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Abstract In the last decades significant technological advances together with improved modeling capa-
bilities fostered a rapid development of geophysical monitoring techniques in support of hydrological mod-
eling. Geophysical monitoring offers the attractive possibility to acquire spatially distributed information on
state variables. These provide complementary information about the functioning of the hydrological system
to that provided by standard hydrological measurements, which are either intrinsically local or the result of
a complex spatial averaging process. Soil water content is an example of state variable, which is relatively
simple to measure pointwise (locally) but with a vanishing constraining effect on catchment-scale modeling,
while streamflow data, the typical hydrological measurement, offer limited possibility to disentangle the
controlling processes. The objective of this work is to analyze the advantages offered by coupling traditional
hydrological data with unconventional geophysical information in inverse modeling of hydrological sys-
tems. In particular, we explored how the use of time-lapse, spatially distributed microgravity measurements
may improve the conceptual model identification of a topographically complex Alpine catchment (the Ver-
migliana catchment, South-Eastern Alps, Italy). The inclusion of microgravity data resulted in a better con-
straint of the inversion procedure and an improved capability to identify limitations of concurring
conceptual models to a level that would be impossible relying only on streamflow data. This allowed for a
better identification of model parameters and a more reliable description of the controlling hydrological
processes, with a significant reduction of uncertainty in water storage dynamics with respect to the case
when only streamflow data are used.

1. Introduction

Building hydrological models able to accurately reproduce hydrological fluxes at a multiplicity of temporal
and spatial scales, as more frequently required in applications, is still a serious challenge. The main difficulty
is in the inability to adequately characterize the spatial variability of hydrological fluxes, due to the large
heterogeneity that characterizes the Earth’s subsurface [see e.g., Rubin, 2003]. Since this variability cannot
be assessed with the detail needed to represent the real, but unknown, spatial distribution of hydrological
fluxes, simplifying hypotheses on the spatial distribution of the hydraulic parameters are typically intro-
duced, which makes simulations highly uncertain. Traditionally, this difficulty has been addressed by using
simplified conceptual models, which require the definition of lumped parameters with values determined
through suitable inference procedures with streamflow as the most used, and often the only, observational
variable [see, e.g., Beven, 2011].

Since the works of Duan et al. [1992] and Gupta et al. [1998] the need to consider the inherent multiobjec-
tive nature of inference and the importance of assessing, and possibly minimizing, the epistemic error asso-
ciated to the conceptual model (i.e., the uncertainty that stems from a lack of knowledge about a given
phenomenon) emerged clearly together with a growing concern about the representativity of consolidated
believes [see e.g., Kirchner, 2006]. In particular, Efstratiadis and Koutsoyiannis [2010] and Beven and Wester-
berg [2011] indicated that epistemic uncertainty may be related to the noninformativeness (i.e., limited
effectiveness) of observational data in conditioning model parameters and structure. Furthermore, Efstratia-
dis and Koutsoyiannis [2010] and Linde [2014] evidenced that, in some cases, the additional information pro-
vided by the adoption of a multiobjective framework may lead to rejection of an inappropriate conceptual
model, which would appear as proper against a single criterion (i.e., the classical comparison of observed
and simulated water discharges).
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Indeed, several studies revealed the utility of conditioning hydrological models on multiple variables,
possibly state variables, in order to reduce uncertainties and improve prediction capabilities of the mod-
els. Additional data on hydrological variables other than streamflow, such as evapotranspiration [Immer-
zeel and Droogers, 2008] and snow water equivalent [Parajka and Bl€oschl, 2008], and most importantly on
state variables, i.e., soil water content [Demarty et al., 2005] and groundwater levels [Khadam and Kaluar-
achchi, 2004], have been shown to be very effective in constraining hydrological models. The growing
need to monitor hydrological processes in the shallow subsurface bursted in the last two decades the
development of hydro-geophysical techniques as a valuable tool for field-scale investigations capable to
reach a level of detail not achievable with traditional techniques (for a recent review, see e.g., Binley
et al. [2015]). This technological breakthrough prompted a wealth of applications in subsurface hydrol-
ogy and in monitoring hydrological fluxes in the Earth’s critical zone, chiefly at scales ranging from a few
meter to hundred meters. Conversely, applications are more difficult and less frequent at the catchment
scale, where the trade-off between resolution and volume of investigation still hampers the applications
[Rubin et al., 1998; Hubbard and Rubin, 2006; Binley et al., 2010].

Incorporating soft data, in the form of hydrological indexes or empirical criteria, which reflect both mod-
eler expertise and experimental knowledge of the system [see e.g., Yadav et al., 2007; Zhang et al., 2008;
Wagener and Montanari, 2011], may provide additional information useful to capture relevant hydrologi-
cal fluxes that cannot be resolved by calibrating on streamflow only [see e.g., Seibert and McDonnell,
2002]. However, given that soft data are only indirectly related to state variables, their inclusion should
be considered with caution, because they may mask and reduce the influence of primary data. In fact,
soft data and hydrological indexes cannot replace field measurements since effective constraining of
parameter estimates to physically plausible ranges can only be achieved when observations on state
variables are available [Gupta et al., 1999]. In this perspective we explore here how the use of micrograv-
ity measurements, as an integral measure of changes in the total water storage (including soil moisture,
groundwater and snowpack), may improve the identification of the main processes occurring in a com-
plex Alpine catchment.

The gravitational acceleration at any location on the Earth’s surface depends chiefly on the elevation
and the mass distribution around (beneath) the observation point. The high sensitivity and repeatability
achieved by modern relative gravity meters and the improvements in electronic technology allow the
detection of extremely small gravity variations (of the order of a few lGal, where 1 lGal51028 m s22)
[e.g., Torge, 1989; Blakely, 1995,]. Signals of this magnitude can be linked to phenomena associated with
crustal deformations in seismic or volcanic areas [Rymer, 1994], exploitation of geothermal or hydrocar-
bon fields [Sofyan et al., 2015], and water storage fluctuations [Hector et al., 2013]. In subsurface hydrol-
ogy, early studies showed that suitably designed microgravity networks can detect small variations of
the terrestrial gravity field associated with water table variations at the regional scale [see e.g., Mont-
gomery, 1971; Giorgetti et al., 1987; Pool and Eychaner, 1995; Pool and Schmidt, 1987; Pool, 2008; McCly-
mont et al., 2012]. Other studies [Lambert and Beaumont, 1977; Ferguson et al., 2007; Davis et al., 2008]
showed that microgravity measurements can be used to detect seasonal groundwater storage changes,
thereby providing valuable information for water resources management. Overall, these studies showed
that repeated microgravity measurements can be used to obtain relevant information on temporal
changes of water storage in the Earth’s subsurface at a scale useful for hydrological applications [Chap-
man et al., 2008; Creutzfeldt et al., 2008; Hasan et al., 2008; Creutzfeldt et al., 2010; Christiansen et al.,
2011a, 2011b; Herckenrath et al., 2012].

