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Abstract We present a novel region based active contour model that segments
one or more image regions that are visually similar to an object of interest,
said prior. The region evolution equation of our model is defined by a simple
heuristic rule and it is not derived by minimizing an energy functional, as
in the classic variational approaches. The prior and the evolving region are
described by the probability density function (pdf) of a photometric feature,
as color or intensity. The heuristic rule enlarges or contracts an initial region
of the image in order to equalize pointwise the pdf’s of the prior and of the
region. Such heuristic rule can be modeled by many mathematical monotonic
decreasing functions, each defining an evolution equation for the initial image
region. The choice of a particular function is remitted to the user, that in this
way can even integrate a priori knowledge possibly useful to break down the
computational charge of the method and to increase the detection accuracy.
Here we propose two different evolution equations for the general purpose
of prior detection without a priori information and we discuss empirically
the performances of our model on real-world and synthetic datasets. These
experiments show that our model is a valid alternative to the classic models.
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1 Introduction

Active contour models are widely used to segment an object of interest in an
image [3], [6], [22], [43], [21], [12], [34], [9], [19], [47], [30], [18].

An active contour is a curve that dynamically evolves in the image domain
towards the boundary of the object of interest under the influence of internal
and external forces, until the energy associated with these forces is minimized.
Internal forces model geometric properties of the curve itself, for instance its
smoothness or stiffness. External forces depend on the image features used
for the segmentation, and they cooperate with the internal ones to shape the
active contour and to make it to adhere to the object boundary. The energy
associated with the forces thus depends on the geometric properties of the
curve and on the visual features of the image and of the object of interest. It
is designed so that the contour with minimum energy lies over the boundary
of the object of interest.

The minimization of the energy functional is computationally hard. In gen-
eral, it ends up in a local minimum, that hopefully corresponds to the desired
object. Usually, the minimization is implemented by a gradient descent method
[45], that iteratively deforms the active contour from an initial curve to differ-
ent subsequent states, until a minimum is found.
The mathematical expression of the energy functional depends on the visual
features used for segmenting the object of interest. When these features de-
scribe only geometric cues of the active contour, e.g. its smoothness or stiffness,
or when they regard pixelwise properties as edge magnitude or orientation [29],
[31],[24], [39], [38], [7], the energy is expressed by a line integral around the
active contour. Its minimization is performed by solving the Euler-Lagrange
partial differential equations (PDE) of the energy of the initial contour. When
the segmentation features describe visual properties of a region, e.g. the mean
value or the distribution of the color inside the internal or external part of the
active contour, the energy is generally expressed as a double integral over the
region [48], [41], [37], [6], [2], [11], [23], [26], [18]. In this case the minimization
becomes more involved, because the directional derivative is more naturally
defined for curves than for regions [2]. One minimization approach re-writes
the energy functional as a boundary integral according to the Green-Riemann
Theorem, and then derives the Euler-Lagrange PDE’s. Other methods use
shape derivation tools [1], [2], [13], that minimize the energy functional with
respect to the whole region and not only with respect to its boundary. His-
torically, region-based active contours have been introduced later than the
edge-based active contours, in order to make the image segmentation more ro-
bust with respect to weak edges and noise: edge-based active contour models
have been developed originally in [25], while the first works on region-based
models have been proposed in [10] and [40].

The difficulties in minimizing the energy functional stimulated the pursuit
of alternative active contour models. For example, [5], [8] adopt a velocity
vector field that deforms an initial curve towards the object of interest without
defining any energy functional.
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Fig. 1 Some examples of objects of interest (priors) employed in our experiments: the prior
is stored as a picture (on left) along with a binary mask (in the middle), whose black pixels
specify the part of the picture actually occupied by the object. In this work the mask is
used only to compute the pdf of a photometric feature of the interest object depicted in the
image (on right). Shape features, that could be extracted from the mask, are not considered
here.

In this work we propose a novel region based active contour model that
detects in an input image a view of a known object, said prior. Examples of
prior are a logo, a traffic sign, a face, or a home object as shown in Figure 1. In
our procedure we deform iteratively an initial region of the input image until
it becomes visually similar to the prior. As proposed by previous works, e.g.
[36], [46], [48], [2], [37], [41], [11], [28], we describe the visual appearance of the
prior, as well as that of the evolving region, by statistical features. Precisely,
we use the probability density function (pdf) of a global photometric feature,
as color or intensity. We measure the fidelity of the region to the prior by the
extent of the overlapping between their pdf’s. We define the region evolution
law by a simple heuristic rule, that enlarges or contracts the evolving region by
including or excluding image pixels in order to equalize the pdf’s of the prior
and of the region. Analogously to the approaches in [5], [8], the evolution equa-
tion is not derived as the gradient of an energy functional. The main novelty
of this work is the heuristic law we introduce. It can be modeled by several dif-
ferent monotonic decreasing functions satisfying three constraints driving the
cirve evolution (see Section 4.1). As a consequence, there is not a unique evo-
lution equation of the input region. This is a strength point of the model since
it allows the user to design a function tailored for his/her applications. For
instance, a priori knowledge about the image and/or the prior can be used to
tune the parameters of the evolution equation in order to speed up the conver-
gence of the algorithm or to increase its performances (see Section 4.1). In this
work we do not concern with the criteria to appropriately select the function
implementing the heuristic upon the application. We rather investigate two
different region evolution equations for the detection of a prior in real-world
and synthetic images of public datasets without a priori information. For each
evolution equation we measured the performances of our active contour model
by using the color as visual descriptor. We have choosen color among the other
descriptors because of its invariance against many geometric transformations,
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like image rescaling or rotation. Moreover, color is widely used in object detec-
tuon and image retrieval for its high discriminative power [20]. We computed
the accuracy on the prior detection by considering two different color repre-
sentations and by varying the parameters of the model, as for instance the
initial region and the metric employed to measure the overlap between the
pdf’s. Moreover, we also tested the robustness of our algorithm with respect
to geometric distortions and Gaussian noise addition. The experiments, that
we carried out on synthetic and real-world databases, show very good per-
formances, also in comparison with the classic energy based approaches. This
makes our model a valid alternative to the variational methods.

