navier-Stokes equations,
in order to capture the relevant flow features that are observed in laboratory experiments, see [42-45]. This means that the
use of a two-dimensional algorithm is in most cases inappropriate to reproduce the results of physical experiments, even
for geometries that can be considered essentially two-dimensional. The importance of fully three-dimensional computations
has been shown, for example, in [45-51]. Unfortunately, the mesh generation for complex and realistic 3D geometries is
still nowadays quite difficult, and the computational cost of a fully three-dimensional simulation grows very quickly with
increasing mesh resolution. In this context, it becomes crucial to use unstructured simplex meshes, since they help to
simplify the process of mesh generation significantly compared to unstructured hexahedral meshes. Furthermore, it is at the
same time also crucial to use very high order accurate methods in both space and time, since they allow to reduce the total
number of elements significantly, compared to low order methods, while keeping at the same time a high level of accuracy
of the numerical solution. Since the solution of the incompressible Navier-Stokes equations requires necessarily the solution
of large systems of algebraic equations, it is indeed very important to derive a scheme that uses a stencil that is as small as
possible, in order to improve the sparsity pattern of the resulting system matrices. It is also desirable to design methods that
lead to reasonably well conditioned systems that can be solved with iterative solvers, like the conjugate gradient method
[52] or the GMRES algorithm [53].

For structured grids, numerical schemes can be usually derived rather easily in multiple space dimensions, thanks to the
particular regularity of the mesh. On the contrary, the development of numerical schemes on general unstructured meshes
in three space dimensions is not as straightforward and requires some care in the derivation and the implementation of
the method. Particular difficulties of the incompressible Navier-Stokes equations arise from their nonlinearity and from the
elliptic nature of the Poisson equation for the pressure, that is also obtained on the discrete level when substituting the
momentum equation into the discrete continuity equation. A unified analysis of several variants of the DG method applied
to an elliptic model problem has been provided by Arnold et al. in [54].

While the use of staggered grids is a very common practice in the finite difference community, its use is not so widespread
in the context of high order DG schemes. The first staggered DG schemes, based on a vertex-based dual grid, have been pro-
posed in [55,56]. Other recent high order staggered DG schemes that use an edge-based dual grid have been forwarded in
[57-59]. The advantage in using edge-based staggered grids is that they allow to improve significantly the sparsity pattern
of the final linear system that has to be solved for the pressure. Very recently, a new family of staggered semi-implicit DG
schemes for the solution of the two dimensional shallow water equations was presented by Dumbser & Casulli [59] and
Tavelli & Dumbser [60]. Subsequently, these semi-implicit staggered DG schemes have been successfully extended also to
the two-dimensional incompressible Navier-Stokes equations by Tavelli & Dumbser in [61,39]. Later, a staggered DG for-
mulation for the 2D incompressible Navier-Stokes equations has been reproposed independently also in [62]. Alternative
semi-implicit discontinuous Galerkin schemes on collocated grids have been presented, for example, in [63-67]. These semi-
implicit schemes try to combine the simplicity of explicit methods for nonlinear PDE with the stability and efficiency of
implicit time discretizations.

In this paper we propose a new, arbitrary high order accurate staggered space-time discontinuous Galerkin finite element
method for the solution of the three-dimensional incompressible Navier-Stokes equations on curved unstructured tetrahe-
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dral meshes, following some of the ideas outlined in [39] for the two-dimensional case. For that purpose we mimic the
philosophy of staggered semi-implicit finite difference schemes, such as discussed and analyzed in [1-4,68-77], where the
discrete pressure field is defined on the primary grid, while the discrete velocity field is defined on an edge-based staggered
dual grid.

For the staggered space-time DG scheme proposed in this paper, we use a primal mesh composed of (curved) tetrahedral
elements, and a face-based staggered dual mesh that consists of non-standard five-point hexahedral elements that are
obtained by connecting the three nodes of a face of the primal mesh with the barycenters of the two tetrahedra that share
the common face. The face-based dual grid used here corresponds to the choice made also in [78-80,58]. These spatial
elements are then extended to space-time control volumes using a simple tensor product in the time direction.

Since all quantities are readily defined where they are needed, our staggered DG scheme does not require the use of
Riemann solvers (numerical flux functions), apart from the nonlinear convective terms, which are treated in a conventional
way. Note that this special feature is not standard for DG schemes, which typically require numerical fluxes or penalty
terms due to the presence of jumps of the discrete solution at the element boundaries, in particular for the discretization of
second and higher order derivatives, see [81-83,17]. For the nonlinear convective part of the incompressible Navier-Stokes
equations, we use a standard DG scheme for hyperbolic PDE on the main grid, based on the local Lax-Friedrichs (Rusanov)
flux [84]. For that purpose, the velocity field is first interpolated from the dual grid to the main grid, as suggested in [59].
This allows us to use the same staggered space-time DG scheme again to discretize also the viscous terms, where now the
velocity gradient that is needed for the evaluation of the viscous fluxes is computed on the face-based staggered dual grid. In
this way, we can avoid again the use of numerical flux functions for the viscous terms, and furthermore, the structure of the
resulting linear systems for the viscous terms is very similar to the pressure system. In some sense, our new discretization
of the viscous terms can be interpreted as a lifting operator in the sense of Bassi and Rebay [12], but producing discrete
gradients on the staggered dual grid.

The discrete momentum equation is then inserted into the discrete continuity equation in order to obtain the discrete
form of the pressure Poisson equation. Once the new pressure field is known, the velocity vector field can subsequently be
updated directly. A very simple Picard iteration that embraces the entire space-time DG scheme in each time step is used
in order to achieve arbitrary high order of accuracy in time also for the nonlinear convective and viscous terms, without
introducing a nonlinearity in the system for the pressure.

In order to compare the staggered DG algorithm with the same DG scheme on a collocated grid, let us consider in the
following only the case of first order in time and high order in space and the coupling of the pressure gradient in the
momentum equation to the divergence constraint of the velocity, neglecting for a moment the presence of the nonlinear
convective and the viscous terms:

Thanks to the use of a staggered grid, our discretization leads to a very sparse five-point block system, with the scalar
pressure as the only unknown quantity.! Note that the same algorithm on a collocated grid would produce a 17-point stencil,
since it would also involve neighbors of neighbors.> On the other hand, if one does not substitute the momentum equation
into the continuity equation on a collocated grid, one could still obtain a five point stencil, but with the pressure and the
velocity vector as unknowns (leading to a saddle point problem), hence the final system to solve is four times larger than
the corresponding system of our staggered DG scheme. It is therefore very clear that even in the DG context, the use of a
staggered mesh is very beneficial, since it allows to produce a linear system with the smallest possible stencil and with the
smallest number of unknowns, compared to similar approaches on a collocated mesh.

One of the key novelties in this paper w.r.t. [39] is indeed the novel discretization of the viscous terms mentioned above,
which makes again efficient use of the combination of primal and staggered dual grid, while in [39] a penalty approach
based on the ideas of Gassner et al. [17] was employed directly on the dual grid. Another important change introduced
in this paper concerns the choice of the basis functions on the staggered dual grid, due to the appearing non-standard
five-point hexahedra. While in the 2D case described in [39] the dual grid consisted of simple quadrilateral elements, and
thus a natural nodal basis was available, the straightforward 3D extension of the nodal basis used in [39] can encounter
singularities, hence requiring either the choice of a more sophisticated non-polynomial nodal basis, or the use of a modal
basis, as used in this paper.

The rest of the paper is organized as follows: in Section 2 we derive and present the new numerical method. Section 2.5
contains the details about the discretization of the nonlinear convective terms on the main grid, while the velocity gradients
for the viscous terms are discretized again on the face-based staggered dual mesh. In Section 2.7 we discuss the important

1 Note that with scalar pressure we mean all degrees of freedom that define the discrete pressure in the DG scheme. As a consequence, all operations
performed on an element potentially involve all degrees of freedom of that element, and for that reason the final pressure system is a block five-point
system, where the blocks refer to the operations on the DOF inside each element.

2 The discrete continuity equation of a DG scheme on a collocated grid involves the velocity in the element itself and in its four neighbor elements, due to
the numerical flux involving the jumps on the element boundaries. Furthermore, in the discrete momentum equation the velocity field in each tetrahedral
element depends on the pressure in the cell itself and in its four neighbors. Inserting now the momentum equation into the continuity equation on the
discrete level involves a total of 1+4+4-3 =17 elements for the pressure!