In this paper we discuss the value of repeated microgravity measurements in the identification of the con-
ceptual model for hydrological modeling at the catchment scale. To this purpose we assimilate microgravity
measurements into a distributed hydrological model of an Alpine catchment, and assess their value in the
identification of the conceptual model of the hydrological system. The overall objective is to show the
advantage of assimilating data from multiple sources in order to reduce the risk of obtaining good fitting of
streamflow data with the wrong conceptual model [see e.g., Kirchner, 2006].

The paper is organized as follows: Section 2 presents a description of the study area followed, in section 3,
by a short description of the hydrological and gravity models, and parameters identification procedure. The
main results on the identification of the correct conceptual model and on the uncertainty assessment of
hydrological variables are presented in section 4, and finally conclusions are drawn in section 5.
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2. Study Area and Field Campaigns

The study area is the Vermigliana catchment, a typical small Alpine catchment in the South-Eastern Alps, Italy
(see Figure 1). At the confluence with the Noce river, a tributary of the Adige river (the second longest river in
Italy; for details, see Chiogna et al. [2015]), the drainage area is of 104 km2, which reduces to 79 km2 at the
upstream streamflow gauging station located near the village of Vermiglio. Catchment’s morphology is com-
plex (Figure 2) with elevation ranging from 950 m a.s.l. to 3558 m a.s.l., and several steep lateral valleys and
ridges. The upper part of the catchment is characterized by snow and ice-capped mountains with steep rocky
slopes, whereas in the lower part the valley shows a U-shaped profile with steep forested slopes, and a flat and
narrow valley bottom. The geology is composed mainly of paragneiss, ortogneiss and schists, and large alluvial
fans occupy the valley floor at the confluence of the main tributaries [Dal Piaz et al., 2007]. A few stratigraphic
surveys are available for the main valley (information accessible via the WebGIS service of the Province of
Trento, http://www.territorio.provincia.tn.it), which indicate a paragneiss bedrock at about 5–20 m depth.

Climate is continental-alpine, with a mean annual temperature of 2:9
�
C and a mean annual precipitation of

1440 mm/yr that, in winter, falls as snow. Streamflow data recorded at the Vermiglio gauging station (see
Figure 2) show a typical nivo-glacial regime with significant seasonal patterns [Chiogna et al., 2014]: long
term observed streamflow averages are 4.6 m3/s and 1.2 m3/s during warm (from April to September) and
cold (from October to March) seasons, respectively. Nine meteorological stations, recording precipitation
and air temperature, are located within and in close proximity of the catchment. These stations are oper-
ated by the meteorological office of the Province of Trento (http://www.meteotrentino.it) and data are avail-
able with daily resolution since 1921, which increases to hourly frequency starting from late 70s.

2.1. Microgravity Surveys
In May 2009 a microgravity network composed of 53 nodes was established within the zone shown in Fig-
ure 1, which includes the Vermigliana catchment. Six microgravity surveys were conducted in the period
June 2009 to May 2011, with the objective of monitoring spatial and temporal variations of subsurface
water storage. An outcrop of unfractured metamorphic rock, rigid and stable over time, was identified
within the catchment and established as reference station. Due to its geological and morphological charac-
teristics, this formation is expected to undergo negligible seasonal water storage fluctuations, thus allowing
to disregard temporal gravity changes at the reference location. Measurements were taken using a LaCoste-
Romberg D-018 gravimeter equipped with a ZLS (Zero Length Spring) feedback. Before and after each field
campaign, the instrumental calibration function was verified against a calibration line established between
the absolute stations of Brunico and Novacella (Province of Bolzano), observing no significant deviations.

Data acquisition was conducted according to the classical step method, which consists in moving from sta-
tion to station following a multiple occupation sequence, so that each station is occupied at least three
times (1-2-1-2-3-2-3-4-3-. . .). In this way, the Lacoste-Romberg drift behavior could be tracked with accuracy
and could be modeled with a polynomial fitting [e.g., Chapman et al., 2008]. The stations, in conformity of
multiples of 3 and 5, have been tied to form a strongly structured network where each point is connected
to at least 4 other stations. The precise locations of the microgravity stations have been geo-referenced by
means of the differential GPS technique, and successive positioning has been eased by the installation of
sheet metal plates. Each field campaign lasted for about 1 week, therefore variations of water storage at
smaller temporal scales cannot be resolved.

The gravity data were tide corrected using the Tamura [1987] procedure, and the drift was removed
through polynomial interpolation, under the hypothesis that the signal is composed by the superposition
of a deterministic drift and an erratic component [Blecha, 2002]. Notice that barometric corrections were
not applied, since changes of barometric pressure were always less than 3 hPa between two successive
occupations of the same station. After correction, the data set was adjusted through the least-square proce-
dure that is discussed in details in Appendix A.

3. Methods

3.1. Hydrological Model
In the present work, a modified version of the distributed modeling system GEOTRANSF (for a description
of the hydrological kernel, see Majone et al. [2015]) (see also A. Bellin, et al., GEOTRANSF: A continuous
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coupled hydrological and water resources management model, submitted to Environmental Modelling &
Software, 2015) was adopted for simulating the hydrological cycle of the Vermigliana catchment. GEO-
TRANSF is built around two geomorphological units: the subcatchment and the channel. The former unit
identifies a portion of the catchment where hillslope processes dominate. The latter is the base element
composing the river network that connects the selected subcatchments to the control section, where
streamflow is simulated. A mass balance equation is written for each subcatchment under the assumption
that streamflow at its outlet depends nonlinearly upon water storage [Kirchner, 2009; Majone et al., 2010].

