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Abstract

We present here an analysis of DSB induction and processing after irradiation with X-rays
in an extended dose range based on the use of the yH2AX assay. The study was performed
by quantitative flow cytometry measurements, since the use of foci counting would result in
reasonable accuracy only in a limited dose range of a few Gy. The experimental data are
complemented by a theoretical analysis based on the GLOBLE model. In fact, original aim
of the study was to test GLOBLE predictions against new experimental data, in order to con-
tribute to the validation of the model. Specifically, the yH2AX signal kinetics has been inves-
tigated up to 24 h after exposure to increasing photon doses between 2 and 500 Gy. The
prolonged persistence of the signal at high doses strongly suggests dose dependence in
DSB processing after low LET irradiation. Importantly, in the framework of our modelling
analysis, this is related to a gradually increased fraction of DSB clustering at the micrometre
scale. The parallel study of yH2AX dose response curves shows the onset of a pronounced
saturation in two cell lines at a dose of about 20 Gy. This dose is much lower than expected
according to model predictions based on the values usually adopted for the DSB induction
yield (= 30 DSB/Gy) and for the yH2AX foci extension of approximately 2 Mbp around the
DSB. We show and discuss how theoretical predictions and experimental findings can be in
principle reconciled by combining an increased DSB induction yield with the assumption of
a larger genomic extension for the single phosphorylated regions. As an alternative ap-
proach, we also considered in our model the possibility of a 3D spreading-mechanism of the
H2AX phosphorylation around the induced DSB, and applied it to the analysis of both the
aspects considered. Our results are found to be supportive for the basic assumptions on
which GLOBLE is built. Apart from giving new insights into the H2AX phosphorylation pro-
cess, experiments performed at high doses are of relevance in the context of radiation ther-
apy, where hypo-fractionated schemes become increasingly popular.
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Introduction

The YH2AX fluorescence assay became one of the methods of choice for the detection of radia-
tion induced DNA Double Strand Breaks (DSB), after it was shown in 1998 by Rogakou and
co-workers that the H2AX histones are locally phosphorylated on Serine 139 in presence of a
DSB [1], giving rise to the so-called YH2AX foci, which can be observed and counted with a
fluorescence microscope. YH2AX foci counting offers high sensitivity in the low dose range
down to few mGy [2], which is of interest for radiation protection and medical applications [3-
6]. At the same time, it ensures high accuracy only up to doses of few Gy [7,8]. Thus, the use of
flow cytometry to measure YH2AX fluorescence intensity is a candidate to allow the use of the
assay in an extended dose range up to several tens of Gy [9].

Among the different types of radiation induced DNA lesions, a primary role in cell killing is
attributed to DSB. Specifically, the number of residual DSB observed late after irradiation, rath-
er than the number of initial induced lesions, has been found to give indications concerning
cell inactivation probability [9-13]. For instance damage clustering at different levels, i.e. nano-
metre [14-17] or micrometre scale clustering [18-21], is often associated to a higher severity of
the induced damage, and thus to a prolonged persistence and enhanced lethality. However,
these concepts are debatable, and a complete picture for the description of the pathways lead-
ing from DSB to cell killing is not yet available. The majority of the studies pointing in this di-
rection are usually performed in a dose range typically below 10 Gy. Despite of this, there is
increasing interest in the radiation therapy community to apply hypo-fractionated regimes in
clinical practice [22]. These consist in the delivery of high doses to the tumour (20-30 Gy) in
few fractions or even in a single shot. From this point of view, new interest arises in the investi-
gation of biological effects induced after exposure to high radiation doses.

A consistent description of DNA damage and processing in an extensive dose range is also
needed for the implementation of radiobiological models which can be used in treatment plan-
ning. The Giant LOop Binary LEsion model (GLOBLE) is a radiobiological model able to pre-
dict biological effects resulting from photon irradiation [23]. The model allows predicting DSB
induction patterns in the context of the higher-order chromatin organization. Specifically, the
genome is considered to be organized in so-called Giant Loops, each one involving about 2
Mbp of chromatin [24,25]. Thus, according to the presence of one or multiple DSB inside such
loop structures, two different classes of DSB are defined and associated to a different damage
severity. The same concept of DSB classification into iDSB and ¢DSB is also implemented in
the Local Effect Model (LEM IV [26,27]) that allows predicting the effects of high-LET radia-
tion based on the known response of a cell or tissue to low-LET radiation. This model is used
in the framework of treatment planning for ion beam therapy [28,29].

In the framework of the validation of our modelling approach, we recently presented a DSB ki-
netic rejoining model based on the GLOBLE, which was able to consistently reproduce the dose
dependence of DSB rejoining as measured by means of filter elution techniques after photon irra-
diation in a dose range between 10 and 200 Gy [30]. This shows that the gradually slowed-down
processing of DSB after increasing photon doses can be well described solely based on the concept
of DSB clustering at the micrometre scale. Since that analysis was based on the consideration of a
single data set, additional work would be needed in order to further support those results. We
thus decided to complement that study with experimental data obtained with more modern tech-
niques, as for instance the YH2AX assay. However, since such studies would imply the use of high
doses in order to be sensitive to such effects, some practical issues have to be considered.

In fact, while the physical methods of detection allow the quantification of DNA fragments
after irradiation (which can be linked to the number of induced DSB), the spatio-temporal
characteristics of the yYH2AX signal suggest that it should rather be considered as an indirect
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marker of DSB presence [2]. While DSB start to be rejoined directly after induction, the
vH2AX fluorescence signal needs about 30-60 min to reach a maximum in the fluorescence in-
tensity, before decaying over time [31]. This is a consequence of the H2AX phosphorylation
taking place in an extended chromatin region surrounding the DSB. Thus, while DSB can be
considered as a point-like event, the same does not hold for the YH2AX foci, being character-
ized by a finite spatial extension [1,31].

The implications of the finite YH2AX foci size in the scoring of DSB have been considered
in the past, especially concerning high LET radiation, in experimental [32,33] and modelling
[34,35] studies. Several mechanisms potentially leading to a reduced number of foci compared
to the actual induced DSB have been proposed, as for instance the merging of close-by foci
and/or the presence of multiple DSB in the same focus. These mechanisms are expected to play
a substantial role after high LET irradiation, but in principle their conclusions should be appli-
cable to the description of foci patterns resulting from high doses of low LET radiation as well.