On a staggered mesh instead, the discrete continuity equation involves only the velocities of the four dual elements associated with the faces of the
primary element. The discrete momentum equation written on the face-based dual grid only involves the pressure of the two tetrahedra that share the
common face. Hence, substituting the momentum equation into the continuity equation leads to a 1 +4 =5 point stencil for the pressure, which involves
only the element and its four neighbors.
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special case of a high order DG discretization in space, while using only a piecewise constant polynomial approximation in
time, leading to symmetric positive definite systems for the pressure and the viscous terms. Finally, in Section 3 the new
numerical scheme proposed in this paper is run on a set of 3D benchmark problems, comparing the numerical results either
with existing analytical or numerical reference solutions, or with available experimental results. The paper closes with some
concluding remarks provided in Section 4.

2. Staggered space-time DG scheme for the 3D incompressible Navier-Stokes equations
2.1. Governing equations

The three-dimensional incompressible Navier-Stokes equations can be written as

ov
§+V-F5+szv-(vVv)+S, (1)

V.v=0, (2)

where x = (x, y,z) is the vector of spatial coordinates and t denotes the time; p = P/p indicates the normalized fluid
pressure; P is the physical pressure and p is the constant fluid density; v = u/p is the kinematic viscosity coefficient;
v = (u,v,w) is the velocity vector; u, v and w are the velocity components in the x, y and z direction, respectively;
S =S(x,t) is a vector of given source terms; F. =v ® v is the flux tensor of the nonlinear convective terms, namely:

uu  uv  uw
F.=| vu vv vw
wu wv ww

The viscosity term can be grouped with the nonlinear convective term, i.e. the momentum Eq. (1) then reads

av
—+V-F+Vp=S, (3)
ot

where F =F(v, Vv) = F.(v) — vVv is the nonlinear flux tensor that depends on the velocity and its gradient.

2.2. Staggered unstructured mesh and associated space-time basis functions

Throughout this paper we use a main grid that is composed of (eventually curved) tetrahedral simplex elements, and
a staggered face-based dual grid, consisting in non-standard five-point hexahedral elements. These spatial control volumes
are then extended to space-time control volumes using a tensor product in time direction. In the following, the staggered
mesh in space is described in detail and is subsequently also extended to the time direction. The main notation is taken
as the one presented for the two dimensional method proposed in [39] and is summarized here for the three dimensional
case.

2.2.1. Staggered space—time control volumes

The spatial computational domain Q is covered with a set of N, non-overlapping tetrahedral elements T; with i =
1...N.. By denoting with Ny the total number of faces, the j-th face will be called I';. B(€2) denotes the set of indices
j corresponding to boundary faces. The indices of the four faces of each tetrahedron T; constitute the set S; defined by
Si={jel1,Nq] | Tjis a face of T;}. For every je[1...Nq] — B(R2) there exist two tetrahedra that share a common face
I"j. We assign arbitrarily a left and a right element, called T, and T,j), respectively. The standard positive direction is
assumed to be from left to right. Let 7i; denote the unit normal vector defined on the face number j and that is oriented
with respect to the positive direction from left to right. For every tetrahedral element number i and face number j € S;, the
index of the neighbor tetrahedron that shares the common face I'; is denoted by g (i, j).

For every j € [1, Ng] — B(2) the dual element (a non-standard 5-point hexahedron) associated with T'; is called H; and
it is defined by the two centers of gravity of T,y and T and the three vertices of I'j, see also [78,80,60]. We denote
by T; j = H;NT; the intersection element for every i and j € S;. Figs. 1 and 2 summarize the notation used on the main
tetrahedral mesh and on the associated dual grid. We extend our definitions on the main grid to the dual one, namely: N,
is the total amount of sides of H;; I'; indicates the I-th side; Vj, the set of sides [ of j is indicated with S;; VI, £;(I) and
rj(l) are the left and the right hexahedral element, respectively; 7 is the standard normal vector defined on I and assumed
positive with respect to the standard orientation on I (defined, as for the main grid, from the left to the right).

In the time direction we cover the time interval [0, T] with a sequence of times 0 =t9 <t! <t2... <tN <tN*1 =T We
denote the time step between t" and t"t1 by At"*1 =¢™1 — " and the associated time interval by T"! = [¢", ¢"+1], for
n=0...N. In order to ease the notation, sometimes we will simply write At = At"*1. In this way the generic space-time
element defined in the time interval [t", t"*1] is given by T$' = T; x T"*! for the main grid and HY =H; x T"*1 for the
dual grid.
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Fig. 2. An example of a dual element (a non-standard 5-point hexahedron, highlighted in blue) associated with the face T';. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

2.3. Space-time basis functions

We first construct the spatial basis functions and then we extend them to the time direction using a simple tensor
product. For tetrahedral elements, the basis functions are generated on a standard reference tetrahedron, defined by Tyer =
((£,1,0) eR3 | 0 <& 41+ ¢ <1). We write the basis function on the reference element as

p p—1np—r—n

GE 0= Y Y En? =l (4)

m =0 r2:0 r3:0

for some coefficients oy, and the multi-index r = (r1,7r2,r3). We then define Ny = w nodal points &; =

&jy»Mjy» Cjs) = (J1/P, J2/p, j3/p), with the multi-index j = (j1, j2, j3) and 0 < ji + j2 + j3 < p, as in standard conforming
finite elements. We then impose the classical interpolation condition for nodal finite elements ¢ (§ ;) = d;, with the usual
Kronecker symbol 8;;. This means that we have chosen a nodal basis which is defined by the Lagrange interpolation poly-
nomials that pass through the nodes given by the standard nodes of conforming finite elements. This leads to the linear
system akr‘;‘; = for the coefficients oy, that can be solved analytically for every polynomial degree p on the reference
tetrahedron. In this way we obtain Ny basis functions on Tref, {¢k}ke[1,n,]- The connection between the reference coordi-
nates £ and the physical coordinates x is performed by the map T(-,T;) =T;: T; — Ty for every i =1...N, and its

inverse, called T~1(-, T}) = T, T, T; <— Tier. The maps from the physical to the reference coordinates can be constructed
following a classical sub-parametric or a complete iso-parametric approach and in general we will write, for all i =1...Ne,
$ (%, ¥,2) = $u(Ti(x, ¥, 2).

Unfortunately, it is not so easy to construct a similar nodal basis on the dual mesh, due to the use of non-standard
5-point hexahedral elements. As discussed in [85], the definition of basis functions based on Lagrange interpolation polyno-
mials on this kind of element is problematic, since for special configurations of the vertex coordinates of the dual elements,
the linear system to be solved for the classical interpolation condition of a nodal basis can become singular. This does not
allow the construction of a nodal polynomial basis for a generic element H; and therefore one has to pass to rational
functions of polynomials instead of using simple polynomial functions in that case.

Therefore, for the basis functions on the dual grid directly we choose a simple Taylor-type modal basis [86] directly in
the physical space, hence the basis functions will consequently depend on the element j € [1, N4]. The basis functions read

N2 .\ ko o\ k3
) =) (=)

hk-l +ka+k3 >
J

v (%) = (5)
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where x0 =Xy, z)(“ is the center of the dual element and h; is a characteristic length of H; used for scaling the basis.
Here, 0 <kq + k2 +k3 < p, i.e. we use the optimal number of polynomials of degree p in three space dimensions, namely
Ny = Ng. With this choice we get only a modal basis for the dual hexahedral elements, i.e. if the convective term is directly
computed on the dual mesh according to the natural extension of the method proposed in [39], then it has to be computed
according to a modal approach, which is more expensive than a nodal one.