In order to make the model sensitive to water redistribution within the drainage area, the catchment has
been subdivided into two interconnected elements, the hillslope and the valley bottom, roughly corre-
sponding to convex and concave areas, respectively (see Figure 3a). In this way, the conceptual model iden-
tifies two storing mechanisms related to identifiable morphological characteristics [Winter, 2001; Savenije,
2010; Gharari et al., 2011; Nobre et al., 2011; Gao et al., 2014]. Hillslope is identified as the area with high
average slope where runoff is dominated by shallow subsurface flow and groundwater storage is small to
negligible. On the other hand, the valley bottom area, which in the work of Savenije [2010] is included in
the broader ‘‘wetland’’ landscape classification, is the area where water storage occurs chiefly as ground-
water. Note that, in general, a subcatchment is not necessarily formed of both landscape units (see the
schematic in Figure 3).

In the present study, landscape classification was performed by using the following mixed criterion. The cells
belonging to the hillslope unit were first identified as those characterized by slope and elevation higher than

Figure 1. Map of the catchment monitored during the microgravity campaigns with indicated the locations belonging to the microgravity
network. The boundaries of the Vermigliana catchment are drawn, together with the subdivision in 13 subcatchments (grey lines), and the
position of the stream gauging station (blue triangle). The inset shows the location of the Vermigliana catchment within the Italian
territory.
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30% and 1400 m a.s.l., respectively. This delimitation was successively refined by visual inspection of ortho-
photo images, and by comparison of the resulting delimitation with geophysical surveys (i.e., GPR and ERT)
that identified the depth of the bedrock along a number of cross sections of the valley bottoms.

The valley bottom unit identified with this procedure is shown in Figure 2, and has a surface area of about
1:8 km2, corresponding to 2.2% of the whole catchment area. An analysis of the influence that the selection
of the two landscape units may have on model results will be presented in section 4.2.3.

The setup of the conceptual hydrological model follows from the landscape classification presented above,
thus separating between processes occurring at hillslope and valley bottom areas. The structure of the
model is outlined in Figure 3b with the list of calibration parameters shown in Table 1, while water balance
equations are detailed in the supporting information. Besides this general version of the model, hereafter
referred to as M1, a second simpler model, M2, has been considered, in which the separation between the
two landscape units is removed. This simpler model serves as a reference in order to highlight the utility of
complementary data (i.e., microgravity time-lapse measurements) in improving the conceptual model, as
will be discussed in section 4.1.

3.2. Gravity Model
Changes in the local gravity field due to temporal variations of water mass stored within the catchment
have been modeled by coupling the hydrological model described in section 3.1 to a forward gravity
model. The catchment volume has been divided into a number of prisms with a squared base of size equal
to the DEM resolution, (10 m in the present work, Figure 2), and the same number of vertical layers as in the
hydrological model, including the snowpack (Figure 3b). Following Hasan et al. [2008], we assumed that
within each prism a change in aquifer thickness, dictated by the hydrological model, results in a vertical
translation of water table, which is assumed parallel to topographic surface. The total effect of water storage
variation is derived as the sum of gravity changes associated to all layers of each prism, thus accounting for
the effect of the three main water storage components: soil moisture in the rhizosphere and in the vadose
zone, groundwater, and snowpack.

For a generic prismatic subvolume, the gravity changes caused by water storage variations (Dg; ðm s22Þ)
can be expressed through the closed-form solution of Newton’s Law proposed by Nagy [1966], which reads
as follows:

Figure 2. (left) DEM of the Vermigliana catchment at 10 m resolution, position of microgravity and stream gauging stations used in this work, and (right) delimitation of the bottom val-
ley landscape unit.
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Figure 3. Schematic representation of the hydrological conceptual model M1: (a) subdivision of the catchment into hillslope and valley
bottom landscape units, and into three vertical layers (rhizosphere, vadose zone and aquifer); (b) water fluxes in the modified coupled
surface-groundwater version of GEOTRANSF (description of each flux term is reported in the supporting information).
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, and xi, yi and zi, i 5 1, 2 are the cor-

ner coordinates of the prism in a Cartesian reference system, whose origin coincides with the location of
the microgravity meter (see Figure 4b).

Equation (1) takes different forms depending on which hydrological state variable is considered [e.g., Leiri~ao
et al., 2009]. Gravity variations in the rhizosphere are only caused by changes in water content Dhr 5 hrðtÞ2
hrðtref Þ between times t and tref, such that Dq 5 qwDhr , where qw is the density of water. Conversely, gravity
changes due to snow are driven by the evolution of snowpack thickness due to accumulation and melting,
with z1;s 5 zðtref Þ and z2;s 5 zðtÞ being the vertical coordinate of the snowpack surface at time tref and t,
respectively. Here the effect of changes in snow density due to metamorphism is neglected, therefore Dq
has not the strict meaning of a density change, but it is assumed constant and equal to 150 kg m23 (i.e., the
density of damp new snow).

In the subsurface, both changes in water content and geometry should be considered. The thickness of the
two subsurface layers below the rhizosphere changes in time in dependence of the water table position
(see Figure 4b). The saturated layer is bounded from above by the water table, such that z1;a 5 zðtref Þ and
z2;a 5 zðtÞ are the depths of the water table at time tref and t, respectively. The overlying unsaturated layer
extends from the water table to the lower limit of the rhizosphere, z2;u, which is fixed in time. In particular,
z1;u is given by the minimum between water table depth at times tref and t: z1;u 5 min ðz1;a; z2;aÞ. In addi-
tion, Dq 5 qw huðtÞ2huðtref Þ½ � in the unsaturated zone, and Dq 5 qw va in the portion of soil affected by water
table variation (i.e., between z1;a and z2;a, see Figure 4b). Note that the portion of the aquifer not affected
by water table fluctuation between time tref and t does not contribute to gravity variations, since Dq 5 0
and geometry does not change. Similar considerations apply also to the snowpack. The term va represents
the volumetric air content which, in this specific case, is the volumetric fraction of soil that is depleted/filled
as a consequence of water table rise or fall between times tref and t, and is defined as va 5 /2huðtÞ for a
declining water table, and va 5 /2huðtref Þ for a rising water table.

