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Abstract 

 Several advances have been reported in the recent literature on divergence-free finite 

volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted 

to structured meshes. To retain full geometric versatility, however, it is also very important to 

make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such 

schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, 

momentum and energy density) are cell-centered, while the magnetic fields are face-centered and 

the electric fields, which are so useful for the time update of the magnetic field, are centered at 

the edges.  

 Three important advances are brought together in this paper in order to make it possible 

to have high order accurate finite volume schemes for the MHD equations on unstructured 

meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can 

be developed for unstructured meshes in two and three space dimensions using a classical cell-

centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic 

field on the faces. This is achieved via a novel constrained L2-projection operator that is used in 

each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic 

field becomes locally and globally divergence free. Second, it is shown that recently-developed 

genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on 

unstructured meshes to obtain a multidimensionally upwinded representation of the electric field 

at each edge. Third, the above two innovations work well together with a high order accurate 

one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO 

reconstruction procedure to be carried out only once per time step.  

 The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give 

us an efficient and easily-implemented strategy for divergence-free MHD on unstructured 

meshes. Several stringent two- and three-dimensional problems are shown to work well with the 

methods presented here. 
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I) Introduction 

 The magnetohydrodynamic (MHD) equations have become increasingly important in 

astrophysics, space physics and plasma physics. MHD is also the simplest approximation in a 

hierarchy of approximations for modelling ionized plasmas. Many novel computational insights, 

which are inapplicable to computational fluid dynamics, have to be developed for the numerical 

solution of the compressible MHD equations. Those insights can also be used in other more 

sophisticated approximations for modelling ionized plasmas. For MHD, the ionized plasma 

couples to the magnetic field which evolves according to Faraday’s law: 

0
t


 



B
E           (1.1) 

In the ideal MHD approximation, we have   E v B  , where B  is the magnetic field, E  is the 

electric field and v  is the fluid velocity. Since the magnetic field must be divergence-free at the 

initial time, i.e. 0 B  , Faraday’s law ensures that the magnetic field remains divergence-free 

for all time. Physically, this means that no magnetic monopoles can exist. Good numerical 

methods for MHD ought to retain this property. In a very influential paper, Brackbill & Barnes 

[22] showed that if a non-zero divergence of B is allowed to build up in the computational 

domain, it can lead to unphysical plasma transport parallel to the magnetic field. 

 To promote fidelity with the physics, several schemes have been devised that keep the 

magnetic field divergence-free. Fundamentally, all these methods use a staggered Yee-type [74] 

mesh where the normal components of the magnetic fields reside in the faces of the mesh and the 

electric fields reside at the edges of the mesh. Such schemes are also known as constrained 

transport schemes because they transport the magnetic field consistent with the divergence-free 

constraint. Early constrained transport schemes were devised without the use of higher order 

Godunov methods (Brecht et al. [23], DeVore [33], Evans& Hawley [41]).  

 Over the last decade or two, several effective one-dimensional Riemann solvers have 

become available for numerical MHD (Brio & Wu [24], Zachary et al. [75], Dai & Woodward 

[30], Ryu & Jones [62], Roe & Balsara [61], Cargo & Gallice [25], Balsara [3], Falle et al. [42], 

Gurski [45], Li [53], Miyoshi & Kusano [56]). This has resulted in several Godunov schemes for 

numerical MHD. Many of the earlier such schemes did not respect the divergence-free constraint 

(Brackbill& Barnes [22], Zachary et al. [75], Crockett et al. [29], Balsara [4], Balbas et al. [2]). 

Most such schemes resort to some strategy for reducing the unbounded growth of divergence in 

the magnetic field. Hodge projection approaches have been suggested (Zachary et al. [75], 

Balsara [4]) and the deficiencies of the Hodge projection have been catalogued by Balsara & 

Kim [10]. The Powell [59] source term formulation advects away any divergence that might 

build up, but it only does so by introducing source terms that destroy the conservation properties 

of the momentum and energy equations. The generalized Lagrange multiplier (GLM) approach 

by Dedneret al. [32] does provide conservation of momentum and energy, however  Mocz et al. 