Finally, the time basis functions are constructed on a reference interval I = [0, 1] for polynomials of degree p,. In this
case the resulting N, = p,, + 1 basis functions {Vikeri.n, 1 are defined as the Lagrange interpolation polynomials passing
through the Gauss-Legendre quadrature points for the unit interval. For every time interval [t", t™1], the map between the
reference interval and the physical one is simply given by t =" + T At"™t! for every t € [0, 1]. Using the tensor product we
can finally construct the basis functions on the space-time elements Tf‘ and ij such as ¢(£,71,¢,T) =&, 0,0) - Y (T)

and Yy (x, y,z,t) =y (x, y,2) - y (z(t)). The total number of basis functions becomes N = Ny, - N;, and N =Ny -Ny.
2.4. Staggered semi-implicit space-time DG scheme

The discrete pressure py is defined on the main grid, namely py (X, t)|pst = pi(X, t) = p;, while the discrete velocity vector
field vy is defined on the dual grid, namely v, (X, t)|gst =V;(X, ) =V;.
J
The numerical solution of (2)-(3) is represented in each space-time element T3’ and Hj.t between times t" and t"t1 by
piecewise polynomials as

pi(x, r)-qu“)(x, P = 6" ox, 0P}, (6)
Nst ‘
vj (X t) — Z ,(/II(J) (X t)vl’H-] — 'ﬁ(j) (X, t)"*lr}+1, (7)

=1

where the vector of basis functions @ (x, t) is generated from ¢ (&, n,¢,T) on Tgy x [0, 1] while l/I (x t) is defined for every
jell...Ngql— B(2) directly in the physical space. '

A weak formulation of the continuity equation (2) is obtained by multiplying it with a test function ¢~>,E') and integrating
over the space-time control volume Tf[, for every k=1... N;f. The resulting weak formulation reads

/qs(”v vdxdt = (8)

TSL‘

with dx = dxdydz. Similarly, multiplication of the momentum equation (3) by the test function W(J) and integrating over a
control volume ij yields

/¢(1)<gv+v )dxdt+/w,“)Vp dxdt—/w“)dedt ®)

H Hs Hsr
)

forevery j=1...Ngand k=1... Nf;. Using integration by parts Eq. (8) reads

qu(”v-ﬁidsm—/w‘” vdxdt =0, (10)

Ts[ T?l‘

where 7i; indicates the outward pointing unit normal vector. Due to the discontinuity of p, and vy, equations (9) and (10)
have to be split as follows:

> /J’I?)Vj-ﬁidedt—/V‘lb(') vjdxdt | =0, o
JjeSi e T$,

and
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/‘P(]) <—+V )d"df+ / 0V pyj) dxdt + / A )VPrU)dXdH/*//k (prgj) = Pegiy) 1 dSdt

st St
H; i) LT Ly

= / TS dxd, (12)

St
H;

where 1ijj = nj| st T?tj =T;;xT™1; and th =T x T™*1. Note that the pressure has a discontinuity along th inside the
H .

hexahedral element Hj‘ and hence the pressure gradient in (9) needs to be interpreted in the sense of distributions, as in

path-conservative finite volume schemes [87,88]. This leads to the jump terms present in (12), see [39]. Alternatively, the

same jump term can be produced also via forward and backward integration by parts, see e.g. the well-known work of Bassi

and Rebay [12]. Using definitions (6) and (7), we rewrite the above equations as

> [ $OT Vs - — / VoI dxde -1 | <o, (13)
jeS; s H
i T
an

/ 7 S [ 50 paa e [ GOVH i+ [ 90VH s

Hst HS[ TSt

St
. T

r(j).J
PRSP ) . ) .
+ f 7¢O dsde pri — / 7 Dg ijdsde py L = / s dxdt, (14)
F;t Fst Hjt
where we have used the standard summation convention for the repeated index [. Integrating the first integral in (14) by
parts in time we obtain
. 81/;(1')
/w“) NI axdt = fw(f)(x v x, 1) dx — /uf,f“(x, V(X t")dx—/ a’; vj(x, t) dxdt. (15)

Hsr Hj Hj Hj.‘

In Eq. (15) we can recognize the fluxes between the current space-time element H; x T"t1 the future and the past
space-time elements, as well as an internal contribution that connects in an asymmetric way the degrees of freedom inside
the element H;‘ . Note that the asymmetry appears only in the volume contribution in (15). For the spatial integral at time t"
we will insert the boundary-extrapolated numerical solution from the previous time step, which corresponds to upwinding
in time direction due to the causality principle. By substituting Eq. (15) into (14) and using the causality principle, we
obtain the following weak formulation of the momentum equation:

/w(])(x tn+l)w(])(x t”'H)dx / 1’ﬁk w(]) dxdt "‘,;’l-‘r'l / (J)(x t )w(])(x t )dx"‘,n +/ (])V Fdx

HSt HS[
7 (Do 7L3U)) an+1 () 7)) n+1 ) 3 (T(]))" n+1
/ Y Ve dX G+ f Wl Ve 7 dx plr(])+/wl b dSplr(])
T3 LD, ry
() 7€) an+1
/1ﬁ é n]dSph(])
rs
= / 7S dxdt. (16)
B!

For every i and j, Eqs. (13) and (16) can be written in a compact matrix form as
> D ,0”“ (17)
JeSi

and
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(M} — M) — M+ 00 V) + Ry B — 25955 =S, (18)
respectively, where:
/ 59 o (NP x, 11 dx, (19)
/ 7 %, £0) 9,7 (x, £(1)) dx, (20)
()
o 0 -
Mj_/ o — kG0 axdt, (21)
H
/¢<J>v Faxdt (22)
HS[
D)= / 39 Viiygdsdt — / v 97 dxdt, (23)
ry T
R = / TGP dsde + / FOVED dxde, (24)
ry LEDY;
ci= / I ¢ Diijdsdt / TV D dxdt, (25)
ry T3
Sj=/1/;,£j)5dxdt. (26)
HY

Note how Mj? introduces, for p, > 0, an asymmetric contribution that will lead to an asymmetry of the main system for
the discrete pressure. The action of matrices £ and R can be generalized by introducing the new matrix Q; j, defined as
Q= / v dxdt — f D¢V oy it jdsdt, (27)
Ty, ry
where o; j is a sign function defined by

() =20+ £())

- 28
ST TG ) 2
In this way Qy(j) j =—Lj and Qy(j) j =R;, and then Eq. (18) becomes in terms of Q
o) & s an+1 an+1
(M} = M) 97— MV 4 050 VW) + Qi Bl + Qe iy = S5 (29)
or, equivalently,
(M - M") A?“ MV} + (v, Vv) + Qi bl + Qp(i,j),ji’g{il,j) =S;j. (30)

In order to ease the notation we will use M = M+ M?. Hence, the discrete equations (17)-(18) read as follows (saddle
point problem):

> D =0, (31)
jesi
N = ant1 ant1
M@ — MFV; + Qrjy By + Qe ibiy =0, (32)

where ﬁ/j is an appropriate discretization of the nonlinear convective, viscous and source terms that will be presented
later. Formal substitution of the discrete velocity field given by the momentum equation (32) into the discrete continuity
equation (31), see also [69,59], yields a discrete pressure equation
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-1 An+1 -1 ~n+1 o
2 DMy Qi + ) Di M} Qo Py = ) DiiFvj. (33)
JESi JeSi JjeSi

Eq. (33) above represents a block five-point system for the pressure degrees of freedom 13',-1“ inside each element and
where the blocks are due to the action of the matrices (19)-(25) on the degrees of freedom. The saddle point problem (31)
& (32) and the pressure equation (33) are completely equivalent at the discrete level, since the latter has been obtained
from the former only via direct substitution of (32) into (31).

2.5. Nonlinear convective and viscous terms

We now have to choose a proper discretization for the nonlinear convective and viscous terms. As discussed in [39] we
introduce a simple Picard iteration to update the information about the pressure, but without introducing any nonlinearity
into the final system for the pressure. Hence, for k =1, Np;c, we rewrite system (33) as

-1 An+1,k+1 -1 ~An+1,k+1 —nt1,k+1
ZDi,ij Qi.jp; + Z DiiM; Qpij.jPpij = ZDi,jF"j ‘. (34)
JESi JESi JeSi
The right side of Eq. (34) can be computed by using the velocity field at the Picard iteration k and including the viscous

effect implicitly, using a fractional step procedure detailed later. Once the new pressure field is known, the velocity vector

field at the new Picard iteration ¥"+1%*1 can be readily updated from the discrete momentum equation (32).

