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Abstract Groundwater plumes originating from continuously emitting sources are typically controlled
by transverse mixing between the plume and reactants in the ambient solution. In two-dimensional
domains, heterogeneity causes only weak enhancement of transverse mixing in steady-state flows. In three-
dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular,
spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-
state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise
anisotropic correlation structure, in which the principal directions of anisotropy differ from block to block.
For this purpose, we propose a transport scheme that relies on advective transport along streamlines and
transverse-dispersive mass exchange between them based on Voronoi tessellation. We compare flow and
transport results obtained for a nonstationary anisotropic log-hydraulic conductivity field to an equivalent
stationary field with identical mean, variance, and two-point correlation function disregarding the nonstatio-
narity. The nonstationary anisotropic field is affected by mean secondary motion and causes neighboring
streamlines to strongly diverge, which can be quantified by the two-particle semivariogram of lateral advec-
tive displacements. An equivalent kinematic descriptor of the flow field is the advective folding of plumes,
which is more relevant as precursor of mixing than stretching. The separation of neighboring streamlines
enhances transverse mixing when considering local dispersion. We quantify mixing by the flux-related dilu-
tion index, which is substantially larger for the nonstationary anisotropic conductivity field than for the sta-
tionary one. We conclude that nonstationary anisotropy in the correlation structure has a significant impact
on transverse plume deformation and mixing. In natural sediments, contaminant plumes most likely mix
more effectively in the transverse directions than predicted by models that neglect the nonstationarity of
anisotropy.

1. Introduction

Mixing processes in geologic formations play a pivotal role in determining the fate of contaminants and the
evolution of groundwater quality. Insufficient mixing of reactants often limits the overall rates of (bio)geo-
chemical reactions. Therefore, understanding and quantifying the complex interaction between mixing and
transformation processes is of utmost importance to describe contaminant transport and natural attenua-
tion in subsurface environments [e.g., Kitanidis and McCarty, 2012; Dentz et al., 2011]. In particular, for
plumes evolving from continuous sources, transverse dispersion, which acts in the directions perpendicular
to flow, represents the main mixing mechanism and a fundamental controlling factor for the evolution of
groundwater plumes [e.g., Cirpka et al., 1999a]. The key physical process leading to transverse solute mixing
is the mass exchange between adjacent streamtubes, which results in dilution of a solute plume and in the
increase of its entropy [Kitanidis, 1994; Chiogna et al., 2011b, 2012], in the reduction of the peak concentra-
tion and the concentration variance [e.g., Pannone and Kitanidis, 1999; Fiori, 2001; Tonina and Bellin, 2008;
Vanderborght, 2001], and affects the evolution of statistical concentration distributions [Schwede et al., 2008;
Bellin and Tonina, 2007; Caroni and Fiorotto, 2005]. For reactive transport in groundwater, transverse mixing
allows the reaction between dissolved contaminants and reactants transported in the ambient water and,
in presence of sufficiently fast degradation kinetics, controls the length of steady-state plumes [e.g., Liedl
et al., 2005, 2011; Cirpka et al., 2012, 2006; Cirpka and Valocchi, 2007, 2009]. As shown by modeling studies
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[e.g., Cirpka et al., 1999a; Prommer et al., 2009] and experimental investigations both at laboratory and field
scales [e.g., Davis et al., 1999; Thornton et al., 2001; Anneser et al., 2008; Bauer et al., 2009a], narrow zones
with high concentration gradients develop at the side of reactive groundwater plumes. In such fringe zones,
mass transfer is enhanced, and favorable conditions for biogeochemical reactions occur.

Conservative and reactive mixing in groundwater are greatly influenced by the heterogeneous nature of
geologic formations and, in particular, by the spatial variability of physical properties in aquifer systems. The
influence of spatially variable hydraulic conductivity on flow and solute transport has been extensively stud-
ied by stochastic theory [e.g., Dagan, 1989; Gelhar, 1993; Rubin, 2003]. Closed-form expressions for metrics
of flow and transport in heterogeneous media have mainly been derived for statistically stationary forma-
tions with locally isotropic hydraulic conductivity. In these approaches, the statistical descriptors of the log-
hydraulic conductivity field, in particular the mean and covariance function, are considered invariant in
space.

From a practical standpoint of view, it is already difficult to estimate stationary statistical parameters from
field surveys, so that any attempt of addressing nonstationarity beyond simple linear trends of the mean
[e.g., Rubin, 2003, sections 4.2.2 and 5.7] appears unrealistic for a given field site, not to mention the deri-
vation of closed-form expressions. Conversely, texturally rich sedimentary deposits show internal struc-
tures that hardly resemble multi-Gaussian, second-order stationary random fields analyzed by classical
stochastic subsurface hydrology [e.g., Heinz et al., 2003; Bayer et al., 2011]. As reviewed in section 2.5 of
Rubin [2003], several approaches have been proposed to characterize the architecture of complex sedi-
mentary units, e.g., as hierarchy of units that are statistically described by transition probabilities [e.g., Carle
and Fogg, 1997] and exhibit internal variability described by second-order geostatistics. Ritzi et al. [2004]
approached the problem by using a hierarchy of geometric bodies. While some studies have focused on
deriving equivalent stationary log-conductivity, flow, and transport properties from such characterizations
[e.g., Rubin, 1995; Dai et al., 2004], the focus of the present study and the companion paper of Chiogna et
al. [2015] lies on demonstrating that important flow and transport features are lost by the derivation of
equivalent stationary properties. In particular, we are interested in the effects of spatially varying orienta-
tion of statistical anisotropy on solute mixing which, as stated above, controls the length of (quasi) steady-
state plumes.

The focus of stochastic analysis of groundwater transport has been mainly the study of the concentration’s
spatial moments to determine dispersion in heterogeneous media. Stochastic approaches define the
ensemble dispersion tensor as half the rate of increase of the second central moments of the ensemble con-
centrations [e.g., Gelhar and Axness, 1983; Dagan, 1984; Neuman et al., 1987], and the effective dispersion
tensor by the ensemble average of half the rate of change in the second central moments of plumes in indi-
vidual realization, that is, the two dispersion tensors differ in the order of computing spatial moments and
averaging over all realizations [e.g., Kitanidis, 1988; Dagan, 1991; Rajaram and Gelhar, 1995; Dentz et al.,
2000a; Dentz and Carrera, 2003]. Although useful for the description of plume evolution, such parameters
do not allow a proper quantification of actual mixing processes in heterogeneous formations. Recently,
Cirpka et al. [2011] proposed an approach for two-dimensional heterogeneous porous media based on flux-
related second central moments, which focuses on transverse mixing and adopts a stochastic flux-related
framework. This approach allows defining a mixing-relevant transverse dispersion coefficient exclusively
accounting for the actual mass exchange between streamtubes, without being affected by advective proc-
esses which lead to plume meandering, squeezing, and stretching.

