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Abstract Characterizing the topology of three-dimensional steady-state flow fields is useful to describe
the physical processes controlling the deformation of solute plumes and, consequently, obtain helpful infor-
mation on mixing processes without solving the transport equation. In this work, we study the topology of
flow in three-dimensional nonstationary anisotropic heterogeneous porous media. In particular, we apply a
topological metric, i.e., the helicity density, and two complementary kinematic descriptors of mixing, i.e.,
stretching and folding, to investigate: (i) the flow field resulting from applying a uniform-in-the-average
hydraulic gradient within a fully resolved heterogeneous three-dimensional porous medium with a nonsta-
tionary anisotropic covariance function of the locally isotropic hydraulic log conductivity; (ii) the flow field
obtained by averaging a set of Monte Carlo realizations of the former field; (iii) the flow field obtained con-
sidering the blockwise uniform anisotropic effective conductivity tensor computed for the fully resolved
case. While in the fully resolved case, the local helicity density is zero as a consequence of the local isotropy
of hydraulic conductivity, it differs from zero in the other two cases. We show, therefore, that this topologi-
cal metric is scale dependent and should be computed at the appropriate scale to be informative about the
leading patterns of plume deformation. Indeed, streamlines are helical in all three cases at scales larger than
the characteristic scale of spatial variability. We apply stretching and folding metrics to investigate the scales
at which plume deformation is more influenced by helical motion than by the effect of small-scale spatial
heterogeneity in the hydraulic-conductivity field. Under steady-state flow conditions, stretching, which
quantifies the increasing length of an interface, dominates at short distances from a given starting plane,
while folding, which describes how this interface is bent to fill a finite volume of space, dominates further
downstream and can be correlated with the appearance of large-scale secondary motion. We conclude that
three-dimensional flows in porous media may show a complex topology whose analysis is relevant for the
description of plume deformation. These results have important implications for the understanding of mix-
ing processes, as shown in detail in the companion paper focusing on solute transport.

1. Introduction

A correct parameterization of hydraulic conductivity is of critical importance for the description of flow and
transport in porous media since it determines the geometry and topology of streamlines [Sposito, 1994,
2001; Sposito and Weeks, 1998; Chiogna et al., 2014], solute dilution [de Barros et al., 2012; Le Borgne et al.,
2010, 2013; Cirpka et al., 2011; Kitanidis, 1994; Rolle et al., 2013; Rolle and Kitanidis, 2014], and mixing
enhancement [Werth et al., 2006; Rolle et al., 2009; Chiogna et al., 2011a, 2012]. However, due to the inherent
complexity of natural porous formations, a fully-resolved description of the conductivity field is often nei-
ther possible nor necessary to describe larger-scale flow structures. Upscaling heterogeneous properties is a
classical problem in many branches of physics [e.g., Milton, 2002]. In subsurface hydrology, the need to
define an effective hydraulic-conductivity tensor has been recognized since the pioneering work of Theis
[1935] and has successively been the topic of a large body of specific literature, well summarized in a few
comprehensive reviews [e.g., Sanchez-Vila et al., 1995; Renard and de Marsily, 1997; Neuman and Di Federico,
2003; Dagan et al., 2013].

A common simplified model of heterogeneous aquifers is derived by computing an effective hydraulic-
conductivity tensor, causing the same mean Darcy flow when applying a uniform-in-the-mean hydraulic
gradient, as the true heterogeneous conductivity field [e.g., Paleologos et al., 1996; Renard and de Marsily,
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1997; Jankovic et al., 2003; Zhou et al., 2010]. Effective hydraulic-conductivity tensors can be (i) derived by
closed-form upscaling [e.g., Indelman and Dagan, 1993], requiring a geostatistical description of the local
conductivity field, (ii) computed by renormalization [e.g., Durlofsky, 1992], requiring the exact spatial con-
ductivity distribution, or (iii) estimated by fitting models to larger-scale hydraulic observations such as
regionally distributed hydraulic-head measurements or pumping-test data [e.g., Hantush and Thomas,
1966]. Since the correlation structure of the heterogeneity is typically anisotropic to account for the differ-
ent spatial extents of characteristic depositional units in sedimentary aquifers [e.g., Mial, 1996], effective
hydraulic-conductivity tensors are mostly anisotropic, even if the underlying fully resolved conductivity field
was generally assumed stationary and locally isotropic.

Natural sediments may show anisotropy on all scales, including the local Darcy scale. However, local anisot-
ropy of porous formations has been commonly considered of secondary importance in comparison to hetero-
geneity, which is considered the most salient feature of hydrogeology [Sanchez-Vila et al., 2006]. At the pore
scale, particles with irregular shape, such as the plate-shaped particles of mica, are generally oriented with the
flat side down [see Kim et al., 1987, Figure 8], thus resulting in larger conductivity in the direction of the bed-
ding plane than perpendicular to it [Bear, 1972]. Local anisotropy may remain undetected when estimates of
hydraulic conductivity are obtained from inversion of experimental data (e.g., from pumping tests) under the
implicit assumption of isotropy and at a scale that does not allow the identification of fine-scale sedimentary
structures, and when hydraulic conductivity estimates are based on grain-size analysis [e.g., Alyamani and Sen,
1993] and slug tests [e.g., Bouwer and Rice, 1976], which also cannot capture the effect of anisotropy.

Sedimentation processes may determine the anisotropic nature of the hydraulic conductivity tensor [e.g.,
Friedman and Seaton, 1996; Hsieh et al., 1985]. Graded bedding, leads to sequences of layers, each of them
fining up toward the top. In this case, alternating layers with different isotropic texture can be modeled at
the formation scale as an anisotropic medium, with higher conductivity values in the directions parallel to
the bedding planes than perpendicular to it [Bear and Dagan, 1965]. The complexity of the processes con-
trolling aquifers formation leads to complicated structures in which anisotropic and heterogeneous zones
can be distinguished [Blatt et al., 1980]. For example, dunes are created by the deposition of inclined layers
(cross bedding) with respect to the main depositional direction, which is also the principal direction of the
hydraulic-conductivity tensor, thereby generating an anisotropic geological structure. Similarly, braided riv-
ers generate complex patterns of troughs and channels which are filled with tilted sediment layers. Since
the direction of deposition changes from one sedimentary structure to the next, the overall result is a locally
anisotropic and heterogeneous (spatially variable) hydraulic-conductivity tensor [Poeter and Gaylord, 1990;
Heinz et al., 2003; Kostic and Aigner, 2007; Sun et al., 2008; Ramanathan et al., 2010; Guin et al., 2010]. As a
consequence, the tensorial nature of hydraulic conductivity manifests itself with spatially varying orienta-
tion and degree of anisotropy, at scales ranging from a few centimeters to several kilometers [e.g., McLaugh-
lin and Townley, 1996; Heinz et al., 2003; Ritzi and Allen-King, 2007; Ronayne et al., 2010]. In the statistical
description of the hydraulic-conductivity field, the spatial variability of anisotropy is expressed as spatial
nonstationarity to evidence that geostatistical properties change in space. Figure 1, taken from Heinz and
Aigner [2003], illustrates some of the mentioned features occurring in real aquifers and points toward inves-
tigation techniques appropriate for the scale of interest of the different geological structures.