 

3 
 

[57] present some problems where the method proves deficient. The GLM method has the 

further problem that the speed with which the GLM field needs to propagate has to be faster than 

the fastest speed in the problem. In some simulations, this top speed can grow by orders of 

magnitude as the simulation evolves, making it difficult to predict the top speed. Modern higher 

order Godunov schemes for numerical MHD tend to incorporate the divergence-free property for 

the magnetic field (Dai & Woodward [31], Ryu et al. [63], Balsara & Spicer [6], Toth [69], 

Londrillo & DelZanna [54], Gardiner & Stone [43], [44], Balsara [7], [8], [9], Lee [50]). 

Balsara& Spicer [6] suggested that the dualism between the components of the numerical flux 

and the electric field can be used to obtain the electric field at the edges of each zone. All higher 

order, divergence-free Godunov schemes for numerical MHD have incorporated this plan in one 

form or another. 

 A reading of the later sections of Balsara & Spicer [6] shows that the electric field has to 

be obtained in a multidimensional manner. Let us focus on the equations of MHD in flux form to 

understand the issue. 
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            (1.2) 

Here   is the mass density, P is the pressure,   is the total energy density, v , v , vx y z
are the 

velocity components and B ,B ,Bx y z
 are the components of the magnetic field. The pressure is 

related to the energy density via a constitutive relation for an ideal gas, 
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  2 21 / 2 / (8 )P      v B . The electric field components are given by 

 E v B v Bx y z z y   ,  E v B v By z x x z   and  E v B v Bz x y y x   . The x-flux in eqn. (1.2) 

governs the propagation of waves in the x-direction while the y-flux governs the propagation of 

waves in the y-direction. From these equations we see that it is appropriate to obtain the z-

component of the electric field from the seventh component of the x-flux when the waves (or 

shocks) are moving predominantly in the x-direction. By the same token, it is also appropriate to 

obtain the z-component of the electric field from the sixth component of the y-flux when the 

waves (or shocks) are moving predominantly in the y-direction. But for wave motions that are 

moving in an arbitrary direction, the one-dimensional Riemann solvers do not give proper 

guidance on which upwinded flux one has to choose in order to obtain the z-component of the 

electric field. Similar considerations apply to other components of the electric field. 

 Early thinking on this topic led to the suggestion that the dissipation from each direction 

should be doubled when evaluating the electric fields at the edges of the mesh (Gardiner & Stone 

[43], [44]). A gedankenexperiment-type question that is worth asking is: Why should the 

dissipation always be doubled? Realize that there are indeed one-dimensional Riemann  

problems in each of the faces that come together at an edge. However, at each edge of the mesh 

the one-dimensional Riemann problems interact strongly with one another. This results in a 

strongly-interacting state which in most cases overlies the edge. The desired state and 

corresponding numerical fluxes that prevail at an edge are the ones associated with this strongly-

interacting state. Simple numerical experiments for the Euler equations of compressible 

gasdynamics by Schulz-Rinne, Collins & Glaz [64] used one-dimensional Riemann solver 

technology to confirm that such a state indeed exists and evolves self-similarly as a function of 

time. In Balsara [15], [16], [19] we showed that the structure of the strongly-interacting state can 

be obtained by applying principles of self-similarity, entropy-enforcement and consistency with 

the multidimensional conservation law. These results were extended to unstructured meshes in 

Balsara, Dumbser & Abgrall [17] and Balsara & Dumbser [19]. It was also shown that the 

strongly-interacting state could be endowed with sub-structure, resulting in reduced dissipation 

(Balsara [16], [19], Balsara, Dumbser & Abgrall [17], Balsara & Dumbser [19]). The 

multidimensional Riemann solver designed in these works was given the name of MuSIC 