Investigations on transverse mixing have been carried out using a variety of approaches such as analytical
and numerical studies [e.g., Cirpka and Kitanidis, 2000; de Barros and Nowak, 2010; Chiogna et al., 2011a;
Rolle et al., 2013], pore-scale simulations [Acharya et al., 2007; Rolle et al., 2012; Hochstetler et al., 2013], and
experimental investigations including microfluidic experiments [Willingham et al., 2008; Zhang et al., 2010]
and laboratory flow-through setups [e.g., Rahman et al., 2005; Bauer et al., 2009b; Chiogna et al., 2010]. A
common feature of these studies is that they were performed in two-dimensional or quasi two-dimensional
systems. Under such conditions, the main process by which heterogeneity in hydraulic conductivity influen-
ces transverse mixing is the convergence and divergence of streamlines. As illustrated by Werth et al.
[2006], flow focusing in high-conductivity inclusions results in consistent mixing enhancement because the
transverse mixing lengths of dispersion are reduced in these inclusions.
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In three-dimensional heterogeneous media, the study of flow and transport processes becomes more chal-
lenging. In fact, in such media, groundwater flow may exhibit a complex flow topology. In particular, Bakker
and Hemker [2004], Hemker and Bakker [2006], and Stauffer [2007] showed how anisotropy of hydraulic con-
ductivity can lead to groundwater whirls which may affect solute mixing in ways that are impossible in two-
dimensional domains. Recent studies on solute transport in complex three-dimensional setups include the
work on macrodispersion by Jankovic et al. [2009] and de Dreuzy and Beaudoin [2013], and the studies of sol-
ute breakthrough of Fiori et al. [2011] and Zarlenga et al. [2013]. Stauffer and Rauber [1998] analyzed macro-
dispersion in virtual hierarchical sedimentary structures generated by hydrofacies modeling followed by
filling the sedimentary structures with blockwise stationary anisotropic log conductivity field.

To the best of our knowledge, no investigation has yet addressed transverse mixing in three-dimensional
locally isotropic heterogeneous porous media with nonstationary anisotropic correlation structure. In such
complex 3-D systems, additional mechanisms compared to those occurring in 2-D setups can cause signifi-
cant mixing enhancement. Figure 1 illustrates three main mechanisms enhancing mixing in 3-D porous
media. Figure 1a shows flow focusing in a high-permeability inclusion which results in increased mass trans-
fer between adjacent streamlines. This process also occurs in 2-D flows [e.g., Werth et al., 2006; Cirpka et al.,
2011]. Mixing enhancement can also occur through depth-dependent meandering, which results in defor-
mation of the plume surface thus causing an increased interfacial area and enhanced transverse mass fluxes
(Figure 1b). Finally, in heterogeneous anisotropic media, groundwater flow can show secondary motion,

Figure 1. Illustration of the effects of heterogeneity and anisotropy in 3-D flow fields on solute transport: potential surfaces, streamlines, and plume cross sections for purely advective
transport. (a) Flow-focusing effect of a single high-permeability inclusion (gray body); (b) depth-dependent meandering due to 3-D architecture of high-permeability zones (gray bodies);
and (c) streamline twisting in bounded layer-wise homogeneous anisotropic fields (gray surface: interface between two layers with different anisotropy orientations).
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consisting in persistent flow components determined by the large-scale hydraulic gradient, which overlay
the primary velocity field. Secondary motion may involve twisting, folding, and intertwining of streamlines
(Figure 1c), which may have a dramatic impact on mixing. The present study focuses on the last aspect. In
this work the term ‘‘anisotropic,’’ does not refer to the local hydraulic conductivity tensor as done by Bakker
and Hemker [2004], Hemker and Bakker [2006], and Stauffer [2007], but to the covariance function of the ran-
dom (scalar) log-hydraulic conductivity field.

The evaluation of transverse mixing in heterogeneous porous media poses a specific challenge for numeri-
cal simulations. While particle-tracking methods are particularly well suited to simulate advective transport
without introduction of numerical dispersion, they typically handle pore-scale dispersion by a random walk,
requiring many particles to be released in order to obtain good statistics and facilitate the computation of
reliable concentrations [Tonina and Bellin, 2008; Boso et al., 2013]. In strictly Eulerian methods, which are
well suited to simulate dispersion, the approximation of advection may lead to severe artificial transverse
mixing due to grid-orientation effects. In two-dimensional steady-state flows, Cirpka et al. [1999b, 1999c]
constructed streamline-oriented grids and solved advective-dispersive transport by the Finite Volume
method. While this approach suppressed artificial transverse dispersion, it can only be transferred to three-
dimensional domains in cases of simple flow topology exhibiting no twisting streamlines. Recently, Herrera
et al. [2010] suggested to solve advective transport and excess longitudinal dispersion along streamlines,
and approximate the remaining isotropic dispersion by smoothed-particle hydrodynamics. Boso et al. [2013]
showed that smoothed-particle hydrodynamics is free of numerical diffusion, but the accuracy attained in
the dispersive Eulerian step of the procedure deteriorates when the spatial distribution of particles becomes
progressively less uniform. This forces to increase the number of particles with increasing heterogeneity of
the formation. In the present study, we solve advection by streamline-transport (particle tracking), but we
simulate transverse dispersion by the Finite Volume method using Voronoi tessellation, rather than relying
on smoothed-particle hydrodynamics.

The quantitative assessment of transverse mixing and its enhancement in three-dimensional heterogene-
ous anisotropic porous media are the main goal of the present work. To achieve this, we consider scalar het-
erogeneous hydraulic conductivity fields with blockwise stationary anisotropic correlation function. Flow in
such three-dimensional domains exhibits a complex topology characterized by large-scale secondary
motion overlain by small-scale variability. Such small-scale variability causes flow focusing and promotes
mass exchange between streamlines that, in the presence of secondary motion, proceed in substantially dif-
ferent directions, thus enhancing transverse mixing of the solute in three-dimensional domains. A detailed
discussion of the flow topology in such heterogeneous anisotropic fields and of the complex patterns of
computed streamlines are presented in the companion paper of Chiogna et al. [2015]. The specific research
objectives of this study are to (i) demonstrate and quantify the effect of secondary flow caused by nonsta-
tionary anisotropy of the log-hydraulic conductivity field on steady-state transverse mixing in 3-D heteroge-
neous anisotropic porous media, using the flux-related dilution index as metric of mixing [Rolle et al., 2009];
(ii) relate the observed mixing enhancement to the moments of advective particle displacement; (iii) test
whether metrics of advective stretching and folding, discussed in Chiogna et al. [2015], are good descriptors
for the facilitation of mixing; (iv) identify and separate the effects of flow-focusing and secondary motion by
performing comparative studies with equivalent stationary fields; (v) develop and apply a numerical
method that allows studying transverse mixing without artifacts caused by the discretization of advective
transport. Finding upscaling rules for mixing in flow fields affected by nonstationary anisotropy should be
the ultimate goal in this line of research but is still beyond the scope of the present contribution.

2. Mathematical Formulation

2.1. Flow in Periodic Porous Media
In the following analysis, we consider an infinite, three-dimensional, periodic, porous medium, in which
hydraulic conductivity K [L T21] repeats its values in the spatial x-, y-, and z-directions [L] at distances of L3

W3H [L]. The logarithm of hydraulic conductivity, ln K, is assumed to be a periodic random space function
with uniform mean and blockwise second-order stationary, anisotropic covariance function.

The specific discharge or Darcy velocity q [L T21] at steady-state is governed by the continuity equation:
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r � q50 (1)

considered here in the absence of sources and sinks and with q obeying Darcy’s law:

q52K � rh (2)

where h(x) [L] denotes hydraulic head and x 5 (x,y,z) [L] is the vector of spatial coordinates. K is assumed to
be locally isotropic, so that K becomes a scalar field K(x).