2 Paper Outline

The rest of the paper outlines as follows. In Section 3 we introduce the formal-
ization of the classic active contour model as a reference needed to understand
similarities and differences with the non standard one. Section 4 describes our
model and provides some implementation details. Section 5 presents our ex-
perimental results, and finally Section 6 reports our conclusions and future
work.

3 The Classic Approach

In this Section we briefly describe the classic approach in order to introduce
some notation and concepts used also in our model.

Let S be the set of the spatial coordinates of the pixels composing an image
I, and let P be an object of interest to be segmented in I. An active contour
on I is a differentiable parametrized curve

ω : [0, 1] → S

that dynamically evolves by minimizing an energy functional. The energy is
expressed as the sum of the potentials of internal and external forces whose
action determines the curve deformation. The forces are chosen so that a (local)
minimum of the energy occurs when the active contour lies over the boundary
of the object of interest.

Usually, the minimization of the energy functional is performed by a gra-
dient descent method [45], that iteratively deforms the curve ω from an initial
contour ω0 to different subsequent states ωt, until the equilibrium is reached.
Therefore, a real positive parameter t is introduced to describe the family
w : [0,+∞) × [0, 1] → S where w(t, s) = ωt(s) (t ≥ 0, s ∈ [0, 1]) is the evolu-
tion of the initial curve ω0 at the time t. The analytic expression of the energy
leads to an evolution equation of the general form

∂w

∂t
= FN, (1)
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where F is the magnitude of the velocity vector field deforming the curve, and
N is the inward unit normal of ω.
Often, the energy minimization is performed by using the level-set represen-

tation of the curve, that allows to handle topological changes [32], [44], [4],
[35]. For instance, topological changes are necessary when a prior is displayed
many times in an image. In this case, an initial contour should split into
parts. Describing this splitting and solving the corresponding evolution equa-
tion for a curve may be quite hard. To overcome this problem, the active
contour Γt := ωt([0, 1]) is represented by the zero-level set of a smooth func-
tion u : [0,+∞)×S → R depending on the time t. More precisely, the sets Ωt

= {x ∈ S : u(t, x) > 0} and S − (Γt ∪ Ωt) are respectively the regions inside
and outside the active contour. If ω(t, ·) is a local representation of Γt, then

u(t, ω(t, s)) = 0 ∀ s ∈ [0, 1] (2)

and differentiating u with respect to t yields

0 =
d

dt
u(t, ω(t, s)) = ∇xu(t, ω(t, s)) ·

∂ω

∂t
(t, s) +

∂u

∂t
(t, ω(t, s)).

Therefore we have

∂u

∂t
(t, ω(t, s)) = −N ·

∂w

∂t
(t, s) ‖ ∇xu(t, ω(t, s)) ‖

= −F ‖ ∇xu(t, ω(t, s)) ‖ . (3)

4 The New Region-based Active Contour Model

As mentioned in Section 1, our active contour model detects in an input image
I one or more regions which are visually similar to the view of an object of
interest P said prior. The prior P is represented by: (i) a picture IP displaying
P and by (ii) a binary mask, whose black pixels specify the part of IP actually
occupied by the prior (see Figure 1). In our framework, this mask is used only
to circumscribe the pdf computation to the set of image pixels that actually
belong to the object of interest.

The visual appearance of P is described by the probability density function
(pdf) qp of a photometric feature, as color or intensity. The feature over a
subset of image pixels S is usually modeled by a n-dimensional real bounded
function h from S to Rn. In general, a same visual cue (e.g. the color) can
be modeled by different functions (see Subsection 5.3, where we consider two
different representation of the color). Once the function h representing the
feature has been defined, its pdf is computed as

pdf(α) =
1

|S|

∫

S

δ(h(x) − α)dx (4)
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(1) Prior (2) Input Image

(3) Initial Region (4) Segmented Object

(5) PDF’s of initial region
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(6) PDF’s of segmented region
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Fig. 2 (1) A prior; (2) an input image; (3, 4) in green, the boundary of the initial region and
that of the region output by our algorithm; (5, 6) the pdf’s of the red, green and blue color
responses of the prior, of the initial region, and of the output in the RGB-S representation
(see text for more details). Purple and red areas in (5) and (6) highlight the differences
between the pdf’s. The red (purple, resp.) set is upper bounded by the pdf of the prior (of
the region. resp.) and lower bounded by the pdf the region (of the prior, resp.).



A New Region based Active Contour Model for Object Segmentation 7

where | · | indicates the Lebesgue measure of the set between the pipes , δ is the
Dirac delta and α ranges over the co-domain of h. In the discrete framework,
i.e. when h(S) is discretized, the pdf is approximated by the histogram q given
by

q(α) =
1

|S|
|{x ∈ S : h(x) = α}| (5)

where |S| is computed as the cardinality of S and α is defined as above. In the
next, with abuse of notation, we will use h to denote the function modeling
the visual feature or the visual feature itself.

Previous works, e.g. [48], [42], propose a region-based active contour model
for foreground/background separation that use mean and variance as statisti-
cal descriptors. However, as pointed out in [41], these features provide often a
poor description of the visual appearance of the interest object, hence the pdf
is preferred. Notice that differently from other methods ([36], [28]), the pdf we
consider in our approach is neither approximated by exponential functions like
Gaussian, Poisson or Rayleigh distributions, nor smoothed by density kernel
as the Parzen window used in [2] and [41].