. . . . o e —~n+1,k+1
To close the problem it remains to specify how to construct the nonlinear convective-diffusion operator Fv? 2 At

this point one can try to extend the procedure already used in [39] to 3D. However, in this case there are some issues
that have to be taken into account. In particular, since we are using a modal basis on the staggered dual non-standard
5-point hexahedral mesh, we cannot use the simple nodal approximation for the nonlinear convective term F. =F.(¥) that
consists in a trivial point-wise evaluation of the nonlinear operator F.. Inspired by the good properties obtained by the use
of staggered grids, here we propose a new procedure for the computation of the nonlinear convective and viscous terms.
For that purpose, the velocity field is first interpolated from the dual grid to the main grid. The nonlinear convective terms
can then be easily discretized with a standard (space-time) DG scheme on the main grid. Then, the staggered mesh is used
again in order to define the gradient of the velocity on the dual elements, which allows us to produce a very simple and
sparse system for the discretization of the viscous terms.

An implicit discretization of the viscous terms on the dual grid leads to a linear system for each velocity component
that is a seven-point non-symmetric block system that is well conditioned for convection dominated problems, for which it
can be written as a v perturbation of the identity matrix, see e.g. [39]. Here, we will develop a discretization of the viscous
terms that leads only to a five-point block system and, more importantly, is symmetric and positive definite for v > 0 and
py =0, but is still better conditioned also in the general case p, > 0.

Given a discrete velocity field v, on the dual grid in the time interval [t", t™t1], we can project the velocity field from
the dual mesh to the main grid (denoted by v) via standard L, projection,

V=M Y M,-,]-o'}“, Vi€ [1, Nel, (35)
JjeSi

where \7’,7“ denote the degrees of freedom of the velocity on the main grid and
M; = / D¢ dxde,  M; = / Gy Vdxde. (36)
TSt TSt
i LJ

The projection back onto the dual grid is given by

ant+1 _ r—1 T ontl T ontl

Vit =M, (Me(m"aj) +Mr(j),jvr(j))’ (37)
with

Mj:/&lil)lﬁlwdxdt. (38)

st
H;

We can rewrite the nonlinear convective and viscous part of the momentum equation by introducing the viscous stress
tensor 0 = —vVv as auxiliary variable. The convective and viscous subsystem of the momentum equation then reads
ov
—+V-F.+V-.0=0,
at
o =—-vVv. (39)
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With the averaged velocity v!'*! = 47),(")\7??” defined on the main grid and the viscous stress tensor a?“ = &,(j)af}rl defined
on the dual grid, we obtain the following weak formulation of (39):

7 (i)
. i a
/¢]§l)(x’ (g dx—/¢;§l)(xv t")v] dx—/%fr?“ dxdt +
T;

T; T?[

/ SRS (v, ) - i dSde — / Ve F W) dxde + f b 0" iy dsdt — / Ve o dxdt | =0,
JeSi

AT TS s TS,
(40)
/ 1},51) (X, t"“)a’}“ dx
HY
_ 7 () ggn+l1 7 () gon+1 70) (gn+1 _ on+l =
" / gV axdt + [ g0V dxde + / b (V) - i) @jdsde | (41)
T LETY ry
In a more compact matrix notation, (41) can be written as:
J€S;
Vi 1 —n+1 —n+1
Mo = v ( Qe Vi) + QW) ) (42)
where
_— i »
M, = / & x. 1)) x. £(1))dx, (43)
T;
M; = / & x. 1) (x. £(1))dx, (44)
T;
7 ()
_ ¢, ~ i
M, = / 8—’;¢l(')dxdt. (45)

TS
In (42) we have defined the operator T?(\'/), which is a standard DG discretization of the nonlinear convective terms on the
tetrahedral elements of the main grid,
@) = / GRS (v, ) - i dSde — [ V4" - Fe (W) dxdt, (46)
aTst TS

with the boundary extrapolated values v~ and v from within the cell and from the neighbors, respectively. Here, the
approximate Riemann solver F‘}S used at the element boundaries is given by the simple Rusanov flux [84]

o R 1 _ o 1 _ _
(v, vh) -n; = 3 (Fe(W) +Fc (V7)) -l — 5 Smax (vt —v7), (47)

where Spax =2 max(|\7+|, |\7—|) is the maximum eigenvalue of the convective operator F.. The final system for the variable
v can be found by formal substitution of o given in the second equation of (42) into the first one:

_ 1 _ — 1 _ — —C _
M; _UZDi,ij Q,"j V?Jrl —UZD,’»]M]» Q@(i’j)’jv;til,j) :M,- V? —T,-C(Vn+1), (48)
JjeSs;i JjeSi

where we use the abbreviation M; =Ml»+ — M. What we obtain is a discretization of the nonlinear convective and viscous
terms on the main grid, where the stress tensor ¢ has been comcputed on the face-based dual mesh. In order to avoid the
solution of a nonlinear system due to the nonlinear operator Y (1), we introduce a fractional step scheme combined
with an outer Picard iteration. Using the notation introduced in [39], we get
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~ -1 _n+1k+1 S k1 — = [ntik
M; _VZDi.ij QijlV; ‘- ZDUM Qo.j). iV 0 .j) 2 =M, V? -0, (vn+ ’ ) (49)
JeSi jeSi

It is important to emphasize that boundary conditions are enforced in the DG context only in a weak integral sense, which
makes their implementation particularly simple. This is different with respect to other schemes, for which the issues with
boundary conditions have been discussed in [89]. For example, solid wall boundaries require v= 0 at the wall. In the
nonlinear convective terms of our scheme this is simply achieved by setting at the boundary v* = —v~ in (47), where v~
is the known boundary-extrapolated velocity from inside the computational domain. For the implementation of the wall
boundary condition in the viscous terms, one just needs to set v’r’(Jr; =0 in (41) (assuming that £(j) is the existing element
inside the computational domain), and in the same equation the control volume for the computation of the stress tensor is
simply changed from HS‘ to Te(j) i since the contribution of Tﬁﬁj does not exist at the boundary. In this context we also
would like to empha51ze that the purpose of the Picard iteration in our algorithm is not to deal with boundary conditions,

but just to get high order in time for p, > 0.
2.6. Final space-time pressure correction formulation

As already discussed in [39], the computation of the nonlinear convective and viscous terms presented in Eq. (49) does
not depend explicitly on the pressure of the previous Picard iteration, and hence it does not see the effect of the pressure
in the time interval T"*1, which is, however, needed to get a high order accurate scheme also in time. In order to overcome
the problem, we introduce directly into Eq. (49) the contribution of the pressure in the time interval T"*!, but at the
previous Picard iteration. Then, we update the velocity with the pressure correction p"“ L i)?“ * The final equations
(49), (32) and (33) to be solved for each Picard iteration k of our staggered semi-implicit space-time DG method therefore
read:

-n+1,k -1 ~n+1,k
Y £
JeSi
~n+1, k -1 -1 ~n+1,k ~n+1,k
Ai(p ZM11<M1 (Qru),jl’r(j) + Q). Py(j) )) (51)
JeSi
— — -1 _n+1.k+1 _n+1 -1
Mi—v) DiM; Qi;|V, ‘- ZDuM Qo iVpi )
JESi jesi
=—n axC (< ~n+1,k
=M V-7 (v”“”‘) MiA:(p"5, (52)
=n+lk+d - _n+1,k+3 _n+1,k+3
Fv; =M, (an Wy MG VG , (53)
-1 Antlk+1  andlk -1 n+1k+1 antlk —n+1.k+3
> DiiM; Qi (11,- — b >+ZDL1M1 Lo i.i).j (l’ml o TP n) =) DijFv; T (54)
jESi jESi ]'65‘].
A1kl gent Lkl -1 n+Lk+1  antlk n+Lk+1  antlk
v =Fv; " M (QW')J (l’r(n — P )+Q‘3<J‘>J ("em — Py(j )) (55)

where A,-(i)”“‘k) represents the same additional contribution subtracted in (54) that lives on the dual mesh, passed through
the averaging operator from the dual to the main grid. As initial guess for the pressure we simply take i)"+1 0 — 0, while
for the velocity field we simply take the velocity field at the previous time step. As an alternative, one could also take an
extrapolation of pressure and velocity from the previous time interval. A summary of the algorithm reads:

0. Choose an initial guess for the pressure and the velocity.

1. average the velocity field from the dual grid to the main grid using (50) and compute the contribution of the pressure
gradient of the previous Picard iteration on the main grid using (51);

. with the averaged velocity on the main grid, compute the nonlinear convective terms via (46);

. solve the linear systems for the viscous terms (52) on the main grid;

1.k S
. compute the term Fv mLkE on the dual grid via (53);

. solve the linear system for the pressure correction (54) on the main grid;
. update the velocity field according to (55) using the previously obtained pressure correction.