Additionally, mechanisms have been recently proposed to describe the possibility of a
three-dimensional accumulation of repair factors around the DSB, which would be responsible
for a further extension of the phosphorylated region. In particular, according to the work pre-
sented by Mufioz et al [36], this would be related to the activity of DNA-PK bound to unwound
chromatin ends, resulting in the activation of a chromatin region comprised between 2 and 10
Mbp. At the same time, Savic proposes a model where the spreading of H2AX phosphorylation
is a consequence of a phospho-ATM (pATM) gradient around the induced DSB [37]. Obvious-
ly, these aspects do not represent a critical limitation for the practical use of the method, but
they can affect the understanding of the experimental data, thus potentially resulting in
controversial interpretations.

Here we present new experimental data, obtained by means of flow cytometry measure-
ments of the YH2AX fluorescence signal intensity after X-rays irradiation in an extended dose
range, and compare them with a modelling analysis inspired by the GLOBLE approach. The
aim was to analyse the dose dependence in DNA repair after low LET irradiation, thus contrib-
uting to the validation of the basic assumptions on which the GLOBLE model is built. At the
same time, the use of the YH2AX assay at high doses, initially motivated by our interest in in-
vestigating DSB kinetics of rejoining, revealed to be an interesting aspect on itself for the study
of basic model parameters. Thus, full dose response curves were measured with flow cytometry,
complemented by parallel confocal microscopy imaging, and then compared to model predic-
tions. The influence of the spatial extension of the phosphorylated regions and of the DSB in-
duction yield is widely considered and discussed. The potential role which can be attributed to
3D phosphorylation mechanisms is also taken into account. These aspects are found of general
relevance for the interpretation and the understanding of experimental data obtained by means
of the YH2AX fluorescence assay. The kinetics of the YH2AX signal has been investigated up to
24 h after irradiation with increasing X-rays doses up to 500 Gy, and a GLOBLE-based kinetic
model is proposed to describe the observed signal. The gradually slowed-down disappearing of
the YH2AX signal at high doses is well described by the model. Together with our previous
studies, this is supportive for the relevance of damage clustering at the micrometre scale in
higher-order chromatin structures, in order to understand the biological effects induced by
ionizing radiation.

Methods
Cell culture and irradiation

Chinese Hamster Ovary cells (CHO-K1, American Type Culture Collection) were cultivated
using Ham's F12 medium (Biochrom) supplemented with 10% Fetal Bovine Serum (FBS) and
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1% Penycilin/Streptomycin; a solution of 0.05% trypsin/0.02% EDTA was employed for trypsi-
nization. Human skin fibroblasts (AG01522D abbreviated as AGD, obtained from Coriell In-
stitute for Medical Research) were grown in EMEM with EBSS medium (Lonza), where 15%
FBS and 1% Glutamine were added. A solution of 0.05% trypsin/0.1% EDTA was used for tryp-
sinization. The cells were grown in culture flasks (25 or 75 cm?) at 37°C in incubators, where
the atmosphere was composed by 95% air and 5% CO,. Cells were kept in exponential growth
by regular sub-culturing.

Two different irradiation setups were employed. Flow cytometry experiments were con-
ducted by using an x-ray tube working at 250 kV and 16 mA. A dose rate of 7 Gy/min was em-
ployed. Due to the need to reach high doses, a different x-ray tube working at 35 kV and 80 mA
was adopted to perform experiments at high doses. This allows reaching a dose rate of about
100 Gy/min. Despite the different voltages, according to literature data no considerable differ-
ence is expected among the DNA damage patterns induced by the two x-ray qualities employed
[38]. In order to ensure a homogeneous irradiation field, a single petri dish was placed at a dis-
tance of few cm from the tube exit window. With the aim to limit photon absorption, the medi-
um level in the dish was reduced to 0.5 ml during irradiation. After irradiation, the samples
were put in the incubators at 37°C. In both cases, dosimetry was performed with a calibrated
ionization chamber. The dosimetry was performed at different distances from the source and at
different currents, aimed at avoiding saturation effects of the ionization chamber. In order to
test the homogeneity of the irradiation field Gafchromic films were also employed. This con-
firmed that the dose is released homogeneously at the biological samples. This setup was
adopted to perform microscopy experiments shown in Fig 1, as well as for the dose response
curve in Fig 2 and for the study of the yYH2AX kinetics at high doses (> 8 Gy) shown in Fig 3.

Immunofluorescence staining and flow cytometry measurements

Cells were trypsinized 1 h after irradiation, fixed with a solution of 2% Paraformaldehyde
(PFA) in Phosphate Buffer Solution (PBS), and permeabilized with 1 ml of Triton X solution
0.5% in PBS. 1ml of 0.4% BSA in PBS was added as blocking agent, and cells were kept at 4°C
for a maximum of 7 days. After washing, a double antibody staining was used to detect the
presence of YH2AX molecules. Cells were resuspended in 100 pl of primary antibody (1:500 in
PBS; mouse monoclonal anti-phospho-Histone H2A.X Ser139 primary antibody clone
JBW301; Millipore) and incubated for 1 h at room temperature. Therefore, the samples were
washed, the cells were resuspended in 100 pl of secondary antibody solution (1:400 in PBS;
Alexa 488 goat anti-mouse F(ab), conjugate, Invitrogen, Karlsruhe, Germany) and incubated
in the dark for 45 min at room temperature. Finally, 1 ml of DAPI solution (1:1000 in PBS)
was added to obtain DNA staining as well. The fluorescence intensity of the samples was then
measured at the flow cytometer after an incubation of at least 15 min in the dark at room tem-
perature. In order to allow more accurate comparisons, samples belonging to the same experi-
ments were stained and measured on the same day.

A PAS III cytometer produced by Partec was used in this study. The analysis of flow cytom-
etry data was performed with the FloMax software, delivered together with the instrument. For
each sample, the YH2AX mean fluorescence intensity of G1 cells was quantified. The analysis
has been restricted to G1 cells in order to minimize the bias introduced by spontaneous foci
which can be measured in the S and G2 phases [39]. The background signal was quantified in
unirradiated samples and then subtracted from the fluorescence levels measured in irradiated
cells. An accurate quality control procedure was set-up, based on the use of polystyrene beads
(3 pm Calibration Beads nr. 05-4008 and DNA Control UV Beads nr. 05-4020 from Partec) in
order to check the stability of the instrument.
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Fig 1. yH2AX fluorescence pattern at high photon doses. yH2AX fluorescence pattern (green) of AGD cells as observed at the confocal microscope 1 h
after high doses of X-rays irradiation. The “sum slices” Z-projection obtained with the ImageJ software is shown after deconvolution. DNA was counterstained
with DAPI (displayed in red). The insert shows a single slice of yH2AX in greyscale (deconvoluted) with a magnification factor of 1.5. Larger dark areas in the
DNA staining which are free of yH2AX fluorescence represent nucleoli [68].