To obtain the flow field in the infinite domain, stressed by a uniform-in-the-mean negative hydraulic gradi-
ent J 5 [Jx,Jy,Jz][-], it is sufficient to consider a single unit cell with dimensions L 3 W 3 H and apply periodic
head conditions with a mean hydraulic gradient to the external surfaces of the unit cell domain [e.g., Kitani-
dis, 1992]:

hðL; y; zÞ5hð0; y; zÞ2L � Jx (3)

hðx;W=2; zÞ5hðx;2W=2; zÞ2W � Jy (4)

hðx; y;H=2Þ5hðx; y;2H=2Þ2H � Jz (5)

in which J is chosen such that the volume-averaged Darcy velocity q is oriented along the x-direction and
the absolute value of J meets a predefined value. Due to the periodic head boundary conditions and the
periodic conductivity field, the head and velocity fields in the infinite domain are periodic, too:

hðx1iLx ; y1jLy ; z1kLzÞ5hðx; y; zÞ 8i; j; k 2 Z; x; y; z 2 R (6)

qðx1iLx ; y1jLy ; z1kLzÞ5qðx; y; zÞ 8i; j; k 2 Z; x; y; z 2 R (7)

For the following numerical analysis, the x-component of the velocity must be positive everywhere:
vx > 0; 8x. Although it cannot be excluded a priori, the emergence of a local negative vx-value is a rare
event, in particular in weakly heterogeneous formations, and a posteriori we verified that the resulting
velocity field meets this condition.

2.2. Solute Transport
Solute transport in groundwater is commonly described by the advection-dispersion equation (ADE):

@c
@t

1v � rc2r � Drcð Þ50; (8)

in which c [M L23] is the solute concentration of a compound here assumed conservative, t [T] is time,
v 5 q/h [L T21] is the seepage-velocity vector, related to Darcy velocity q through the porosity h, and
D [L2 T21] is the local dispersion tensor. The term ‘‘local’’ implies that velocity fluctuations are averaged
only at the pore scale at which Darcy’s law does not hold anyway, whereas the variation of the Darcy
velocity q is resolved as well as possible.

The local dispersion tensor D assumes the following general expression [Bear, 1972, chapter 10.4]:

D5
v� v
v � v D‘2Dtð Þ1IDt; (9)

in which v� v and v � v denote the tensor and scalar products of v with itself, respectively, and I is the iden-
tity matrix. D‘ [L2 T21] and Dt [L2 T21] are the longitudinal and transverse dispersion coefficients,
respectively.

For transport, we consider a semi-infinite subdomain, starting at the inlet face at the plane x 5 0. Here we
assume as boundary condition for equation (8) a fixed concentration distribution cfix(y,z) [M L3]:

c5cfix y; zð Þ at x50; (10)

and periodic boundary conditions at the other external surfaces, which ensure that the boundary conditions
only minimally influence the concentration distribution.

At a sufficiently long time with constant inlet concentration cfix, the concentration field approaches steady-
state. Then, at a sufficiently large distance from the inlet, equation (8) can be simplified to
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@

@z
Dt
@c
@z

� �
50; (11)

in which longitudinal dispersion has been neglected because at steady-state dispersive mass flux varies mainly
in the transverse directions [e.g., Zarlenga and Fiori, 2013]. For uniform flow, Wexler [1992] gives Pe 5 vx/D‘ > 30
as criterion to neglect longitudinal dispersion in steady-state transport. In equation (11), we have also neglected
dispersive flux components in the x-direction because flow is predominantly oriented in this direction.

For the transverse local dispersion coefficient, we assume the standard linear model of Scheidegger [1961]:

Dt5Dp1atjvj; (12)

in which Dp [L2 T21] is the pore diffusion coefficient, and at [L] is the transverse dispersivity, assumed uni-
form. Although nonlinear and compound-specific models have been shown to be more accurate in describ-
ing local transverse dispersion [Chiogna et al., 2010], the simplified linear parameterization has been
selected for the ease of the following analysis.

2.3. Lagrangian Analysis of Steady-State Advective Transport
The advective component of the transport equation (11) can be solved by considering solute particles con-
tinuously injected trough the inlet face and moving within the velocity field along trajectories meeting the
following differential equation:

dxpðsÞ
ds

5v xpðsÞ
� �

; (13)

xpð0Þ5ð0; yp;0; zp;0Þ; (14)

in which xp(s) [L] is the position-vector of the targeted particle p at travel time s [T], and ð0; yp;0; zp;0Þ is the
starting position of the particle within the vertical plane at x 5 0, which represents the inlet surface. Given
that vx> 0, each particle crosses the vertical observation planes only once and a univocal correspondence
can be established between the travel time s and the longitudinal component of the particle’s trajectory xp.

We now consider the transverse particle displacements Y(x) [L] and Z(x) [L] of each streamline at a given dis-
tance x from the inlet:

YðxÞ5yp sðxÞð Þ2yp;0; ZðxÞ5zp sðxÞð Þ2zp;0; (15)

where s(x) is the time at which the particle p crosses the vertical plane at x (provided that at time t 5 0 it
started within the vertical plane at x 5 0).

The statistics of the transverse particle displacements, in particular the variances, provide a measure of the
transverse spreading of the solute and the uncertainty of plume meandering. For second-order stationary

random porous media, analytical approximations of the variances of transverse displacements, r2
Y 5E

ðY2lYÞ2
h i

and r2
Z5E ðZ2lZÞ2

h i
, have been derived in the context of macrodispersion theory, where E[�]

indicates statistical expectation and lY 5 E[Y] and lZ 5 E[Z] are the expected values of Y and Z, respectively
[Gelhar and Axness, 1983; Dagan, 1984; Neuman et al., 1987; Fiori, 1996; Salandin and Fiorotto, 2000, among
others]. In stationary media, r2

Y and r2
Z increase monotonically with time, approaching a slow linear growth

at large times [see Fiori, 1996, equation (11)].

Of higher relevance for solute mixing are the semivariograms cY [L2] and cZ [L2] of transverse particle dis-
placement (also known as pair dispersion), that is, half the expected value of the squared directional dis-
tance between two particles:

cYðxÞ 5
1
2

E Y1ðxÞ2Y2ðxÞð Þ2
h i

;

cZðxÞ 5
1
2

E Z1ðxÞ2Z2ðxÞð Þ2
h i

;

(16)

in which Yi(x) and Zi(x) are the lateral displacements according to equation (15) of particle i when passing
the observation plane at distance x from the inlet plane. cY(x) and cZ(x) depend on the initial distance of the
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particles considered. The major information content of cY(x) and cZ(x) is how strongly two particles separate
from each other by advection if local transverse dispersion makes one of the two particles jumping onto a
neighboring streamline. Half the rate of change of cY(x) and cZ(x) denotes the relative or effective transverse
dispersion coefficient [Andricevic and Cvetkovic, 1998; Attinger et al., 2004; Dentz et al., 2000a, 2000b; Fiori and
Dagan, 2000]. In a strictly advective context, i.e., in the absence of local dispersion, dilution vanishes and cY and
cZ are zero at all times if the two particles originate from the same position. While analytical approximations for
cY and cZ with zero initial distance exist for finite local dispersion tensor D [see Attinger et al., 2004; Dentz et al.,
2000a, 2000b; Fiori and Dagan, 2000], we will analyze cY and cZ here numerically, for small initial distances dif-
ferent from zero in the strictly advective regime. In addition, we consider metrics of advective stretching and
folding discussed in detail in the companion paper [Chiogna et al. 2015].

