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Abstract

This article applies realized volatility forecasting to Extreme Value Theory (EVT).

We propose a two-step approach where returns are first pre-whitened with a high-

frequency based volatility model, and then an EVT based model is fitted to the tails

of the standardized residuals. This realized EVT approach is compared to the condi-

tional EVT of McNeil & Frey (2000). We assess both approaches’ ability to filter the

dependence in the extremes and to produce stable out-of-sample VaR and ES estimates

for one-day and ten-day time horizons. The main finding is that GARCH-type mod-

els perform well in filtering the dependence, while the realized EVT approach seems

preferable in forecasting, especially at longer time horizons.
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1. INTRODUCTION

Accurate assessment of the tail behavior of asset returns is of the utmost importance for

financial market practitioners and regulators. Extreme Value Theory (EVT) is very useful

as it provides probabilistic results which characterize the tail behavior of any distribution,

without requiring knowledge of the main body of the distribution.

McNeil & Frey (2000) develop a two-step procedure to model the tails of the conditional

returns distribution with EVT: first, the returns are pre-whitened with a GARCH-type

model which explicitly accounts for the heteroskedasticity; then the tails of the standardized

residuals from the GARCH model are fitted using the Peaks-over-Threshold (POT) method

(Davison & Smith 1990). McNeil & Frey (2000) backtest this approach on different time se-

ries and provide evidence that it outperforms both the unconditional EVT model (Danielsson

& de Vries 1997) and the GARCH models with normal and Student’s t distributions. This

two-step conditional EVT (C-EVT) approach is now considered standard in the financial

community.

In a large simulation experiment, Jalal & Rockinger (2008) study the performance of

C-EVT under different hypotheses regarding the underlying data generating process (DGP).

They conclude that C-EVT performs fairly well in terms of one-day-ahead predictions of the

conditional quantiles under misspecification of the conditional mean and variance dynamics.

In this paper, we develop a realized EVT (RV-EVT) approach which exploits high-

frequency information to pre-whiten the returns in the first step, and uses the standardized

residuals of the high-frequency based model in the second step. Recent work on realized

volatility has emphasized how the use of high-frequency information can enhance the fore-

cast of the conditional variance of the returns (Shephard & Sheppard 2010). We propose a

class of high-frequency based volatility models that combines reduced form models for the

realized volatility (Corsi 2009) with a link function relating the conditional return volatility

with the prediction of the realized volatility. We consider three different link functions of

increasing complexity and six reduced form models with both symmetric and asymmetric
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structures.

It is important to filter out the dependence in the first step before applying the POT

approach in the second step. We investigate whether a high-frequency based volatility model

produces standardized residuals closer to the ideal iid than those obtained under a GARCH-

type model. We compare the degree of extremal dependence left in the standardized residuals

of our models and the GARCH model for 17 time series of international stock indices from

2000 to 2014.

We then add to the simulation experiment of Jalal & Rockinger (2008) by examining

the out-of-sample C-EVT forecasts of both Value-at-Risk (VaR) and Expected Shortfall

(ES) for a 10-day horizon1. This period is relevant from the regulatory perspective as the

risk capital of a bank must be sufficient to cover losses on the bank’s trading portfolio

over a 10-day holding period. We also consider an additional DGP where observations are

generated according to the parametric model of Bandi & Renò (2015). The latter not only

accommodates several stylized facts of the asset returns, but also allows us to draw intra-day

observations and produce forecasts of the risk measures with the RV-EVT approach.

Finally, we compare C-EVT and RV-EVT for forecasting VaR and ES on the 17 inter-

national indices time series. The backtesting exercise is fully out-of-sample, with a training

sample for the models (in-sample) of two different sizes, respectively 2000 and 500 observa-

tions. This part of the work is close to that of Giot & Laurent (2004), Clements, Galvão &

Kim (2008), and Brownlees & Gallo (2009), in the sense that we assess the merit of using

high-frequency data, but we do so within the context of EVT approaches.

The remainder of the paper is organized as follows: in Section 2, we present the C-EVT of

McNeil & Frey (2000); in Section 3 we introduce the RV-EVT; in Section 4 we compare the

two approaches, looking separately at the filtering and forecasting components; in Section 5

we perform robustness checks aimed at consolidating the evidence from the main analysis;

in Section 6 we give concluding remarks. Some technical details appear in the appendix and

1Note that with ten-day-ahead risk measures, we mean the risk measures estimated on the conditional
distribution of the sum of the next ten-day returns.
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further data analyses can be found in the supplementary material.

2. THE CONDITIONAL EVT APPROACH

Let pt be the logarithmic price at time t and define the conditional log-returns rt as,

pt − pt−1 = rt = µt + σtεt,

µt = f(Ft−1),

σ2
t = h(Ht−1),

(1)

where µt and σ2
t , are respectively the conditional mean and variance, functions of the infor-

mation sets Ft−1 andHt−1, and εt an iid process with zero mean and unit variance. A notable

amount of empirical research in financial markets shows time-variation and heaviness in the

tails of the conditional returns distribution. To account for this evidence, Bollerslev (1986)

proposes to model σ2
t as a function of its past values and the past values of εt, assuming εt

to be normally distributed. This model is commonly referred to as GARCH.

McNeil & Frey (2000) propose to pre-whiten the returns using a standard GARCH and

then model the tails of the estimated residuals by means of EVT. The theoretical justifica-

tion is that Gaussian Quasi-Maximum Likelihood (QML) estimation of a GARCH model is

consistent as long as E(ε4t ) <∞. Formally, they consider an AR(1)-GARCH(1,1),

rt = µ+ φ1rt−1 + σtεt (2)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (3)

where εt ∼ F with zero mean and unit variance, and α1 + β1 < 1 to guarantee stationarity.

Suppose2 that F has upper endpoint vF := sup εt : F (εt) < 1. Given a high threshold u,

u < vF , Pickands (1975) shows that when u→ vF , the distribution of the excesses (εt − u)+

converges to a Generalized Pareto (GP) distribution G with shape parameter ξ and scale

2The following argument equally applies to εt and the negated series −εt. Throughout we will typically
refer to the latter term or its distribution function that we call loss distribution.
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parameter ν > 0. That is, Pr(εt − u ≤ x|εt > u) goes to

G(x; ξ, ν) =


1− {1 + ξx/ν}−

1
ξ for ξ 6= 0

1− exp {−x/ν} for ξ = 0

(4)

as u→ υF . When ξ > 0, F has Pareto-type upper tail with tail index 1/ξ.