DU A WIN

Steps 1-6 are repeated for a total number of Picard iterations of Np;c = pj, + 1, which is inspired by the behavior of the
Picard process applied to ODE, where it directly constructs the Taylor series expansion of the solution and thus allows to
gain one order of accuracy per iteration. Furthermore, based on our previous experience gathered with local space-time
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Galerkin methods used in high order one-step ADER schemes [90,19,91], and based on our numerical results presented
in Section 3, we conjecture that this property also holds for the above algorithm. Other numerical schemes that follow a
similar approach are the so-called deferred correction algorithms, see e.g. [92,93]. We believe that the key ingredient of our
algorithm, which allows the simple Picard iteration to work, is the use of a space-time DG formalism that represents the
discrete solution also in terms of high order polynomials in time.

2.7. Remarks on the special case of piecewise constant polynomials in time (p,, =0)

Apart from the new treatment of the viscous terms introduced in this paper, the method presented in the previous
sections can be seen, for p, =0, as the extension of [61] to three space dimensions. This particular case is, in general, only
first order accurate in time but high order accurate in space. We also stress that for p, =0, no Picard iterations are used,
since the Picard process is only necessary to obtain higher order in time, but keeping at the same time the structure of the
entire scheme simple. In this case, we can recover several good properties for the main system for the pressure and for the
linear systems that need to be solved for the implicit discretization of the viscous terms.

2.7.1. Pressure system

For p, =0 we have M;? =0 then M; = M;“ = MJT is symmetric for all j € 1...Ny. Consequently, the system (31)-(32)
formally becomes the same method as in [61]. The following results can therefore be readily obtained as corollaries of the
theorems given in [61] regarding the system matrix A of the main system for the pressure (33):

Corollary 1 (Symmetry). Let p,, = 0, the system matrix A of the main system for the pressure is symmetric.

Corollary 2 (Positive semi-definiteness). Let p, = 0, the system matrix A of the main system for the pressure is in general positive
semi-definite.

This means that in this particular case we can use faster iterative linear solvers, like the conjugate gradient (CG) method
[52] to solve the main system for the pressure (33). This advantage makes the case p, =0 particularly suitable for steady
or almost steady problems. In order to recover some precision in time we can extend the algorithm by introducing a
semi-implicit discretization, as suggested in [61]. In this case, system (31)-(32) has to be discretized as

Y D =0, (56)
JES;
~ — ~n+60 ~n-+6
MV — MGFV; + AtQuj) By + AtQu jby(j =0, (57)

where ﬁ"w = 6‘13'”] + (1 —6)p" and 6 is an implicitness factor to be taken in the range 6 € [1,1], see e.g. [94]. For
2

6= % the Crank-Nicolson method is recovered. In this way we gain some extra precision in time without affecting the
computational effort and using the same advantages given by Corollary 1 and 2 that can be easily extended for this case.

2.7.2. Viscous system . .
In the special case of piecewise constant polynomials in time (p, = 0), we get M; = M; and M; = M}, so that the
following results about the viscous system (49) can be derived:

Corollary 3 (Symmetry). If p,, = 0 then the system (49) is symmetric.

Proof. We can write the system matrix of system (49) as (M +v.4), where M is a block diagonal matrix with {M;};—=1..n, on
the diagonal and A is the matrix of the pressure system (33). Thanks to the results obtained in Corollary 1, A is symmetric
and also M is symmetric, since M; = MIT, see (43). O

Corollary 4 (Positive definiteness). If p,, = 0 then the system (49) is positive definite.

Proof. As used in Corollary 3, we can write the system such as M + v.A and we know, thanks to Corollary 2, that A is in
general positive semi-definite. A simple computation leads to
x(M + UA)XT =xMx" +vxAx" >0 (58)

since vxAxT >0 and xMx" > 0 we have that the complete system is also positive definite. O
In the general case of p, > 0 it is not true that we recover the pressure system, since M. # M.. In this case, we can

observe how the non-symmetric contribution affects only M;. This allows us to write the previous system as T 4+ vH where
T is a block diagonal non-symmetric matrix and H is symmetric and positive semi-definite.
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Fig. 3. Isoparametric dual element example. On the left, a dual element with a 2D face on the curved boundary; on the right, an internal dual element, but
with a 1D edge on the curved boundary.

2.8. Extension to curved elements

The method described in the previous sections can readily be generalized by introducing also curved elements inside the
computational domain following an iso-parametric approach. This generalization will affect only the pre-processing step.
The extension is quite similar to the one introduced in [39,60] for the two dimensional case, but there are some differences
due to the three dimensionality of the problem.

First of all, in the two dimensional case one could eventually consider as curved only the primary elements that touch
a curved boundary, as well as the associated dual elements such that j € B(). In the 3D case we have to curve also
those internal elements which touch the boundary with an edge, see for example Fig. 3. Each tetrahedral main element
is then characterized by Ny nodes {(X,Y, Z);}x=1n,, while the dual hexahedral elements are split into a left and a right

tetrahedron, i.e. H;S" = T?&H U Tis(‘})’j and the points that lie on T are physically joined. In this way we have a full
characterization of the left and the right sub-tetrahedron of the dual hexahedral element, needed to compute properly the
integral contributions in the algorithm.

In order to compute the position of the grid points in the presence of curved boundaries, we start from an initial tetra-
hedrization with piecewise linear faces, as given by a standard mesh generator. Then, we produce a fine sub-tetrahedrization
that involves all the degrees of freedom inside the domain 2 and we solve a simple Laplace equation for the displacement
using a classical P1 continuous finite element method, imposing the projection onto the curved physical boundaries as
boundary conditions for the Laplace equation. This procedure produces a regular distribution of nodes inside the computa-
tional domain in the presence of curved boundaries.

As shown in [39], the possibility to curve the grid is crucial when we try to represent complex domains with a very
coarse grid. In any case, we emphasize that this generalization does not affect the computational cost during run-time, since
it affects only the construction of the main matrices that can be done in a preprocessing step.

3. Numerical test problems
3.1. Three-dimensional lid driven cavity

In this section we present some results regarding the three-dimensional lid-driven cavity problem. In the literature there
are a lot of well known results and reference solutions for the two-dimensional as well as for the fully three-dimensional
case, see [95-97,46,47]. We take a classical cubic cavity £ =[—0.5,0.5]° and we discretize it with a very coarse tetrahedral
mesh with characteristic mesh size h = 0.2. We set as initial conditions p =1; u=v = w = 0. As boundary condition we
impose velocity (u, v, w)=(1,0,0) at y =0.5 while no-slip boundary conditions are used on the other boundaries. Since
we are interested in steady state solutions, we take for the current test p =4, p, =0, # =1, and several different values
for the kinematic viscosity in order to obtain different Reynolds numbers.

In Fig. 4 the results are shown at a final time of t.,q = 30 for Re =400. In Fig. 5 the same plots are given for te,q = 40
and Re = 1000. In the top left panel of each plot we report our numerical results and compare them against the reference
solution obtained in [97] for the fully three-dimensional case and the data given by Ghia et al. [95] for the two dimensional
cavity at the same Reynolds number. We note a very good agreement with the 3D reference solution, despite the use of an
extremely coarse mesh. The data show that the presence of the third space dimension significantly modifies the velocity
profiles compared to the 2D case. Furthermore, several Taylor-Gortler like vortices appear in the secondary planes in a very
similar way as observed in other numerical and experimental investigations of this problem, see e.g. [46,47].