While the impact of upscaling isotropic stationary heterogeneous fields has been investigated at depth for
macrodispersion [for reviews, see Dagan, 1989; Gelhar, 1993; Rubin, 2003], including some limitations in
reproducing experimental and numerical results [e.g., Battiato et al., 2011; Chiogna and Bellin, 2013], the
effect of upscaling on flow topology has received little attention. In fact, only a few studies have focused on
flow topology in porous media [e.g., Bear, 1972; Sposito, 1994, 2001; de Barros et al., 2012]. Topological met-
rics can be used to identify flow patterns causing plume deformations with relevant effects on transverse
solute fluxes, thereby enhancing mixing, as evidenced by de Barros et al. [2012] for two-dimensional station-
ary flow fields, and with potential innovative applications in engineered remediation systems, as shown in a
few studies conducted in two-dimensional transient flow fields [Neupauer et al., 2014; Piscopo et al., 2013;
Weeks and Sposito, 1998; Bagtzoglou and Oates, 2007].

Topology of steady-state three-dimensional flow fields has been described, for example, by Sposito and Weeks
[1998] and Sposito [2001] for isotropic heterogeneous formations. Anisotropic media has been recently investi-
gated by Chiogna et al. [2014], although already the studies of Bakker and Hemker [2002, 2004], Hemker and
Bakker [2006], and Hemker et al. [2004] pointed out that anisotropy in some cases may lead to velocity fields
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with large-scale periodic structures. In particular, the occurrence of groundwater whirls was demonstrated by
Bakker and coworkers for blockwise uniform locally anisotropic porous media where the orientation of anisot-
ropy differed from block to block. In addition, Stauffer [2007] investigated the impact of highly permeable
sediment units with inclined bedding on the occurrence of groundwater whirls.

Differently from previous contributions, in this work we focus our attention on steady-state three-dimensional
groundwater flow in a nonstationary heterogeneous porous medium with the hydraulic conductivity that is
locally isotropic at the Darcy scale, but that becomes anisotropic when upscaled to a larger scale by defining
homogeneous equivalent hydraulic conductivity blocks. The resulting features of complex flow topology and
the implications for mixing are analyzed using the helicity density as well as two kinematic descriptors of mix-
ing: stretching and folding. The helicity density is an important descriptor of flow topology [Arnold and Khesin,
1998; Moffatt and Tsinober, 1992; Sposito, 2001], it is defined as the scalar product of the velocity vector and its
curl and its correct computation is a benchmark for numerical solution of flow equations [Liu and Wang,
2004]. The helicity density is a point-scale property of the velocity field; therefore, its value depends on the
scale at which the velocity field is resolved. Hence, currently available upscaling strategies may not preserve
the topological characteristics of the original flow field. Furthermore, we analyze large-scale patterns of the
streamlines deformation by computing stretching and folding, two metrics proposed by Falk and Langer
[1998] and Kelley and Ouellette [2011] in studying mixing properties of transient turbulent flow fields, which
allow to separate linear (stretching) from nonlinear (folding) deformation mechanisms, both reflecting large-
scale patterns of the flow field with relevant implications on mixing. It can be shown, in fact, that stretching
and folding measure the affine and nonaffine components of the plume deformation [Kelley and Ouellette,
2011] at different scales and provide useful information on mixing potential of the flow field, separating defor-
mation mechanisms caused by the occurrence of scale-dependent flow structures.

Specific objectives of the present study are to: (i) show how simple nonstationarity in the hydraulic conduc-
tivity distribution may influence large-scale structures of the velocity field in a heterogeneous formation;
(ii) illustrate how the numerical artifacts introduced in numerical simulations with relatively large computa-
tional cells and upscaling of the flow equation may influence the topology of the flow field; and (iii) apply
stretching and folding as kinematic metrics to distinguish between the different contributions on mixing
enhancement caused by the deformation of plume material surfaces due to the influence of flow

Figure 1. Sedimentological structures occurring at different scales in natural aquifers [taken from Heinz and Aigner, 2003].

Water Resources Research 10.1002/2014WR015330

CHIOGNA ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 263



heterogeneity and of flow topology (i.e., twisting streamlines). In the companion paper Cirpka et al. [2015],
we explicitly address the solute-transport problem and show how the scale dependence of the flow topol-
ogy and the kinematic descriptors analyzed in this work are related to plume dilution and in particular to
entropy-based metrics of the distribution of solute concentration [e.g., Kitanidis, 1994; Rolle et al., 2009].

2. Helicity Density and Metrics of Stream-Tube Deformation in Porous Media

Flow in porous media is described by Darcy’s law:

q xð Þ52K xð Þr/ xð Þ (1)

where q xð Þ½LT 21� is the vector of specific discharge, K xð Þ½LT21� is the hydraulic-conductivity tensor, and
/ xð Þ½L� is the hydraulic head. Substituting equation (1) into the continuity equation for the case of zero
sources and sinks, r � q50, results in the groundwater-flow equation:

r � Kr/ð Þ50 (2)

The spatial integral of the helicity density of the flow field h LT 22½ � is a topological invariant [Moffatt and Tsi-
nober, 1992], which quantifies how streamlines twist around an axis aligned with the direction of flow,
resulting into helical curves in three-dimensional space [Sposito, 2001]. The helicity density is defined as the
scalar product of the specific-discharge vector q xð Þ and the vorticity (i.e., the curl of the specific discharge
w xð Þ5r3q xð Þ [Kapoor, 1997]):

h xð Þ5q xð Þ � r3q xð Þð Þ (3)

In addition, the relative helicity density hr xð Þ½2� can be defined as follows:

hr xð Þ5 q xð Þ � r3q xð Þð Þ
jjq xð Þjj2jjr3qðxÞjj2

(4)

which is the cosine of the angle between q and its curl r3q. In equation (4), jj•jj2 is the L2 norm.

The helicity density can be computed by substituting equation (1) into equation (3). A detailed analysis on
the sufficient and necessary conditions to obtain a velocity field with nonvanishing helicity density in
porous media has been provided by Chiogna et al. [2014]. While helicity density can be used to identify the
occurrence of important structures, such as groundwater whirls [Hemker et al., 2004; Bakker and Hemker,
2004; Hemker and Bakker, 2006], flow fields showing zero local helicity density may still exhibit other types
of deformations induced by rotation associated with vorticity, also relevant to mixing processes, such as
stretching and folding. These are large-scale metrics of plume deformation directly related to streamline
geometry [e.g., Kelley and Ouellette, 2011]. Mixing, in fact, is intimately related to the deformation of the
plume because local diffusive/dispersive fluxes depend on local dispersion and concentration gradients,
which are strongly affected by stretching and folding [e.g., Ottino, 1989; de Barros et al., 2012].