A model for the tail of the residuals ε̂ can be defined following the POT method. The

tail estimator of F is then ̂̄F (ε̂) =
Nu

T

(
1 + ξ̂

ε̂− û
ν̂

)− 1

ξ̂

, (5)

where F̄ = 1− F , û is an appropriately chosen threshold, ξ̂ and ν̂ are maximum likelihood

(ML) estimates, and Nu is the number of observations exceeding the threshold û.

For α > 1 − Nu/T , it is possible to use Equation 5 to obtain one-day-ahead prediction

of the VaR and ES at level α,

V̂ aR
α

t,t+1 = µ̂t,t+1 + σ̂t,t+1

(
û+

ν̂

ξ̂

((
1− α
Nu/S

)−ξ̂
− 1

))
, (6)

ÊS
α

t,t+1 = µ̂t,t+1 + σ̂t,t+1ε̂α

(
1

1 + ξ̂
+

ν̂ − ξ̂û
(1− ξ̂)ε̂α

)
, (7)

where µ̂t,t+1 and σ̂t,t+1 are the forecast of the conditional mean and the conditional variance,

and ε̂α is the (1− α)quantile of the residuals at time t.

Financial decisions are often predicated on accurate multi-period-ahead forecasts of the

risk measures, even though the risk management literature surprisingly focuses almost exclu-

sively on the accuracy of one-period-ahead forecasts. The dominant long-horizon forecasting

approach consists of scaling the one-period-ahead forecasts by
√
k where k is the horizon of

interest. Its popularity among practitioners stems mostly from its use in RiskMetrics. Alter-

natively, we follow the iterative approach of McNeil & Frey (2000) to obtain the regulatory

relevant ten-day-ahead VaR and ES forecasts, as they were shown to outperform the
√
k

rule. We fit a GP distribution to both tails of the GARCH residuals and model the body
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by means of the empirical distribution function. Then, combining bootstrapping and GP

simulation it is possible to obtain a semi-parametric estimate of the innovation distribution:

F̂ε(ε) =


NL
u

S

(
1 + ξ̂L |ε−û

L|
νL

)−1/ξ̂L

ε < ûL,

1
S

∑S
i=1 1ε̂i≤ε ûL ≤ ε ≤ ûH ,

1− NH
u

S

(
1 + ξ̂H |ε−û

H |
νH

)−1/ξ̂H

ε>ûH ,

(8)

where ε̂i is the i-th residual, S is the sample size, Nk
u is the number of exceedances, ξ̂k and

ν̂k are GP parameter estimates, ûk is a high threshold and k = L,H denotes respectively the

lower and upper tails. Through an iterative algorithm which consists of drawing observations

from this distribution, see Appendix A, and updating the GARCH equation, it is possible to

simulate several sample paths for the next ten days and obtain an estimate of the multi-period

distribution. Throughout the analysis we generate 1000 sample paths. The ten-day-ahead

VaR is obtained from the inversion of Equation 5 and ES as conditional expectation of

exceedances over VaR.

3. THE REALIZED EVT APPROACH

Our proposal is to incorporate high frequency (intra-daily) information in the sets Ft and Ht

of Equation (1), and use the POT approach to model the tails of the residuals. To the extent

that high-frequency based volatility models provide better forecasts, they should produce

residuals with a lower degree of extremal dependence and allow for a better estimation of

the tail. As the POT approach is based on the assumption of iid observations, residuals

ε̂t that better proxy the innovations εt improve the inference on the GP parameters and

the estimation of the probability of exceedances. At the same time, improved volatility

predictions provide better forecasts of the conditional density and more accurate estimates

of tail-related risk measures.

Assuming µt to be constant in Equation (1) (its effect is negligible), we specify a class

of high-frequency based volatility models for the latent variable σ2
t , using as a proxy the
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realized volatility (RV). The latter is a non-parametric estimator of the variation of the price

path of an asset obtained as the sum of squares of intra-day returns recorded during the

open hours of the stock exchange. Formally, let pt denote the log-price of an asset at time

t and rt,∆ = pt − pt−∆ be the discretely sampled ∆-period return. The RV on day t is then

defined as

RVt =
N∑
j=1

r2
t−1+(j·∆). (9)

If market microstructure noise is absent then, as ∆ → 0, RVt consistently estimates the

quadratic variation of the price process on day t (Andersen, Bollerslev, Diebold & Labys

2001; Barndorff-Nielsen 2002). In practice, market microstructure noise plays an important

role, and econometricians usually resort to 1- to 5-minute return data to mitigate the effect

of the noise.

Let E(RVt|Ht−1) be the conditional expectation of the RV given the information set Ht−1

and assume that σ2
t is defined as a function of E(RVt|Ht−1), σ2

t = g(E(RVt|Ht−1)). We need

to specify a model for the conditional expectation of the RV and a link function g that maps

the conditional mean of the RV to the conditional variance of the returns. In what follows,

we discuss these two issues separately and then show how to obtain forecasts of the risk

measures.

3.1 The link function

Different approaches have been attempted to provide a connection between the conditional

variance of the returns and RV but, to the best of our knowledge, a comparative study of

these link functions has not been pursued so far. In this paper, we consider and discuss

three different link functions, those of Giot & Laurent (2004), Clements et al. (2008) and

Brownlees & Gallo (2009), and compare their performances.

The simplest approach is the one used in Clements et al. (2008), where the conditional

variance of returns is defined by

σ̂2
t,t+h = exp

(
̂log(RVt,t+h)

)
. (10)
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We call this link function type-I. This specification bears two different sources of bias: one

related to the log-transformation and the other one due to the imprecision of the volatility

proxy. Specifically, given that returns are measured close-to-close while intra-daily obser-

vations neglect overnight information, this information mismatch may be a source of bias

(Andersen, Bollerslev & Huang 2011). To circumvent this problem, Brownlees & Gallo

(2009) assume the conditional variance σ2
t to be an affine function of the RV. This model is

nested in the HEAVY class of Shephard & Sheppard (2010). Our logarithmic specification

of the HAR function prohibits us from applying the idea directly, but we adapt it and call

it type-II. We have

σ̂2
t,t+h = c+ d exp

(
̂log(RVt,t+h)

)
, (11)

where c and d are coefficients to be estimated. Finally, similarly to Giot & Laurent (2004),

we incorporate a correction for the logarithmic transformation and call it type-III. We have

σ̂2
t,t+h = c+ d exp

(
̂log(RVt,t+h) + 0.5σ̂2

η̂

)
, (12)

where σ̂2
η̂ is the estimated variance of the logarithmic HAR regression residuals, see Sect.