3.2. Convergence test
In this test we investigate the Arnold-Beltrami-Childress flow that was originally introduced by Arnold in [98] and

Childress in [99] as an interesting class of Beltrami flows and successively studied in a series of papers, see e.g. [100-103].
In particular we consider:
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1.2

3D x-v (DG p=4)

3D y-u (DG p=4) z
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Fig. 4. 3D lid-driven cavity. From top left to bottom right: Comparison between our numerical results, the one obtained by Albensoeder et al. in [97],
and the two dimensional data from Ghia et al. [95] at Re = 400; three-dimensional plot of the two secondary slices and grid spacing; streamlines and
magnitude of u on slices x-y, x-z and y-z.

u(x,y,zt) =|[sin(z) + cos(y)]e™"",
v(x,y,z,t) =[sin(x) + cos(z)] e~ "",
w(x, y,z,t) = [sin(y) + cos(x)]e™"",
p(x, ¥,z t) = —[cos(x) sin(y) + sin(x) cos(z) + sin(z) cos(y)]e " + ¢ (59)

where c € R. One can check that this is an exact solution for the complete three dimensional incompressible Navier-Stokes
equations in a periodic domain, so this smooth configuration is suitable for numerical convergence tests. In particular if
v =0 we can check the accuracy of the spatial part of the algorithm, i.e. p, =0, since the solution is a steady one. We
take as computational domain Q = [—7, 7] and we extend it using periodic boundary conditions everywhere. We use
increasing values of the polynomial degree p and use a sequence of successively refined meshes, starting from a regular
initial mesh. Simulations are performed up to t.;q = 0.1. The time step At is chosen according to the CFL time restriction for
explicit DG schemes based on the magnitude of the flow velocity. Since we have periodic boundary conditions everywhere,
we have a set of solutions for the pressure given by (59) up to a constant. In order to verify that also the pressure field is
correct, we choose c in (59) a posteriori according to the mean value of the resulting numerical pressure.

The resulting vorticity, pressure and streamlines are plotted in Fig. 6, while in Table 1 the resulting L, error norms are
reported for the steady case v = 0. We observe how the optimal order of convergence is obtained for this steady problem
for the pressure, while a suboptimal order of convergence can be observed for the velocity field.

In the second test case we turn on the viscosity in order to make the problem unsteady. For this kind of problem we
use the space-time DG implementation of the algorithm and we set the number of Picard iterations to Npjc = py + 1.
Unfortunately, as soon as we use a high order polynomial in time, the resulting pressure system in the form as it is written
in this paper looses the symmetry property and hence we have to use a slower linear solver, such as the GMRES method.
However, very recent results obtained by Fambri and Dumbser [104] after the submission of this paper show that it actually
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Fig. 5. 3D lid-driven cavity. From top left to bottom right: Comparison between our numerical results, the one obtained by Albensoeder et al. in [97],
and the two dimensional data from Ghia et al. [95] at Re = 1000; three-dimensional plot of the two secondary slices and grid spacing; streamlines and
magnitude of u on slices x-y, x-z and y-z.

is possible to restore the symmetry of the pressure system for staggered space-time DG schemes even for p, > 0, i.e. even for
high order in time. Since the viscosity contribution is discretized implicitly, we can take very large values for the kinematic
viscosity and maintain the same CFL time restriction for the simulation. The chosen viscosity for this test is v =1 and we
test the method for p =p, =1...4 on a sequence of successively refined grids. The resulting convergence rates, as well as

the L, error norms, are shown in Table 2. In this case an order of p + % is achieved for the pressure, while order p + 1 can
be observed for the velocity.

3.3. Taylor-Green vortex

In this section we investigate another typical benchmark problem, namely the classical 3D Taylor-Green vortex. In this
test case a very simple initial analytical solution degenerates quickly to a turbulent flow with very complex flow structures.
We take the initial condition as given in [105]:

u(x, y, z,t) = sin(x) cos(y) cos(z),
v(x,y,z,t) = —cos(x)sin(y) cos(z),

w(x,y,z,t)=0,

1
p(x,y,z,t)=po+ 16 (cos(2x) + cos(2y)) (cos(2z) + 2), (60)
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Table 1

Numerical convergence results for the steady 3D ABC flow (v =0).
p Dy Ne €(p) €(V) o(p) ()
1 0 7986 7.4349E-01 3.7768E-01 - -
1 0 10368 6.2638E-01 3.1662E-01 20 20
1 0 13182 5.3318E-01 2.7046E-01 2.0 2.0
1 0 16464 4.6155E-01 2.3309E-01 2.0 20
2 0 7986 8.6472E-02 5.0920E-02 3.0 24
2 0 10368 6.7178E-02 4.1417E-02 29 24
2 0 13182 5.2651E-02 3.4271E-02 3.0 24
2 0 16464 4.2520E-02 2.8499E-02 29 25
3 0 7986 6.6133E-03 3.5899E-03 3.9 34
3 0 10368 4.7069E-03 2.6619E-03 39 34
3 0 13182 3.4219E-03 2.0294E-03 4.0 34
3 0 16464 2.5604E-03 1.5727E-03 3.9 34
4 0 6000 8.4806E-04 6.7156E-04 4.9 41
4 0 7986 5.3156E-04 4.5361E-04 4.9 4.1
4 0 10368 3.4667E-04 3.1585E-04 49 4.2
4 0 13182 2.3307E-04 2.2733E-04 5.0 41
5 0 4374 1.5777E-04 1.6300E-04 5.9 5.1
5 0 6000 8.4744E-05 9.4463E-05 5.9 5.2
5 0 7986 4.8228E-05 5.7433E-05 59 52
5 0 10368 2.8868E-05 3.6318E-05 59 52

Table 2

Numerical convergence results for the unsteady ABC flow (v =1).
p Py Ne €(p) €(v) o(p) o (V)
1 1 10368 1.1713E4-00 2.4695E-01 16 2.0
1 1 13182 1.0388E+-00 2.1017E-01 15 20
1 1 16464 9.2718E-01 1.8075E-01 15 2.0
1 1 20250 8.3860E-01 1.5730E-01 15 2.0
2 2 10368 1.7339E-01 1.4475E-02 2.8 31
2 2 13182 1.4060E-01 1.1291E-02 2.6 31
2 2 16464 1.1470E-01 8.9676E-03 2.8 31
2 2 20250 9.5780E-02 7.2516E-03 2.6 31
3 3 6000 1.6219E-02 1.5469E-03 3.8 41
3 3 7986 1.1454E-02 1.0494E-03 3.7 41
3 3 10368 8.2191E-03 7.3591E-04 3.8 4.1
3 3 13182 6.1399E-03 5.3142E-04 3.6 4.1
4 4 750 4.5578E-02 3.2574E-03 4.7 4.8
4 4 1296 1.9664E-02 1.2957E-03 4.6 51
4 4 2058 9.3757E-03 5.9049E-04 4.8 5.1
4 4 3072 5.0553E-03 2.9738E-04 4.6 5.1

in Q = [, 7]® and periodic boundary conditions everywhere. As numerical parameters we take (p, py)=(4,0); N; =
494592 tetrahedral elements; 6 = 0.51; At according to the CFL time restriction; t.,q = 10; and several values of v so that
the Reynolds numbers under consideration are Re =400, Re =800 and Re = 1600, respectively.

A plot of the time evolution of the pressure field, the velocity magnitude and the vorticity pattern is shown in Figs. 7
and 8 for several times, as well as time series of the total kinematic energy dissipation rates compared with available DNS
data given by Brachet et al. in [48] in Fig. 9. A good agreement between reference data and our numerical results can be
observed. In Fig. 7 the vorticity pattern shows a really complex behavior that appears after a certain time (Fig. 8).

In this particular test it is very important to resolve the small scale structures that, close to t =9, constitute the main
contribution to the total kinetic energy dissipation. The mean number of iterations needed to solve the linear system for
the pressure at Re = 1600 and a tolerance of tol = 1078 is Ijpean = 290.7. In general we observe a number of iterations of
the linear solver in the range I € [93, 2516] for this test case, without the use of any preconditioner.

3.4. Womersley flow
In this section the proposed algorithm is verified against the exact solution for an oscillating flow in a rigid tube of

length L with circular cross section of diameter D. The unsteady flow is driven by a sinusoidal pressure gradient on the
inlet and outlet boundaries
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Fig. 6. From top left to bottom: Vorticity isosurfaces [0.8, 1.2, 2.0]; pressure isosurfaces p =[—0.8,0.0,0.8] and streamlines in order to show the three-
dimensionality of the ABC flow problem.