doi:10.1371/journal.pone.0129416.g001

Immunofluorescence staining and confocal microscopy

For the immunocytochemical staining experiments, cells were fixed in 2% PFA and permeabi-
lized as described previously [32]. The same primary (dilution 1:500) and secondary (dilution
1:200) antibodies adopted for flow cytometry were employed. Counterstaining was performed
with 1 ug/ml DAPI (displayed in red). Microscopic imaging was done on a Leica SPE confocal
system using an ACS APO 63x 1.3NA oil immersion lens. Optical sections were recorded in
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Fig 2. Measured yH2AX dose response curve up to 500 Gy. yH2AX fluorescence intensity measured with flow cytometry 1 h after X-rays irradiation of
AGD cells; the figure shows the dose response curve as extracted from the kinetics experiments (Fig 3) and the dose response curve resulting from
independent measurements. Error bars show standard error of the mean for three or four independent samples. Fluorescence intensity is in arbitrary units.

doi:10.1371/journal.pone.0129416.g002

increments of about 170 nm across the thickness of cells. The zoom factor was adjusted to yield
pixels corresponding to 85 nm x 85 nm in lateral dimensions. Image analysis was performed
with the Image]J software.

Modelling basics: the GLOBLE approach

The modelling work presented in this paper is based on the approach adopted in the GLOBLE
for the description of radiation induced DNA damage [23]. The target is identified with the cell
nucleus where the genome is stored. The nucleus is described as a cylinder having a radius of

5 um and a total volume of 500 um>. The higher-order chromatin organization is taken into ac-
count by considering the presence of Giant-Loops, also called domains here, each one involv-
ing about 2 Mbp of DNA [24,25] (see Fig 4A). Assuming the typical mammalian DNA content
of about 6000 Mbp per cell and the cited size parameters, we come up with about 3000 domains
of approximately 540 nm size length resembling the nuclear organization in the simulations.
No difference is made between eu- and heterochromatin compartments of the nucleus. From
now on, the words loop and domain will be used with the same meaning.
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Fig 3. yH2AX signal kinetics in an extended dose range: experimental data and modelling analysis.
Panel A: experimental data of flow cytometry measurements after irradiation with different X-rays doses
(symbols) and corresponding application of the yH2AX kinetic model (lines); error bars show standard error of
the mean for at least two independent samples. Lines show the result of the fit when input iDSB and cDSB
are calculated according to Poisson distribution and assuming the standard domain size of 2 Mbp,
considering also the 3D extension of the H2AX phosphorylation. Panel B: comparison between model
predictions for the different doses investigated after normalization to their maximum value of the functions
plotted in panel A.

doi:10.1371/journal.pone.0129416.g003

Based on the chromatin organization into loop structures, two classes of DSB are defined,
namely isolated (iDSB) and clustered (cDSB) DSB according to whether only one or more than
one DSB are simultaneously present in the same domain, respectively. Since the cDSB produce
the loss of integrity of the loop structure, and they may even result in the loss of DNA frag-
ments, they are considered to be more severe lesions compared to the iDSB.

Modelling the H2AX phosphorylation: from DSB to hit domains

In our model we define as hit domain each domain where at least one DSB is scored. Then, we
make the hypothesis that each hit domain can be associated to a loop where H2AX phosphoryla-
tion takes place following DSB induction. This is supported by literature data, suggesting a link
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Fig 4. Modelling the H2AX phosphorylation in the context of Mbp-level higher-order chromatin structures. Starting from the basic assumption that
chromatin loops involving about 2 Mbp of genome correspond to nuclear subunits that we define as domains (A), we make the hypothesis that a domain
where at least one DSB is scored can be related to a phosphorylated loop, shown in green (B); importantly, no difference is expected in terms of fluorescence
intensity depending on whether an iDSB or cDSB is induced, since in both cases we assume the whole loop being phosphorylated. In a further step, we
consider the possibility that H2AX phosphorylation can randomly spread in a 3D fashion around the induced DSB. According to this approach, some of the
domains surrounding the hit ones will produce yH2AX signal even without direct induction of DSB. This concept is schematically represented in panel C,
where arrows indicate spreading of H2AX to additional domains surrounding the hit one.

doi:10.1371/journal.pone.0129416.9004

between chromatin loops and H2AX histone phosphorylation [1,40]. We assume here that the
phosphorylation process takes always place in the whole loop extension, independent on the
presence of one or more DSB in the same loop. This means that no difference is made between
iDSB and c¢DSB concerning their contribution to the fluorescence signal (see also Fig 4B).

In order to predict the numbers of induced iDSB and cDSB after photon irradiation, the
Poisson distribution is adopted [23,27]. The average number of expected DSB per domain as
function of the dose D can be defined as follows:

_ OpssD

A(D) N (1)

where Ny indicates the total number of domains and opsp represents the DSB induction yield.
In line with the standard parameters adopted in the GLOBLE, N; is chosen equal to 3000 while
opsp is initially set to a value of 30 DSB per Gy and cell nucleus [8,41]. Importantly, in our ap-
proach the DSB induction yield includes implicitly all the lesions which are finally observed as
a DSB. This means that prompt DSB as well as DSB originating from clustered non-DSB le-
sions are included into this parameter [42-44]. The average expected number of domains af-
fected by iDSB (n;) and by cDSB (n,) at a given dose is then calculated with the following
equations:

n,(D) = N,A(D)e ™ n (D) =N,(1 —e*® — i(D)e ") (2)

Finally, the total number of hit domains for a given dose nr results from the sum of the corre-
sponding n; and n.:

ny(D) = n(D) + n.(D) (3)

With this approach, we can simulate the expected dose response curve after photon irradiation
in terms of hit domains. In first approximation, this simulated curve should be comparable
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with the one measured with flow cytometry by means of YH2AX fluorescence intensity. We
use a normalization factor x4 representing the average fluorescence per hit domain, so that the
fluorescence signal is given by:

YH2AX(D) = x, - n, (D) (4)