2.4. Entropy-Based Analysis of Steady-State Advective-Dispersive Transport
An effective way to quantify transverse mixing within a control plane at a given longitudinal distance x
from the inlet plane for steady-state advective-dispersive transport is through the flux-related dilution index
EQ(x) [L3 T21] [Rolle et al., 2009; Chiogna et al., 2011b]:

EQðxÞ5exp 2

ð11

21

ð11

21
pQðx; y; zÞ ln pQðx; y; zÞð Þqxðx; y; zÞdydz

� �
; (17)

in which pQ(x,y,z) [T L23] is the flux-related density of solute mass within the control plane at x:

pQðx; y; zÞ5cðx; y; zÞ
ð11

21

ð11

21
cðx; y0; z0Þqxðx; y0; z0Þdy0dz0

� �21

(18)

and qx is the specific-discharge component in the x-direction:

EQ(x) expresses the effective volumetric flux over which the solute mass flux is distributed.

3. Numerical Methods

The head and velocity fields are computed by applying the cell-centered Finite Volume method to equa-
tions (1–5) with uniform grid spacing. Streamlines are then computed by particle tracking using Pollock’s
semianalytical approach [Pollock, 1988].

By following particle trajectories, yp(x) and zp(x), the advective contributions in the y- and z-direction of the
steady-state transport equation (11) drop out. We pick nodes on the streamlines at a regular reciprocal dis-
tance Dx along the longitudinal direction x. In each plane, polygons belonging to the nodes are constructed
by Voronoi tesselation [de Marsily, 1986, chapter 12.2.3]. Then, integrating equation (11) over the area Ai [L2]
of the Voronoi polygon belonging to streamline i, and applying the divergence theorem yields

ð
Ai

vx
@c
@x

dA2

þ
Bi

n �Dtry;z c
� �

dB50 (19)

in which Bi [L] is the boundary of polygon i, n is the normal vector of the polygon within the plane pointing
outwards, and !y,z is the vector of partial derivatives in the y- and z-directions.

In the Finite Volume approach, we take the mean values of c within cells as primary unknown. In the follow-
ing, ci(x) denotes the concentration in the Voronoi polygon belonging to streamline i within the plane at x.
For differentiation in the x-direction, we apply Finite Differences. The lateral exchange is evaluated by an
implicit scheme, that is, at the downstream end of a streamtube section. For the latter, we consider the con-
centration values in neighboring polygons i and j, the distance di,j [L] between the respective nodes, the
length ‘i,j [L] of the common interface of the two polygons, and an average transverse dispersion coefficient
Di,j [L2 T21]. This leads to the following balance equation:

ciðx1DxÞ2ciðxÞ
Dx

Qi1
X

j:neighbors of i

h � Di;j � ‘i;j

di;j

����
x1Dx

� ciðx1DxÞ2cjðx1DxÞ
� �

50 (20)

in which Qi [L3 T21] is the discharge in streamtube i, and Di,j is chosen as the harmonic average of the trans-
verse dispersion coefficients obtained by substituting the velocities of the two streamlines i and j into equa-
tion (12). A schematic of the Voronoi polygons in two successive control planes is shown in Figure 2.
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Assembling equation (20) for
all streamlines leads to a lin-
ear system of equations with
symmetric positive-definite
matrix. The numerical scheme
is implemented in Matlab,
making use of the Delaunay-
triangulation class for the
Voronoi tessellation, and the
UMFPACK direct solver for
the solution of the resulting
system of equations. We
have validated the method
by 3-D steady-state transport
examples in uniform flow
and by comparison to 2-D
simulations using the
approach of Cirpka et al.
[1999c].

The proposed scheme shares
with smoothed-particle
hydrodynamics (SPH) the
idea of representing advec-
tion along streamlines, which
significantly reduces numeri-
cal transverse dispersion

caused by grid-orientation effects [e.g., Cirpka et al., 1999c], while addressing the diffusive term with
an Eulerian scheme. The two approaches differ in the Eulerian scheme used to solve the diffusive
part of the equation. While in smoothed-particle hydrodynamics, solute mass is exchanged between
neighboring particles according to their reciprocal distance [Herrera et al., 2010], the method used in
the present work relies on the application of the Finite Volume method to an irregular grid com-
posed by the Voronoi polygons, thereby handling directly diffusive fluxes across streamlines. In gen-
eral, the scheme presented here could be extended to a 3-D discretization of the full domain using
3-D Voronoi tessellation to construct Finite Volumes for dispersion and keeping the particle tracking
to construct the streamlines.

4. Comparative Test Cases

The test cases are based on four interrelated velocity fields: (1) A ‘‘fully resolved’’ velocity field obtained by
numerically solving the flow equation (1) coupled to Darcy’s law, equation (2), in a single, fine discretized,
periodic random log-conductivity field with nonstationary, anisotropic correlation structure, (2) a velocity
field resulting from averaging an ensemble of 50 velocity fields with the same nonstationary anisotropic
geostatistics as the velocity field 1, that are additionally averaged in the x-direction, (3) a ‘‘fully resolved’’
velocity field resulting from a single, fine discretized, periodic random log conductivity field with stationary
correlation structure derived from case 1, and (4) a velocity field resulting from averaging an ensemble of
50 velocity fields with the same stationary geostatistics as the velocity field of case 3, that are additionally
averaged in the x-direction.

The purpose of including the averaged velocity fields is twofold. First, we want to discriminate
between effects of small-scale fluctuations of the velocity field on transverse mixing and effects caused
by the large-scale secondary motion induced by nonstationary anisotropy. This is also of practical rele-
vance as most real-world application would be based on blockwise uniform, anisotropic conductivity to
represent the subsurface structure [as done by Bakker and Hemker, 2004; Hemker and Bakker, 2006;
Stauffer, 2007] rather than generating a fine resolved log conductivity field with blockwise stationary
anisotropic covariance function. The second purpose is related to flow topology. As discussed in more

Figure 2. Illustration of the numerical scheme. (1) Streamlines are constructed by particle
tracking. (2) Nodes are placed along the streamlines in regularly spaced observation planes
orthogonal to the mean direction of flow. (3) Steady state advective dispersive transport is
simulated from an observation plane to the next considering (a) the travel time along the
streamline for advection and (b) transverse dispersion between the streamlines using the
cell-centered Finite Volume method based on Voronoi tessellation within the observation
planes.
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detail by Chiogna et al. [2015], the local helicity density of the flow field in the fully resolved cases 1
and 3 is zero throughout the domain, whereas the averaged field of case 2 exhibits a nonzero local
helicity density. If the pointwise evaluated helicity density was a good indicator of mixing enhance-
ment, the dilution of case 1 had to be smaller than in case 2. We will show, however, that this is not
the case. In Chiogna et al. [2015], we argue that the velocity field needs to be properly upscaled
before computing the helicity density to make statements whether mixing enhancement by helical
flow structures occurs at a given scale.

The average velocity field in the stationary case, by contrast, is added for completeness: The expected aver-
age flow field in a stationary formation driven by a uniform hydraulic gradient is uniform as well, so that we
expect to see no enhancement of transverse mixing whatsoever.