Our model deforms iteratively an initial region Ω0 (which is a subset of
S) so that it evolves towards a region Ω whose pdf qΩ coincides as much as

possible with the pdf qp of the prior.
Figure 2 shows an example. The yellow box in (1) is the prior to be detected in
the picture in (2). The boundary of the initial region Ω0 is highlighted in green
in (3). The prior and the evolving region are described by the pdf’s of their
color responses red, green and blue, as shown in (5) and (6) respectively. The
algorithm works out the pdf’s of the evolving region according to a heuristic

rule, that excludes (includes, resp. ) a pixel from (to, resp.) the evolving region
if the region pdf at that color is greater (smaller, resp.) than the prior pdf at
the same color. In particular, this heuristic law minimizes the difference with
the pdf of the prior, i.e. it minimizes the areas of the red and purple regions
highlighted in the graphs of Figure 2 (5) and (6).
Notice that a perfect overlap between the pdf’s of the prior and of the evolving
region is usually not even possible, because in most real-world scenes, the
object of interest imaged in I is similar to the prior P but it is not an exact
copy of it. In most instances the pdf’s of the prior and of the object of interest
images in the input picture differ because of noise due to image compression
or blurring, small changes of the camera view point, slight differences of the
illuminants under which the prior and the input image have been captured
often occur.

This Section continues as follows: Subsection 4.1 describes our region based
evolution model, while Subsection 4.2 provides some implementation details.

4.1 The Region Evolution Equation

Let S be the set of the spatial coordinates of the pixels composing an image I.
We describe the evolving region as the positivity set of a 2D smooth function
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u : [0,+∞) × S → R that, for each time t, partitions S into the three non-
empty sets Ωt := {x ∈ S : u(t, x) > 0}, Γt := {x ∈ S : u(t, x) = 0} and
S − (Ωt ∪ Γt). For t = 0, Ωt coincides with an image region input by the user.

The evolution law of our model is described by

∂u

∂t
(x) = V (x,Ωt)δε(u(t, x)) (6)

where, for ε > 0,

δε(u(t, x)) =
1

π

ε

u(t, x)2 + ε
∀ x ∈ S (7)

and

V (x,Ωt) = φ(x,Ωt) + λK(t, x) ∀ x ∈ S. (8)

The function δε of Equation (7) is a smooth approximation of the Dirac
delta function, primed by differentiating the smoothed Heaviside function Hε :
R → [0, 1]

Hε(z) =
1

2

(

1 +
2

π
arctan

z

ε

)

.

η highly scores each pixel x for which u(t, x) is close to zero, i.e. each pixel near
to the border Γt of Ωt. This makes the deformation of Ωt more remarkable in
a neighborhood of the border of Ωt than in its interior and exterior parts. The
parameter ε is a real number strictly positive and it controls the width of the
neighborhood around Γt.

The function V (x,Ωt) of Equation (8) describes mathematically the heuris-
tic rule of our model. In particular, V (x,Ωt) is the sum of two terms. The first
one is a real bounded function φ defined on S. It depends on Ωt through the
ratio

Q(x,Ωt) =
qΩt

(h(x))

qp(h(x))
(9)

where it is defined, and Q(x,Ωt) := 1 if qΩt
(h(x)) = qp(h(x)) = 0.

The heuristic rule implemented by φ attempts to find a region Ωt such that
the ratio in Equation (9) is 1 for any x in Ωt. We require that the function φ
is such that:

1. if Q(x,Ωt) > 1, then φ(x,Ωt) < 0: when the percentage qΩt
(h(x)) of

pixels in Ωt with feature h(x) is greater than the percentage qp(h(x)) in
the model, the pixels of Ωt with value h(x) are negatively scored, and the
value of u in these pixels decreases. Eventually, when u becomes strictly
negative, the region Ωt contracts to exclude these points;

2. if Q(x,Ωt) < 1, then φ(x,Ωt) > 0: when the percentage qΩt
(h(x)) of pixels

in Ωt with feature h(x) is smaller than qp(h(x)), the pixels with value h(x)
are positively scored, and the value of u in these points increases. When u
becomes strictly positive, Ωt enlarges to include these points;
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Fig. 3 The functions φ1 and φ2 (see Equations (10) and (11)).

3. if Q(x,Ωt) = 1, then φ(x,Ωt) = 0: the percentages qΩt
(h(x)) and qp(h(x))

are equal.

Infinite functions satisfy the properties listed above. Any monotonic de-
creasing function φ with φ(x,Ωt) = 0 when Q(x,Ωt) = 1 can be used to define
the region evolution equation (6). The function φ defines how much to score
the pixel x with Q(x,Ωt) > 1 and those with Q(x,Ωt) < 1. Thus the shape of
φ determines the speed ∂u/∂t at any pixel x. The mathematical expression of
φ is a model parameter to be set up by the user. In this way, the user can adapt
the model to his/her specific applications, in order to speed up the convergence
of the method and/or to improve the results. Let us give an example. Let us
suppose to know that a given prior is effectively present in the input image and
that the image region occupied by prior is much smaller than the entire image.
Let us use the border of the whole image as initial contour. In order to speed
up the convergence of the active contour, the velocity of the region evolution
(i.e. ∂u/∂t) should be greater when a pixel has to be removed from the current
region than it has to be added to the region. Therefore, the slope of the func-
tion φ when Q(x,Ωt) > 1 must be greater than the slope when Q(x,Ωt) < 1.
In this way, background pixels are removed faster from the evolving region
than if the same slope is used and this makes the computational time shorter.

As already mentioned in Section 1, here we do not focus on the problem
to choose an expression of φ upon the application, but rather we propose two
different expressions of φ, denoted by φ1 and φ2 (see Figure 3), and we use
them for the general purpose of prior detection when no a priori information
about the image are given. In Section 5 we compare these functions in terms
of accuracy on the detection of the prior.
Precisely, φ1 : S → [−1, 1] and φ2 : S → [−2, 2] are defined as follows:

φ1(x,Ωt) =

{

−1 if qp(h(x)) = 0 ∧ qΩt
(h(x)) 6= 0

1 − min
(

Q(x,Ωt), 2
)

otherwise
(10)



10 Michela Lecca et al.

and

φ2(x,Ωt) =







2 if {(qp(h(x)) = 0 ∧ qΩt
(h(x)) 6= 0)∨

log Q(x,Ωt) < −2}
max(−2,− log Q(x,Ωt)) otherwise.