To alleviate the burden of computing the geometrical term, the above forward gravity model has been
applied by using equation (1) only for the elements that satisfy the condition d2

c=ðDx21Dy21Dz2Þ < 4
[Leiri~ao et al., 2009], where dc is the distance between the cell’s center and the gravimeter, and Dx; Dy; Dz,

Table 1. List of the Calibration Parameters With Their Range of Variationa

Model Component Symbol Unit Range of Variation M1 M2b M1(a 5 0) M1(a50:5)

Snow Ts (8C21) 21.00 to 1.40 � � 1.07 0.89
Snow Tsm (8C21) 1.40–4.00 � � 1.44 1.62
Snow cm (mm8C21 d21) 2.00–8.00 � � 2.78 2.95
Evapotranspiration hlim 5.00E-2–4.00E-1 � � 3.51E-1 9.50E-2
Rainfall excess cs 1.00–5.00 � � 2.25 2.26
Rainfall excess ca 2.00E-1–1.00 � � 5.49E-1 5.86E-1
Subsurface flow qmax (m3 s21 km22 m21) 1.00E-1–1.10 � � 5.79E-1 4.90E-1
Subsurface flow m 1.00E-3–6.00E-2 � � 3.23E-2 3.31E-2
Subsurface flow cp 2.00E-2–5.00E-1 � � 1.33E-1 6.35E-2
Groundwater kb;h (d) 1.00E1.5–1.00E3.5 � � 329 222
Groundwater kb;v (d) 100–225 � – 124 191
Groundwater Ba

h (m) 5.00E-1–10.0 � – 1.41 9.38E-1
Groundwater Bv (m) 10.0–30.0 � � 10.7 16.6
Groundwater wh (m) 1.00E-4–3.16-3 � – 4.09E-4 2.07E-4

aSymbols ‘‘�’’ and ‘‘–’’ indicate whether the parameter is included or not in the model. The last two columns report the optimal
parameters of the model M1 for the objective functions (2) with a 5 0 and a 5 0:5, respectively. The parameters of the model M1 are
the following: Ts and Tsm: temperature thresholds for snow precipitation and snow melting; cm: snow melting factor; hlim: field capacity
of the rhizosphere; cs and ca: parameters of the rainfall excess model; qmax and m: parameters of the nonlinear reservoir mimicking the
dynamics of the unsaturated zone; cp: partition coefficient of subsurface flow; kb;h and kb;v : mean residence time of hillslope and valley
bottom aquifers; Bh and Bv: thickness of hillslope and valley bottom lower reservoirs; wh: groundwater flow velocity in the hillslope.
A detailed description of the model, including the above parameters, is provided in the supporting information.

bIn model configuration M2, Bh has been allowed to range from 5.00E-1 to 30.0, which is the entire range of variation of B as assumed
in model configuration M1.
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Figure 4. Gravity model: (a) generic prismatic subvolume and Cartesian coordinate system of the gravity model; (b) schematic of the two
subsurface layers below the rhizosphere with indicated the reference quantities used to evaluate the gravity change associated to falling
and rising water table conditions.
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are the side lengths of the prisms (Figure 4a). In the remaining of the computational domain the approxi-
mated solution proposed by MacMillan [1958] has been used in place of equation (1). To further reduce the
execution time, the code has been parallelized by using OpenMP directives. Finally, on the basis of a prelim-
inary sensitivity analysis, the computational domain was limited to the area within a radius of 5 km from the
gravimeter’s location, which leads to an error of the order of 1E23 lGal, therefore largely acceptable for
the purposes of the present study.

3.3. Calibration Approach
The main objective of the present work is to evaluate the benefit in terms of model identifiability of includ-
ing microgravity measurements as additional observational data supplementing streamflow measurements.
This is in line with the tenet that additional data are more effective in constraining model parameters if
they are of different type with respect to the currently used data [McLaughlin and Townley, 1996; Madsen
et al., 2010]. In this context, optimal parameters of the hydrological model have been inferred within a mul-
tiobjective framework, in which the efficiency index KGE, proposed by Gupta et al. [2009], has been used to
define two distinct metrics of model performance: one providing a measure of model capabilities in simu-
lating observed streamflow (KGEhydro), and the other in simulating observed gravity change (KGEgravi). Fol-
lowing a standard approach, these two metrics have been aggregated into a single objective function
KGEtot:

KGEtot 5 ð12aÞKGEhydro 1 aKGEgravi ; (2)

with the weighting factor a ranging from 0 to 1. The two metrics in equation (2) are defined as follows:

KGE 5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb21Þ21ðc21Þ21ðr21Þ2

q
; (3)

where b5ls=lo is the ratio between the means of the simulated (ls) and observed (lo) time series, c5rs=ro

is the ratio between the corresponding standard deviations, and r5covso=ðrsroÞ is the linear correlation coef-
ficient between observations and simulations (with covso being the covariance between simulated and
observed time series). The optimization of KGEtot has been performed by implementing the Particle Swarm
Optimization (PSO) algorithm, which is an evolutionary and self-adaptive search optimization technique pro-
posed by Kennedy and Eberhart [1995] for applications in information technology, and successively applied to
a variety of different fields, including hydrology [e.g., Gill et al., 2006; Castagna and Bellin, 2009; Majone et al.,
2010].

Table 1 lists the calibration parameters of the hydrological model with their range of variation. We note that
the hypercube search space explored by PSO has 14 and 11 dimensions in models M1 and M2, respectively.
The range of variation of calibration parameters has been chosen on the basis of previous hydrological
studies conducted with GEOTRANSF, for the parameters hlim, cs, and cp [Majone et al., 2012; Graveline et al.,
2014; Majone et al., 2015], or have been derived from the WebGIS service of the Province of Trento (e.g., /,
Bh, Bv). We applied the same prior ranges of variability for all parameters that the two models have in com-
mon, with the only exception of the total thickness of the lower reservoir (B). In M2 this parameter is defined
only for one landscape unit, and has been allowed to span the entire range of variation of B as defined in
model configuration M1.