Riemann solver in Balsara [19]. The acronym stands for Multidimensional, Self-similar, 

strongly-Interacting state that is Consistent with the hyperbolic system. Further explanation for 

this acronym follows in the next few sentences. The multidimensionality of the MuSIC Riemann 

solver is self-evident, especially because it focuses on the strongly-interacting state that only 

occurs in multiple dimensions. The self-similarity pertains to the fact that the wave model used 

in such multidimensional Riemann solvers evolves self-similarly in space and time. That self-

similarity has also been used to cast the conservation law in similarity variables which leads one 

to an evaluation of fluxes that is truly consistent with the hyperbolic system. (For a video 

introduction to multidimensional Riemann solvers, please see  

http://www.nd.edu/~dbalsara/Numerical-PDE-Course.) Application of the MuSIC Riemann 

http://www.nd.edu/~dbalsara/Numerical-PDE-Course
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solvers to divergence-free structured mesh MHD problems has shown that they work very well 

(Balsara [16], [18]). If one uses the family of MuSIC Riemann solvers, the doubling of 

dissipation from Gardiner & Stone [43], [44] was not necessary any more. In addition, it was 

found that even for other systems, like the Euler equations, the MuSIC Riemann solvers provide 

greater isotropy in shock propagation and better preservation of contact discontinuities. They 

also permit larger CFL numbers to be used. The first goal of this work is to apply the MuSIC 

Riemann solvers to divergence-free MHD on unstructured meshes in two and three space 

dimensions. We wish to show that the advantages which were found for structured meshes carry 

over to unstructured meshes. The advantages include larger timesteps, more isotropic 

propagation of flow features and obviating the need to double the dissipation in the electric field. 

While the algorithms in this paper are explained for triangular elements in two space dimensions 

and tetrahedral elements in three space dimensions, the work is general and in principle extends 

also to other types of unstructured meshes. 

 Because MuSIC Riemann solvers are rather new, it helps to give further background 

information.  Such multidimensional Riemann solvers act at the vertices of the mesh, where the 

multidimensional flow structure becomes visible to the Riemann solver. Instead of two input 

states, the input states consist of states from all the zones that meet at that vertex. At any zone 

interface that separates two states, a one dimensional Riemann problem emanates, as always. 

However, at any vertex, all the adjacent one-dimensional Riemann problems interact to form a 

strongly interacting state. The strongly interacting state evolves self-similarly in spacetime. By 

evolving the structure of the strongly interacting state in a set of self-similar variables we show 

that the structure of the strongly interacting state can be elucidated.  

 Implementation-related details for multidimensional HLLC-type Riemann solvers are 

given in Section IV of Balsara [16] or Section IV of Balsara, Dumbser & Abgrall [17]. 

Implementation-related details for multidimensional Riemann solvers in self-similarity variables 

are given in Section VI of Balsara [18] or Section V of Balsara & Dumbser [19]. Section III of 

Balsara [16] gives details that are specific to MHD. In particular, eqns. (34) and (35) from 

Section III of Balsara [16] explain how to obtain edge-centered electric fields from the 

multidimensional Riemann solver. Consequently, if a two-dimensional Riemann solver is 

invoked at the edges of the mesh, we will naturally retrieve the electric field component along 

that edge. The facially-averaged fluxes for conserved variables are obtained by a higher order 

quadrature formula that uses contributions from the one-dimensional and multidimensional 

Riemann solvers. Please see eqns. (24) and (25) from Balsara [15] for further details regarding 

facially-averaged fluxes. 