We propose to apply descriptors of deformation to groundwater plumes that have been used to capture the
dynamics of viscoplastic deformation in amorphous solids [Falk and Langer, 1998]. In steady-state flow, the
deformation of streamtubes can be analyzed within the x2, x3-plane while moving along the x1-direction. As
illustrated in Figure 2, we consider a set of N streamlines surrounding a central reference streamline. The dis-
tance of the central streamline from one of the surrounding streamlines forming the cluster is given by:

dn x1ð Þ5x0 x1ð Þ2xn x1ð Þ (5)

in which n is the index of the streamline, and xn x1ð Þ is the vector of two coordinates, which identifies the
point at which the streamline crosses the plane x1. At x150, the set of N streamlines form a circle with the
initial distance r0 from the central streamline (see Figure 2):

dn
2ð0Þ5r0cos ð2pn=NÞ

dn
3ð0Þ5r0sin ð2pn=NÞ

(6)

The deformation, along the direction x1, of the circle defined by equation (6), is given by the
dynamic behavior of the vectors dn x11Dx1ð Þ, describing how the shape of the streamtube changes
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when moving from the plane x1 to the plane x11Dx1. The space interval Dx1, therefore, is the anal-
ogous of the deformation time used by Kelley and Ouellette [2011]. The affine component of the
deformation can be identified by least square fitting the following linear model to the deformation
of the streamlines [Falk and Langer, 1998]:

dn
aff x11Dx1ð Þ5 A1Ið Þdn x1ð Þ (7)

in which the affine deformation matrix A is identical for all streamlines n, but may differ from one increment
x1; x11Dx1½ � to the next, and I is the identity matrix. The affine deformation matrix A can be written as fol-

lows [Falk and Langer, 1998]:

A5WJ212I (8)

where the two matrices W and J are given by:

W5
XN

n51

dn x1ð Þ � dn x11Dx1ð Þ (9)

and

J5
XN

n51

dn x1ð Þ � dn x1ð Þ; (10)

respectively. In equations (9) and (10), � denotes the matrix product.

Stretching is thus defined as the normalized L2-norm squared of the affine deformation of the streamlines:

A2 x;Dx1ð Þ5 1
r2

0 N

XN

n51

jjAdn x1ð Þjj22 (11)

and folding is defined similarly as the normalized L2-norm squared of the nonaffine (nonlinear) part of the
overall deformation:

Figure 2. Streamlines evolution in the main flow direction x1 tracked with a set of N particles, displaced in circle of radius r0 at the inlet
boundary. The solid red and black lines are the traces of two representative streamlines, and the dashed lines illustrate the procedure to
calculate their relative distance at different cross sections.
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D2 x;Dx1ð Þ5 1
r2

0 N

XN

n51

jjdn x11Dx1ð Þ2 A1Ið Þdn x1ð Þjj22 (12)

Folding, therefore, represents the inability of describing the deformation with a purely linear model. From a
physical point of view, stretching represents the increase of the length of an interface, while folding
describes how this interface is bent in order to fill a finite volume of space [Kelley and Ouellette, 2011].

3. Anisotropy Resulting From Upscaling in Heterogeneous Porous Media

As we recalled in section 2, local properties of the conductivity field, in particular anisotropy, are the main
controlling factors determining the topological characteristics of the flow field [Bear, 1972]. In a heterogene-
ous formation, the spatial variability of hydraulic properties is typically described by assuming that the loga-
rithm of the hydraulic conductivity, YðxÞ5ln KðxÞ, is a statistically second-order stationary random space
function with constant mean hYi, variance r2

Y , and a given two-point correlation function. According to
these assumptions, the spatial distribution of the hydraulic conductivity can be written as follows:

KðxÞ5eY xð Þ5KGeY 0 xð Þ (13)

where KG5exp hYi½ � is the geometric mean of hydraulic conductivity and Y 0ðxÞ is the fluctuation about the
mean. The description of the random space function is completed with the choice of the two-point covari-
ance function, which describes the spatial correlation of the log conductivity field. One of the most used
models of spatial variability is the Gaussian covariance model:

CYðr0Þ5r2
Y exp 2r02½ � (14)

where r05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1=k1ð Þ21 r2=k2ð Þ21 r3=k3ð Þ2
q

, with k1, k2, and k3 being the correlation lengths in the principal
directions x1, x2, and x3, respectively, which are assumed to be aligned with the Cartesian reference system,
and ri5x0i2xi , i 5 1, 2, 3 are the components of the two-point separation distance [e.g., Dagan, 1989]. This
model of spatial variability, which is commonly adopted in modeling studies dealing with heterogeneous
formations, implicitly assumes that the hydraulic conductivity is locally isotropic, i.e., the hydraulic conduc-
tivity is a scalar quantity, though it varies in space according to the adopted model of spatial variability.

Alternatively, to take advantage of the large library of solutions available for homogeneous conductivity fields,
a suitable effective hydraulic-conductivity tensor may be defined [e.g., Wen and Gomez-Hernandez, 1996;
Renard and de Marsily, 1997; Dagan et al., 2013]. The methods used to define the effective hydraulic conductiv-
ity include small-perturbation analysis, the self-consistent approximation, and methods that impose to match
the energy dissipation of the actual and effective conductivity fields [e.g., Sanchez-Vila et al., 1995; Renard and
de Marsily, 1997; Neuman and Di Federico, 2003; Dagan et al., 2013; Jankovic et al., 2013]. Whatever technique
is used, the effective hydraulic conductivity is mostly anisotropic, even when the original heterogeneous field
is locally isotropic, i.e., Keff ;11 6¼ Keff ;22 6¼ Keff ;33. Keff may also include nonzero off-diagonal terms. A similar con-
clusion can be reached for the upscaled equivalent block-effective hydraulic conductivity at the scale of the
computational cells [e.g., Zhou et al., 2010]. Indeed, an equivalent hydraulic conductivity tensor can be defined
also by upscaling the hydraulic conductivity to the computational cells in numerical models. In this case, the
fine-scale continuous hydraulic-conductivity field is replaced with an equivalent distribution of hydraulic con-
ductivity, which varies stepwise within the domain. The effect of the commonly adopted upscaling techniques
has been analyzed by Cainelli et al. [2012], among others.

In the present study, we consider the first-order approximation in r2
Y obtained by Gelhar and Axness [1983]

for a three-dimensional anisotropic (i.e., k1 6¼ k2 6¼ k3) conductivity field:

Keff ;ii5KGJi 11
r2

Y

2

� �
2ai

� �
(15)

with

ai5
1

ð2pÞ3=2

ð1
21

ð1
21

ð1
21

J � kki

k2
SYðkÞd3k (16)

where J is the vector of the mean hydraulic gradient, k5ðk1; k2; k3Þ is the frequency variable in the Fourier
space, k25k2

11k2
21k2

3 ; d3k5dk1dk2dk3, and SY is the spectral density function of the log conductivity

Water Resources Research 10.1002/2014WR015330

CHIOGNA ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 266



covariance function, which for the Gaussian covariance model of equation (14) assumes the following
expression [Rubin, 2003, equation 2.50c]:

SYðkÞ5
1ffiffiffi
8
p r2

Yk1k2k3exp 2
X3

j51

k2
j k2

j =4

" #
(17)

Equation (15) takes implicitly into account that the effective conductivity tensor is diagonal, such that
Keff ;ij50 for i 6¼ j [Dagan, 1989, p. 192].