4. Results

Numerical simulations have been performed with a daily time step in the period from 1 January 2000 to 30
May 2011, when streamflow data were available at the Vermiglio gauging station. The time window consid-
ered for model calibration extents from 1 January 2009 to 30 May 2011, thus including the time interval
covered by microgravity surveys (i.e., from 5 June 2009 to 30 Ma 2011, see section 2.1). Since the daily simu-
lation time step is larger than the residence time of water particles in the river network, flow routing has
been neglected in the streamflow generation process.

Between 15 December 2009 and 4 February 2010 streamflow measurements showed significantly high dis-
charge values, of the same order of magnitude as those observed in summer during snow melting. Since
these fluctuations occurred in the absence of relevant rainfalls and at low temperatures (mean, minimum
and maximum temperatures at Mezzana, 905 m a.s.l. were 24:1

�
C; 211:5

�
C and 2:4

�
C, respectively), it is
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likely that they are anomalies in the
data recorded by the ultrasonic device
measuring water level, and for this rea-
son this period has been excluded
from calibration.

For each microgravity station, temporal
variations of the gravity field have
been evaluated following the proce-
dure described in section 3.2, assuming
the date of the second survey (con-
ducted between 22 September 22 and
2 October 2009, see Table A1) as refer-
ence time for simulated snow and
aquifer depths, and water content in
the rhizosphere and unsaturated
zones. This campaign is used as refer-
ence because precipitation was mini-
mal in the period preceding, as well as
during, the survey, and consequently
no significant variations of storage are

expected (i.e., almost stationary conditions). In addition, the forward gravity response was not corrected by
removing the variation at the reference station, because it has been neglected according to the careful
selection of its location (see section 2.1).

We selected 8 stations out of the 53 gravimetric stations belonging to the monitoring network, all within
the Vermigliana catchment. Some other stations are located in this catchment, but too close to its bounda-
ries to be considered totally independent on the water storage changes in the nearby areas.

4.1. Analysis of Pareto Fronts
Ideally, the aim of a multiobjective optimization would be to identify a unique model and a unique set of
optimal parameters that simultaneously optimize all metrics quantifying the consistency of the model to
observational data. In practice, trade-offs between the metrics exist, mainly because epistemic and paramet-
ric uncertainties combine with measurement errors to make possible the situation in which the model is
not optimal for some, if not all, metrics [Schoups et al., 2005a]. An effective way to deal with this identifica-
tion problem is the analysis of the Pareto front (or nondominated front), whose shape helps in identifying
model structural errors and highlighting model limitations [e.g., Gupta et al., 1998; Schoups et al.,
2005a,2005b; Efstratiadis and Koutsoyiannis, 2010; Rye et al., 2012]. In this section, the compatibility of the
models M1 and M2 to the observational data is evaluated by comparing their Pareto fronts.

Following the conventional aggregation approach [see e.g., Madsen, 2000, 2003], optimization is performed
separately five times with the weight a of the objective function (2) that varies between 0 (only streamflow
data are considered) and 1 (only microgravity data are considered) with steps of 0.25. For each a value, the
PSO algorithm has been run with a population of 100 particles and for 500 iterations. These settings have
been shown to provide a satisfactory approximation of the continuous Pareto space.

Figure 5 shows the comparison between the Pareto fronts obtained with the models M1 and M2. The entire
set of dominated solutions of the model M1 (i.e., solutions not belonging to the Pareto front) is also pre-
sented. Substantial differences can be observed in the shape of the two Pareto fronts, suggesting different
capabilities of the two models to use the information contained in the two data sets. The Pareto front asso-
ciated to M1 shows two branches almost parallel to the metric axes, which intersect at the optimal value for
a50:5, where KGEhydro 5 0.90 and KGEgravi 5 0.75. In this situation, KGEgravi can be improved with a slight
reduction of KGEhydro, implying little trade-off between the two metrics, which is symptomatic of an appro-
priate model conceptualization. Conversely, the shape of the Pareto front belonging to model M2 calls for a
significant trade-off between the two metrics. With this model, in fact, it is impossible to identify a parame-
ter set resulting in values of KGEhydro and KGEgravi both close to their maximum value. In other words, with
M2 high values of KGEhydro can be obtained only with a set of parameters leading to negative KGEgravi, which
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Figure 5. Comparison between Pareto fronts obtained for model configurations
M1 and M2. The dominated space of solutions for model M1, and the best solu-
tions associated to a 5 0 and a50:5 are also shown.
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implies that good streamflow reproduction is obtained with a model that offers a very poor description of
groundwater storage. To obtain an acceptable, though suboptimal, simulation of groundwater dynamics
(i.e., KGEgravi 5 0.41) a dramatic reduction of KGEhydro to 0.64 should be accepted. This trade-off between the
two metrics, together with the low values of KGEgravi generally achieved with the model M2, is indicative of
a poor conceptualization of this model. In addition, both Akaike (AIC) and Bayesian (BIC) information criteria
[Laio et al., 2009], which penalize models with more parameters, resulted in favor of M1 for both hydrologi-
cal and microgravity metrics obtained with a50:5, as expected from the shape of the two Pareto front
shown in Figure 5.

A first consideration that can be drawn from this exercise is the advantage of combining data from multiple
sources in a multiobjective approach to identify improper or incomplete conceptualizations. The inad-
equacy of model M2 would not have been detected using only streamflow data, coherently with the fact
that parameter calibration in a single-objective framework has often enough degrees of freedom to mask
untenable model conceptualizations [Schoups et al., 2005a]. Also a comparative evaluation of model appro-
priateness would have been impossible, since in this case both models show high performance, with no sig-
nificant differences in the efficiency indexes: optimal value of KGEhydro equal to 0.92 and 0.93 for model M1
and M2, respectively. Conversely, the inclusion of microgravity data resulted in a better constraint of the
inversion procedure and in an improved capability to identify limitations of concurring conceptual models,
to a level that would be impossible relying only on streamflow data. Furthermore, we note how micrograv-
ity data are able to describe a large part of the catchment dynamics (much more than streamflow data
alone), as suggested by the fact that for a 5 1 model M1 provides good KGE values in reproducing both
streamflow and gravity changes (0.73 and 0.79, respectively). Finally, the results also indicate that a land-
scape classification as introduced in model M1 is an essential requirement in order to obtain a robust and
trustworthy partition of water fluxes between compartments (i.e., hillslope and valley bottom areas) of a
topographically complex alpine catchment.