The three-dimensional, heterogeneous, anisotropic log-hydraulic conductivity field of case 1 has a block-
wise constant correlation structure given by the following Gaussian covariance function:

Cln K ðrÞ5r2
ln K exp 2r02ð Þ (21)

in which r05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1=I1ð Þ21 r2=I2ð Þ21 rz=Izð Þ2
q

, with I1, I2, and Iz being the correlation lengths in the two principal
horizontal directions x1 and x2, and in the vertical direction z, respectively. Notice that, according to the
adopted model of spatial variability, the vertical direction z is also a principal direction of the hydraulic con-
ductivity tensor (i.e., x3 � z) and will remain fixed, while the first two principal directions will be rotated in
the blocks composing the computational domain.

The geometric mean of hydraulic conductivity is 131024m=s, the variance of log conductivity r2
ln K is 2.0,

and the correlation lengths are I152m; I250:4 m and Iz50:1 m. The blocks are stripes of 5 m width and 1 m
height, extending over the entire length of the domain in the x-direction. In the top left and bottom right
stripes, the principal directions x1 and x2 of the log conductivity field are rotated by 30� to the left of the x-
and y-directions, respectively. The same principal directions are rotated by 30� to the right with respect to
the axes x and y in the top right and bottom left blocks. In each realization, two statistically independent
random fields, differing by the orientation of anisotropy discussed above, are generated by the spectral
approach of Dietrich and Newsam [1993]. The transition between the blocks is obtained by blending the
two fields using a Tukey window [Tukey, 1967] with a transition zone of 1 m width in the y-direction and
0.2 m height in the z-direction. The dimensions of the computational domain (the unit cell that is subse-
quently used to generate a large velocity field) is 30 m310 m32 m, along the x-, y- and z-directions, respec-
tively, with a discretization of Dx3Dy3Dz50:1 m30:1 m30:02 m, yielding 33106 elements. The
corresponding log-hydraulic conductivity field is shown in Figure 3A1.

As specified in section 2, in cases 1 and 3, periodic boundary conditions are applied for hydraulic head in all
directions. A mean hydraulic gradient of 0.01 is applied to each realization, if applicable, in such a way that
the resulting volume-averaged velocity is strictly oriented into the x-direction. The velocity field of case 2 is
obtained by averaging all velocity components of 50 realizations along the x-direction. Figure 3B1 shows
the y- and z-components of the resulting two-dimensional velocity field, which is overlain by the primary
motion in the x-direction. Arrows indicate the direction and absolute value of the velocity, while color con-
tour lines indicate continuous advective paths in the secondary velocity field. The nonstationary spatial ani-
sotropy of the locally isotropic conductivity field causes significant secondary motion. In case 1, both the
primary and secondary motions are perturbed by small-scale variation in the x-direction, whereas the
upscaled velocity field of case 2 agrees well with the analytical results of Hemker and Bakker [2006], who
analyzed groundwater whirls in piecewise uniform anisotropic hydraulic conductivity fields.

The log-hydraulic conductivity field of case 3 shares with case 1 the same mean, variance, and volume-

averaged covariance function, but it is composed of a single stationary block obtained by generating a new sta-

tionary log conductivity field with the same power spectrum of the composed field used in the case 1. As can

be seen in Figure 3A2, the resulting log conductivity field shows cross-like structures of high- and low-

conductivity values. Figure 3B2 shows the resulting mean transverse velocity field, obtained by averaging 50

realizations of the velocity field of case 3 along the x-direction. The streamlines are represented using the same

color scale as used in Figure 3B1. As expected, only spurious secondary motion of small spatial extent can be
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identified. If the unit cell was extended over a larger length in the x-direction, or if the number of realizations

was significantly been increased, the secondary motion of the stationary field would completely disappear.

Based on the four periodic velocity fields, we constructed 50,000 streamlines using starting points on a reg-
ular grid of Dy3Dz50:02 m30:02 m covering the entire inlet face of the unit cell at x 5 0 m. Observation
planes were constructed at distances of 0.1 m in the x-direction. The streamlines were tracked over a dis-
tance of 60 m in the x-direction. Because of the periodic boundary conditions and the periodic K-field, the
velocity field is infinitely self-repetitive in all directions and streamlines can be tracked through neighboring
unit cells. From the streamlines of 10 realizations each, we computed the one-particle variances, r2

YðxÞ and
r2

ZðxÞ, of advective transverse displacement as a function of travel distance and the two-particle semivario-
grams of advective transverse displacement, cY (x) and cZ (x), according to equation (16), considering
directly neighboring streamlines in the inlet face, y1;02y2;050:02 m and z1;02z2;050:02 m, respectively.

In addition, we computed the kinematic metrics of the flow field discussed by Chiogna et al. [2015], namely
the dimensionless stretching and folding coefficients hA2ðxÞi and hD2ðxÞi, which quantify the affine (linear)
and nonaffine (nonlinear) contributions to the deformation of a plume cross section by advection, respec-
tively, in which the initial cross section is a small circle with radius 0.04 m [Kelley and Ouellette, 2011].

For steady-state advective-dispersive transport, we make use of periodicity in a slightly different way. Con-
sidering the periodicity of the boundary conditions, a source zone with dimensions 2 m30:4 m was placed
at the center of the inlet face of each unit cell. Outside the source, the concentration within the inlet face
was set to zero. Because of periodicity, a streamline laterally leaving the unit cell to a neighboring cell is
replaced by a streamline entering on the opposite face with identical concentration. Thus, it is sufficient to
simulate a single thread of unit cells aligned in the x-direction with a constant number of streamlines within
the cross sections.

The parameters used in the transport calculations are a porosity of 0.4, a pore diffusion coefficient Dp of
131029m2=s, and a transverse dispersivity at of 131023m. Steady-state advective-dispersive transport was
simulated only for a single realization each of cases 1 and 3. From the concentration distributions within
the observation planes, we computed the flux-related dilution indices EQ(x) by equations (17) and (18) and
scaled them by the total discharge Qtot passing through a unit cell in the x-direction, which is the upper
limit Emax

Q of the dilution index in the given setting. The ratio EQðxÞ=Emax
Q is denoted reactor ratio [Kitanidis,

1994; Rolle et al., 2009; Chiogna et al., 2011b]. The quicker EQðxÞ=Emax
Q approaches unity, the stronger is

transverse mixing within the domain.

Figure 3. Illustration of the test cases considered. (a) Log-hydraulic conductivity fields; (b) transverse velocity fields averaged over the direction of mean flow x.
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5. Results

5.1. Flow Fields
Figure 4 visualizes the velocity fields of the four cases described above by selected streamlines starting on a
regular grid at the inlet face of a unit cell. While the top two figures show results for single realizations of
the fully resolved velocity fields (cases 1 and 3), the bottom two figures show streamlines for ensemble-
averaged velocity fields averaged over the x-coordinate (cases 2 and 4). The secondary motion of the non-
stationary anisotropic K-field shown on Figure 3b1 leads to whirling motion in the longitudinally averaged
velocity field (case 2) shown in Figure 4B1. Small-scale fluctuations are superimposed to this motion in the
fully resolved velocity field for the nonstationary anisotropic K-field shown on Figure 4A1 (case 1). However,
the secondary motion is still visible when tracking individual streamlines.