4. Artificial Anisotropy Caused by the Numerical Solution of the Flow Problem

In a heterogeneous formation, the flow equation (2) is generally solved numerically with grid dimensions of
only a fraction of the correlation lengths, such as to minimize the error caused by neglecting subgrid-scale
variability [e.g., Li et al., 2010; Herrera et al., 2010; Cainelli et al., 2012]. As in most numerical applications, we
consider in the present work a fine discretization and assign to a given cell a uniform and isotropic hydraulic-
conductivity value obtained by sampling the random K-field with spacing equal to the grid dimensions. The
flow equation (2) is discretized by the cell-centered Finite Volume Method with regular grid spacing, taking
the harmonic average of the hydraulic conductivities of two adjacent cells as the effective conductivity for the
interface shared by the cells.

In order to obtain a good reproduction of the conductivity field, a grid spacing as small as dxi5
ffiffiffi
p
p

ki=8, or
smaller, should be used [e.g., Bellin et al., 1992; Cainelli et al., 2012]. While in two-dimensional applications
finer grid resolutions are often used, such fine spacing is computationally challenging in most three-
dimensional studies.

Since the discrete fluxes between adjacent cells are computed by using a suitable average of the hydraulic-
conductivity values of the two cells, the conductivities applied in the different directions differ, unless the

Figure 3. Example of numerical discretization of the 3-D domain and computation of the hydraulic conductivity at different cell interfaces.
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hydraulic conductivities of the central cell and its six neighbors are identical (the sketch of the spatial
arrangement of the computational blocks is shown in Figure 3). That is, the numerical scheme causes artifi-
cial anisotropy even when the underlying discretized conductivity field is locally isotropic. As shown by Cai-
nelli et al. [2012], this numerical artifact is reduced when flow is solved by the Galerkin Finite Elements
scheme, or the Finite Volume Method with the harmonic mean replaced by the arithmetic mean, but to
make it negligible a grid spacing as small as dxi50:05ki and dxi50:1

ffiffiffi
p
p

ki=2 for the exponential and Gaus-
sian covariance function, respectively, or smaller should be used.

Therefore, a finer discretization than that required by the Nyquist theorem, which needs at least two sam-
pling points per integral scale in order to reproduce correctly the random fluctuations of the conductivity
field, should be used to minimize the alteration of local flow topology introduced by the tensor of effective
hydraulic conductivity.

In an attempt to alleviate this problem, Li et al. [2010] developed a numerical method in which the sampled
hydraulic conductivity is directly assigned to the cell interface, instead of the cell center, thereby avoiding
the need to define equivalent hydraulic conductivities. However, they showed that this method does not
provide advantages in term of accuracy when the tensor of the local hydraulic conductivity is diagonal, but
anisotropic, as in the cases considered in the present work.

5. Numerical Results of Flow Topology in Fully Resolved and Upscaled
Nonstationary Hydraulic-Conductivity Fields

We now consider a three-dimensional heterogeneous log conductivity field with blockwise stationary, peri-
odic, anisotropic Gaussian model of spatial variability, according to equation (14). The log conductivity var-
iance r2

Y is set to 2.0, the three correlation lengths are k152 m; k250:4 m, and k350:1 m, while the
geometric mean of hydraulic conductivity is KG5131024m=s. The computational domain is composed of
four blocks 5 m wide, 1 m high, and 30 m long, arranged in two layers with the longer dimension oriented

along the mean flow
direction x1 and the lat-
eral surfaces joined to
obtain a unit cell 30 m
long, 10 m wide, and 2 m
high, in the x1, x2, and x3-
directions, respectively.
The top left and bottom
right blocks share the
same random space func-
tion with the primary
principal direction
rotated by 30

�
to the left

of the x1-direction. Simi-
larly, the top right and
bottom left blocks share
the same random space
function, which is inde-
pendent from that of the
other two blocks, with
the primary principal
direction rotated by 30

�

to the right of the x1-
direction. These two ran-
dom fields are generated
with the spectral
approach of Dietrich and
Newsam [1993]. The

Figure 4. Numerical test Case 1: (a) nonstationary heterogeneous conductivity field and (b) com-
puted streamlines.
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transition between the blocks is obtained by blending the log conductivity fields using a Tukey window
[Tukey, 1967] with a transition zone of 1 m in the x2-direction and 0.2 m in the x3-direction.

The uniform grid spacing is 0.1 m in the two horizontal directions and 0.02 m in the vertical one, leading to
a total of 33106 elements. The number of points per correlation length are therefore 20 in the longitudinal
direction, while in the transverse horizontal and vertical directions they are 4 and 5, respectively, which is
enough to reproduce the conductivity field [Bellin et al., 1992]. A constant scalar value of hydraulic conduc-
tivity is assigned to each computational element by sampling the random fields with the same spacing; the
resulting log conductivity field is shown in Figure 4A. Consequently, the numerical artifacts introduced by
discretization, particularly the equivalent local anisotropy of the hydraulic-conductivity tensor [Li et al.,
2010] and the helicity density discussed in section 4, are expected to be negligible. This will be tested for
the numerical solution of the flow field.

Figure 5. (a) Mean transverse motion of the flow field in Case 2 (average of 50 Monte Carlo realizations of Case 1). (b) Mean transverse
motion of the flow field in Case 3 (upscaled flow field derived from Case 1).

Figure 6. Components of the specific discharge for the case in which the effective conductivity tensor has been computed (a, d, and g)
analytically, (b, e, and h) numerically and (c, f, and i) Case 2. The first row shows the longitudinal component, while the transverse horizon-
tal and vertical components are shown in the second and third row, respectively.
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Periodic head conditions with a mean hydraulic gradient of 0.01 are applied to the external surfaces of the
computational domain such that the mean flow field is oriented along the x1-direction. We numerically
solve the groundwater flow equation (2) and Darcy’s law, equation (1), to obtain a periodic velocity field.
Successively, streamlines are constructed by tracking 50,000 particles released at the nodes of a uniform
squared grid with spacing of 0.02 m within the inlet plane at x150 using Pollock’s semianalytical method
[Pollock, 1988] (see Figure 4B). Observation planes are set at intervals of 0.1 m in the x1-direction. The
streamlines are tracked over a distance of 60 m in the x1-direction, i.e., the length of two unit cells. Because
of the periodic boundary conditions and the periodic K-field, the velocity field is infinitely self-repetitive in
all directions and streamlines can be tracked through neighboring unit cells.

The streamlines depicted in Figure 4B show a complex arrangement in which, for example, streamlines starting
from the left and right boundaries of the inlet plane intertwine. A similar behavior is observed with streamlines
originating from the top and the bottom of the inlet plane. Overall, the streamlines are observed to twist, form-
ing macroscopic helical structures. The arrows in Figure 5a visualize the transverse horizontal and vertical com-
ponents of the mean specific-discharge vector computed averaging over 50 Monte Carlo realizations of the
heterogeneous field and along the planes normal to the direction x1, which are superimposed onto the primary
component along the direction x1. The contour lines are streamlines constructed from the mean velocity com-
ponents in the x2 and x3-directions. Altogether, the nonstationary spatial anisotropy of the covariance function

Figure 7. Computed streamlines for Case 3. The shaded region is an extension of the domain used to illustrate that streamlines intertwin-
ing is occurring at longer distances than in Case 1. The zoom-in highlights the region where complete twisting of the streamlines occurs.