(11)
The second term in Equation (8) has been introduced to ensure the smooth-

ness of the surface described by u and the stability of the solution. In partic-
ular, K is the curvature of the implicit curve u(t, x) = 0 and λ is a strictly
positive real parameter weighting the contribution of K to the evolution. K
can be computed by

K(t, x) = div
( ∇xu(t, x)

‖ ∇xu(t, x) ‖

)

. (12)

The term K(t, x) is not defined when the gradient of u is null, i.e. it is not
defined in any stationary point. At these points, we set K(t, x) = 0. Notice
that the function u must be a C2 function with respect to the spatial variable
x in order to ensure the existence of K(t, x).

Finally we observe that the differential equation (6) makes sense only if
the function u is ( i) of class C2 with respect to the space variable x, in order
to ensure the existence of K(t, x) and ( ii) of class C1 with respect to the time
variable t.

4.2 Implementation Details

The algorithm implementing our active contour model requires as input an im-
age I, a prior P , a surface u as specified in Section 4.1, and a set of parameters,
listed in Table 1.

In the discrete space, the time derivative of u in Equation (6) is approxi-
mated by

u(n)(x) = u(n−1)(x) + (φ(n−1)(x,Ω(n−1)) + λK(n−1)(x))η(n−1)(x)∆t, (13)

where ∆t is a time step, and n is an integer ranging over {1, . . . , Nmax}.
When n = 0, u(0) is the input surface, while u(n) is the evolution of u(0) after
the time n∆t. Ω(n−1) indicates the evolving region at time n − 1. K(n−1) is
defined in Eq. (12) for the function u(n−1), φ(n−1) is the function φ (either φ1

or φ2) evaluated on Ω(n−1), and η(n−1) is the function η evaluated on u(n−1).
In this work, the surface u at time t = 0 is defined as

u(0)(x) =

{

D(x, ∂D)0.25 if x ∈ D
−D(x, ∂D)0.25 if x ∈ S − D

(14)
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User Parameters Description
λ Weight of curvature term
∆t Time Step
finit Step for re-initialization of u

fs Step for smoothing u

d Metric to stop the algorithm (L1, L2 or EMD)
φ (1) φ1; (2) φ2

alg type (1) no smoothing; (2) smoothing with median filter

D D = {x ∈ S : u(0)(x) > 0} (see Eq. (14))

Table 1 Parameters to be set up by the user in the current implementation of our active
contour algorithm. See the text for more details.

where D is a non-empty closed subset of S, ∂D is its boundary, and D is the
Euclidean distance between the point x and the set ∂D. The initial region Ω0

is thus the positivity set of u(0). The function u(0) is clearly continuous and
smooth. During the surface evolution, the function u is re-initialized according
to Equation (14) (with frequency finit) in order to preserve its smoothness and
thus the stability of the solution. In our algorithm, u can be further smoothed
with a frequency fs: this additional smoothing helps to include (remove resp.)
isolated pixels close to (far from resp.) the boundary of the evolving region.
In the current implementation, smoothing is performed by using the median
filter, that replaces each value u(x) respectively with its median value over a
square of 9×9 pixels centered at x. The activation of the smoothing routine is
controlled by the parameter alg type, that is 1 when no smoothing is applied,
2 otherwise.

In principle, the algorithm stops when the region Ω does not evolve any
more. However, in order to avoid slight changes of the solution, the algorithm
ends when a maximum number Nmax of iterations is reached or when a dis-
tance d measuring the dissimilarity (i.e. overlap) between the pdf’s of P and
of any region Ω(m), does not improve for M times consecutively. From some
qualitative experiments, we observed that Nmax = 1000 and M = 20 provide
good thresholds for the termination criterion. Distance d can be chosen by
the user. In this work three metrics are considered: the L1, the L2 and the
Earth-Mover-Distance (EMD).

Finally, in the current implementation the parameter ε in Equation (7) has
been fixed to be 1.0.

5 Experiments

In this Section we present the experiments we carried out on synthetic and
real-world image databases to measure the accuracy of our approach, also
in comparison with the classic variational method. In our experiments, the
feature used for the segmentation is the color. The color pdf is often employed
in detection and recognition algorithms [20], because color is invariant with
respect to translations and changes of size and/or in-plane rotations over a
wide range of scale factors and rotation angles, and it also quite robust to
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Gaussian noise addition. However, other features can be used, as for instance
texture [41], [37].

This Section is organized as follows: in Subsection 5.1 we explain how we
measure the accuracy of our model; in Subsection 5.2 we describe the databases
used in our experiments; then we study how the accuracy changes by varying
the model parameters (Subsection 5.3) and in presence of geometric affine
distortions (Subsection 5.4) and noise (Subsection and 5.5). In Subsection 5.6
we analyze the performances of our model on images with complex background.
In Subsection 5.7 we give some suggestions to extend our model in order
to include edges and/or shape descriptors and to make it robust to object
ccclusions. Finally, in Subsection 5.8 we compare our performances with those
output by the classic approach presented in [2].

5.1 Performances Evaluation

Let O be an object view to be detected in an input image I, and let G the
part of I (if any) actually depicting O.

We measure the accuracy on the detection of O in I by the overlap index

X (G,Ω⋆) =
Area(G ∩ Ω⋆)

Area(G ∪ Ω⋆)
(15)

where Ω⋆ is the region of S output by our algorithm.
The overlap index X ranges over [0, 1], and the closer X is to 1, the better
the detection is.
In addition we also compute the percentage I of pixels of G belonging to Ω⋆:

I(G,Ω⋆) =
Area(G ∩ Ω⋆)

Area(G)
. (16)

We say that an object view O is missed if it is depicted in the input image
I but it has not been detected, i.e. X (G,Ω⋆) = 0. In the next, we denote by
M the percentage of missed object views of any test set.