Pout® — Pintet®) _ P it

I 2% (61)

where p is the amplitude of the pressure gradient; p is the fluid density; w is the frequency of the oscillation; i indicates
the imaginary unit; piye and poye are the inlet and outlet pressures, respectively. The analytical solution was derived by
Womersley in [106]. According to [106,107] no convective contribution is considered. By imposing Eq. (61) at the tube ends,
the resulting unsteady velocity field is uniform in the axial direction and is given by

3
Jo(giz .
1 1—M ety ve(x,t) = We(x, 1) =0, (62)

iw JO (ai%)
D

where ¢ =2r/D with r =,/y2 4+ 22 is the dimensionless radial coordinate; D is the diameter of the tube; a = 7/? is a

constant; and Jo is the zero-th order Bessel function of the first kind. For the present test we take 2 as a cylinder (aligned
with the x-axis) of length L =4 and diameter D =2; p = 1000; p = 1000; @ = 27; and v = 0.04. The computational
domain 2 is covered with a total number of only N, = 1185 tetrahedra and the time step size is chosen as At = 0.3, which
is 30% of one oscillation period. For this test we take (p, p,) = (4,3) in order to produce a good solution also with the
chosen time step At, which can be considered as very large for this problem.

Due to the curved geometry of the problem we use a fully isoparametric approach to fit the cylinder. A plot of the
isoparametric grid that has been used here is reported in Fig. 12 on the left. We test our numerical solution in the cutting

Ue(X, t) =

kN1
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Fig. 7. 3D Taylor-Green vortex at Re = 800. From left to right: Pressure isosurfaces, velocity magnitude and vorticity isosurfaces at times t = 0.5 (top) and
t =1.0 (bottom).

slice I' = {x = 2} and successively on the line given by (x, z) = (2, 0) € I'. Fig. 10 shows the evolution of the velocity profile u
on T solved in a single time cell I'**(t, X) = I"(X) x [0.3, 0.6] evaluated at several intermediate times. A comparison between
numerical and exact solution is reported in Fig. 11 as well as the plot of I", in order to show the axial symmetry of the
solution, that is not trivial to obtain for the chosen discretization (very coarse unstructured mesh and very large time steps).
Finally, a plot of the time series of the velocity u computed in x=(1,0,0) and x = (1,0, 0.9) is reported in Fig. 12 and is
compared with the exact solution. It is clear from Figs. 11 and 12 that this test with the chosen time step can reproduce
good results only if we use high order polynomials also in time; indeed, the solution for a first order method in time would
look piecewise constant within each time step.

3.5. Blasius boundary layer

We consider here a classical benchmark for viscous incompressible fluids. For the particular case of laminar stationary
flow over a flat plate, a solution of Prandtl’s boundary layer equations was found by Blasius in [108] and is given by the
solution of a nonlinear third-order ODE, namely:

f///+f //=0,

f®=0, f©=0. lim ['E=1 (63)

where £ =y gﬁ is the Blasius coordinate; f' = ﬁ; and u« is the far field velocity. The reference solution is computed

here using a tenth-order DG ODE solver, see e.g. [19], together with a classical shooting method. In order to obtain the
Blasius velocity profile in our simulations we consider a steady flow over a flat plate. As a result of the viscosity, a boundary
layer appears along the no-slip wall. For the current test, we consider € =[—0.2,0.8] x [—0.2,0.2]%. An initially uniform
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Fig. 8. 3D Taylor-Green vortex at Re = 800. From left to right: Pressure isosurfaces, velocity magnitude and vorticity isosurfaces at times t = 2.1 (top),
t =4.8 (center) and t = 9.0 (bottom).

flow u(x,y,z,0) =uoo =1, v(x,y,2,0) =w(x,y,z,0)=0 and p(x, y,0) =1 is imposed as initial condition, while an inflow
boundary is imposed on the left boundary; no slip boundary condition is considered in the flat plane I' = {(x, y,z)|x > 0
Y = Ymin}; Slip boundary conditions are imposed at z = zp,j, and z = zpax and transmissive boundary conditions are imposed
at the upper face y = ymax. We consider here an extreme case of a very coarse mesh, where we cover our domain Q with a
set of only N, =1522 tetrahedra, whose characteristic length is h = 0.07. The chosen polynomial degree is (p, p,) = (4,0),
the final simulation time is t.,g = 10 and the viscosity is v =3 - 1074,

The resulting Blasius velocity profile is shown in Fig. 13 where also a sketch of the grid is reported. A comparison be-
tween the numerical results presented here and the Blasius solution is depicted in Fig. 14. A very good agreement between
numerical and reference solution can be observed, which is quite remarkable, if we take into account the mesh size and
considering that the major part of the boundary layer is essentially resolved in only one single control volume.



M. Tavelli, M. Dumbser / Journal of Computational Physics 319 (2016) 294-323 313

0.018 r
I o DNS, Re=400 (Brachet et al.)
0.016 o DNS, Re=800 (Brachet et al.)
B o DNS, Re=1600 (Brachet et al.)
[ oo Staggered DG (Re=1600)
0014 -~ Staggered DG (Re=800)
B Staggered DG (Re=400) s
0.012 -
5 001 -
> [
5 [
' 0.008 u
0.006 -
0.004 f-
0.002 f =
5 —EI«D»BE'EPEEREB prat
2 00O
JY saaad aattd SRNETTNEE FEEEE FRNEE FRNEE SR SN P
0 1 2 3 4 5 6 7 8 9 10

time

Fig. 9. Time evolution of the kinetic energy dissipation rate —dk/dt for the 3D Taylor-Green vortex, compared with available DNS data of Brachet et al. [48]
for Re =400, 800 and Re = 1600.
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Fig. 10. 3D Womersley flow. Plot of u in the middle of the tube in one single time control volume T = [0.3, 0.6]. From top left to bottom right we plot the
discrete solution at intermediate time levels t =[0.3, 0.375, 0.45, 0.525, 0.6].

3.6. Backward-facing step

In this section, the three-dimensional numerical solution for the fluid flow over a backward-facing step is considered.
For this test problem, both experimental and numerical results are available at several Reynolds numbers, see e.g. [45,109].
In particular, it is known that two dimensional simulations are in good agreement with experimental evidence only up to
Re = 400. Beyond this critical value, two dimensional simulations present a large secondary recirculation zone that reduces
the main recirculation zone. On the contrary, experimental results show that this secondary vortex appears only at higher
Reynolds number due to three-dimensional effects (see e.g. [45]). The used step size is of S =0.49 and the ratio between
the total height H and the inlet height h;, is of H/hj; = 1.9423. We consider here a smaller domain with respect to the
experimental setup of Armaly in [45], but sufficient to see the three-dimensional effects. In particular % €[-10,20], y €
[—0.49,0.51] and § € [0, 12]. The domain is covered using N, = 19872 tetrahedral elements and we take (p, py) = (4,0)
and Re = 600. We impose the exact Poiseuille profile in the y-direction at the tube inlet, transmissive boundary conditions
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Fig. 11. 3D Womersley flow. Axial velocity contours in the plane x =2 (left column) and comparison of the velocity against the exact solution at x =2 and
z =0 (right column) at times, from top to bottom, t =[0.15, 0.45, 0.75].

at the tube outlet and no-slip boundary conditions otherwise. For the current test At is taken according to the CFL time
restriction based on the magnitude of the flow velocity and te,q = 80.

A plot of the velocity profile at several values of x/S is shown in Fig. 15. The resulting recirculation zones in the
symmetry plane and close to the side wall Z”"% are shown in Fig. 16, as well as the equivalent in the plane (%, %) close to
the bottom and the top wall in Fig. 17. As we can see, no important secondary recirculation zones appear in the symmetric
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Fig. 12. 3D Womersley flow. Three dimensional view of the isoparametric grid used in this test case (left); Time series of u in the plane x=1, (y, z) = (0, 0)
and (y, z) = (0,0.9) (right). The vertical lines represent the very large time step size of At =0.3 used in this simulation.

Fig. 13. Blasius boundary layer: 3D plot of the domain @ and sketch of the mesh on the boundary; the plotted iso-surfaces are corresponding to u =
0.2,0.4,0.8.
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Fig. 14. Blasius boundary layer: numerical solution and reference solution taken on the line (x, y,z) = (0.4, y,0).
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Fig. 15. 3D backward facing step. Value of u in the (y, z)-plane at x=[0, 3.75,7.5,11.25, 15].

Fig. 16. 3D backward facing step. Recirculation zones in the plane (§ ,y) in the symmetry plane (top) and close to the side wall at é =12 (bottom).

plane, while a couple of recirculations appear close to the side walls. The presence of these secondary recirculations seem to
reduce the reattachment point for the main recirculation close to the side walls (see Fig. 17 top). On the contrary, a larger
recirculation zone can be seen in the middle of the channel. The resulting reattachment point in the symmetry plane is
’% = 11.2, that is really close to the one obtained in the experimental case, whose value is % = 11.24. Note that the
two dimensional numerical simulation, as presented in [61], leads to a reattachment point of ’% = 9.4, which completely
underestimates the experimental one.