Table 1. Summary of the Analyzed Cases

Case K Field Velocity Field Overall Objective Main Features

1 Heterogeneous,
locally isotropic
conductivity field with
blockwise stationary
Gaussian
covariance function,
equation (14)

Fully resolved Analysis of flow
topology in a
heterogeneous
fully resolved
nonstationary K field

Helicity density
is locally zero,
stretching and folding
influenced by small-scale
heterogeneity

2 Not defined Uniform along x1

(average along x1 of the
velocity components of
50 realizations of Case 1)

Evidence large-scale
helical structures
of the Case 1

Helicity density is different
from zero, reduced stretching
and folding at short distance
with respect to Case 1
due to the averaging

3 Blockwise homogeneous
anisotropic effective
conductivity field

Upscaled flow
field of Case 1

Analysis of flow
topology in a
homogeneous
upscaled
anisotropic K field

Helicity density is different from
zero, reduced stretching
and folding with respect to
Case 1 due to the homogeneity
of the medium
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causes significant secondary motion, despite the hydraulic-conductivity field being locally isotropic. Both the pri-
mary and secondary motion are perturbed by small-scale variation in the x1-direction.

In the present work, we compare three different flow fields. The flow field discussed so far, hereafter indicated
as Case 1, is numerically computed using the fully resolved locally isotropic hydraulic-conductivity field with a
nonstationary anisotropic covariance function of the log conductivity perturbations. To complete the analysis,
we consider two upscaled cases derived from this base case. In Case 2, the velocity field of Case 1 is averaged
along the x1-direction and through the 50 Monte Carlo realizations to obtain a new velocity field, which is uni-
form along x1 but variable in the other two directions. Finally, in Case 3, the flow field is computed using a
blockwise homogeneous anisotropic effective conductivity tensor. The components of the effective conduc-
tivity tensor have been computed according to the following two approaches. In the first approach, an effec-
tive conductivity is computed by substituting the statistical parameters of the stationary conductivity field
used as base for the Case 1 into equation (15); the resulting diagonal tensor is then modified by rotation, to
align its principal direction with the two blockwise principal directions of heterogeneity in Case 1 (the integral
of equation (16) is solved numerically). The second approach differs from the first one only in the way the
effective conductivity is computed: instead of using equation (15) the effective conductivity is computed
numerically by dividing the mean flow by the mean head gradient. Figure 6 compares the three components
of the specific discharge obtained computing the values of the effective hydraulic conductivity analytically
(Figures 6a, 6d, and 6g) and numerically (Figures 6b, 6e, and 6h). The comparison is also extended to the
mean flow field of Case 2 (Figures 6c, 6f, and 6i). The most interesting components are those in the x2 and
x3-directions, reproduced in the subplots of the second and third row, respectively, since they are responsible
for the secondary motion. Inspection of the figure reveals that these transverse components are very similar
for the three cases considered. The x1-component of Case 2 (see Figure 6d) still shows some irregular patterns,
indicating that more realizations would be needed to obtain the correct effective velocity field also in that
direction, although the mean value and the range of variability of the three cases are comparable. Further-
more, Case 2 displays less sharper transition zones than the other two cases between velocity components in
the different blocks due to the use of the Tukey window function for the generation of the conductivity fields.
The velocity field obtained using the effective conductivity tensor computed analytically and numerically are
both in good agreement with Case 2, however, the latter are to be preferred since the magnitude of the three
components of the flow field are more similar to Case 2. Therefore, in the following, Case 3 will refer to the
results obtained using the effective conductivity tensor computed taking advantage of the set of Monte Carlo
realizations. Table 1 summarizes the three cases.

Cases 1 and 2 are constructed in such a way that a mean secondary motion is generated with periodic
recurrence of two circulation cells, one rotating clockwise and the other counterclockwise in the plane

Figure 8. Deformation of two rectangles with different dimensions in the flow field of Case 3 at different distances from the source.
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x22x3 as shown in Figure 5a. No flow crosses the vertical planes normal to the x2-direction at x2525m,
0 and 5 m, and the horizontal planes at x3520:5m and 0.5 m.

A similar mean flow field is obtained in Case 3 where a uniform, but anisotropic hydraulic conductivity ten-
sor is assigned to the four blocks forming the computational domain, as shown in Figure 5b. In this case,
the flow field is obtained analytically using the method of Bakker and Hemker [2004]. The corresponding
streamlines, obtained by injecting the particles in the same grid nodes as in Case 1 are shown in Figure 7.
Since the hydraulic conductivity is homogeneous within the blocks, the resulting streamlines are smoother
than in the heterogeneous Case 1. However, they exhibit a large-scale helical structure, which deforms sol-
ute plumes. In particular, streamlines originating in the left portion of the inlet plane (colored in red) spiral
clockwise while they tilt to the right and those originating from the right portion of the inlet plane (colored
in green) spiral clockwise while they tilt to the left.

Figure 8 illustrates for Case 3 the deformation that two closed rectangular lines starting in the vertical plane
x22x3 at x150 experience upon transport along the direction x1. We can observe that, even if the medium
is blockwise homogeneous, the deformation processes are significantly different for the inner (red) and
outer (black) rectangles. In particular, the inner rectangle is just stretched in the vertical x3 direction up to a
distance of 60 m, while the black rectangle is stretched also in the transverse x2 direction and at a distance
of 60 m folding is evident due to the generation of four spiral arms.

5.1. Helicity Analysis
According to equation (3), the helicity density depends on the magnitude and orientation of the flow field
and of the vorticity field. As shown in Figure 6, the three components of the flow fields of Cases 2 and 3 are
characterized by similar and locally rather regular patterns, generating the secondary motion observed in
Figure 5, while the fully resolved heterogeneous Case 1 is characterized by flow focusing in high-
conductivity zones [e.g., Werth et al., 2006; Chiogna et al., 2011b], whose imprint is evident in the irregular
pattern of the streamlines shown in Figure 4. At a first glance, the helical structures observed in the fully
resolved flow field of Case 1 are difficult to interpret, since the scalar product between the specific-
discharge vector and the vorticity vector is zero [e.g., Kapoor, 1997]. So, it is worth to investigate in more
details the topology of Case 1 in order to explain the helical structures observed in Figure 4.

The analysis of the rotational properties of the flow field, computing its vorticity, is widely used in fluid
mechanics [see e.g., Ottino, 1989]. We compare the numerical standard deviations of the three vorticity
components, to the first-order analytical expressions of Kapoor [1997] for the Gaussian stationary covariance
function given by equation (14), and considering that the anisotropic covariance function is rotated by 6
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With the statistical parameters used in the simulations of Case 1, the theoretical (first-order) standard devia-
tions of the vorticity components assume the following values: rw2 5231025s21 and rw3 54:431026s21.