3.2.

A word of caution is in order regarding models (10), (11) and (12), because they are

reduced-form models that are misspecified in the presence of jumps and/or stochastic volatil-

ity, and this may have severe consequences on the estimation procedures (Nelson 1991; Tolver

& Lange 2010).

3.2 Reduced form models

Several approaches have been proposed in the financial econometrics literature to model

the dynamics of E(RVt|Ht−1), see Andersen, Bollerslev, Diebold & Labys (2003), Bollerslev,

Kretschmer, Pigorsch & Tauchen (2009), and Andersen et al. (2011). In this paper, we rely on

the heterogeneous autoregressive (HAR) class of models, initially proposed by Corsi (2009),

and now considered as the standard approach in the high-frequency literature. In particular,
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we use the logarithmic specification of these models for two specific reasons: constraints on

the parameters to guarantee positive volatility are not necessary; the estimated residuals of

the logarithmic specification are closer to normality, hence more amenable to standard time

series procedures.

Let the multi-period normalized RV be denoted by

RVt,t+h = h−1[RVt+1 + · · ·+RVt+h]. (13)

Note that RVt,t+1 ≡ RVt+1. The daily HAR model of Corsi (2009) can then be expressed as

log(RVt,t+h) = β0 + βD log(RVt) + βW log(RVt−5,t) + βM log(RVt−22,t) + ηt,t+h, (14)

where t = 1, . . . , T . This parsimonious specification exploits the information from the past 1-

day, 5-day and 22-day average RV, reflecting the idea that heterogeneity in investor behavior

creates different volatility components having different impacts on the future volatility.

The intuition that the disentanglement of the continuous and discontinuous sample paths

could be a valuable source of information leads Andersen, Bollerslev & Diebold (2007) to

extend the HAR model to include a jump component. This is important also in the light of

the findings of Todorov & Tauchen (2011) and Bandi & Renò (2015) that volatility jumps

are relevant. Adding the realized jump measure Jt, obtained as the difference between the

realized variance and the bipower variation (Barndorff-Nielsen & Shephard 2004), as an

explanatory variable, one obtains their HAR-J model

log(RVt,t+h) = β0 +βD log(RVt) +βW log(RVt−5,t) +βM log(RVt−22,t) +βJ log(Jt+ 1)+ηt,t+h.

(15)

According to Andersen et al. (2007) and Corsi, Pirino & Renò (2010), the jump component

adds a significant contribution in terms of R2.

The models in Equations (14)-(15) are both symmetric in the sense that they do not have
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a parameter accounting for the so called leverage effect, i.e. the generally negative correlation

between an asset’s returns and its changes of volatility (Nelson 1991). To generate the

desired leverage effect, a first possibility is to use the signed jump variation obtained from

the realized semi-variance (Patton & Sheppard 2015). By isolating the sign of the jump,

we can differentiate its impact on RV. Letting RS+
t and RS−t be the positive and negative

realized semi-variance respectively, the HAR-SJ model has specification

log (RVt,t+h) = β0 + βJ+ log(∆J2+
t + 1) + βJ− log(∆J2−

t + 1)

+βD log(RVt) + βW log(RVt−5,t) + βM log(RVt−22,t) + ηt,t+h,
(16)

with signed jump variations

∆J2+
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )>0},

∆J2−
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )<0}.

Assuming that jumps are rare, these two quantities broadly capture the variation of positive

and negative jumps. Nonetheless, if jumps of different signs occur on the same day, then these

measures account only for a small part of the total jump variation. In this case, the HAR-SJ

can miss valuable information coming from the actual size of the jumps. To overcome this

issue, we propose a simple extension of this model and refer to it as the HAR-SJaug model,

see Appendix B for a discussion.

Another asymmetric model is the LHAR of Corsi & Renò (2012) that adds to the simple

HAR specification three leverage components capturing the persistence of the leverage effect.

In contrast to Patton & Sheppard (2015), they use the lagged negative returns to generate

the desired effect,

log(RVt,t+h) = β0 + βD log(RVt) + βW log(RVt−5,t) + βM log(RVt−22,t)

+γdr
−
t + +γwr

−
t−5,t + γmr

−
t−22,t + ηt,t+h

(17)

where rt−h,t = 1
h

∑h
j=1 rt−j, and r−t−h,t = min (rt−h,t, 0).
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3.3 Forecasting risk measures

Once we have a high-frequency based model for the conditional variance, we can filter the

returns and model the tails of the residuals with the estimator in Equation (5). Whereas

to obtain one-day-ahead predictions for C-EVT we rely on a closed-form approach (see

Equations (6)-(7)), to obtain multiple-day-ahead predictions we have to use an iterative

approach based on Equation (8) since the multiple-day conditional distribution of a daily

GARCH is not available. We can proceed differently for RV-EVT. Considering that it is

standard in the financial econometrics literature to fit the HAR model directly to the multi-

period RV, we can compute explicitly the forecasts at both horizons for the RV-EVT. The

h-day-ahead predictions of the VaR and ES at level α are then defined as

V̂ aR
α

t,t+h = µ̂t,t+h + σ̂t,t+h

(
û+

ν̂

ξ̂

((
1− α
Nu/T

)−ξ̂
− 1

))
(18)

ÊS
α

t,t+h = µ̂t,t+h + σ̂t,t+hε̂α

(
1

1 + ξ̂
+

ν̂ − ξ̂û
(1− ξ̂)ε̂α

)
(19)

where µ̂t,t+h and σ̂t,t+h are respectively the h-period forecasts of the conditional mean and

variance, and ε̂α is the (1− α) quantile of the residuals at time t− 1.

4. CONDITIONAL EVT VS. REALIZED EVT

4.1 Data

The empirical analysis is based on the Oxford-Man Institute “Realised Library” version 0.2,

(Heber, Lunde, Shephard & Sheppard 2009). We consider 17 different stock indices from

the beginning of 2000 to the end of 2014, see Table 1. For each asset, the library currently

records the daily returns and several daily realized measures. Among the latter, we consider

the 5-min RV and use the 5-min Bipower Variation (BV) and the 5-min RSV to extract

the jump components. The 5-min sampling frequency is standard in the literature as it

mitigates the microstructure noise and assures good performance of the estimators (Liu,

Patton & Sheppard 2012). To assess whether the microstructure noise is still a concern, we
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repeat the analysis with the Second Best estimator of Zhang, Mykland & Aı̈t-Sahalia (2005)

and the Realized Kernel of Barndorff-Nielsen, Hansen, Lunde & Shephard (2008) instead of

the RV estimator, see Section 5.2.