Modelling the possibility of 3D spreading of the H2AX phosphorylation

A further step is introduced in the model in order to take into account the possibility that
H2AX phosphorylation can extend to domains surrounding the hit ones and where no lesion
is induced, which we define here as activated domains (see Fig 4C). We assume that starting
from a hit domain, the phosphorylation of H2AX can spread to some of the surrounding loops
up to the point where a maximum of 10 Mbp of genome is activated [31,36]. As explained
below, this is taken into account with a probabilistic approach. No principle difference is made
between iDSB and ¢DSB concerning the spreading mechanism. From the practical point of
view, having defined domains of about 2 Mbp size, this means that the phosphorylation exten-
sion can affect up to 4 domains surrounding the hit one. In the defined geometry each cubic
domain has 26 neighbouring voxels (excluding domains belonging to boundary regions). For
any given dose, the number of initial induced iDSB and cDSB is calculated, and a correspond-
ing number of domain inside the nucleus is filled, in order to simulate the phosphorylation.
Then the simulation algorithm proceeds through the following steps:

o The content of each domain belonging to the volume is checked;
o If the domain has no DSB, the algorithm checks the following voxel;

o If the domain has an iDSB or a cDSB, an integer random number #,,, between 0 and 4 is
drawn to decide how many neighbouring domains are phosphorylated (in other words, the
final genomic extension of YH2AX foci is decided at this stage);

o 1,y Of the 26 surrounding voxels are randomly activated to simulate the 3D extension of the
phosphorylation starting from the hit domain;

o After the two random processes have been completed, the algorithm examines the following
voxel, until all the voxels have been considered.

In order to increase calculation accuracy, the random process was repeated 500 times for
each considered dose, and an average quantity was then computed. At this stage, we believe
that the assumption of a uniform probability distribution defining the final extension of the
phosphorylated region represents a reasonable approach for a first step approximation since
no detailed experimental evidence is available. The same applies to the selection of which
neighbouring domains are phosphorylated, assuming that there is no preferential direction for
the spatial spreading. At the same time, we are aware of the fact that the choice of cubic do-
mains is a simplistic approach. However, we think that in first instance this is a reasonable as-
sumption to test the soundness of the model. Moreover, it is the genomic content of the
domain rather than its exact geometry which is the most relevant aspect in GLOBLE. Therefore
we do not exclude that more realistic geometry could improve the model, but we are confident
that this would represent a second order effect which might be analysed in further studies.
Starting from an initial average number of hit domains, the final outcome of the calculations is
thus the average expected number of phosphorylated domains, including both directly hit or
randomly activated domains.
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Modelling of the yH2AX signal kinetics

Aiming at the description of the YH2AX signal kinetics, the approach recently presented in
Tommasino et al [21] for the analysis of the DSB rejoining kinetics is taken as starting point
and is further developed, in order to take into account the fact that H2AX phopshorylation is
not an instantaneous process. Here the hypothesis is made, that H2AX phosphorylation affects
the whole hit domain and takes place with the same kinetics independent on whether associat-
ed to an iDSB or to a cDSB, and can thus be parameterized with a common time constant. In
contrast to other studies based on a bio-chemical approach [45,46], a detailed consideration of
the phosphorylation mechanisms is beyond the scope of this work, therefore the role of kinases
involved in the H2AX phosphorylation after irradiation (e.g. DNA-PK, ATM) is not explicitly
considered. Importantly, the disappearing of the YH2AX signal over time is not strictly related
to the DSB rejoining but more generally reflects ongoing repair processes [31]. The mathemati-
cal expression used for the description of the YH2AX signal kinetics is thus the following:

t t
7, —“In(2) -—m(2)
YH2AX(t) = n, -5 - —=—- (e T —e Tas )+
T— Ty
t t (5)
——In(2 -—1n(2)
+n£.xﬂ.rﬂ$.(ef ()_e Tlow )

T—71

slow

where n; and n, are calculated with the GLOBLE, and ¢, and 14, refer to the half-lives of the
fast and slow components of damage processing respectively. In addition, we need to introduce
one more parameter in order to establish quantitative comparisons between the predicted fre-
quencies of iDSB and ¢cDSB and the measured signal. For this reason, the effective fluorescence
per hit domain is considered by the term x;. When the expression is used to fit experimental
data as measured after irradiation with different doses or different radiation qualities, the three
half-lives are considered as global fit parameters. The effective fluorescence is instead used as
single-curve fit parameter. The frequencies of induced iDSB and cDSB represent input parame-
ters of the model and their relative fractions define the complexity of the induced damage pat-
tern, thus determining a faster or slower disappearing of the signal. The fit is based on a
minimization on a linear scale, and error bars are considered. This model will be applied to the
description of the YH2AX kinetics after irradiation with different doses of X-rays.

Results
Flow cytometry measurements of yH2AX dose response curves

The dose response curve measured 1 h after irradiation, up to a dose of 140 Gy is shown in
Fig 5 for AGD and CHO cells. Differences in the absolute values for a given dose between the
two cell lines can be due to slight differences in genome content and/or in H2AX abundance,
as well as in chromatin organization [1]. In both curves, a similar behaviour for increasing
doses is observed. Specifically, the dose response starts with the trend of a linear rise in fluo-
rescence intensity up to a dose of about 10-20 Gy, followed by gradual bending of the curves,
expressing the transition into a “saturation region”. This bending seems to be more pro-
nounced for CHO cells, and shallower for AGD cells. At the same time, in the high dose re-
gion the curve appears almost flat for CHO, while a low but continuous increase in
fluorescence intensity is measured with AGD cells. Remarkably, according to results shown
in the past and obtained by using physical methods for DSB detection (i.e. sedimentation, gel
electrophoresis or filter elution techniques) no saturation would be expected in the induction
of DNA lesions in the dose range of interest here [47,48].
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@’PLOS ‘ ONE

yH2AX Radiation Response: Experimental and Modelling Study

50

45

—eo— AGD cells

—#— CHO cells

40
35
30
25
20
15

<yH2AX> a. u.

| | | |
40 60 80 100 120 140
D G

Fig 5. Measured yH2AX dose response curve. yH2AX fluorescence intensity measured with flow cytometry 1 h after X-rays irradiation of AGD and CHO
cells; error bars show standard error of the mean for four independent samples. Fluorescence intensity is in arbitrary units.

doi:10.1371/journal.pone.0129416.9005

In addition, in Fig 2 we show the results obtained with AGD cells by extending the dose re-
sponse curve up to 500 Gy. The two curves refer to the dose response curve as extracted from
the kinetics experiment (shown in Fig 3), as well as to the dose response curve resulting from
independent measurements. Apart from some larger scattering observed at high doses, the val-
ues are in line with what observed in Fig 5. This essentially confirms that the observed satura-
tion trend is maintained up to very high doses.

Dedicated tests have been performed, including variation of antibodies concentration and
the use of antigen retrieval techniques, in order to exclude that the observed saturation results
from technical artefacts. However, we observed no indications pointing at technical issues as
explanation for the saturation behaviour.