When the equivalent stationary K-field is used, the resulting flow field does not show persistent secondary
motion, as can be seen by inspection of Figure 3B2. This behavior is also expected from theory because any
stationary covariance function of log conductivity in conjunction with a uniform-in-the-average hydraulic
gradients results in a uniform expected value of the velocity vector. As a consequence, the streamlines for
the longitudinally averaged velocity field (case 4) shown in Figure 4B2 exhibit only spurious twists, which
may be considered artifacts of a longitudinal averaging size that was not large enough to obtain opera-
tional ergodicity and a too small ensemble size of 50 realizations. Like in the nonstationary case, the stream-
lines for the fully resolved equivalent stationary velocity field (case 2, Figure 4A2) exhibit small-scale
fluctuations about the general trend.

Table 1 summarizes standard statistics of the specific-discharge components for the four velocity fields. The
different correlation structures of the log-hydraulic conductivity field lead to a 2.5% smaller mean longitudi-
nal velocity in the stationary case in comparison to the nonstationary anisotropic case when applying the
same hydraulic gradient. This rather small difference cannot explain the extent of differences in mixing

Figure 4. Selected streamlines of the four test cases. Color coding refers to the y-coordinate in the inlet face.
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discussed below. The variability within the x-
direction of the three specific-discharge com-
ponents is substantial in the fully resolved
cases, which becomes obvious when com-
paring the normalized standard deviations of
case 1 to that of case 2, and of case 3 to that
of case 4, respectively. The variability of the
horizontal transverse specific-discharge com-
ponent qy is bigger for the nonstationary
case than for the equivalent stationary one,
but the difference with the respective aver-

aged velocity fields is moderate (compare case 1 with case 3 in Table 1). The vertical velocity component
varies slightly more in the stationary case 3 than in the companion nonstationary case 1. This may be
explained by a more pronounced vertical connectivity of case 3, with respect to case 1, thereby leading to a
less extended connected high-velocity features in horizontal directions.

Figure 5 shows the horizontal correlation function .qy qy
ðDx;DyÞ of the specific-discharge component qy:

.qy qy
ðDx;DyÞ5

qyðx1Dx; y1DyÞ2�qy

� 	
qyðx; yÞ2�qy

� 	
r2

qy

; (22)

for cases 1 and 3. In equation (22), the overbar denotes the volume average over the entire unit cell and the
ensemble average over 50 realizations. Fluctuations of qy show persistent high correlation in both stationary
and nonstationary log conductivity fields. On the other hand, the negative correlation in the longitudinal
direction is more pronounced in the stationary case in comparison to the nonstationary one. Also, the non-
stationary fields hardly exhibit negative correlations of qy for separation distances on the order of half the
width of the unit cell, whereas the stationary case shows alternating sectors of positive and negative corre-
lations. In interpreting these results, however, it should be considered that the two-point correlation of qy

may be somewhat misleading when applied to the analysis of a nonstationary velocity field because non-
stationarity introduces variations (trends) of the mean velocity field in the transverse directions, as illus-
trated in Figure 3B1, which is not accounted for in equation (22).

5.2. Second Moments of Transverse Displacements in Advective Transport
Figure 6 shows the second-order statistical metrics of the transverse displacements, r2

YðxÞ; r2
ZðxÞ; cYðxÞ, and

cZ(x), as a function of the travel distance in the x-direction for the four cases considered in the present work.

Table 1. Statistical Characteristics of the Velocity Fields in the Four Test
Casesa

Case lqx
ðm=sÞ rqx =lqx

rqy =lqx
rqz =lqx

1 2:0331026 1.691 0.627 0.180
2 2:0331026 0.120 0.133 0.029
3 1:9831026 1.549 0.438 0.208
4 1:9831026 0.047 0.007 0.003

alqx
: mean specific-discharge component in main direction of flow

and rqi : standard deviation of specific-discharge component in
direction i.

Figure 5. Horizontal correlation function .qy qy
ðDx;DyÞ of the horizontal transverse specific-discharge component qy. (a) For the nonsta-

tionary anisotropic K-field as shown in Figure 3A1; (b) for the equivalent stationary K-field as shown in Figure 3A2. The dark red color at
the origin refers to a correlation coefficient of one, whereas dark blue colors indicate negative correlation coefficients.
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To obtain the results for the fully resolved cases 1 and 3, we averaged over 10 realizations and all starting points
at the inlet face. The most striking result shown in this figure is that the variance of the residual horizontal trans-
verse displacement r2

YðxÞ and the corresponding semivariogram cY (x) are more than a factor of 10 larger for
the nonstationary anisotropic case 1 than for the equivalent stationary case 3. This is so even though the correla-
tion structures shown in Figure 5 are similar and the velocity variances r2

qy
, listed in Table 1, differ only by a fac-

tor of � 1:43. We explain the differences in r2
YðxÞ and cY(x) by the deterministic persistence of transverse-

velocity fluctuations in the nonstationary anisotropic field, which is not quantified by the metrics r2
qy

and .qy qy
ð

Dx;DyÞ used in first-order stochastic theory of ensemble and effective dispersion. A major consequence of cY (x)
being bigger in case 1 than in case 3 is that solutes that are transferred by transverse dispersion (not considered
here) from one streamline to its neighboring streamline are carried away by advection in a substantially different
direction when this happens in a flow field with mean secondary motion, rather than in a stationary velocity
field, for which neighboring streamlines tend to stick together due to the absence of a secondary mean motion.
This effect can be observed also for the metrics of vertical displacement, r2

ZðxÞ and cZ(x), but is by far not as pro-
nounced as in the horizontal direction.

For the first 30 m, the variance of horizontal transverse displacements r2
YðxÞ is similar but not identical for

cases 1 and 2, that is, the nonstationary field with resolved 3-D velocity field and with x-averaged velocity,
respectively (Figures 6A1 and 6B1). The extended secondary motion plays a major role for r2

YðxÞ; about half
the particles move to the right and the other half to the left. These particles consistently return to the mid-
dle in averaged flow field of case 2, causing r2

YðxÞ to decrease for x > 30m, whereas no such behavior is
observed in the fully resolved case 1. In case 2, neighboring streamlines stay close together, as can be
argued from the fact that the semivariogram cY (x) of horizontal transverse displacement is much smaller
than r2

Y . This indicates that the plume may be separated, by secondary motion, but the resulting parts
remain compact if small-velocity fluctuations are neglected. Considering now the equivalent stationary flow
fields of cases 3 and 4, it can be observed that r2

YðxÞ and cY (x) are smaller for the averaged velocity field 4
than in the fully resolved case 3. The metrics of vertical displacements are smaller than the horizontal coun-
terparts in all cases.
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A1: Fully Resolved Velocity in Non−Stationary Anisotropic Field
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A2: Fully Resolved Velocity Field in Stationary Field
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B1: Mean Velocity in Non−Stationary Anisotropic Field

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

10
1

x [m]

σ y,
z

2
, γ

y,
z [m

2 ]

B2: Mean Velocity in Stationary Field
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Figure 6. Numerical moments of advective transverse displacement as function of travel distance in the four test cases. r2
Y : one-particle variance of horizontal transverse displacement;

r2
Z : one-particle variance of vertical transverse displacement; cY: two-particle semivariogram of horizontal transverse displacement for an initial distance Dy050:02 m; and cZ: two-particle

semivariogram of vertical transverse displacement for an initial distance Dz050:02 m.
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5.3. Stretching and Folding in Advective Transport
Figure 7 shows the dimensionless metrics of advective stretching, hA2ðxÞi, and folding, hD2ðxÞi for the four
test cases as a function of distance. hA2ðxÞi quantifies the linear contribution of the deformation of the
plume cross-section from the inlet plane to the plane at x, whereas hD2ðxÞi quantifies the nonlinear contri-
bution (for discussion see Chiogna et al., 2015). At distances of up to � 5m, the small-scale velocity varia-
tions of the fully resolved fields 1 and 3 dominate stretching and folding to a very similar extent. This
distance is on the order of the correlation length I1 of 4 m. At larger distances, the nonstationary case 1 and
the stationary case 3 strongly deviate with both stretching and folding of the nonstationary case being
larger by about one order of magnitude.