Table 1: Data description. Time series of indices start January 2, 2000 and end December
31, 2014. Stock exchanges respect different holidays and the number of observations T
subsequently differs.

Asset Abbr. T Asset Abbr. T

Amsterdam Exchange Index AEX 3816 IBEX35 IBX 3782
All Ordinaries Index AOI 3743 IPC Mexico IPC 3748
Bovespa Index BVP 3664 Korea Composite Index KCI 3690
CAC40 CAC 3817 Nasdaq 100 NSQ 3747
DAX30 DAX 3795 Nikkei 225 NK 3630
Dow Jones Industrial DJ 3746 Russel 2000 Index RUS 3745
Euro Stoxx 50 ESX 3794 SP500 SPX 3744
FTSE MIB MIB 3778 Swiss Market Index SMI 3749
FTSE100 FT 3764

4.2 Methodology

Given the long series in Table 1 and the out-of-sample nature of our investigation, a rolling-

window approach is used to obtain a time series of performance measures to compare the

C-EVT and the RV-EVT. In particular, we use a fixed rolling-window length of S = 2000

days to train our models (in-sample) and daily updates.

We consider the exceedances over the threshold û corresponding to the 95th quantile of

the negated residuals −ε̂t. We perform Anderson-Darling and Cramér-von Mises goodness-

of-fit tests at a level of significance of 0.05 to check the validity of the GP convergence

(Choulakian & Stephens 2001). Recall from Pickands (1975) that convergence of the distri-

bution of the excesses to the GP distribution occurs when the threshold u goes to the right

endpoint of the support. Selecting a high empirical quantile as a threshold, we are using

the results pre-asymptotically as an approximation only. One can thus expect the quality

of the approximation to differ across the stock indices. When it is poor according to the

goodness-of-fit tests, we raise the threshold u to the 98th quantile. These cases are flagged
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with the * symbol in the figures and the tables.

We assume the conditional mean of all models to be constant and equal to zero as in

Brownlees & Gallo (2009). In the C-EVT, we use a GJR-GARCH(1,1) specification instead

of the GARCH(1,1) to account for the evidence of a leverage effect in the financial returns.

We compare our EVT-based methods along two separate but related dimensions: the

filtering and forecasting components. On the one hand, we assess how much of the

extremal dependence inherent in the returns is captured by the different models. To this end,

we rely on the concept of extremal index θ (Leadbetter 1983) which is a parameter measuring

this dependence. As for forecasts, we produce one-day- and ten-day-ahead predictions of the

VaR and ES at level α = 0.01 and use standard performance measures to evaluate them, see

Christoffersen (1998) and Engle & Manganelli (2004) for the VaR and McNeil & Frey (2000)

for the ES.

4.3 The filtering component

Financial extremes tend to occur in clusters, and the degree of dependence in the extremes

of a stationary series is measured by the extremal index θ. In particular, when θ < 1 the

extremes are dependent, conversely with θ = 1 they are independent. The first step of C-

EVT or RV-EVT should filter out this dependence so that the residuals used in the respective

second steps are iid. If they are not, both the inference on the GP parameters and the

probability of threshold exceedances will be affected. Given our finite sample size, we consider

the standardized residuals of the models to be close to independent when 0.85 ≤ θ̂ ≤ 1, where

θ̂ is the Ferro & Segers (2003) intervals estimate.

In what follows, we compare the performance of the GJR-GARCH(1,1) and the HAR

models of Section 3.2 as filters. In particular, we estimate the extremal index θ̂ of the model

residuals obtained over each window. We repeat the analysis with the different link functions

in Equations (10)-(12) to assess the merit of the complexity added to the high-frequency

based model for the conditional volatility.

Figure 1 displays the estimates of θ for the type-I link function. The figure clearly shows
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that, in general, the residuals of each model exhibit a very low degree of extremal dependence

and that the GJR-GARCH(1,1) model appears as the best performer. On a few occasions,

the high-frequency based volatility models fail to capture the extremal dependence, partic-

ularly on the RUSSEL time series. Adding jumps and leverage does not always contribute

positively.

In Figures 2-3, we report the estimates of θ respectively for the type-II and type-III link

functions. The figures suggest that there is no real benefit from increasing the complexity

of the conditional volatility model. The degree of extremal dependence left in the residuals

by the high-frequency based models is in line with that observed in Figure 1 and GJR-

GARCH(1,1) is still the best choice.

Although the results are compelling, they might seem counterintuitive. Indeed, to the

extent that a model provides superior forecasts of the volatility, it should also provide a

better proxy of the innovations. We argue that the observed difference in the estimated

residuals might be explained by the different ability of the two approaches in generating

extremal dependence.

Most of the evidence on the higher performance of the high-frequency based volatility

models is based on comparisons of the R2 statistic or other loss functions. But this does not

say anything regarding the extremal dependence. The GARCH class of models is supported

by theoretical arguments which show their ability to generate extremal dependence in the

volatility process and consequently in the return process (Basrak, Davis & Mikosch 2002).

The HAR class of models is a simple equation that fits nicely the stylized facts of the financial

time series and is supported by economic arguments regarding the heterogeneous behavior

of different investors. It is difficult (if possible) to derive a theoretical result on the extremal

behavior of this model as it is for GARCH processes.

In order to get some insights on this issue, we can build upon the comparison between

GARCH processes and stochastic volatility (SV) models from an extreme perspective. While

GARCH processes exhibit extremal dependence, SV may or may not fail to account for

this property depending on the specification (Davis & Mikosch 2009; Fasen, Klüppelberg &
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Lindner 2006). As the HAR class of models can be considered in the domain of SV models

(Corsi 2009), then it may either capture or not the extremal dependence in the returns.