Microscopy analysis of the yH2AX fluorescence intensity at high doses

A parallel microscopy analysis was performed, aimed at the qualitative investigation of the
YH2AX distribution pattern in cells irradiated with high doses of X-rays. The resulting
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microscopy pictures are shown in Fig 1. The yYH2AX fluorescence patterns obtained after irra-
diation of confluent AGD cells with 10, 50, 200 and 400 Gy of X-rays are shown. We realize
that while after 10 Gy it is still possible to observe a heterogeneous distribution of foci, although
their high number hinders an accurate counting, after 50 Gy the YH2AX seems to be distribut-
ed almost in the whole nucleus. However, the fluorescence is not homogeneous and we can dis-
tinguish spots of higher and lower intensity resulting in a more or less pronounced granularity
of the staining, according to the specific cell under examination. A different fluorescence pat-
tern is observed in the samples irradiated with very high doses, namely 200 and 400 Gy in this
specific case, showing a much more homogeneous distribution of YH2AX. This suggests that,
in line with the low residual slope observed in the saturation region with flow cytometry, there
is still room for further H2AX phosphorylation at such high doses.

These results are further supported by the direct comparison of flow cytometry data and in-
tegral fluorescence intensity as extracted from microscopy pictures which is shown in S1 Fig.
This indicates that independent measurements performed with two techniques show the same
tendency to saturation.

Model predictions of hit domains

The GLOBLE model was used to calculate the expected number of hit domains for a given pho-
ton dose (see Methods for details). Intuitively, given a fixed number of domains belonging to
the nucleus, the onset of saturation is expected at some point in the dose response curve. This
is a consequence of both clustering of DSB into the same domain, which in our approach is not
expected to result in further phosphorylation, and of the number of not-hit domains decreasing
for increasing doses. This is demonstrated in Fig 6, where simulated dose response curves of
DSB induction and hit domains are compared. A DSB induction rate of 30 DSB/Gy and a foci
size of about 2 Mbp were assumed in the calculations, in line with the basic and most common
assumptions found in the literature [31,41,49]. We notice how the two curves progressively di-
verge for increasing doses. In particular, a tendency toward saturation is observed in the curve
representing the number of hit domains as a function of dose.

When comparing the experimental curves shown in Figs 2 and 5 with the results plotted in
Fig 6, we observe in both cases the general tendency toward saturation. At the same time, some
discrepancies are evident. In particular, in the measured curves the saturation seems to be
more pronounced and to arise at lower doses (about 20-40 Gy) as compared to the model pre-
dictions. Obviously, the actual value adopted for the DSB induction yield and for the domain
size will influence the dose at which saturation is reached. A sensitivity analysis for these two
parameters was performed and is shown in S2 Fig.

Direct comparison of model predictions and experimental data

In order to directly compare model predictions with the presented results, the experimental data
were normalized by the fluorescence intensity measured at 140 Gy. These normalized experi-
mental data (Figs 7 and 8) give information concerning the fraction of H2AX being phosphory-
lated at a given dose with respect to the value measured at 140 Gy. At this dose, CHO cells seem
to have entered a comparably stable saturation level, while a residual slope is observed for AGD.
This observation suggests that the H2AX content of CHO cells is activated with a higher effec-
tiveness per induced DSB compared to AGD cells. In fact, having as reference the fluorescence
intensity measured at 140 Gy, for CHO cells about 90% of this maximum level is already reached
at a dose of 25 Gy, and this determines the flattened profile for higher doses, meaning that only a
limited increase in signal intensity is expected when additional DSB are induced. At the same
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Fig 6. Modelling the yH2AX dose response: DSB vs hit domains. Comparison between expected numbers of induced DSB and hit domains as function of
the dose; the calculations were performed assuming the standard input parameters of 30 DSB per Gy and cell nucleus and of 3000 domains (2 Mbp/domain).

doi:10.1371/journal.pone.0129416.9006

time, for AGD cells at a dose of 25 Gy the YH2AX signal is at about 70% of the reference value,
and therefore a higher slope is observed up to the maximum dose of 140 Gy.

The same approach is adopted for the analysis of model calculations of hit domains as func-
tion of the dose, by using the predicted values corresponding to 140 Gy as normalization fac-
tors. Thus, a qualitative comparison can be directly established between experimental and
modelling results. Predicted curves are calculated for different combinations of model parame-
ters. In Fig 7A the measured YH2AX dose response curve for both CHO and AGD cells is
shown together with model predictions calculated for different domain sizes and for the stan-
dard DSB induction rate of 30 DSB/Gy. We observe that the combination of 30 DSB/Gy and
3000 domains does not allow reproducing the experimental data. In fact, only a slight tendency
to saturation is observed in the corresponding curve, which therefore diverges from the mea-
sured points. Concerning AGD cells, we see that a good agreement is obtained by assuming a
larger domain size corresponding to a genome content of 8-10 Mbp/domain. In this case, the
predicted curves nicely reproduce the initial rise of the signal up to about 25 Gy, and they also
show the onset of a pronounced saturation as it is the case in the experimental data. When
using domains of smaller size (4-6 Mbp), deviations from the measured points get smaller at
high doses. On the contrary, in the case of CHO cells even the assumption of a large domain
size is not enough to reproduce the initial steep increase of fluorescence which is measured in
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doi:10.1371/journal.pone.0129416.g007

the experiments, although we can again observe a partial agreement for doses above 25 Gy if a
DNA content comprised between 6 and 10 Mbp per domain is assumed.

In Fig 7B we tested model predictions for different domain sizes assuming also an increased
DSB yield of 60 DSB/Gy. Noticeably, some improvements can be found in the description of
both cell lines. In the case of AGD, there is no need to assume the presence of very large do-
mains, since good agreement is already obtained with a genome content of about 4 Mbp/do-
main. Even more substantial are the changes for CHO cells, since we observe that the
measured dose response curve is now comparably well reproduced if a domain size corre-
sponding to 6-10 Mbp/loop is adopted.