5.2 Databases

Here we describe the three public databases of color images we used in our
experiments: COIL-100 [33], GroundTruth-for-COIL100 [15] and MLDB2013
[17].

5.2.1 COIL-100

The database COIL-100 [33] consists of real-world color pictures of 100 objects
with size 128 × 128 pixels. This database has been built up as follows: each
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object of COIL-100 has been placed on a motorized turntable, that was coun-
terclockwise rotated through 360 degrees to vary the object pose. The images
of the 100 object of COIL-100 have been taken at pose intervals of 5 degrees,
so that the database contains 7200 images.
For each picture, the part actually belonging to the object view portrayed is
specified by the black pixels of a binary mask. The masks of the object views
are downloadable from [16].

Hereafter we denote the 72 views of any object of COIL-100 by v0, v5,
. . . , v355, where the subscript indicates the angle at which the object has been
imaged. Moreover, we denote by I0, I5, . . . , I355 the images portraying the
views v0, v5, . . . , v355 respectively.

Figure 4 shows some objects from COIL-100 (frontal views), while Figure
5 displays the first five views of an object (from degree 0 to 20).

Fig. 4 COIL-100: some objects from COIL-100 (frontal views).

Fig. 5 COIL-100: first five views (from 0 to 20 degrees) of an object.

5.2.2 GroundTruth100-for-COIL

The database GroundTruth100-for-COIL [15] contains 100 images depicting
some objects of COIL-100 displayed against a non-uniform background. These
images have different size (430x400, 375x400, 484x484 pixels). Each image has
been generated synthetically: some object views have been randomly chosen
from COIL-100, then they have been rotated with a random angle in [0, 2π]
and re-scaled with a random factor in the range [0.7, 1.3]. Finally, they have
been superimposed on a synthetic, non-uniform, colored background in a non-
overlapping fashion. Some examples are shown in Figure 6.
Each image is tagged with some data about each object view of COIL-100
present in it: an integer number identifying each object (from 1 to 100), the
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Fig. 6 GroundTruth-100-for-COIL: Some examples from GroundTruth-100-for-COIL.

degree corresponding to its view (ranging over {0, 5, 10, . . . , 355}), the rotation
angle and the scale factor at which this object view appears in the image. A
segmentation map provides ground-truth information about the image parts
occupied by the object views. In particular, each segment is labeled by an
integer number i, that identifies an object view (when i is greater than zero)
or the background (when i is zero).

5.2.3 MLDB2013

The database MLDB2013 [17] includes a set of 12 objects and a set of 12 real-
world test images where the objects have to be searched for. Each object is
modeled by a single view, that is represented as in COIL-100 by a color image
and by a binary mask specifying the image part actually belonging to the
object view. The size of the object images varies from 291x103 (minimum) to
857 x 1142 (maximum) pixels. The ith test image displays the ith object view
of the database (i = 1, . . . , 12). The position of a view in the corresponding
test image is defined by a binary map, where the white pixels correspond to the
background and the black ones to the object view. Some examples are reported
in Figure 7. The size of the test images varies from 288 x 384 (minimum) to
857 x 1142 (maximum) pixels.

Differently from the images of GroundTruth-100-for-COIL, the objects im-
aged in the test pictures of MLDB2013 differ from the correspondent priors
not only in scale and in orientation, but also in pose (see for instance Figure
8). These issues make the detection of the objects of MLDB2013 harder than
that of the objects of GroundTruth-100-for-COIL.
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(a) (b)

(c) (d)

Fig. 7 MLDB2013: (a, c) two objects in the database, and (b, d) two images where these
objects have been searched for.

Fig. 8 MLDB2013: the prior (on left) appears in the test image (on right) in a different
pose.

5.3 Sensitivity Analysis

First of all we analyzed the dependency of our model on the values of the
parameters listed in Table 1 and on the color representation. We carried out
this study on a subset of COIL-100. In particular, for each object of COIL-100
we considered the two pictures I0 and I5, which respectively depicts the views
v0 and v5, where the subscript denotes at which the object has been imaged..
Then we took v0 as a prior and we used our model to segment v5 in the image
I5.
Since two consecutive shots of COIL-100 varies slightly, their pdf’s are quite
similar. In fact, the mean L2 distance between the pdf’s of v0 and v5 averaged
over the number of objects of COIL-100 is about 8.23 10−5. However, in general
two different views of an object have different colors and thus different color
pdf’s. We will systematically analyze the robustness of our method against
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changes of pose in Section 5.5. Here we pursue the sensitivity analysis with
respect to small changes of views, as described before.

We varied the parameters in Table 1 as follows: λ = 0.02, 0.05, 0.10; ∆t =
10, 50; finit = 5, 10; fs = 5, 10; d = L1, L2, EMD; φ = φ1, φ2, alg type = 1, 2.
We repeated the experiments with three different choices of D: (a) a rectangle
D0 with ∂D0 coincident with ∂S; (b) a square D1 positioned in the center of
S and with size s = 1

3 min(R,C) where R and C are the rows and columns of
S respectively; (c) D2 is a disconnected set composed by 4 rectangles, equally
spaced in S and with size 3R

16 × 3C
16 .

Finally, we repeated the experiments by using two different color representa-
tions, that we name RGB-3D and RGB-S.
In RGB-3D, the color is represented by a 3D vector whose components are the
red, green, and blue camera responses. The color pdf is approximated by a 3D
histogram of size 8×8×8, that we arrange as a 1D vector with 512 entries, in
order to compute the scalar ratio Q(x,Ω) of Equation (9).
In the RGB-S, the red, green and blue color responses are considered sep-
arately. The marginal pdf’s q0, q1, and q2 of the red, green and blue color
responses are computed and each qi (i = 0,1,2) is approximated with an his-
togram of N = 16 bins. The color pdf is thus represented by a 3 ×16 matrix,
whose ith row is the pdf qi (i = 0, 1,2). Therefore, in order to manage such a
vector representation, we replaced the Equation (8) by Equation (17) when φ
= φ1, and by Equation (18) when φ = φ2:

V (x) = λK(x) + φ′

1(x) ∀ x ∈ S (17)

V (x) = λK(x) +

2
∑

i=0

φi
2(x) ∀ x ∈ S (18)

where φ′
1 is obtained from φ1 by replacing Q(x,Ωt) with Q′(x,Ωt) :=

∏2
i=0

qi
Ωt

(h(x))

qi
p(h(x))

and φi
2 is obtained from φ2 by substituting q with qi.