To assess this possibility, we follow Liu & Tawn (2013) and rely on the conditional tail

probability c(x) = P(Xt+1 > q|Xt > q). Theoretically, c(x) → 0 as q → ∞ when the

extremes are independent and c(x) → c > 0 as q → ∞ when they are dependent. As it

is not possible to study the asymptotic behavior of c(x) for q → ∞, we approximate it

considering a sequence of high quantiles q. Figure 4 displays the empirical conditional tail

probability at different levels q for three sub-samples of the S&P500. Moreover, we report

the same coefficients estimated on simulated data produced by the GJR-GARCH(1,1) and

the HAR models fitted to these three samples. As expected, the tail probability implied by

the GARCH model is positive at every quantile pointing toward the presence of extremal

dependence. The conditional probability for the HAR model does not reach zero at the

considered levels, but it is clear that its decay is much faster than the one of the GJR-

GARCH model, and it fails to capture the empirical tail dependence.

Based on this evidence, it is worth investigating whether the time series for which the

HAR provides a good filter exhibit a lower degree of extremal dependence. A positive

response would be consistent with the idea that GARCH and HAR models imply two different

degrees of dependence in the extremes. Figure 5 displays the estimates of θ obtained on the

return series of the 17 stock indices in the different windows. The results are somewhat

blurred: some cases are consistent with the findings in Figure 1 and some others are not.

For instance, a high degree of dependence is shown by the AEX and the SPX and a low degree

of dependence is shown by the BVP and the NK, which is in line with the dependence left

in the residuals of the HAR models. But at the same time, IPC and RUS present lower

dependence than other series, yet HAR models could not filter to iid.

4.4 The forecast component

Jalal & Rockinger (2008) carry out an extensive simulation experiment to investigate the

performance of C-EVT when the DGP is not the standard GARCH(1,1) model of Bollerslev
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Figure 1: Extremal index estimates for the type-I link function. Values of θ estimated
on the standardized residuals obtained from the different windows of length S = 2000.

Figure 2: Extremal index estimates for the type-II link function. Values of θ esti-
mated on the standardized residuals obtained from the different windows of length S = 2000.

Figure 3: Extremal index estimates for the type-III link function. Values of θ
estimated on the standardized residuals obtained from the different windows of length S =
2000.

16



Figure 4: Conditional tail probaility. Estimates of c(x) for the lower tail of three sub-
samples of the S&P500 at 10 different quantiles: Empirical (points); simulation from the
GJR-GARCH(1,1) model (solid) and tolerance levels (dotted); simulation from the HAR
model (dashed) and tolerance levels (dash-dotted).

Figure 5: Extremal index on the raw data. Estimates of θ on the lower tail of the return
series over moving windows of length S = 2000.
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(1986). Their results emphasize how C-EVT provides accurate one-day-ahead forecasts of the

VaR and ES regardless of the assumed DGP, thus strengthening the conclusions of McNeil

& Frey (2000).

We suspect that the performance of the C-EVT deteriorates as estimation moves to

longer time horizons. The quality of the estimation of the tail-risk measures depends on the

quality of the volatility forecast. As it is shown that the volatility forecasting performance

of methods based on daily returns deteriorates with increasing horizon length (Brownlees,

Engle & Kelly 2011), similar deterioration should be seen in tail-risk forecasts.

We perform both a simulation experiment and an empirical data analysis. In both cases,

we provide out-of-sample forecasts of the one-day- and ten-day-ahead VaR and ES at level

α = 0.01.

Simulation experiment. First, we reproduce the analysis of Jalal & Rockinger (2008).

We consider six different DGP: the GARCH(1,1) with Gaussian and t innovations; the ex-

ponential EGARCH(1,1) of Nelson (1991); the regime-switching model of Schaller & Norden

(1997); the discrete-time jump diffusion model of Pan (1997) and its pure jump version.

For each process, we generate B = 100 samples of T = 4000 daily returns. Figure 6 shows

the results for both the one-day- and ten-day-ahead forecasts. To evaluate the performance

of the VaR, we count the violations in each window. When the length of the window is

S = 2000, the expected number of violations is (T −S)×α = 20. As a performance measure

for the ES, we compute its distance from the actual return when the VaR is exceeded, and

expect this to be mean zero and symmetrically distributed.

Although we do not report any formal test, the results for the one-day-ahead predictions

in Figure 6 are consistent with those of Jalal & Rockinger (2008). However, focussing

particularly on the VaR, it is evident that the accuracy of the C-EVT is reduced at the

longer time horizon. Indeed, for three out of six DGP the average number of violations

moves further away from the expected number.

Can RV-EVT provide more accurate predictions? We set up another simulation exper-
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iment where the two approaches can be compared. We need to generate high-frequency

observations, so we consider the stochastic volatility model of Bandi & Renò (2015). The

latter involves 21 parameters and accommodates several attributes of financial time series.

It accounts for time-variation in both the volatility and leverage, and allows for idiosyncratic

and common jump discontinuities in the price process and the volatility, determined from a

complex dependence structure.

We generate B = 100 samples of T = 4000 daily observations for both the returns

and the 5-min realized measures. We use the Euler scheme to generate N = 2520 equally-

spaced observations per day, assuming 7 hours of trading and changes in the price level

occurring every ten seconds, leading to 6 ticks per minute (6 × 60 × 7 = 2520). This

discretization method is standard in the literature (Huang & Tauchen 2005), while the

choice of the frequency is mainly for computational reasons. The parameters of the model

are set according to the GMM estimates obtained on the S&P500 futures from April 1982

to February 2009 in Bandi & Renò (2015).

In Figure 7, we report the one-day- and ten-day-ahead VaR and ES forecasts obtained

over each window. We consider only a Type-I link function for RV-EVT. Consistent with the

results in Figure 6, the C-EVT performs well for one-day-ahead forecasts but deteriorates

as we extend the time horizon. Contrarily, the RV-EVT approach seems to be less affected

by the increasing time horizon and performs well regardless of the high-frequency based

volatility model for the RV. In particular, the LHAR model emerges as the best one since

it presents less variability in terms of number of violations, and it is less upwardly biased in

the estimation of the ES.

Empirical analysis. We now consider empirical data and assess whether the results sug-

gested by the simulation experiment are confirmed.

In Table 2, we compare one-day-ahead VaR forecasts from the C-EVT and RV-EVT for

the 17 indices. To evaluate the accuracy of the predictions, we use the standard tests of

unconditional coverage (UC), independence assumption (IN) and conditional coverage (CC)
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Figure 6: Extending experiments in Jalal & Rockinger (2008). One- and ten-day-
ahead predictions at level α = 1%. VaR violations (left panels) and actual returns minus ES
when VaR is exceeded (right panels). Expected number of violations is 20. ES differences
should be mean zero and symmetrically distributed. DGP are: Gaussian-GARCH(1,1) (a);
Student’s-GARCH(1,1) (b); EGARCH(1,1) (c); Switching-Markov (d); Jump-diffusion (e);
Pure jumps (f).