At larger distances, stretching is the biggest for the averaged nonstationary case 2. Folding of this case is
initially very small in comparison to the fully resolved fields 1 and 3. However, from distances of about 30 m
on, folding is stronger in case 2 than in case 3. This behavior indicates very regular and strong advective
deformation of the plume cross-section over a significant distance, but at larger distances the deformation
contains a significant nonlinear contribution that is associated folding.

In theory, both advective stretching and folding of the averaged stationary velocity field 4 should be zero,
because the perfect average would be a uniform velocity distribution. The small remaining values of hA2ðxÞi
and hD2ðxÞi for this case, presented in Figure 7, reflect spurious velocity fluctuations caused by a too small
ensemble size of 50 and a too small averaging length.

5.4. Steady-State Concentrations in Advective-Dispersive Transport
The results discussed so far are for strictly advective transport, i.e., in the absence of local dispersion.
The effect of local dispersion is explored in Figure 8 which shows the steady-state concentration distri-
butions at observation planes along the longitudinal direction x and in the presence of local dispersion.
The concentration distributions shown in this figure were obtained using the scheme discussed in sec-
tion 3, which is free of artificial (numerical) transverse dispersion, typically introduced by Eulerian
approximations of the advective term in the transport equation, equation (11) on grids that are not
aligned with streamlines [Cirpka et al., 1999c]. The columns show concentration profiles at the control
planes indicated on the left of the figure for cases from 1 to 4. In particular, column 1 is for the fully
resolved velocity field obtained with the nonstationary log conductivity field generated as described in
section 4, while column 2 is for the smoothed velocity field obtained by averaging the ensemble-
averaged velocity of case 1 along the x-direction. Columns 3 and 4 refer to the fully resolved and aver-
aged stationary log conductivity fields, respectively. The supporting information contains two movies
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Figure 7. Stretching (solid lines) and folding (dashed lines) metrics hA2ðxÞi and hD2ðxÞi for the four test cases as a function of distance x
from the inlet plane. (left) Double linear scale; (right) double logarithmic scale. Blue lines: fully resolved velocity field 1 with nonstationary
anisotropy; green lines: length- and ensemble-averaged velocity field 2 for nonstationary anisotropy; red lines: fully resolved velocity field
3 with equivalent stationary correlation function of ln K; and orange lines: length- and ensemble-averaged velocity field 4 for the stationary
case.
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visualizing the steady-state concentration distributions of the fully resolved nonstationary and station-
ary cases. Here the concentration distribution within a moving plane perpendicular to the main flow
direction x is shown, giving more insight in the evolution of the plumes with x than the individual
planes presented in Figure 8.

The concentration fields depicted in column 1 show that the secondary motion caused by nonstationarity
in the log conductivity field results in more effective transverse spreading and in lower peak concentrations
in comparison to the equivalent stationary case (column 3). The plume initially splits into two parts, because
the source zone is at a divergence point of the secondary motion, but clear plume fractions are difficult to
identify. Over the travel distance of 60 m, the periodic concentration field almost approaches the asymp-
totic uniform normalized concentration distribution of 0.04.

The splitting of the plume into two parts is more evident in case 2, where the velocity field of the non-
stationary case 1 is averaged along the x-direction and over 50 realizations, obtaining a transverse sec-
ondary motion not overlain by small-scale fluctuations. The two portions in which the plume is split
remain separated as they move downstream, although mass exchange by transverse dispersion results
in the increase of the volume occupied by the solute. The effect is less pronounced than in case 1, but
stronger than in the stationary fields (cases 3 and 4). This is caused by nonuniformity in the rotational
velocity of secondary motion, which enhances stretching of the interface between the plume and the
surrounding ambient solution, thereby leading to large transverse solute transport with respect to the
cases 3 and 4.

The steady-state concentration fields for advective-dispersive transport in the equivalent stationary
log-hydraulic conductivity field are quite different: In the 3-D resolved velocity field, the plume does
not spread intensively in the horizontal lateral direction, whereas vertical dilution is more pro-
nounced, which is in accordance with the enlarged variance r2

qz
of the vertical specific-discharge

component. The ensemble- and x-averaged velocity field of case 4 is so uniform that the plume is
hardly deformed.

5.5. Plume Dilution
To quantify dilution, we have computed the flux-related reactor ratio EQ=Emax

Q for all cross sections accord-
ing to equation (17), considering that Emax

Q equals the total discharge passing through the unit cell. The cal-
culated values of EQðxÞ=Emax

Q are plotted as black lines in Figure 9 as a function of travel distance x. For
comparison, we also computed the reactor ratio of the concentration distribution chom [M L3] for a rectangu-
lar source in a periodic uniform flow field with uniform seepage velocity v5531026m=s and various iso-
tropic transverse dispersion coefficients Dt:

Figure 8. Steady state concentration distributions in observation planes perpendicular to the mean flow direction for all four test cases. Concentrations are normalized by the concentra-
tion of the source. Spatial dimensions of the cross sections: 10 m 3 4 m. Color axes differ from plot to plot.
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(23)

in which cs [M L3] is the solute concentration within the source, which is w 5 2 m wide and h 5 0.4 m high,
whereas the unit cell is W 5 10 m wide and H 5 2 m high. The infinite sums in equation (23) arise from peri-
odicity in the y- and z-directions. On the validity of equation (23) and its underlying assumptions, refer to
Srinivasan et al. [2007]. The resulting reactor ratios are plotted in the background of Figure 9 as a function
of travel distance x and Dt, where the color indicates the log 10ðDtÞ-value. In the following, we denote the
value of transverse-dispersion coefficient that would be needed in a homogeneous flow field to meet the
same reactor ratio as in the heterogeneous test cases the equivalent transverse dispersion coefficient Deq

t

[L2 T21].

Figure 9 clearly shows that the nonstationary anisotropic variability of log-hydraulic conductivity leads to a
significant enhancement of dilution. After 60 m of travel distance, the dilution of case 1 is almost complete.
In a homogeneous flow field with identical pore diffusion coefficient, mean seepage velocity, and transverse
dispersivity, the transverse dispersion coefficient Dt would be 631029m2=s. In comparison to that, the
degree of dilution reached after 60 m travel distance is in case 1 equivalent to an increase of Dt in the
homogeneous flow field by a factor of 77 (Deq

t � 4:731027m2=s). As can be seen from Figure 9, the mixing
enhancement in this case is a continuous process, that has not reached Fickian scaling at the end of the
considered domain, that is, the equivalent transverse dispersion coefficient of a homogeneous domain
causing the same amount of dilution, still increases.