4.2. Uncertainty Assessment
In the light of the above considerations, the following analyses have been carried out only with the concep-
tual model M1, focusing the discussion on the quantification of the improvements in modeling capabilities
that can be achieved by combining streamflow data with microgravity data.

In order to address this issue, we estimated and compared parameters and model output uncertainty for
two significant cases: 1) only streamflow data are available for model calibration (a 5 0), and 2) both stream-
flow and microgravity data are used for parameters inference with a balanced aggregated objective func-
tion (a50:5). The latter case has been chosen because it explores the central part of the Pareto front where
the break point is positioned (Figure 5), which is the combination that optimizes both efficiency metrics.

Among the solutions obtained during the exploration of the parameters space, only those with KGEtot differ-
ing less the 1% from the maximum value have been retained for the uncertainty analysis, as suggested in
previous studies [e.g., Madsen, 2000]. In the present study, the maximum values of KGEtot are 0.92 and 0.83
for a 5 0 and a 5 0:5, respectively (see the squared symbols in Figure 5), resulting in 6695 and 3269 param-
eter sets. This is preferable than selecting a fixed percentage of the total number of simulations, because
the adopted searching algorithm shows an intrinsic tendency to cluster around the optimal solution.

As a consequence of the clustering effect, the a posteriori pdf of the parameters, computed by weighting
each parameter’s value by its performance index [se e.g., Beven, 2011; Vrugt et al., 2009], is accurate around
the optimal point, but biased away from it, because of the exclusion of unlikely, yet possible, parameter
combinations [Rubin et al., 2010]. This is in some sense suboptimal, but still acceptable since a model that
behaves poorly in proximity of the optimal point is not expected to provide a better approximation away
from it, and our analysis is intended to assess the benefit of including microgravity data rather than identify-
ing the interval of confidence with the highest possible level of accuracy. In the light of these considera-
tions, we decided to focus the analysis on the 100% confidence bands resulting from the retained solutions,
and we introduce the average distance between the upper and lower limits of the confidence interval of a
predicted state variable or calibrated parameter, �d , as a metric of uncertainty. As a side comment, we note
that despite a standard operating procedure to perform uncertainty analysis of predictions is still debated
in the hydrological literature, the procedure adopted here is acceptable to provide a quantification of the
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advantages obtainable by combining
different sources of information in a
multiobjective framework, which is the
main scope of this work.
4.2.1. Model Parameters
Figure 6 shows the range of variability
of the parameters associated to the
retained solutions for both a 5 0 and
a50:5, together with the correspond-
ing two optimal parameter sets (i.e.,
the two sets corresponding to the solu-
tions depicted by square symbols in
Figure 5). The values of the parameters
are normalized with respect to their
range (see Table 1), such as to make
them ranging from 0 to 1. The dimen-
sions of the searching domain have
been fixed by means of preliminary
simulations conducted with a reduced
number of particles and increasing
parameter ranges, such as to minimize

the probability of excluding from the searching domain combinations of parameters leading to behavioral
solutions [Beven and Binley, 1992]. In both a 5 0 and a 5 0:5 cases, confidence bands are generally well dis-
tributed between 0 and 1, indicating a proper choice of their prior range of variation, although for a few
parameters optimality was located close to the boundary of the searching domain.

As shown in Figure 6 the majority of the parameters have a confidence band that is tighter for a 5 0:5 than
for a 5 0, as indicated by �d , which is about 45% smaller in the former case, on average. This effect is particu-
larly pronounced for parameters controlling hydrological fluxes in the valley bottom unit (kgw;v , Bv, and wh)
thus supporting the conclusion that for a 5 0:5 the model is constrained by microgravity measurements to
reproduce correctly water storage changes, which are significant in this portion of the catchment. As a con-
sequence, these parameters are better constrained than by streamflow only and vary within a narrower
range. Figure 6 shows also that for most of the parameters the two cases lead to non overlapping confi-
dence bands, and to different values at the optimum. This is in accordance with the concept of multiobjec-
tive equivalence of parameter sets along a Pareto Front [Gupta et al., 1998], and allows to identify to what
degree each parameter is sensitive to different aggregated objective functions. Significant is the case of
parameters that control water exchanges between unsaturated and saturated zones (e.g., qmax, Bh, and
Bv), as well as snow accumulation and melting processes (i.e., Ts and cm).
4.2.2. Water Storage Dynamics
In the present section we focus on the dynamics of the total water volume stored within the catchment,
which includes both subsurface and snowpack storage. The analysis has been performed on water storage
variations evaluated relatively to the simulated conditions of the second microgravity survey, centered on
27 September 2009. Optimal solutions and the associated confidence bands, obtained as envelop of all the
retained solutions, are shown in Figures 7a and 7b for hillslope and landscape units. Both cases a 5 0 and
a 5 0:5 have been considered.

In the hillslope unit, the simulated water volume variations are insensitive to a. Water storage shows a
remarkable seasonal pattern, characterized by a period of accumulation between December and May, fol-
lowed by a rapid depletion phase between May and late July due to snow melting. During the rest of the
year, the total water volume stored in the system is at its annual minimum and does not show significant
variations, except for minor fluctuations due to summer and autumn precipitation events. When streamflow
data are coupled with microgravity measurements, the amplitude of the confidence band reduces on aver-
age by about 26%, with respect to the case in which only streamflow data are used. Furthermore, in both
cases the confidence interval is significantly smaller (from 3 to 5 times, for a 5 0 and a 5 0:5, respectively)
than the standard deviation of water volume fluctuations associated with the best solution, suggesting a
good correspondence between the conceptual model M1 and the investigated processes.