Figure 7: Comparison of C-EVT and RV-EVT for simulated data following Bandi
and Renó (2015) model. One-day and ten-day-ahead predictions at level α = 1%. VaR
violations (left panels) and actual returns minus ES when VaR is exceeded (right panels).
Expected number of violations is 20. ES differences should be mean zero and symmetrically
distributed. Models used in first step: (C-EVT ) 1 - GARCH ; (Symmetric RV-EVT ) 2 -
HAR; 3 - HAR-J; (Asymmetric RV-EVT ) 4 - HAR-SJ; 5 - HAR-SJaug; 6 - LHAR.

20



suggested by Christoffersen (1998), and the dynamic quantile test (DQ) of Engle & Man-

ganelli (2004). These results suggest that the C-EVT and the RV-EVT perform equally well

for one-day-ahead. In most of the cases, the number of violations for both approaches is

very close to the expected, and the null hypothesis of independence is typically not rejected

at the standard levels. Noteworthy is the DQ statistic, reflecting the predictability of a vio-

lation given the past information. The null hypothesis of independence between consecutive

violations appears to be the one most frequently rejected. In sum, these results are in line

with those obtained by Giot & Laurent (2004) and Brownlees & Gallo (2009) using non

EVT-based modelling assumptions.

To compare the one-day-ahead ES predictions, we test the hypothesis that conditional

upon exceeding the 99th quantile of the loss distribution, the difference between the actual

return and the predicted ES has mean zero. We conduct a one-sided test with the alternative

that the mean is greater than zero using a bootstrap that makes no assumption about the

distribution of the differences, see Section 16.4 of Efron & Tibshirani (1994). The small

number of p-values below 0.05 in Table 3 indicate that the good results for the VaR extend

to ES.

Turning to the ten-day-ahead predictions of these tail-risk measures, hypothesis testing

is complicated by the fact that the violations are inherently autocorrelated. Nonetheless, we

provide two simple statistical tests for the VaR and the ES. First, let Iαt,t+10 take value one

when the ten-day-ahead VaR prediction at level α is violated, and zero otherwise. {It,t+10, t =

1, 2, . . . } is a sequence of correlated Bernoulli random variables. Letting Φ(·) be a Probit

link function, we assume that It,t+10 = Φ(γ) and test the hypothesis of correct unconditional

coverage H0 : γ = Φ−1(α) against the alternative H1 = notH0. We perform a simple Wald

test with robust standard errors computed with the Newey-West estimator to account for

the autocorrelations. Table 4 shows the number of violations of each model along with the

p-value of the test. The results suggest that at longer time horizons the RV-EVT approach

is more accurate than C-EVT: in three cases the null of correct unconditional coverage is

rejected for C-EVT, and most of the time the RV-EVT is more accurate in terms of number
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of violations.

To compare the ten-day-ahead ES predictions, we employ again the bootstrap test used

for the one-day-ahead ES predictions, but we base it on a block bootstrap because of the

autocorrelations in the violations. In Table 5 we report the p-values of the test. Contrasts

are not as clear as in the case of the VaR as the number of rejections of the null hypothesis of

mean zero difference between the ten-day-ahead ES forecasts and the actual ten-day returns

is very similar in all cases.

5. FURTHER ANALYSIS

The results from the preceding sections highlight the ability of the GARCH model as a filter,

and the merits of the high-frequency based volatility models for the forecast of the tail-risk

measures. Now, as standard in finance, we verify that the results obtained are robust to the

choices made.

5.1 An investigation during a period of turmoil

We evaluate the performance of C-EVT and RV-EVT when the training sample used to fit

the models is limited to 500 days instead of 2000. Furthermore, we consider the time period

from the beginning of 2007 to the end of 2011.

Given the reduced sample size, we consider the exceedances over the threshold û cor-

responding to the 90th quantile of the negated residuals −ε̂t of the considered model.

Goodness-of-fit tests are carried out as described in Section 4.2. When the threshold seems

to be still at the sub-asymptotic level, it is raised to the 92nd quantile. One-day- and

ten-day-ahead forecasts of the VaR and the ES are produced at level α = 0.05.

Results available in the supplementary material confirm the findings of Section 4, al-

though the differences are less pronounced when looking only at the period of turmoil and

the poorer performance of the GJR-GARCH(1,1) is clearer in the estimates of ES.
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Table 2: Performance measures for the one-day-ahead VaR forecast. For each model
(GARCH (a), HAR (b), HAR-J (c), HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we report:
the actual number of violations (NV); the p-values for the unconditional coverage (UC),
the independence assumption (IN), the conditional coverage (CC), and the DQ test (DQ).
Expected number of violations are in parentheses. Rejection at the level α = 5% is in bold.
The * denotes series for which a higher threshold was required for appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX* NV 22 18 18 19 19 17 IBX NV 26 19 19 20 21 18
(18) UC 0.36 1 1 0.81 0.81 0.81 (18) UC 0.07 0.81 0.81 0.64 0.49 1

IN 0.46 0.55 0.55 0.52 0.52 0.57 IN 0.38 0.20 0.20 0.22 0.25 0.54
CC 0.50 0.83 0.83 0.79 0.79 0.82 CC 0.14 0.42 0.42 0.42 0.40 0.83
DQ 0.65 0.72 0.72 0.75 0.75 0.99 DQ 0.003 0.19 0.18 0.001 0.002 0.54

AOI NV 16 13 15 16 17 11 IPC NV 13 7 7 7 9 7
(17) UC 0.80 0.30 0.62 0.81 1 0.12 (17) UC 0.31 0.005 0.005 0.005 0.03 0.005

IN 0.58 0.66 0.61 0.59 0.56 0.71 IN 0.66 0.81 0.81 0.81 0.76 0.81
CC 0.82 0.54 0.77 0.83 0.84 0.27 CC 0.54 0.02 0.02 0.02 0.10 0.02
DQ 0.99 0.34 0.51 0.61 0.63 0.12 DQ 0.27 0.46 0.49 0.49 0.75 0.47

BVP NV 13 12 12 14 14 13 KCI NV 13 20 20 19 21 17
(17) UC 0.31 0.30 0.20 0.45 0.45 0.31 (17) UC 0.31 0.48 0.48 0.63 0.35 1