Quite interestingly, the averaged velocity field of case 2, which shows the clearest secondary motion, ranks
second in the degree of dilution reached (which is equivalent to a homogeneous case with
Deq

t � 9:431028m2=s). The secondary motion brings solute-loaded streamlines constantly into contact with
hardly loaded streamlines, at least over the travel distance considered. While small-scale fluctuations and
associated flow focusing are an important addition to mixing enhancement in case 1, the effect of second-
ary motion appears to be more important. This becomes evident when considering dilution caused by the
stationary, 3-D resolved velocity field of case 3. In contrast to the previous two cases, the scaling of the flux-

related reactor ratio with travel
distance here approaches a
behavior similar to Fickian
transverse dispersion in uni-
form flow. Expressed in terms
of an equivalent transverse dis-
persion coefficient,
Deq

t � 2:131028m2=s, which
relates to an increase of Dt by
about a factor of 3.5, which is
in the order of magnitude of
the enhancement factors by
flow focusing in two-
dimensional domains reported
by Cirpka et al. [2011].

It is interesting to see that
the order of dilution intensity
among the test cases is iden-
tical to the order of the fold-
ing metric hD2ðxÞi shown in
Figure 7. Even the transition

Figure 9. Flux-related reactor ratio EQ=Emax
Q as a function of travel distance for advective-

dispersive transport in the four test cases. Solid line: fully resolved velocity in nonstationary
anisotropic field; dotted line: mean velocity in nonstationary anisotropic field; dash-dotted
line: fully resolved velocity in stationary field; and dashed line: mean velocity in stationary
field. Color plot in the background: reactor ratio as a function of distance for a homogene-
ous velocity field (v5531026m=s) for various isotropic transverse dispersion coefficients.
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point at which dilution becomes larger in case 2 than in case 3 is comparable. By contrast, the stretch-
ing metric hA2ðxÞi is not a good indicator of mixing.

6. Discussion and Conclusions

The present study has shown that nonstationary anisotropy of hydraulic conductivity can have a significant
impact on transverse mixing in steady-state groundwater flow. While nonstationary anisotropy of hydraulic
conductivity has not been studied very intensively in the past, we are convinced that it is common in natu-
ral sedimentary deposits, which are characterized by a hierarchy of internally anisotropic structural elements
of limited spatial extent. The orientation of anisotropy typically differs from one structural element to the
other, thus leading to anisotropy in hydraulic conductivity that is stationary only within individual structural
units. In most practical applications, it is very difficult to detect the exact sedimentary structure. While indi-
vidual drilling logs indicate ‘‘layering’’ of the sediments, the lateral extent of the units and the orientation of
anisotropy is often missing. Thus, while common sedimentological knowledge and outcrop analogs [e.g.,
Heinz et al., 2003; Bayer et al., 2011] make us believe that nonstationary anisotropy is rather the rule than
the exception, it is difficult to measure within a specific aquifer. This makes it even more important to study
what is missing when we blend out this structural feature of aquifers.

In the present study, we have simplified the complexity of real sediments by considering blocks of hetero-
geneous log conductivity with anisotropic correlation functions differing in their spatial orientation. The
nonstationary anisotropy of heterogeneity caused mean secondary motion of groundwater flow resulting in
enhanced transverse mixing of a solute plume. The secondary motion makes the trajectories of solute par-
ticles, which start at the same location and are initially separated by pore-scale dispersion, diverge at a rate
that is much bigger than by Fickian dispersion only. In previous two-dimensional studies, where enhance-
ment of transverse mixing was restricted to flow-focusing effects [Bauer et al., 2009b; Cirpka et al., 2011;
Werth et al., 2006], heterogeneity only led to a moderate increase of equivalent transverse dispersion coeffi-
cients in comparison to the homogeneous case. The flow topology caused by nonstationary three-
dimensional anisotropy analyzed here, by contrast, led to a remarkably larger increase. These findings are in
agreement with the observation of Maier and Grathwohl [2006], suggesting that mixing-controlled steady-
state plumes at the field scale are significantly shorter than predicted applying local-scale transverse disper-
sion coefficients derived in laboratory setups. This study, for the first time, provides a potential mechanistic
explanation of this observation.

Among the topological and kinematic descriptors of the flow field discussed in Chiogna et al. [2015], the
folding metric hD2ðxÞi has the highest predictive power with respect to mixing, whereas the stretching met-
ric hA2ðxÞi is much less informative. The local helicity density, discussed also by Chiogna et al. [2015], may
be misleading as it describes larger-scale twisting only when the flow field is properly upscaled. Because
hydraulic conductivity is locally isotropic, the helicity density is locally zero in the fully resolved nonstation-
ary test case 1, but mixing is the strongest. Chiogna et al. [2015] argue that topological metrics for the study
of mixing processes should be applied to velocity fields at the appropriate scale of interest. A similar conclu-
sion was reached by de Barros et al. [2012] for the Okubo-Weiss parameter in case of stationary two-
dimensional flows in heterogeneous porous media.

It may be worth noting that different definitions of stretching and folding exist. For example, Le Borgne
et al. [2013] analyzed the elongation of plume lamella in transient transport through heterogeneous porous
media. The latter authors analyzed how dispersive mass transfer perpendicular to the lamella contributes to
plume dilution, quantified by the scalar dissipation rate. Transverse mixing, however, also makes the lamella
coalesce. The setting in the present study is slightly different, as we analyze transverse mixing in steady-
state transport. However, changing time with longitudinal distance, our plumes look like undergoing tran-
sient stirring in two-dimensional rotational flows, potentially facilitating an analysis similar to that of Le
Borgne et al. [2013].

The purpose of the present study was to describe the phenomenon of enhanced transverse mixing by
groundwater whirls caused by nonstationary anisotropy of hydraulic conductivity. Our findings offer inter-
esting possibilities for future investigation and might open a new field of research on solute transport in
heterogeneous porous media beyond stochastic subsurface theory applied to second-order stationary
fields. In particular, it will become necessary to develop upscaling rules that relate structural properties of
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the (log)-hydraulic conductivity field, such as the dimensions of typical sedimentary elements and the varia-
tion the internal anisotropy, to topological and kinematic properties of the flow field, such as the variance
and correlation structure ofr3q or the folding metric hD2ðxÞi, and finally effective transverse mixing coef-
ficients. Existing approaches to characterize hierarchical sedimentary structure, such as those of Scheibe and
Freyberg [1995] and [Ritzi et al., 2004], may be good starting points. However, traditional analyses of these
fields by constructing stationary covariance functions and deriving macrodispersion coefficients [Ritzi et al.,
2004; Dai et al., 2004] have overlooked the importance of nonstationary anisotropy so far.

Previous studies have shown that local transverse dispersion depends on molecular diffusion even at high
velocities [Chiogna et al., 2010]. In two-dimensional simulations, the compound-specific effects of transverse
mixing did not vanish in heterogeneous domains [Chiogna et al., 2011a; Cirpka et al., 2011]. In the present
study, we have restricted the analysis to the standard linear model of Dt according to Scheidegger [1961] for
the ease of computation. We believe that compound-specific effects will also prevail in the current setting
of nonstationary anisotropic log conductivity fields over large travel distances as local-scale transverse dis-
persion controls the transition from plume deformation to actual mixing. At very large distances, when mix-
ing has caught up with plume deformation, compound-specific effects may vanish, but it is unlikely that
this regime is reached in realistic scenarios.
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