Both the RGB-3D and the RGB-S histograms have been normalized to sum
up to 1.0.

Tables 2 and 3 report the values of the parameters providing the best
performances with and without smoothing u respectively. The overlap index
reported in these tables has been averaged over the number of searched views,
that in our case is 100. The results have been broken down by color repre-
sentation (RGB-3D and RGB-S) and by φ = φ1, φ2. The pdf’s of the overlap
index output from our sensitivity analysis are reported in Figure 10.
The overlap index X is generally very high and the differences between the
results obtained with and without smoothing are negligible. In some cases,
smoothing u makes the accuracy better as in Figure 9(first row), while in other
cases it provides worst results, because some pixels close to the boundary of
the object to be segmented are penalized and thus missed in the detection
process, as in Figure 9(second row). The choice of the parameter alg type giv-
ing the best results depends often on the object and on the context in which
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 COIL-100: Sensitivity analysis. (a, e) the frontal views of two objects; (b, f) two
images depicting the objects in (a, e); segmentation results by using the color representation
RGB-3D, φ = φ2 with smoothing (c, g) and without smoothing (d, h).

Color φ λ D ∆t finit d X
RGB-3D φ1 0.1 D0 10 5 L2 0.895
RGB-3D φ2 0.1 D0 10 5 L2 0.912
RGB-S φ1 0.1 D0 10 5 L1 0.898
RGB-S φ2 0.1 D0 10 5 L1 0.896

Table 2 COIL-100: Sensitivity analysis for alg type = 1 (no smoothing of u is applied).
The results are broken down by color representation and by φ (RGB-3D and RGB-S, φ =
φ1, φ2). The first columns report the sets of the values of the user parameters giving the
best overlap index, that is shown in the last column.

the object appears: for instance, when the object is homogeneous and the
background contains isolated pixels that have the same color of the object,
smoothing u is recommended; on the contrary, when the object is uniformly
colored and it includes thin parts (as in case of starred objects), smoothing
could remove the pixels of the wiry parts, making the detection worse.

In our experiments, the best performances are achieved by setting the color
representation to RGB-3D, φ = φ2, alg type = 1, λ = 0.1, ∆t = 10, d = L2

and D = D0 (see the last column of Table 2). However, these results are very
similar to those obtained with the other sets of parameters.

We note that for any choice of alg type, color representation and φ, the
best accuracy is obtained when the initial region D contains almost the whole
image and thus the object to be segmented. The worst results are obtained
for D = D1, i.e. when D is small and almost entirely included in the image
region occupied by object view to be segmented. In this case, the overlap
index is generally unsatisfactory because several objects of COIL-100 have an
homogeneous color and thus the termination criterion is satisfied before the
whole object view is retrieved.

In the experiments described in the next Subsections, we report the results
obtained by using the parameter set providing the best overlap index.
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Color φ λ D ∆t finit fs d X
RGB-3D φ1 0.05 D0 10 5 10 L2 0.889
RGB-3D φ2 0.05 D0 10 5 5 L2 0.904
RGB-S φ1 0.02 D0 10 5 10 EMD 0.876
RGB-S φ2 0.02 D0 10 5 10 L1 0.889

Table 3 COIL-100: Sensitivity analysis for alg type = 2 (smoothing of u is applied). The
results are broken down by color representation and by φ (RGB-3D and RGB-S, φ = φ1,
φ2). The first columns reports the sets of the values of the user parameters giving the best
overlap index, that is shown in the last column.
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Fig. 10 COIL-100: Sensitivity analysis. These plots show the pdf’s of the overlap index
obtained by setting alg type = 1(left) and alg type = 2(right). The results are broken down
by color representation and by function φ. The other parameters are set up as in Tables 2
and 3.

5.4 Robustness against Geometric Distortions

In principle, the description of the color of a region by its pdf is insensitive
to many geometric distortions, like changes of size, translations, in-plane rota-
tions. However, in practice, lowering or highering too much the size of the prior
makes the recognition hard: in the first case, a lot of visual details are lost,
while in the second one artifacts are introduced. Moreover, since the geometric
transformations mentioned above do not preserve the discrete nature of the
data, this is retrieved in the transformed image by an interpolation procedure
and thus the color pdf generally differs from that of the original image version.
Therefore, we studied how the accuracy of our model varies when the prior
appears in an image at a different scale and with a different orientation.

For this analysis, we considered a synthetic database built up from COIL-
100. More precisely, we took each frontal view v0 of the COIL-100 objects
as a prior and we resized and rotated the correspondent image I0 by linear
applications of the form

[

x′

y′

]

= α

[

cos θ sin θ
sin θ cos θ

] [

x
y

]

(19)

where [x, y] and [x′, y′] are the coordinates of the pixels in the image I0 before
and after the transform, α is a scale factor ranging in {0.5, 0.75, 1.0, 1.25,
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σ L2[·10−5] X I
0.50 2.77 0.950 0.983
0.75 4.86 0.945 0.978
1.00 7.31 0.928 0.963
1.25 8.65 0.917 0.953
1.50 9.52 0.910 0.946
1.75 12.5 0.874 0.910

Table 4 COIL-100: Robustness of the model against Gaussian noise. The second column
(PDF’s dist.) reports the mean value of the L2 distance between the pdf’s of the prior (a
frontal view) and of the noised view to be detected in the input image.

1.5} and θ is the rotation angle varying in {0, 45, 90, 135, 180, 225, 270, 315}
degrees.