From the comparison shown in Fig 7 we can finally conclude that reasonable agreement can
be found between model predictions of hit domains and experimental measurements, although
in general there is the need to assume a domain size and/or a DSB induction rate which deviate
considerably from the canonical parameters suggested in the literature.
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Effects of 3D spreading mechanisms of H2AX phosphorylation

In Fig 8, the normalized experimental data are compared to model predictions of phosphory-
lated domains, considering also the 3D spreading mechanism. Shortly, we assume that some of
the domains surrounding the hit can be phosphorylated even if no DSB is induced, and we call
them activated domains (see Methods for details). Fig 8 shows that, even when the standard do-
main size is assumed, a pronounced bending toward saturation is now observed in the pre-
dicted curve. This tendency gets more pronounced if a higher DSB induction yield of 60 DSB/
Gy is considered. Concerning AGD cells, the standard induction rate allows a reasonable agree-
ment only at doses larger than 50 Gy, while the strong phosphorylation at low doses is not well
reproduced. However, if the higher induction rate is assumed, model predictions fit very well
to the experimental data. As before, deviations are in general larger for CHO cells. Although
the model is not able to completely reproduce the measured curve, when an induction yield of
60 DSB/Gy is considered at least partial agreement is found concerning the initial increase up
to about 5 Gy, and the high dose region comprised between 50 and 140 Gy where the predicted
curve lies in the limits of experimental errors.
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yH2AX signal kinetics after irradiation with increasing doses of X-rays:
experimental and modelling analysis

The kinetics of the YH2AX fluorescence signal was investigated and then complemented by a
modelling analysis. Here we focus on the consideration of the development of the fluorescence
signal intensity over time after irradiation with increasing doses of X-rays comprised between 2
and 500 Gy. The measured data points (symbols) and the model results (lines) are reported in
the upper panel of Fig 3A. A simultaneous fit was performed including all the experimental
data, resulting in the determination of a phosphorylation half-life and of two decay half-lives
for the processing of iDSB and ¢DSB. The parameter values are summarized in Table 1. The
numbers of activated hit domains corresponding to induced iDSB and c¢DSB were calculated
according to the algorithm where random expansion of H2AX phosphorylation is considered,
which was shown to result in a better agreement to the measured dose response curves (Fig 8).
Similar results compared to what is reported here were obtained by using only Poisson calcula-
tions of hit domains (see S2 Fig and S1 Table for fit parameters), in line with the expectation
that the kinetics is defined by the relative fractions of induced iDSB and cDSB more than by
their absolute values. These fractions are obviously dose-dependent but are not strongly affect-
ed by the specific algorithm used for the calculations. The main difference between the two ap-
proaches is in the absolute values of the x; parameters resulting from the fit. However, the
global chi-square was only slightly higher when the simple Poisson statistics was employed.

The fit results are in good agreement with the data, and produce half-life values in line with
what is found in the literature [50,51]. Concerning the fluorescence per hit domain, it is re-
markable to observe that, although used as single-curve parameters, we get similar values for
the different doses considered. This is supportive for the hypothesis that this parameter should
be dependent in first approximation only on the cell line but not on the dose.

In the figure we can observe that for increasing doses the maximum fluorescence intensity
increases and is reached at a later time point, while the signal persists for a longer time. The
comparison of the kinetics can be better appreciated when looking at Fig 3B. Here a plot is
shown where the fit functions plotted in the upper panel are normalized to their maximum
value. This normalization step allows a direct comparison of the signal kinetics and shows a
gradually delayed disappearance for increasing doses, which in the context of our model is only
due to a gradually enhanced proportion of induced cDSB. These results support the hypothesis
that increasing photon doses results in a higher fraction of induced ¢cDSB, corresponding to

Table 1. yH2AX signal kinetics: fit parameters for standard domain size (2 Mbp) and 3D spreading
mechanism of H2AX phosphorylation.

D (Gy) Xfluor

2 0.0188 + 0.0023
8 0.0245 + 0.0017
25 0.0295 * 0.0022
50 0.0271 + 0.0028
250 0.0202 + 0.0006
500 0.0200 * 0.0003
T 0.24+0.04 h
Trast 1.48+0.10 h
Tslow 10.50+0.59 h

Fit parameters resulting from the application of the yH2AX kinetic model to the experimental data shown in
Fig 3.

doi:10.1371/journal.pone.0129416.1001
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damage of higher severity compared to iDSB. This represents one of the basic concepts of the
GLOBLE model, and in general is supportive for the biological relevance of micrometre-scale
clustering of DSB.

Discussion

Aiming at contributing at the experimental validation of GLOBLE, the study of the yH2AX in-
duction and processing in an extensive dose range was initially motivated by the interest in in-
vestigating DSB repair kinetics after increasing doses of photon radiation. In fact, this represents
an important end point to analyse the relevance of micrometre scale damage clustering, which is
a key aspect of GLOBLE. However, preliminary experiments showed the onset of a saturation
tendency at doses around 20 Gy in the YH2AX dose response curves as measured with flow cy-
tometry (Figs 2 and 5). This was in contrast with what expected according to basic theoretical
predictions (Figs 7 and 8), and thus triggered our interest in a better understanding of the H2AX
phosphorylation process, as well as in the study of the impact of basic model parameters.

Our results could help to better elucidate the relation between induced DSB and YH2AX
foci, which despite the large use of the assay is not yet fully understood. At the same time, they
are also supportive for the importance of damage clustering at the micrometre scale, thus con-
tributing to the work carried out by our group for the validation of the GLOBLE basics. The rel-
evant aspects of our analysis will be discussed in the next paragraphs.

Dose dependence in DSB processing

Many attempts have been performed over the years, trying to identify the presence and the rel-
evance of dose dependence in DSB processing after photon irradiation. For example, in one of
the earliest investigations performed by Blocher et al. using the sedimentation technique [47],
Ehrlich Ascite tumour cells were irradiated with increasing doses of X-rays, and the initial dose
response curve was compared with the one measured 24 h after irradiation. In the latter, a ten-
dency toward a quadratic increase is observed. Similar results have been obtained also with the
use of gel electrophoresis techniques by different groups [52,53]. Of particular interest in this
context is the data set presented by Cucinotta et al., where the dose dependence of V79 cells is
investigated by measuring with filter elution techniques the rejoining up to 3 hours after irradi-
ation [54]. In this case, y-rays were employed to deliver doses between 10 and 200 Gy, and a
slowing-down is observed in the rejoining curves for increasing doses. As mentioned above, we
were able to successfully describe these data with our DSB kinetic rejoining model [30].

In the more recent study by Neumaier et al. [55], the effects on the repair kinetics of increas-
ing photon doses between 0.1 and 2 Gy were investigated. Despite the low doses, a tendency to
dose dependence was observed in the kinetics of foci disappearing. This observation was associ-
ated to local dose effects which could take place when using the same radiation quality. One
possibility would be that multiple DSB are simultaneously present in the same repair centre.
The clustering of DSB at the micrometre scale within domains has been recently also exploited
by Vadhavkar et al [35]. Based on this concept, they could interpret the induction of foci along
high energy charged particle tracks.