Figure 9. Relative helicity density as defined in equation (4) computed for a x2; x32 cross section at x1510m, for (a) Case 1, (b) Case 2, and
(c) Case 3.
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The corresponding numerical
estimates for the vorticity are
Sw2 5631025s21 and
Sw3 51:531025s21, which are
about three times larger. This
difference may be attributed to
the linear approximation of the
closed-form solutions, which
formally are valid for r2

Y � 1. In
fact, a better agreement with
the results of Kapoor [1997] is
obtained after reducing r2

Y to
0.5. However, the ratio between
the standard deviations of w2

and w3 is for both log conductivity variances close to the theoretical first-order value, which according to
equations (18) is independent of r2

Y . The observed largest difference between numerical simulations and
theoretical results is for the standard deviation of the longitudinal component of the vorticity, which is zero
in the first-order approximation (equation (18)), but in the numerical simulations it equals Sw1 51:831025

s21 for r2
Y 52 and therefore comparable to the values obtained for the other two directions (this result was

verified also for the case in which r2
Y 50:5). We argue that this difference is mainly the consequence of non-

stationarity in the covariance function which is responsible for the macroscopic helical structures observed
in Case 1, although the validity of the first-order approximation, implying zero uncertainty in the longitudi-
nal component of the vorticity vector, is limited to r2

Y � 1.

Figures 9a–9c show the relative helicity density, as defined by equation (4), for the three cases at the same
cross section at x1510m. This quantity is expected to be zero everywhere within the domain with a hetero-
geneous, but locally isotropic conductivity field such as that used in Case 1. As shown in Figure 9a, and dif-
ferently from what expected, helicity density in Case 1 is different from zero in some isolated points of the
domain. However, its rather small absolute value and the lack of patterns suggest that this residual helicity
is the consequence of numerical artifacts and, in particular, of the anisotropy of the equivalent hydraulic
conductivity introduced by the numerical scheme used to solve equation (2). To verify this, the simulation
was repeated varying the number of grid nodes by almost three orders of magnitude, up to 643106 com-
putational cells, corresponding to 401 grid nodes in each direction. Also the log conductivity variances were
varied ranging from 131023 to 2 with increments of 0.2. The results of these simulations are summarized in
Figure 10, which shows the percentage of computational cells with an absolute value of the relative
helicity-density larger than 1022. The number of computational cells with jhr j > 1022 reduces by a power
law with the number of grid cells, and for a given grid size it declines with decreasing r2

Y . This confirms pre-
vious studies showing that a higher value of r2

Y calls for a finer numerical discretization. We thus conjecture

Figure 10. Effect of domain discretization on the absolute value of the relative helicity den-
sity. The results are reported for the fully resolved velocity fields (Case 1) and the depend-
ency on r2

y is illustrated by the color code.

Figure 11. Scale effect on relative helicity density: relative occurrence of its absolute value considering different thresholds c (0.5, 0.1, 0.05,
0.01, black continuous line, green dotted line, red dashed line, and cyan continuous line, respectively) as a function of the averaging length
n1 of the flow field of Case 1.
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that the residual relative helicity density observed in Figure 9a is due to spurious small anisotropies intro-
duced by the numerical scheme, which vanish with a sufficiently refined grid.

On the contrary, in the upscaled Case 2, the relative helicity density varies in space spanning the entire
range of variability (i.e., between 21 and 1, Figure 9b), with the extreme values obtained when the specific-
discharge and the vorticity vectors are parallel. A wide area with nonzero helicity can also be observed in
Case 3, as shown in Figure 9c. Positive helicity density values correspond to clockwise helical motion in a
right-handed Cartesian coordinate system, while negative helicity density values correspond to counter-
clockwise helical motion. The immediate consequence of these observations is that averaging the fully
resolved heterogeneous flow field with zero helicity density of Case 1, either by directly averaging qðxÞ
along the x1-direction, as done in Case 2, or by applying a blockwise effective uniform anisotropic conduc-
tivity tensor, as done in Case 3, does not preserve flow topology. In the two upscaled fields, large-scale heli-
cal structures as the ones observed in the original fully resolved field are preserved by the introduction of a
local helicity density, not present in the fully resolved field. We argue that streamlines are a scale-
dependent concept, so that the possible occurrence of helical structures has to be analyzed at the scale of
interest. At the field scale, the model of spatial variability is anisotropic, hence, it is possible to obtain flow
fields characterized by nonzero helicity and complex topology on larger scales, although the hydraulic con-
ductivity is parameterized as an isotropic scalar function at the local scale. We denote this as the helicity
paradox of flow in nonstationary, statistically anisotropic heterogeneous media.

Figure 11 shows the percentage of cells with the absolute value of relative helicity density larger than a
given threshold c, i.e., jhr j > c, in a velocity field obtained by averaging Case 1 in the longitudinal x1 direc-
tion from x150 to x15n1. The computation is performed for several values of the threshold c, considering
that values of c< 0.1 indicate that the specific-discharge and the vorticity vectors are almost perpendicular.
At small n1, the number of cells exceeding the threshold is low, yet nonzero due to the numerical artifacts
that we have already discussed. The percentage of cells exceeding the threshold increases with n1 as the
anisotropy of the upscaled field increases to flatten for n1 > 5k1. This supports the conclusion that the helic-
ity density is a scale-dependent metric, which should be quantified at the scale of interest to correctly char-
acterize the topology of the flow field. In particular, the analysis of the helicity density is informative on the
scale at which helical structures can be expected: at scales lower than one correlation length the helicity
density must approach zero in locally isotropic porous media. On the contrary, if we are interested in field-
scale processes at spatial scales larger than several correlation lengths we have to consider the flow field at
the appropriate scale of interest, where the effective medium is anisotropic and the corresponding helicity
density of the averaged velocity field may differ significantly from zero indicating large-scale helical struc-
tures. As a direct consequence, we can observe in Figure 12 that also the development of the secondary

Figure 12. Scale effect on secondary motion: development of secondary motion for different averaging length n1 of the flow field of Case 1.

Water Resources Research 10.1002/2014WR015330

CHIOGNA ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 274



motion depends on the scale of the analysis and that it approaches the pattern observed in Figure 5 for a
blockwise uniform effective conductivity field if the averaging scale n1 increases.