IN 0.65 0.66 0.68 0.63 0.63 0.65 IN 0.65 0.23 0.23 0.21 0.26 0.56
CC 0.53 0.54 0.40 0.66 0.66 0.53 CC 0.53 0.38 0.38 0.40 0.34 0.83
DQ 0.25 0.34 0.27 0.06 0.07 0.31 DQ 0.97 0.36 0.34 0.16 0.27 0.42

CAC NV 29 26 27 26 27 22 NSQ NV 20 22 22 20 20 17
(18) UC 0.01 0.08 0.05 0.08 0.05 0.36 (17) UC 0.48 0.24 0.24 0.48 0.48 1

IN 0.33 0.38 0.37 0.38 0.37 0.46 IN 0.50 0.45 0.45 0.50 0.49 0.56
CC 0.03 0.14 0.09 0.14 0.09 0.49 CC 0.61 0.38 0.38 0.61 0.61 0.84
DQ 0.02 0.05 0.04 0.05 0.04 0.09 DQ 0.0008 0.13 0.13 0.18 0.40 0.16

DAX NV 19 18 17 16 16 15 NK NV 15 16 16 15 16 15
(18) UC 0.81 1 0.81 0.63 0.63 0.46 (16) UC 0.80 1 1 0.80 1 0.80

IN 0.52 0.54 0.57 0.59 0.59 0.61 IN 0.13 0.15 0.15 0.13 0.15 0.13
CC 0.78 0.82 0.81 0.76 0.76 0.66 CC 0.30 0.34 0.34 0.30 0.35 0.29
DQ 0.16 0.04 0.14 0.11 0.42 0.29 DQ 0.50 0.007 0.008 0.01 0.02 0.007

DJ* NV 21 22 21 20 21 17 RUS NV 23 25 25 23 24 20
(17) UC 0.35 0.25 0.35 0.48 0.34 1 (17) UC 0.16 0.07 0.07 0.16 0.11 0.48

IN 0.47 0.28 0.48 0.50 0.47 0.56 IN 0.43 0.39 0.39 0.43 0.41 0.49
CC 0.49 0.28 0.49 0.61 0.49 0.83 CC 0.28 0.13 0.13 0.28 0.19 0.61
DQ 0.52 0.008 0.01 0.95 0.69 0.99 DQ 0.005 0.001 0.001 0.001 0.02 0.42

ESX* NV 31 18 18 19 19 15 SPX* NV 27 25 28 25 25 23
(18) UC 0.01 1 1 0.82 0.81 0.46 (17) UC 0.02 0.07 0.01 0.07 0.07 0.16

IN 0.29 0.54 0.55 0.53 0.53 0.61 IN 0.36 0.40 0.34 0.40 0.40 0.43
CC 0.01 0.82 0.82 0.79 0.79 0.66 CC 0.05 0.13 0.03 0.13 0.13 0.27
DQ 0.001 0.37 0.37 0.13 0.12 0.41 DQ 0.11 0.40 0.003 0.20 0.28 0.73

MIB NV 31 23 23 24 25 23 SMI NV 17 19 19 18 18 15
(18) UC 0.01 0.26 0.26 0.17 0.12 0.26 (17) UC 1 0.63 0.63 0.81 0.81 0.62

IN 0.29 0.44 0.44 0.42 0.40 0.43 IN 0.56 0.20 0.20 0.54 0.54 0.62
CC 0.01 0.38 0.38 0.29 0.20 0.38 CC 0.84 0.39 0.39 0.79 0.79 0.77
DQ 0.003 0.02 0.02 0.04 0.22 0.04 DQ 0.68 0.13 0.13 0.17 0.17 0.93

FT NV 20 16 16 15 15 13
(18) UC 0.64 0.63 0.63 0.46 0.46 0.26

IN 0.50 0.59 0.59 0.61 0.61 0.43
CC 0.70 0.76 0.76 0.67 0.67 0.38
DQ 0.71 0.96 0.97 0.98 0.98 0.34
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Table 3: Performance of one-day-ahead ES forecast. P-values from the one-sided
upper-tail bootstrap test for the null of mean zero difference between actual returns and ES
when VaR is exceeded. Rejection at level α = 5% is in bold. The * denotes series for which
a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX* 0.020 0.090 0.113 0.097 0.048 0.135
AOI 0.920 0.577 0.480 0.787 0.630 0.96
BVP 0.414 0.988 0.982 1.000 1.000 1.000
CAC 0.103 0.599 0.457 0.425 0.148 0.655
DAX 0.262 0.315 0.307 0.303 0.376 0.235
DJ* 0.998 1.000 1.000 0.993 1.000 1.000

ESX* 0.737 0.406 0.431 0.555 0.567 0.491
MIB 0.821 0.807 0.840 0.857 0.844 0.906
FT 0.410 0.647 0.719 0.791 0.693 0.719
IBX 0.328 0.435 0.317 0.257 0.213 0682
IPC 0.827 0.991 0.989 0.999 0.956 0.953
KCI 0.063 0.254 0.135 0.177 0.076 0.289
NSQ 0.490 0.900 0.910 0.797 0.755 0.678
NK 0.023 0.034 0.023 0.017 0.008 0.023
RUS 0.960 0.781 0.671 0.523 0.500 0.539
SPX* 0.999 0.995 0.993 0.999 1.000 1.000
SMI 0.198 0.860 0.875 0.776 0.799 0.638

Table 4: Performance measures for the ten-day-ahead VaR forecast. Actual and
expected number of violations of the VaR. Cases in which the null hypothesis of correct
unconditional coverage is rejected at level α = 10% are in bold. The best performer is in
italics. The * indicates series for which a higher threshold was required for appropriate GPD
behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 18 34 (0.08) 18 (1.00) 16 (0.81) 19 (0.89) 20 (0.79) 18 (0.99)
AOI* 17 25 (0.43) 25 (0.43) 25 (0.43) 23 (0.60) 22 (0.68) 21 (0.63)
BVP 17 12 (0.49) 22 (0.54) 22 (0.54) 21 (0.60) 22 (0.54) 19 (0.77)
CAC 18 29 (0.23) 27 (0.36) 27 (0.36) 27 (0.34) 27 (0.34) 27 (0.30)
DAX 18 27 (0.33) 22 (0.66) 20 (0.82) 21 (0.73) 21 (0.73) 22 (0.66)
DJ 17 12 (0.51) 20 (0.71) 20 (0.71) 18 (0.92) 18 (0.92) 19 (0.83)