For the sake of completeness, we also have to mention that there are at least two published
studies where physical methods (i.e. gel electrophoresis elution) were employed to perform the
experiments and where no clear dependence on the dose was observed [56,57]. These data sets
would not be consistent with the approach adopted here. However, an explanation for the dis-
crepancies observed among different experiments has not yet been found and therefore the de-
bate on this point is still open.
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yH2AX signal kinetics and dose dependence: experimental and
modelling aspects

In Fig 3 we showed that our modelling approach allows a consistent description of the yH2AX
signal kinetics as measured with flow cytometry. Specifically, after the normalization has been
performed, clear dose dependence can be observed in the fit curves, which according to our ap-
proach is entirely due to DSB clustering at the micrometre scale. The quite extreme dose values
employed are justified by the need to obtain a significant difference in the fraction of induced
cDSB in order to be sensitive to the gradually delayed kinetics. In fact, cDSB represent only about
10% of the induced damage at 25 Gy, while the fraction increases up to about 95% at 500 Gy. Im-
portantly, the best fit results are obtained when iDSB and c¢DSB are calculated assuming the stan-
dard domain size of 2 Mbp and including the 3D spreading mechanism. On the contrary, as
shown in $4 Fig, the model fails to reproduce the kinetics at intermediate doses when only a larg-
er domain size (8 Mbp) is considered. This suggests that the fractions of iDSB and cDSB resulting
from a very large domain size do not allow an appropriate description of the kinetics data. This
result is thus indirectly supportive for the existence of the 3D spreading mechanisms.

The concept of the enhanced severity of cDSB compared to iDSB has been discussed in more
detail also in the recent paper by Hufnagl et al. [58]. Although the experimental approach
adopted here does not allow drawing stronger conclusions, the indications obtained are of par-
ticular interest when combined to other recent analyses performed in our group [21,30]. Experi-
mental evidence has been reported in the past for the relevance of micrometre size structures in
the description of the induced DNA damage. For example, the studies performed by Johnston
et al., where a delayed rejoining was attributed to the presence of multiple lesions in the same
nuclear substructures [18,19]. At the same time, the analysis of fragment size distribution after
irradiation reported by different groups, revealed an excess of fragments in the 1-2 Mbp size re-
gion which could be associated to the underlying presence of a loop organization [59,60]. In the
same direction go the results obtained by Neumaier et al. [55] and by Vadhavkar et al [35].
DNA DSB complexity at different levels and the implications on lesion repair were considered
in the recent review by Schipler and Iliakis [61]. Remarkably, they conclude that only the simul-
taneous presence of multiple DSB in close vicinity is likely to represent a more difficult task for
the repair machinery, while no big differences are expected for simple DSB compared to DSB of
enhanced chemical complexity or DSB originating from clustered non-DSB lesions.

A homogeneous distribution of DNA inside the nucleus is assumed in the GLOBLE. How-
ever, in experiments performed with low doses of low LET radiation, the fraction of DSB which
is slowly repaired has been associated to the damage induced in the heterochromatic regions of
the cell nucleus [62]. In such cases, the slow component of repair can be mainly associated to
processing of the lesions by specific repair pathways (i.e. Homologous Recombination vs Non-
Homologous End Joining). Although this approach has its merits, it has been recently shown
that chromatin condensation alone is not sufficient to explain the differences observed in the
repair kinetics after high LET irradiation, when therefore damage clustering and/or complexity
are expected to play a major role [63]. This is also related to the results presented here. In fact,
based only on the difference between eu- and heterochromatin, no difference would be ex-
pected in the repair kinetics when applying increasing doses of low LET radiation, in contrast
with what observed in our data.

yH2AX dose response and saturation: experimental and modelling
aspects

The yYH2AX dose response curve as measured with flow cytometry was investigated in the past
by MacPhail et al [9] up to a dose of 100 Gy. Different cell lines were considered, and for some
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of them the onset of saturation at high doses was observed. However, since the analysis of the
saturation tendency was not the first aim of the paper, this aspect was not deeply discussed, nei-
ther complemented by a modelling analysis as it is here the case. Flow cytometry data of
vH2AX also appear in publications with different aims, but they are usually restricted to low
doses (up to few Gy) and therefore not comparable with what we want to discuss here [64-66].

With respect to the saturation observed in the yYH2AX dose response curve, the results of
our modelling analysis suggest that a good agreement to experimental data can be obtained fol-
lowing two different approaches. For instance, Fig 7 shows that a domain size larger than the
standard 2 Mbp allows a reasonable description of the experimental data. At the same time,
good agreement can be obtained starting with the 2 Mbp domain size and then simulating the
3D extension of the phosphorylation. However, the assumption of a very large domain size
would strongly affect the fractions of induced iDSB and cDSB and thus the calculation of sur-
vival probabilities, while from this point of view good results have been obtained in the past by
the GLOBLE assuming the standard size. Moreover, a domain size as large as 8-10 Mbp would
not be supported by the current literature data. On the contrary, the 3D extension is not ex-
pected to affect lethality, being rather the result of signalling mechanisms. Thus, under this as-
sumption the GLOBLE would be able to consistently reproduce both survival data as well as
vH2AX data as shown here.

Concerning the relevance of the 3D spreading mechanisms, we extracted from the model
calculations the Z projections of hit domains only and of all phosphorylated domains, as ob-
tained when the random expansion algorithm is considered. The comparison between the
two projections indicates that the overlap of neighbouring foci could affect the scoring of sin-
gle foci. An example picture where the exposure to 1 Gy of photon radiation was simulated is
shown in Fig 9. In panel A we can observe how the hit domains are distributed. This allows re-
alizing that already at low doses it is possible that projected hit domains are close to each
other, and that overlapping can take place in the xy plane as well as in z direction. By measur-
ing the xy projection at the microscope, this second aspect would automatically translate in
losing some DSB when scoring the foci. However, the problem can be partially overcome by
using appropriate algorithms for the analysis which also increase the sensitivity in longitudi-
nal direction. At the same time, in panel B we can observe how the fluorescence pattern
would be in a manner confused by the 3D spreading of the H2AX phosphorylation, resulting
in not well defined boundaries between single foci, in a distribution of foci sizes and in differ-
ent local intensities.

A deeper investigation of the potential confounding factors in microscopy measurements
related to the mechanisms of H2AX phosphorylation is beyond the scope of this work. Howev-
er, similar conclusions indicating a loss of accuracy in the foci counting when the delivered
dose exceeds few Gy, can be found in published works as well [7,8]. This consideration also fits
to the saturation in the foci scoring which is usually observed already after few Gy of photon ra-
diation [7,8,67].