5.2. Stretching and Folding
As described above, the topology of the flow field is altered by averaging and upscaling. However, although
the helicity density is an important topological metric for the characterization of the flow field, recent stud-
ies have focused on characterizing stretching as an indicator of a plume’s deformation to investigate how
mixing is affected by advective processes [e.g., Le Borgne et al., 2013; Cirpka et al., 2011]. Therefore, it is
worth analyzing stretching and folding mechanisms in three-dimensional porous media in the presence of
helical streamlines. Figure 13 shows the stretching and folding metrics according to equations (11) and (12)
for Case 1 considering four initial radii: r050:04; 0:06; 0:08; 1m, one for each panel in the figure. The plots
show averages over all possible locations of the circle center in the inlet face. The metrics of stretching
(<A2 >) and folding (<D2 >) are shown versus the distance Dx1. Notice that Dx1 represents the distance
between the plane where the source is placed (i.e., in our case x150) and the plane at which we compute
the deformation of the set of circles is computed. In all cases, more than six particles per circle are consid-
ered, which is the minimum suggested by Kelley and Ouellette [2011] to obtain statistically significant results.
The maximum radius providing consistent results, in which folding is smaller than stretching at short distan-
ces, corresponds to the minimum correlation length, i.e., r0;max5k3. The choice of the initial radius does not

significantly influence the
rate of increase of both
stretching and folding,
which is in accordance
with the results of Kelley
and Ouellette [2011]. The
deformation processes
are stretching dominated
at short distances, how-
ever, <D2 > starts to
increase more rapidly
than <A2 > for
Dx1 � 2k1, and it
becomes the dominant
component of the overall
deformation for

Figure 14. Comparison of mean stretching (red) and folding (black) for Case 1 (continuous line),
Case 2 (dots), and Case 3 (dash line).

Figure 13. Mean values of A2 (red) and D2 (black) as a function of Dx1 for different values of r0: (a) r050:04m, (b) r050:06m, (c) r050:08m,
and (d) r050:1m.
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Dx1 � 6k1. This range corresponds to the transition zone where helical motion develops in Case 1 (see Fig-
ures 11 and 12). In this case, folding is a good indicator of the nonlinear deformation of a plume caused by
the occurrence of helical structures at large scales.

Figure 14 compares the stretching and folding metrics of the fully resolved velocity field (Case 1) with those of
the upscaled fields (Case 2 and Case 3). In all cases, the initial radius was r050:04m. As expected, Case 1 shows
different stretching and folding patterns than Cases 2 and 3, but with some relevant peculiarities that are worth
a discussion. At a short distance from the inlet plane, the streamlines of Case 1 are more distorted than the
streamlines of Cases 2 and 3. The spatial and Monte Carlo averaging, in Case 2, and the use of homogeneous,
yet differently anisotropic, conductivity blocks in Case 3, lead to much smoother velocity fields, which attenuate
small-scale streamline distortion with respect to Case 1. The crossover of folding is no longer observed in Cases
2 and 3 within the computational domain. The enhanced stretching and folding at distances larger than 60 m is
clearly visible in Case 3 in the shaded region of Figure 7, showing the computed streamlines in a longer domain
than in Cases 1 and 2. The streamlines originating from the left side of the injection plane require a longer dis-
tance than in Case 1 to deviate toward the center of the domain (see the progressive reduction of the white por-
tion of the domain at distances larger than 60 m). In Case 2 for Dx1 > 6k1, stretching becomes larger than in
Case 1, showing that averaging may inflate the linear component of the deformation. In Case 3, at small to mod-
erate distances (Dx1 	 0:5k1), the two metrics assume almost the same value due to the sharp discontinuities in
the velocity field at the edges of the blocks, which are not smoothed by the presence of the Tukey window
function. Altogether, the increasing pattern of both stretching and folding is similar for the three cases; however,
Case 2 provides a satisfying reproduction of the deformation patterns observed in Case 1, while Case 3 underes-
timates both stretching and folding, probably due to the homogeneity of the blocks.

6. Discussion and Conclusions

Previous studies focusing on flow topology and mixing considered two-dimensional flows in porous media
[e.g., de Barros et al., 2012], under steady state or transient conditions [e.g., Sposito and Weeks, 1998; Piscopo
et al., 2013]. Three-dimensional steady-state flows have been considered to be constrained on Lamb surfa-
ces and hence characterized by a relatively simple topology [Sposito, 1994, 2001]. The results presented in
this work point to the fact that flow topology and hence plume deformation is scale dependent and we
have demonstrated that helical flows can occur also in locally isotropic, yet nonstationary, porous media at
scales larger than some correlations lengths.

In particular, we have analyzed and compared a topological quantity, namely the helicity density and met-
rics of stretching and folding, applied to three related three-dimensional steady-state flow fields. We consid-
ered: (i) a fully resolved case of a locally isotropic heterogeneous three-dimensional porous medium with a
nonstationary anisotropic covariance function of the hydraulic log conductivity; (ii) the flow field obtained
by averaging along the longitudinal direction the mean velocity field obtained with 50 Monte Carlo realiza-
tions of the former fully resolved case; (iii) the flow field obtained by applying the blockwise homogeneous
anisotropic effective conductivity tensor computed with the statistical parameters characterizing the fully
resolved heterogeneous conductivity field. All three cases account for nonstationary anisotropy, here imple-
mented as blockwise uniform orientation of the associated principal directions; in the first case, it is the ani-
sotropy of the covariance function, in the second case an implicit anisotropy of local conductivity relating
the specific-discharge vector obtained with a set of 50 Monte Carlo realizations, and in the third case an
explicit anisotropy of local, yet upscaled, conductivity. Three-dimensional, nonstationary anisotropy is para-
mount for the phenomena discussed in the present study.

The most relevant feature of all three flow fields is the occurrence of macroscopically helical streamlines.
This result was expected for the flow field of Case 3, in which a blockwise homogeneous anisotropic con-
ductivity tensor has been used [Bakker and Hemker, 2002, 2004; Hemker and Bakker, 2006; Hemker et al.,
2004]. Since Case 3 has been constructed by upscaling the heterogeneous nonstationary conductivity field
of Case 1, it is reasonable to expect that the macroscopic flow field of Case 1 shows a similar behavior. In
fact, Bakker and Hemker [2002, 2004] argued that the blockwise anisotropy applied in their studies could be
caused by small-scale features, which have been resolved in the present work.

At a first glance, the macroscopically helical flow field seems to be in contradiction with the fact that the
helicity density must be zero everywhere in a heterogeneous, but locally isotropic conductivity field
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[Sposito, 1994, 2001; Kapoor, 1997; Bear, 1972]. This apparent paradox is resolved when considering that the
helicity density is a scale-dependent metric. At the smallest Darcy scale in a locally isotropic medium,
streamlines are perpendicular to iso-potential surfaces, and the specific-discharge vector is orthogonal to its
curl. At this scale, larger-scale anisotropy is not observable and hence the local (Darcy-scale) helicity density
is zero. To evidence the larger-scale flow behavior, small-scale variability has to be averaged, that is, stream-
lines are locally straightened and iso-potential surfaces are smoothed. If the structure of heterogeneity is
anisotropic, the smoothed streamlines may no more be perpendicular to the smoothed iso-potential surfa-
ces (indicating an anisotropic effective conductivity tensor), and the smoothed specific-discharge vector
may no more be orthogonal to its curl. That is, the upscaled velocity field may exhibit nonzero helicity den-
sity, which is the key outcome of the present analysis. Scale dependency of flow properties is common in
porous media literature, however, the relevance of nonstationarity in the statistical properties of the con-
ductivity field, as well as of the boundary conditions for the helicity density pose a challenge in the analyti-
cal upscaling of this topological metric. Indeed, nonzero upscaled helicity density will be particularly
pronounced when the anisotropy of heterogeneity is nonstationary, that is, when the principal directions of
anisotropy vary in space.