Figure 6. Normalized range the parameters (shaded areas) for both a 5 0 and
a 5 0:5, obtained by retaining the parameter sets with an aggregated objective
function differing less than 1% from the optimal solutions. Solid lines indicate the
optimal parameter sets for both a 5 0 and a 5 0:5. See Table 1 and supporting
information for the description of parameters.
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Contrary to the hillslope, groundwater
dynamics in the valley bottom area is
very sensitive to a. The first important
difference between a 5 0 and a50:5, is
the amplitude of the confidence bands.
For a50:5 the dispersion around the
optimal value is limited (the average
amplitude of the confidence interval is
one order of magnitude smaller than
the standard deviation of the best solu-
tion). On the other hand, for a 5 0 the
confidence band is remarkably wider
(more than 4 times the standard devia-
tion of the best solution), suggesting
limited identifiability of model parame-
ters, when inversion is based only on
streamflow data. The average ampli-
tude of the confidence band declines
by 95%, from a 5 0 to a 5 0:5, which is
a much stronger reduction than for the
hillslope unit. The reason for this sub-
stantial difference is in the role of val-

ley bottom in the long term water storage, which is properly captured only when gravity data are added,
i.e., when additional information on storage dynamics are provided.

Water storage in the valley bottom, which varies seasonally for a 5 0, shows a tendency to accumulations
for a 5 0:5. This is a consequence of the combined affect of a particularly wet summer in 2010 and the high
storage capacity of the thick alluvial deposits of the valley bottom area that compensates for the depletion
of surface accumulation occurring during snow melting. This compensation did not occur in the hillslope,
since this portion of the catchment is dominated by a rapid transfer of water toward the valley bottom. Sim-
ilar considerations can be drawn from Figure 8, which shows simulated water table fluctuations, both for
hillslope and valley bottom units. In these cases, the narrowing of the confidence band achieved with a5

0:5 with respect to a 5 0 is about 39% for the hillslope and 93% for the valley bottom. Similarly to what
observed in Figure 7, water accumula-
tion in the valley bottom aquifer is
observed only for a50:5, while water
table dynamics in the hillslope unit are
similar for both a 5 0 and a50:5.
Finally, we note that for a 5 0 in some
solutions the water table invaded the
rhizosphere, eventually exfiltrating (as
indicated by the straight horizontal
segments in Figure 8), while for a50:5
this condition did not occurred, coher-
ently with what observed in the study
area.
4.2.3. Comparison Between
Observations and Simulations
Figure 9 shows the comparison between
observed and simulated streamflow time
series, together with the confidence
bands for both a 5 0 and a50:5. In both
cases the model reproduces with good
accuracy the observed streamflow, with
KGEhydro being slightly higher for a 5 0

Figure 7. Confidence bands (shaded areas) and optimal solutions (solid lines) of
modeled changes of water volume stored in the system for a 5 0 and a 5 0:5,
and for (a) hillslope and (b) valley bottom units. Confidence bands refer to all sol-
utions for which the aggregated objective functions differ by less than 1% from
the optimal solutions. Changes are calculated relatively to 27 September 2009.

Figure 8. Confidence bands (shaded areas) and optimal solutions (solid lines) of
modeled water table fluctuations for a 5 0 and a 5 0:5, and for (a) hillslope and
(b) valley bottom units. Confidence bands refer to all solutions for which the
aggregated objective functions differ by less than 1% from the optimal solutions.
Fluctuations are calculated relatively to 27 September 2009.
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than for a50:5 (i.e., 0.92 against 0.90,
respectively). Consistently with water
storage dynamics analyzed in section
4.2.2, the amplitude �d of the averaged
confidence band reduces from 0:95 m3=

s to 0:78 m3=s when microgravity data
are included (a 5 0:5). This leads to the
conclusion that microgravity data not
only allow for a better representation of
subsurface storage, which is important
when modeling is extended to contami-
nant transport, but they also reduce
uncertainty of streamflow.

Measured and modeled variations of
the gravity field are compared in Figure 10a. The comparison is presented only for the optimal solution
obtained with a50:5 and for all gravity stations used in this work: three located in the hillslope area (station
IDs 64, 66 and 81), and the remaining in the valley bottom unit (station IDs 02, 42, 46, 47 and 82, see Figure
2). Valley bottom stations show a good agreement between simulated and observed data, while hillslope
stations show larger deviations. In a few stations the model underestimates gravity variations. We attribute
this mismatch to the simplification, dictated by the lack of detailed stratigraphic data, of assuming the water
table moving parallel to the ground surface. This does not allow for a perfect reproduction of the complex
relationship between storage and gravity variations, which is unavoidable in a topographically complex
alpine catchment like the Vermigliana.

Seasonal variations are well reproduced except for station 82, located at the border between the hillslope and
the valley bottom units. Its position at the interface between two compartments may be the possible cause of
this mismatch. Moreover, measurements collected during the first microgravity campaign show appreciable
variability, most probably due to the rather intense precipitations occurred during the survey. For this reason,
the second, and not the first, survey was assumed as reference, as already discussed in section 2.1.

Figure 9. Optimal solutions (solid lines) and associate confidence bands of mod-
eled streamflow for a 5 0 and a 5 0:5. Confidence bands refer to all solutions for
which the aggregated objective functions differ by less than 1% from the optimal
solutions.

Figure 10. (a) Comparison between measured (symbols) and modeled (lines) gravity variations for gravity stations 02, 42, 46, 47, and 82 in
the valley bottom, and 64, 66 and 81 in the hillslope area. Gravity changes are calculated with reference to the second field survey, and
vertical bars indicate the survey periods. (b) Modeled gravity change for stations 42 and 66 as obtained for the reference configuration
and for wider and narrower valley bottom areas.
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We analyzed also the influence that the geometrical definition of the two landscape units may have on
modeling of microgravity changes. To this purpose, we ran the model using the optimal set of parameters
(a 5 0:5) but with different extents of the valley bottom unit. In particular, we considered both a narrower
(i.e., 0:8 km2, corresponding to the 1.1% of the catchment area) and a wider (i.e., 4:2 km2, corresponding to
the 5.3% of the catchment area) configuration, identified by imposing thresholds for slope and elevation
equal to 20% and 1250 m, and 50% and 1550 m, respectively. Results are presented in Figure 10b for sta-
tions 42 and 66, which are located within the valley bottom and hillslope units, respectively, for the three
examined configurations. Only the station 42 is sensitive to the extension of the valley bottom, while no sig-
nificant differences are observed for station 66. Furthermore, a noticeable deterioration of KGEgravi (eval-
uated for all considered stations) is observed, which decreases from 0.75 for the reference configuration,
down to 20.01 and 20.23 for the wider and narrower configurations, respectively. Conversely, KGEhydro is
equal to 0.90 in all three cases, thereby suggesting that streamflow is insensitive to the extension of the val-
ley bottom unit. Notice that a poor representation of storage processes in the valley bottom may not have
a detectable impact on the modeled streamflow, as in the present case (see section 4.1), but most likely it
will impair our ability to correctly model the amount of exploitable groundwater resources and solute trans-
port at the catchment scale. This analysis provides evidence of model sensitivity to a suitable conceptualiza-
tion of the catchment into different landscape units, and of the added value of microgravity measurements
to guide the definition of the conceptual model and the identification of areas where water storage proc-
esses are significant.