Figure 11 reports the results we obtained. Figure 11 (a) shows the mean
L2 distances between the pdf of the prior and the pdf of its affine transformed
versions averaged over the number of views and transforms. We note that these
distances range over [0.0015, 0.00040], and they are higher when the image I0

is rescaled by 0.5. Figures 11(b) and (c) show the overlap index X and I for the
different transforms: on average X is 0.94325, while I is 0.98087. As expected,
the values of X and of I decrease when the pdf’s distance increases.

5.5 Robustness to Noise

We tested the robustness of our approach against Gaussian noise and against
changes of viewpoints of the prior.

We measured the robustness against Gaussian noise on a synthetic database,
built up from COIL-100. In particular, we took each frontal view v0 of COIL-
100 as prior, and we modified the corresponding image I0 by adding some
Gaussian noise. More precisely, we convolved I0 by a Gaussian filter with zero
mean and variance σ ranging in {0.5, 0.75, 1.0, 1.25, 1.50, 1.75}. Then we used
our model to detect the view v0 in each noisy version of the image I0.
Table 4 shows the values of X and I averaged over the number of tests: as for
the geometric distortions, the overlap index decreases when the L2 distance
between the pdf’s of the prior and of its noisy version increases. Also in this
case, the performances are satisfactory: on average X and I are 0.92053 and
0.95528 respectively.

In Subsection 5.3 we studied the performances of our algorithm on a subset
of COIL-100, where each frontal view v0 was a prior and I5 was the image to
be segmented. We observed that the view v0 is very similar to the view v5

imaged in I5, and thus the L2 distance between the color pdf’s of v0 and v5

is very small. To study the robustness of our method against changes of pose,
we repeated the experiments of 5.3 by considering v0 as a prior and I10, I15

and I20 as images to be segmented (see Subsection 5.2.1 for the notation).
Table 5 shows the mean overlap index we obtained. This table also reports the
accuracy output from the segmentation of the images I5’s already discussed in
Subsection 5.3. As expected, the overlap decreases by increasing the distances
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(a)

(b)

(c)

Fig. 11 COIL-100: Robustness against geometric distortions described by Equation (19).
(a) Mean L2 distance between an object view and its geometrical distortions; (b, c) Overlap
indices X and I.

between the pdf’s. On average, X is 0.88466. The last column reports the
percentage of object views that have been not detected by our algorithm.
This percentage is null for the poses rotated of 5 degrees with respect to the
references, while it is less than the 4% for the other cases.
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View [degree] L2 [·10−5]. X I M
5 0.823 0.931 0.959 0
10 1.236 0.903 0.929 0.04
15 1.602 0.869 0.894 0.03
20 1.911 0.835 0.858 0.03

Table 5 COIL-100: Robustness of our model to changes of views. The second column
reports the mean value of the L2 distance between the pdf’s of the prior (a frontal view)
and of the view to be detected in the input image.

5.6 Results on GroundTruth100-forCOIL and on MLDB2013

The experiments on COIL-100 and on the synthetic databases built up from it
showed very good performances. The object views were searched in images with
an almost uniform background in order to test our model in an almost ideal
framework. Such a configuration occurs in some applications, like in medicine
to isolate an anatomic part captured in fMRI or PET images and/or to de-
tect lesions in tissue images [14]. However, in most applications, the object to
be detected are displayed against a more complex and cluttered background,
as in GroundTruth100-forCOIL and MLDB2013. This makes the object seg-
mentation more difficult, because often the background includes parts visually
similar to the object to be detected and therefore false positives can occur.
An example is shown in Figure 12, that displays our segmentation results on
an image from GroundTruth100-forCOIL. The yellow COIL-100 toy-ship is
detected along with some yellow parts of the toy-car and of the box with the
white cover. False positives are returned also by segmenting the toy-cat and
the toy-car, while the other three objects of COIL-100 (the yellow box, the
sandwich, and the terracotta vase) are perfectly segmented. In this example
the false positives were generated by the similarity between an object view
and parts of other objects displayed in the image. Another example is shown
in Figure 13, where the false positives are some background regions with a
color similar to the prior.

In these experiments we added to our algorithm an heuristic rule to discard
regions with too big or too small area. In particular, let v be a view in the
database and let A(v) be its area. Let Ω be an image region with area A(Ω)
detected as an instance of v. Ω is retained as a solution if 0.25A(v) ≤ A(Ω) ≤
2.25A(v), i.e. when the minimum and the maximum scale factors at which an
object view can appear are 0.5 and 1.5 respectively.

The results are listed in Table 6 for GroundTruth100-forCOIL and in Table
7 for MLDB2013. While the mean value of I is still high, the overlap index
X is quite low, because many background parts visually similar to the priors
have been retained as solution (false positives). In MLDB2013 no object views
have been missed, while in GroundTruth100-forCOIL about the 4% has been
lost.
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Fig. 12 GroundTruth100-for-COIL: Detection of the object views displayed in a picture.

Fig. 13 MLDB2013: the prior (a yellow box, on left) has been correctly detected in the test
image (on right), but also some background yellow parts are returned as a solution. This
is because these background parts have a color pdf similar to that of the prior. Here the
RGB-3D color quantization has been used.
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Fig. 14 MLDB2013: The region segmented in the test image (on right) matches the prior
in the color pdf, but not in shape.

Measure Our Approach INRIA
X 0.529 0.212
I 0.808 0.892
M 0.046 0

Table 6 GroundTruth100-forCOIL: Detection results of our approach and of INRIA [2].

Measure Our Approach INRIA
X 0.607 0.519
I 0.692 0.651
M 0 0

Table 7 MLDB2013: Detection results of our approach and of INRIA [2].

5.7 Model Extensions

In this Section we give some hints to extend our model in order to enhance the
performences and to make it robust against object partial occlusions. Here we
only describe some possible modifications of the model, without going through
the details.