All these aspects pooled together could finally contribute to determine an underscoring of
the actual number of induced DSB, even at low doses which are of interest for instance in radia-
tion protection. This observation is in line with the results of the modelling work presented by
Ponomarev et al. and mentioned in the Introduction [34]. In their study a different approach is
adopted, and the problem is tackled from the opposite direction, meaning that an algorithm is
implemented which is able to estimate the actual number of DSB underlying the observed fluo-
rescence pattern. This is based on the use of corrective factors which are estimated depending
on the radiation quality, and it takes into account both the probability of having multiple DSB
in the same focus, as well as the overlapping of close-by foci. Being the study limited to the con-
sideration of doses up to few Gy, their approach is found to be relevant especially after high
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Fig 9. Predicted two-dimensional H2AX phosphorylation patterns with and without the 3D spreading mechanism. Example of XY projections of hit
domains only (A) and of all phosphorylated domains obtained with the random expansion algorithm (B); the exposure to 1 Gy of X-rays photon radiation was
simulated. The cell nucleus is represented in light grey in the background. The colour scale indicates the multiplicity of hit domains in the column of interest.

doi:10.1371/journal.pone.0129416.9009

LET irradiation. However, it is reasonable to expect those mechanisms playing a substantial
role also after high doses of low LET radiation.

YH2AX dose response and saturation: the role of the DSB induction yield

In contrast to the choice of the domain size, the DSB induction yield is expected to be less de-
pendent on the cell line under consideration [1]. Our results, suggesting an increased value for
the DSB induction rate, fit to the recent work published by Neumaier et al [55]. In that study,
live cell imaging of 53BP1 foci at low doses (0.1 Gy) was combined with a cumulative counting
process, resulting in the determination of a DSB yield of 60-80 DSB/Gy. Even though a marker
other than YH2AX was employed, this approach is expected to partially solve the problems due
to the kinetics of protein recruitment at DSB sites and to proximity effects (e.g. overlap of
close-by foci). Moreover, the authors show that the DSB yield drops to about 30 DSB/Gy at 1
Gy, as the result of clustering of DSB into repair centres. This is actually in line with our con-
clusions. Nevertheless, these results contrast in a way with the value of 20-40 DSB/Gy, mainly
resulting from gel elution experiments, which has been considered for many years as well es-
tablished in the community [41,49]. However, some experimental issues affect gel electropho-
resis techniques (e.g. only fragments having a length comprised between few kbp and few Mbp
can be measured, and there is the need to use high doses, on the order of tens of Gy, to achieve
reasonable sensitivity). Therefore, the debate is still open and the combination of modern ex-
perimental techniques with modelling studies could help to further elucidate this basic aspect
of DNA damage induction, as indicated by the analysis presented here.

PLOS ONE | DOI:10.1371/journal.pone.0129416  June 11,2015
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Conclusions

With our model based on the GLOBLE approach, we were able to consistently describe the de-
layed disappearing of the YH2AX signal for increasing doses, based on DSB clustering at the
micrometre scale in the context of higher-order chromatin structures. These results, combined
with recent works published by our group, support the relevance of the micrometre scale for
the description and the interpretation of radiation induced biological effects. Furthermore, the
outcome of our analysis on YH2AX dose response curves is of interest concerning the use and
the interpretation of YH2AX data. In fact, when discussing the strong saturation observed in
the measured signal, we showed that controversial interpretation of YH2AX data may arise not
only as a consequence of the frequently discussed technical issues, but also due to an incom-
plete understanding of the phosphorylation process. This observation might even extend to
other markers involved in the DNA damage and repair processes. We found out that a substan-
tial role might be attributed to 3D mechanisms of H2AX phosphorylation. More direct experi-
mental support would be needed to confirm the importance of this kind of processes.

Supporting Information

S1 Fig. Comparison of dose response curve as measured with confocal microscopy pictures,
and with flow cytometry AGD cells. Panel A: microscopy pictures showing the YH2AX stain-
ing pattern as observed at the confocal microscope for different doses 1 h after irradiation of
AGD cells with X-rays (YH2AX in green and DNA in red are stained with Alexa488 and
Topro-3, respectively); the “sum slices” Z-projection obtained with the Image]J software is
shown. Larger dark areas in the DNA staining which are free of YH2AX fluorescence repre-
sent nucleoli [68]. Panel B: the plot shows a direct comparison of the microscopy and flow
cytometry signals normalized to the intensity measured at 50 Gy. Errors bars represent the
standard error of the mean.

(EPS)

S2 Fig. Modelling the YH2AX dose response: sensitivity analysis. The expected number of
hit domains is calculated by assuming a fixed DSB induction rate equal to 30 DSB/Gy and by
changing the domain size in a range from 2 to 10 Mbp (A); calculations are also shown, where
the expected number of hit domains is simulated by assuming a fixed number of domains
(3000 domains, corresponding to 2 Mbp/domain) and by changing the DSB induction rate in-
side a range comprised between 15 and 75 DSB/Gy (B).

(EPS)

S3 Fig. Modellling analysis of YH2AX signal kinetics based on Poisson distribution and
standard domain size of 2 Mbp. Experimental data are the same as shown in Fig 9. Lines
show the result of the fit when input iDSB and cDSB are calculated according to Poisson distri-
bution and assuming the standard domain size of 2 Mbp. Direct application to the experimen-
tal data (A) and comparison after normalization of the fit curves by maximum value for each
dose are shown (B).

(EPS)

S4 Fig. Modellling analysis of YH2AX signal kinetics based on Poisson distribution and en-
larged domain size of 8 Mbp. Experimental data are the same as shown in Fig 9. Lines show
the result of the fit when input iDSB and ¢DSB are calculated according to Poisson distribution
and assuming an enlarged domain size of 8 Mbp. Direct application to the experimental data
(A) and comparison after normalization of the fit curves by maximum value for each dose are
shown (B). The curves relative to 250 and 500 Gy overlap in panel B, and this is the
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consequence of the cDSB fraction being close to 100% in both cases.
(EPS)

S1 Table. YH2AX signal kinetics: fit parameters for standard domain size (2 Mbp) and
Poisson distribution. Fit parameters resulting from the application of the yH2AX kinetic
model to the experimental data shown in S3 Fig.

(DOC)

S2 Table. YH2AX signal kinetics: fit parameters for enlarged domain size (8 Mbp) and Pois-
son distribution. Fit parameters resulting from the application of the yYH2AX kinetic model to
the experimental data shown in 54 Fig.

(DOC)
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