5. Conclusions

The added value of coupling streamflow data and time-lapse microgravity measurements in constraining the
simulation of water storage (the key state variable of hydrological modeling at the catchment scale) has been
evaluated in the Vermigliana catchment, a topographically complex Alpine watershed. The joint inversion of
hydrological and microgravity data has been performed by coupling a distributed hydrological model with a
gravity model. The conceptualization of the hydrological model considered separately hillslope and valley bot-
tom areas, with the latter providing much of the long term (i.e., seasonal) storage of subsurface water. In a
simplified version of the model, called M2 to distinguish it from the full model indicated by M1, the separation
between hillslope and valley bottom was removed. Both models were used in a multiobjective calibration pro-
cedure in which the Pareto fronts, obtained by changing the reciprocal weights of the objective functions of
hydrological and microgravity data, evidenced significant limitations of model M2 with respect to model M1,
thereby ruling out the simplest conceptual model. More importantly, the inversion showed that the inad-
equacy of model M2 is appreciable only when microgravity data are introduced. In fact, these two models pro-
vided very similar results when calibrated only with streamflow data, while microgravity changes were
adequately captured only with model M1. This analysis provided a clear evidence of the value of microgravity
data in improving the conceptualization of catchment functioning.

The value of microgravity data in reducing uncertainty was also evaluated. Confidence bands of the
main hydrological variables (i.e., the total water volume changes, water table fluctuations, and stream-
flow) were calculated for model M1 considering results obtained relying on streamflow data only, and
using the combination of streamflow and microgravity measurements. Results demonstrated a signifi-
cant dispersion in the first case, while tighter confidence bands were achieved after adding micrograv-
ity data, with the reduction of uncertainty being larger in the valley bottom (e.g., more than 90% for
water storage) than in the hillslope. This difference can be explained with the good constraining effect
of microgravity measurements in the valley bottom area, due to its larger water storage capability and
the prevalence of microgravity measurement points in this part of the catchment (due to logistic rea-
sons). This overall improvement was obtained without significant deterioration of streamflow simula-
tions, which also benefited from a narrowing of confidence bands. Moreover, parameter identifiability
increased, as suggested by reductions of the confidence intervals associated to model parameters up
to 45%.

The major practical limitation of the proposed approach lies in the difficulties in collecting accurate and spa-
tially distributed gravity measurements in a complex Alpine catchment with steep slopes and deep valleys.
Despite these difficulties, the analysis presented here showed that microgravity data provide significant
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added value to hydrological modeling, resulting in an effective constraint of the conceptual model, and a
reduction of both parameter and model uncertainty.

Appendix A: Microgravity Network Adjustment

The observation equation for a reading difference between two consecutive stations assumes the following
form

gi2gj2Dgij 5 vij ; (A1)

where gi and gj are the unknown gravity values at stations i and j, Dgij is the measured gravity difference
already corrected for Earth tide and instrumental drift, and vij is the (unknown) observational error.

Introducing approximate gravity values g0
i and g0

j , equation (A1) can be rewritten as

ðg0
i 1xiÞ2ðg0

j 1xjÞ2Dgij 5 vij ; (A2)

where xi and xj are the unknown corrections of the trial values.

We consider now that equation (A1) holds also for the approximate gravity values with the observational
error vij replaced by the error lij before the adjustment

g0
i 2g0

j 2Dgij 5 lij ; (A3)

therefore equation (A2) can be reduced to

xi2xj1lij 5 vij ; (A4)

or in matrix notation

AX 1 L 5 V ; (A5)

where A is the design (n 3 r) matrix (n is the number of observation equations and r is the number of
unknowns), X is the (r 3 1) vector of the unknowns to be estimated (i.e., the corrections to be applied to the
approximate gravity values), L is the (n 3 1) vector of the errors before the adjustment, and V is the (n 3 1)
vector of the residuals.

The optimal vector of the corrections X can be obtained by applying the least squares minimization concept
to equation (A5), which leads to

X52ðAT AÞ21AT L : (A6)

The a posteriori variance of unit weight referred to the whole network is given by

r2
0 5

V T V
n2r

; (A7)

whereas the variances of the adjusted gravity values for the i-th (i 5 1,r) station is

r2
ii 5 r2

0ðAT AÞ21I ; (A8)

where I is the identity matrix. The results of the network adjustments for each survey are summarized in
Table A1 (notice that this operation has been carried out on the entire network, i.e., 53 stations). No

Table A1. Survey Schedule and Network Adjustment Summary

Survey Measurement Period
Number of
Gravity Ties

Number of
Equations r0 (lGal) min rii (lGal) max rii (lGal)

1 05/06/2009 to 16/06/2009 139 403 4.9 1.7 2.6
2 22/09/2009 to 02/10/2009 137 401 4.7 1.6 2.5
3 06/05/2010 to 21/05/2010 133 400 4.5 1.5 2.4
4 19/06/2010 to 30/06/2010 133 400 4.4 1.5 2.4
5 17/09/2010 to 28/09/2010 133 401 4.6 1.6 2.5
6 18/05/2011 to 30/05/2011 134 402 4.1 1.4 2.2
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significant differences can be noticed in the values of r0 and rii calculated for the 6 field campaigns, indicat-
ing a good reliability of the measurements during the entire survey period. Moreover results suggest that,
when considering the worst case (i.e., rii52:6 lGal), gravity variations larger than 5:2 lGal have a statistical
significance of 95 %.
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