In his pioneering works, Sposito [2001, 1994] showed that helicity density in a statistically stationary and
locally isotropic heterogeneous conductivity field is everywhere zero, irrespective to the degree of hetero-
geneity. In our work, we extended this analysis showing that certain statistically nonstationary conductivity
fields develop helical structures at scales larger than the Darcy scale, yet with local helicity density equal to
zero. This helical structure is preserved only if a proper upscaling is applied to the velocity field. For the
properly upscaled velocity field, helicity density differs from zero and can be used as a metric of plume
deformation and ultimately as an approximate metric of mixing. In Cirpka et al. [2015], we show how large-
scale helical flow can significantly enhance transverse dispersion in comparison to statistically stationary for-
mations, where lateral solute fluxes are limited. In the present study, helical streamlines can occur already at
scales comparable to the correlation length in the x1 direction. Helicity characterization in the field is of
course difficult as we discuss also in Cirpka et al. [2015]. Outcrop studies, however, have indicated that non-
stationary anisotropy occurs very often in nature. These results points to the need of improved techniques
for the characterization of the shape and orientation of the geological structures in the subsurface. Indeed,
the potential occurrence of helical streamlines can be verified at the field scale if also the geometry and
eventually the local anisotropy of the heterogeneous subsurface structures is well characterized. Similar
considerations were also reached by Stauffer [2007] analyzing in a numerical exercise the impact of a single
highly permeable inclusion with inclined bedding instead of using topological arguments. Notice that the
approaches of Stauffer [2007], Bakker and Hemker [2002, 2004], Hemker and Bakker [2006], and Hemker et al.
[2004] require a numerical integration of the flow field to construct streamlines and to observe a posteriori
the occurrence of helical flows. This step may be challenging from a numerical point of view if the helicity
density is nonzero [Holm and Kimura, 1991]. Analyzing the topology of the flow field can predict a priori
properties of the streamlines by knowing only the velocity field. Furthermore, this study shows that the hel-
icity density, as well as other topological metrics such as the Okubo-Weiss parameter [de Barros et al., 2012],
should be quantified at the appropriate scale of the phenomena of interest. In field-scale studies, it is of lit-
tle interest to compute the helicity density for the local heterogeneous field, but it is a relevant metric at
scales where helical structures can be expected (i.e., at scales larger than a few correlation lengths where
porous media can be modeled as anisotropic).

Preserving local flow topology in three-dimensional numerical simulations is a challenging task. The cell-
centered Finite Volume Method with harmonic averaging of the cell-conductivities applied in this study
introduces artifacts of the local velocity field, namely an apparent anisotropy of the equivalent conductivity
tensor and a nonzero helicity density even in a conductivity field that was meant to be locally isotropic. This
is an inherent problem of several discretization schemes, because discretization itself involves upscaling,
and, as we have seen, topology changes with scale. The artifacts depend on the variance of the log conduc-
tivity and vanish upon refinement of the computational grid.

We further characterized the deformation introduced in the plume by the flow field by analyzing stretching
and folding. We have observed that, at short distances from the source, stretching is dominating over fold-
ing, and that these two quantities display a similar pattern for all three cases considered. However, in the
fully resolved nonstationary case, the transition from a stretching-dominated to a folding-dominated
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behavior occurs earlier than in the other two cases. This is due to the higher flow variability in the fully
resolved case in comparison to the other two cases. Since stretching and folding facilitates solute mixing
across plume interfaces, we infer from the analyses of stretching and folding metrics of the fully resolved
field over the upscaled ones that the interaction between the large-scale secondary motion and the small-
scale heterogeneity of the flow field contributes to efficient mixing.

The analyses of helicity density, stretching and folding metrics are useful for gaining further understanding
on how flow topology influences local concentration gradients through geometrical deformation of stream-
lines, yet they do not consider the relevant effect of local dispersion on solute transport in porous media. In
a companion paper, focusing on solute transport, we explicitly solve the advection-dispersion equation to
analyze how the deformation of the plume due to the helical characteristics of the flow field, discussed in
the present work, influence mixing and plume dilution [Cirpka et al., 2015]. The helicity density provides a
local description of the flow field which allows to investigate at which scale macroscopic helical structures
can be detected; stretching and folding are kinematic descriptors of mixing and concern the mean defor-
mation of stream tubes at different spatial scales and thus they are global indicators of mixing processes. In
particular, folding provides results which are in agreement with the interpretation of the scale dependence
of the helicity density, showing a faster increase in the nonlinear component of the deformation when heli-
cal streamlines occur. Therefore, folding is informative in order to identify at which scale different phenom-
ena are relevant. Notice that, while the application of these topological and kinematic metrics are not
common in groundwater literature, they have been used in other branches of fluid dynamics at various
scales. For example, Stroock et al. [2002] has shown how helical flow fields lead to larger stretching and fold-
ing, and hence mixing, in microchannels at low Reynolds numbers. In particular, the helicity is relevant since
it is an invariant of the flow, which expresses the mutual linking of the trajectories of the vorticity field
[Arnold and Khesin, 1998]. Further studies analyzing the occurrence of zones with nonzero helicity density
may be useful to determine when helicity is an indicator for the potential occurrence of helical flow in sta-
tionary three-dimensional domains. In addition, stretching and folding have been useful in characterizing
mixing for transient two-dimensional chaotic flows in time and space [Kelley and Ouellette, 2011]. In particu-
lar, the similarity between our results obtained for steady state nonstationary anisotropic fields and the
results reported by Kelley and Ouellette [2011] is striking and shows that the analysis of these two metrics is
relevant in order to identify the scales at which linear and nonlinear deformations are dominant. This is
important since, as shown in Cirpka et al. [2015], higher folding can be related with higher dilution. Hence,
further investigations should be conducted to establish a rigorous parallelism between steady state three-
dimensional flow fields in porous media and two-dimensional transient chaotic flows.

The outcomes of this work are of practical interest, since natural formations are inherently heterogeneous
and may show anisotropy in the local hydraulic properties at different scales, as observed in multiscale sedi-
mentary structures ranging from packing of nonspherical particles, via graded bedding, cross bedding to
sedimentation processes in braided river environments. In such environments, relevant flow-topological
features, such as streamline twisting can be observed only in three-dimensional setups. A direct conse-
quence of the complex flow topology identified in this work, is a significant and more effective mixing
enhancement in three-dimensional domains than in two-dimensional ones, in particular in the transverse
directions perpendicular to mean flow. While the impact of sedimentary features on solute transport has
been investigated in the past [Fogg, 1986; Riva et al., 2008; Sun et al., 2008], this study aimed at showing
that the physical processes leading to potential mixing enhancement are different if nonstationarity and
local anisotropy in hydraulic properties of 3-D domains are considered. These effects go beyond the
expected increase of dilution by switching from two to three dimensions in traditionally analyzed stationary
conductivity fields [Kitanidis, 1994; Rubin, 2003]. A detailed investigation of these aspects is provided in the
companion paper [Cirpka et al., 2015].
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