ESX 18 32 (0.17) 21 (0.72) 21 (0.72) 21 (0.72) 22 (0.64) 20 (0.81)
MIB 18 50 (0.02) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.34)
FT 18 33 (0.14) 19 (0.95) 18 (0.95) 18 (0.95) 19 (0.95) 24 (0.41)
IBX 18 39 (0.07) 24 (0.87) 25 (0.78) 26 (0.69) 26 (0.69) 25 (0.35)
IPC 17 14 (0.68) 7 (0.16) 7 (0.16) 7 (0.16) 7 (0.16) 9 (0.30)

KCI* 17 11 (0.45) 26 (0.21) 27 (0.25) 27 (0.25) 28 (0.23) 26 (0.21)
NSQ 17 20 (0.73) 18 (0.92) 18 (0.92) 15 (0.75) 15 (0.75) 14 (0.62)
NK 16 24 (0.57) 25 (0.47) 25 (0.47) 26 (0.39) 26 (0.39) 25 (0.48)
RUS 17 18 (0.94) 18 (0.93) 17 (0.98) 17 (0.98) 16 (0.88) 18 (0.94)
SPX 17 10 (0.38) 17 (0.98) 17 (0.97) 16 (0.88) 16 (0.88) 19 (0.83)
SMI 17 24 (0.41) 11 (0.35) 11 (0.35) 11 (0.35) 11 (0.35) 11 (0.35)
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Table 5: Performance of ten-day-ahead ES forecast. P-values from the one-sided
upper-tail block-bootstrap test for the null of mean zero difference between actual returns
and ES when VaR is exceeded. Rejection at level α = 5% is in bold. The * denotes series
for which a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.114 0.124 0.071 0.123 0.333 0.294
AOI* 0.946 0.244 0.249 0.243 0.345 0.122
BVP 0.673 0.128 0.138 0.118 0.035 0.073
CAC 0.283 0.534 0.562 0.414 0.391 0.601
DAX 0.045 0.101 0.035 0.060 0.059 0.056
DJ 0.345 0.288 0.246 0.232 0.217 0.211

ESX 0.153 0.170 0.203 0.153 0.057 0.025
MIB 0.288 0.743 0.763 0.776 0.787 0.816
FT 0.119 0.451 0.396 0.312 0.379 0.622
IBX 0.738 0.157 0.196 0.291 0.238 0.183
IPC 0.220 0.767 0.741 0.908 0.868 1.000

KCI* 0.027 0.123 0.140 0.251 0.281 0.319
NSQ 0.062 0.028 0.022 0.000 0.000 0.003
NK 0.007 0.021 0.030 0.019 0.024 0.035
RUS 0.089 0.156 0.085 0.134 0.052 0.178
SPX 0.282 0.047 0.043 0.038 0.038 0.092
SMI 0.479 0.511 0.483 0.493 0.484 0.341

5.2 Microstructure noise

To investigate whether the microstructure noise has an impact on the analysis of Section

4, we repeat the analysis on both the full and restricted samples using two estimators of

the quadratic variation that mitigate the effect of the microstructure noise: the Second-Best

Approach: Sub-sampling and Averaging estimator of Zhang et al. (2005), which is biased in

the presence of microstructure noise but presents a lower variance than the RV estimator;

and the Realized Kernel (RK) of Barndorff-Nielsen, Hansen, Lunde & Shephard (2008).

We assess both the filtering and forecasting component of the RV-EVT using first the sub-

sampled measures and then substituting the sub-sampled RV with the RK. Results reported

in the supplementary material lead to the same conclusions of Section 4.

6. CONCLUDING REMARKS

This article questions whether combining the recent advances in the high-frequency financial

econometrics with results from the Extreme Value Theory can improve the fit of the tails of
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the conditional returns distribution.

We propose an RV-EVT approach where returns are pre-whitened with a high-frequency

based volatility model and the POT approach is applied to the tails of the standardized

residuals. We use three different functions to link the predictions of the realized volatility

to the conditional variance of returns, and employ six different econometric specifications to

model the realized volatility.

This approach is compared to the standard C-EVT technique both through simulation

and with an extensive empirical analysis on 17 international indices. We assess both ap-

proaches’ ability of filtering the dependence in the extremes and of producing stable out-of-

sample VaR and ES predictions for one- and ten-day time horizons.

Summarizing the results, it seems that a GARCH-type filter performs slightly better than

a high-frequency based filter, even though they both tend to produce estimated residuals

which are close to independent. From a risk management perspective however, the RV-EVT

approach seems preferable, especially at the longer time horizons which are of interest for

regulatory purposes.
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A. SAMPLING FROM THE SEMI-PARAMETRIC DISTRIBUTION OF THE

RESIDUALS

1. Randomly select with replacement a residual from the sample of S residuals;

2. If the residual exceeds an upper threshold ûH sample a GP(ξ̂H , η̂H) distributed obser-

vation yH from the right tail and return ûH + yH ;
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3. If the residual is less than a lower threshold ûL sample a GP(ξ̂L, η̂L) distributed obser-

vation yL from the left tail and return ûL + yL;

4. Otherwise return the residual itself;

5. Repeat.

B. AUGMENTED HAR-RV MODEL WITH SIGNED JUMPS

Patton & Sheppard (2015) propose to extend the HAR-J model of Andersen et al. (2007),

isolating the information coming from the sign of the jumps. They use a measure called

signed jump variation ∆J2
t ≡ RS+

t −RS−t which is positive when a day is dominated by an

upward jump and negative when a day is dominated by a downward jump. They explicitly

decompose this measure into two components

∆J2+
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )>0},

∆J2−
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )<0}.

(A.1)

If jumps are rare then these measures should respectively correspond to the jump variation

when either a positive or a negative jump occurs. However, if jumps tend to cluster, there

might be more than one jump in a day and the measures in Equation A.1 will fail to capture

the whole jump contribution. To verify whether the actual size of the jumps could still

generate valuable information, we extend the model of Patton & Sheppard (2015) to obtain

the following HAR-SJaug model,

log(RVt,t+h) = β0 + βJ log(1 + J) + βJ+ log(∆J2+
t + 1) + βJ− log(∆J2−

t + 1)

+ βJJ+ log(1 + J) ∗ log(∆J2+
t + 1) + βJJ− log(1 + J) log(∆J2−

t + 1)

+ βC log(RVt) + βW log(RVt−5,t) + βM log(RVt−22,t) + ηt,t+h.
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