3.7. Flow around a sphere

In this section we consider the flow around a sphere. In particular we take as computational domain = S19 U C10,15 —
So.5, where S; is a generic sphere with center 0 and radius r; Cr p is a cylinder with circular basis on the yz-plane, radius r
and height H. We use a very coarse grid that is composed by a total number of N, = 14403 tetrahedra whose characteristic
length is h = 0.2 close to the sphere, while it is only h = 0.8 away from the sphere. A sketch of the grid is shown in Fig. 18.

We start from an initial steady flow of magnitude vy = (U, 0, 0) With 1, = 0.5 and we impose uy, on S1g N {x <0} as
boundary condition; transmissive boundary condition on Cjg 15 and no-slip condition on Sp 5. We use a polynomial degree
(p, py) =(3,0) and 0 =0.51 using the method explained in section 2.7; Re =300; tepg = 300 and At is taken according to
the CFL time restriction for the convective term.

A plot of the spanwise velocity contours for v is reported in Fig. 19 at t =300 and shows a very complex and three-
dimensional behavior of the numerical solution. The mean number of iterations needed to solve the pressure system with
a tolerance of tol = 1078 is Ijeqn = 201.8 for this test problem. The maximum number of iterations is Imax = 2552 and is
observed only at the beginning of the simulation, when the constant initial condition for the velocity has to be adjusted.
Instead, the minimum number of iterations I;;, = 62 is observed when the Von Karman vortex street is fully developed.

A lateral and upper view of a particle tracer is reported in Fig. 20 at t = 300, while contour plots of the velocity
magnitude are depicted in Fig. 21. The obtained results look very similar to the experimental ones obtained by H. Sakamoto
et al. in [44]. The resulting Strouhal number for this simulation is St = 0.145, which is close to the experimental range
St =0.15-0.18 obtained in [44].
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Fig. 17. 3D backward facing step. Recirculation zones in the plane (%, é) close to the bottom and close to the top wall.

Fig. 18. Flow around a sphere. Cut view of the computational domain with N, = 14403.

3.8. 3D flow past a circular cylinder

In this last test case we want to treat another classical problem for the incompressible Navier-Stokes equations that
is the 3D flow around a circular cylinder. For this test, some numerical and experimental cases are available for a large
range of Reynolds numbers. In particular several papers focus the attention on the formation of two instability modes
characterized by large and small-scale streamwise vortex structures (see e.g. [43]), which act on the Reynolds-Strouhal
number relationship. We consider here the problem of the flow past a circular cylinder in a confined channel and for a
Reynolds number large enough to have three-dimensional effects and small-scale streamwise vortex structures. We define
the blockage ratio 8 = d/H where d indicates the cylinder diameter and H is the distance separating the two walls. In
[42] an experimental investigation for a blockage ratio of 8 = 1/3 was presented, producing the Re — St - Re relation up to
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Fig. 19. Flow around a sphere. Contour isosurfaces for the spanwise velocity v in the (x, y) plane, in the (y, z) plane and 3D plot.

Fig. 20. Flow around a sphere. Side view and upper view of the particle path at t = 300.

Re = 277. Other numerical studies of Kanaris et al. in [49] give us a numerical analysis in the case of lower blockage ratio of
B =1/5, finding a similar relation with respect to the unconfined experimental case of Williamson in [43]. We consider here
two domains that are 7 =[—10,30] x [—2.5,2.5] x [—12,12] —Cp5.24 and Q3 =[—10,30] x [—1.5,1.5] x [—12,12] — Co 5,24
where C; , represents the cylinder of radius r and height z centered in 0 and corresponding to a blockage ratio of 8 =1/5
and B = 1/3, respectively. The first domain €2 is covered with a total number of N, = 50761 tetrahedra and €2, is covered
with N, = 32527 elements. A sketch of the grid used in both the cases is shown in Fig. 22. As numerical parameters we
use (p, py) = (3,0), 0 =0.51 and tepg = 200. As initial condition we take a fully developed laminar Poiseuille profile and
we impose velocity boundary conditions on the inlet, transmissive boundary conditions on the outlet and no slip boundary
conditions otherwise. Finally we impose for the two tests v; = 1.66667 - 10~3 and v, = 1.80505 - 10> corresponding to
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Fig. 21. Flow around a sphere. Velocity magnitude at t = topq in the (x, y) and (x, z)-plane.

Fig. 22. Flow around a cylinder. Half grid plot of Q1 (left) and 2, (right).

Req1 =300 and Re; = 277. Furthermore, isoparametric elements are considered for both the cases in order to fit better
the curved cylinder. The resulting velocity contours at t.,q are reported in Fig. 23, where we can observe the generation
of the Von Karman vortex street past the cylinder, as well as the three-dimensional mixing effects given by the spanwise
velocity w.

The resulting Strouhal number for the first case is St = 0.198 which is in good agreement with the numerical one
St =0.1989 of Kanaris in [49] and the experimental one of Williamson in [43]. In the second case the obtained Strouhal
number is St = 0.2414, which corresponds to a value of St- Re = 66.877 that is in line with the experimental one of Rehimi
et al. in [42], whose extrapolated value is St - Re = 66.929. This confirms the suggestion given in [42] that the Strouhal
number increases with increasing blockage.

4. Conclusions

In this paper we have proposed a new arbitrary high order accurate space-time DG method on staggered unstructured
tetrahedral meshes for the solution of the incompressible Navier-Stokes equations in three space dimensions. The key idea
of our approach is indeed the use of a staggered mesh, where the pressure is defined on the main tetrahedral grid, while
the velocity is defined on a face-based staggered dual mesh, composed of non-standard five-point hexahedral elements. To
avoid the solution of nonlinear systems due to the presence of the nonlinear convective terms, we opt for a semi-implicit
discretization in combination with an outer Picard iteration, leading to a rather simple space-time pressure correction



320 M. Tavelli, M. Dumbser / Journal of Computational Physics 319 (2016) 294-323

Fig. 23. Flow around a cylinder. Isosurfaces of spanwise velocity v =[40.1, £0.03] and w = £0.03 from top to bottom for the case (Re, 8) = (300, %) (left
column) and (Re, B) = (277, %) (right column).

algorithm. To the knowledge of the authors, this is the first time that a staggered space-time DG scheme has been proposed
for the 3D incompressible Navier-Stokes equations on unstructured tetrahedral meshes.

The use of a staggered grid follows the ideas of classical finite difference schemes for the incompressible Navier-Stokes
equations, but it is not yet very widespread in the DG community. However, it allows to produce a linear system to be
solved in each time step with the smallest number of unknowns (only the scalar pressure) and with the smallest possible
stencil (5-point stencil). The same DG algorithm on a collocated mesh would either lead to a 17-point stencil (if the pressure
is used as the only unknown, substituting the momentum equation into the continuity equation), or to a four times larger
linear system with pressure and velocity as unknowns (if a 5-point stencil is used, hence not substituting the momentum
equation into the continuity equation). In the special case of piecewise constant polynomials in time (p, = 0), the final
system matrix becomes even symmetric and positive definite for appropriate boundary conditions, thus allowing the use of
the conjugate gradient method. In all test cases shown in this paper, the pressure system could be solved with a simple
matrix-free version of the GMRES/CG method, without the use of any preconditioner. In addition, all the coefficient matrices
needed by the scheme can be precomputed and stored in a preprocessing step. In this way also the extension to high order
isoparametric geometry becomes natural and does not affect the computational effort during run time. The staggered DG
approach further allows to avoid the use of numerical flux functions (Riemann solvers) in the scheme, since all quantities
are readily defined where they are needed, apart from the nonlinear convective terms, which are treated in a classical
manner.

The new numerical method has been applied to a large set of different steady and unsteady benchmark problems. It has
been shown that the method achieves high order of accuracy in both, space and time, allowing thus the use of very coarse
meshes in space and the use of very large time steps, without compromising the overall accuracy of the method.
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Future work will include the extension of the proposed staggered space-time DG method to the compressible Navier—
Stokes equations in order to produce a novel family of all Mach number flow solvers, similar to the ideas proposed in
[110-118] in the context of semi-implicit finite difference and finite volume schemes for compressible flows.
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