As pointed out in Section 1, color is widely used for object detection.
However, adding other features to the description of the object of interest
might improve the results: for instance, the segmented region shown in Figure
14 matches the color pdf of the prior, but not the shape of the prior. The
L2 distance between the pdf’s of the prior and of the output region is very
low (6.32262e-05), but about the 20% of the object area in the test image is
missed. Imposing constraints on the shape of the object to be segmented may
increase the performances. In particular, the active contour model we present
here could be extended by adding other terms, taking into account edges as
in [4] or other features, in order.

In the current implementation, occluded objects cannot be detected. One
way to solve this problem consists in to add a description of the parts of the
prior, for instance as suggested in [27]. In this framework, the prior is described
by its view v and by parts obtained by occluding v by several half-planes. Then
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the whole view v and its parts are described as usual by the pdf of a features
(e.g. colors) and the detection is carried out by searching for each view. A test
about the ovelap of the solutions is then carried out to retain only the most
reliable image regions.

5.8 Comparison with the classic approach

We compared our region based active contour model with the classic vari-
ational approach in [2]. Here we briefly describe this method, by using the
notation of its authors.
The method in [2], that we shortly call INRIA, segments a prior, in an input
image, by minimizing the following energy functional:

E(Ω) = D(q(·, Ω), qp(·)) (20)

where qp is the color pdf of the prior and q is the histogram of the segmen-
tation feature h in the evolving region Ω bounded by the active contour, and
D(q(·, Ω), qp(·)) is a distance between the pdf’s q and qp.

The pdf of a feature h over Ω is computed by a Gaussian kernel density
estimator as follows:

q(α,Ω) =
1

|Ω|

∫

Ω

gσ(h(x) − α) dx (21)

where |Ω| is the area of Ω, and gσ is a Gaussian kernel with variance σ:

gσ(h(x) − α) =
1

(2πσ2)0.5n
e−

(h(x)−α)2

σ2 .

The same formula is used for computing the histogram qp of the prior.
Several distance functions D can be used for matching the pdf’s qp and q.

In [2] the Euclidean norm is proposed, i.e.

E(Ω) =
1

2

∫

Rn

(q(α,Ω) − qp(α))2 dα. (22)

The evolution equation of the active contour is primed by a shape derivative
approach that avoids the conversion of the region functional into a boundary
functional:

∂ω

∂t
(x) =

1

|Ω|

∫

Rn

(q(α,Ω) − qp(α))[gσ(h(x) − α) − q(α,Ω)]dα (23)

Here ω is the active contour bounding Ω.
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View [degree] L2[·10−5] X M
5 0.823 0.857 0
10 1.236 0.830 0
15 1.602 0.804 0
20 1.911 0.776 0

Table 8 COIL-100: Robustness of INRIA model to changes of views. The second column
reports the mean value of the L2 distance between the pdf’s of the prior (a frontal view)
and of the view to be detected in the input image.

We implemented this approach by using the RGB-S color representation,
because using RGB-S instead of RGB-3D allows to break down the computa-
tional charge of the convolution in Equation (23). Therefore, we modified the
functional in Equation (20) as follows:

E(Ω) =
1

2

2
∑

i=0

∫

R

(qi(α,Ω) − qi
p(α))2 dα (24)

and thus Equation (23) becomes

∂ω

∂t
(x) =

1

|Ω|

2
∑

i=0

∫

R

(qi(α,Ω) − qi
p(α))[gσ(hi(x) − α) − qi(α,Ω)]dα (25)

and hi(x) is the ith channel response at x.
In Equations (24) and (26), qi indicates the pdf of a color response and it

is computed by the kernel density estimator in Equation (21). In [2] a regu-
larization term is added to guarantee the smoothness of the solution, so that
the evolution equation considered is

∂ω

∂t
(x) = λK(x) +

1

|Ω|

2
∑

i=0

∫

R

(qi(α,Ω) − qi
p(α))[gσ(hi(x) − α) − qi(α,Ω)]dα

where K is the curvature of the active contour, and λ is a strictly positive
parameters weighting the curvature contribution.

In our implementation of INRIA, we used the heuristic termination crite-
rion of our model with d = L2 to stop the curve evolution.

The parameters used by INRIA are σ, λ, D, ∆t, finit. We repeated the
sensitivity analysis of Subsection 5.3 to set up the values of the parameters
giving the best performances. In these experiments, σ varied in {0.5, 1.0, 1.5}.

The values of parameters providing the best performances are σ = 1.5, λ
= 0.02, D = D0, ∆t = 10, finit= 10. With these values, the best mean overlap
index is X = 0.8772.

Tables 6 and 7 show the results obtained on the databases GroundTruth100-
forCOIL and MLDB2013, while Table 8 reports the mean overlap index X
obtained on COIL-100 by varying the pose of the imaged object with respect
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to the prior. In all the cases, the overlap index of our approach is greater than
that of INRIA. INRIA detects in fact more false positives, especially on the
images of GroundTruth100-forCOIL. However no object views are missed (see
the values of M in Table 8).

Finally, we note that the computational complexity of the evolution equa-
tion of INRIA is greater than that of our model, because of the convolution
operation in Equation (25).

6 Conclusions

In this work we proposed a heuristic region based active contour model to
detect, in an input image, one or more regions that are visually similar to a
2D object of interest (said prior). The visual appearances of the image regions
as well as of the prior are described by the pdf of a photometric feature, in our
experiments the color. Our model is heuristic, because the evolution equation
of the input image region is chosen in order to equalize the pdf of the prior
and that of the evolving region, and it is not derived from the minimization of
an energy functional. The heuristic law we implemented, works on an initial
region by excluding or including image pixels so that the pdf of the output
region(s) equalizes pointwise that of the prior. Several mathematical functions
can be used to implement such a law. Here we discussed and compared two of
them. The experiments carried out on synthetic and real-world image database
showed good performances, making our model a good alternative to the classic
variational approaches. Our future work will include both the development of
an automatic technique to set up the model parameters, and the integration in
the model of other visual features, like for instance geometric properties of the
prior, as its shape. Clearly, using more features allows a better characterization
of the prior and thus a more accurate detection of it.
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