 Second order Godunov schemes for MHD that explicitly incorporate the divergence-free 

reconstruction of the magnetic field have been presented in Balsara [7], [8]. At second order, and 

on structured meshes without adaptive mesh refinement (AMR), the need for designing an 

appropriate divergence-free reconstruction for the magnetic field is not very compelling. At 

higher orders, one has to pay careful attention to the divergence-free aspect of the magnetic field 
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(Balsara [9], Balsara et al. [12], [13], [14], Cockburn et al. [28], Li & Shu [52], Li et al. [51], 

Christlieb et al. [27]). All of the above-mentioned advances have been made for structured 

meshes. A recent preprint (Xu et al. [73]) has extended these advances to second and third orders 

on two-dimensional unstructured meshes. However, the formulation presented in the previous 

reference is quite cumbersome and it would be challenging to extend it to three-dimensions or 

very high order. In this paper we present a vastly simpler formulation that extends naturally to all 

orders on unstructured meshes in two- and three-dimensions. While various known schemes 

offer pathways to higher order accuracy, we prefer Weighted Essentially Non-Oscillatory 

(WENO) schemes because the method has an extensive and well-established literature (Shu & 

Osher [66], [67], Abgrall [1], Jiang & Shu [48], Balsara & Shu [11], Balsara et al. [13], Dumbser 

& Käser [39], Jiang & Wu [49], Hu & Shu [46]). The second goal of this work is to show that 

two- and three-dimensional globally divergence-free WENO schemes can be constructed for the 

magnetic field on unstructured meshes. Our formulation has been greatly influenced by the 

simplicity of the WENO algorithm of Dumbser & Käser [39] and that algorithm will play a 

prominent role in the design of the divergence-free scheme that is presented here. When 

invoking this algorithm in the rest of this paper, we will refer to it as the “classical WENO” 

algorithm because it is a rather simple zone-based unstructured WENO algorithm that can be 

easily implemented in an unstructured mesh fluid flow code with higher order reconstruction. 

 As the spatial order of accuracy is increased, one should also increase the temporal order 

of accuracy. Runge-Kutta methods (Shu & Osher [66], [67]) provide one strategy for increasing 

the temporal accuracy of any numerical method that has high spatial accuracy. However, the 

multi-stage nature of Runge-Kutta schemes makes them inconvenient for use in adaptive mesh 

refinement applications (Balsara [7], Dumbser et al. [38]). Consequently, one-step time-updates 

are favored (Dumbser et al. [36]). The so called Arbitrary DERivatives in space and time 

(ADER) methods provide such a time-stepping advantage (Titarev & Toro [70], [71], Toro & 

Titarev [72], Dumbser et al. [36], [37], Balsara et al. [13]). ADER schemes for MHD were first 

presented by Taube et al. [68]. The computational complexity of Runge-Kutta and ADER 

schemes have been cross-compared (Balsara et al. [14]) and the latter have been found to be 

superior. It is not the goal of this paper to design a new ADER scheme. However, a smaller third 

goal of this paper is to demonstrate that ADER-WENO schemes working with MuSIC Riemann 

solvers give us an effective strategy for high order divergence-free finite volume schemes for 

MHD on two- and three-dimensional unstructured meshes. 

 Please note that the formulation in this paper is a fundamentally novel departure from the 

way in which divergence-free ADER-WENO schemes for MHD have been designed and 

implemented in the past (Balsara et al. [13],[14]). In order to appreciate the differences, we 

provide Fig 1a which provides a schematic diagram of how a conventional divergence-free 

ADER-WENO schemes for MHD is implemented. Fig. 1b provides a schematic diagram of how 

the new divergence-free ADER-WENO scheme for MHD is implemented. First let us address 

Fig. 1a in this paragraph. In the next paragraph we will compare and contrast it with Fig. 1b. 
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Please focus on Fig. 1a. It is broken up into four steps – reconstruction; predictor step; corrector 

step and update. In Fig. 1a we only evolve the zone-centered fluid variables (mass, momentum 

and energy densities) and face-centered components of the magnetic field. (Please note that 

“face-centered components of the magnetic field” refers to the normal components of the 

magnetic field vector in each face. In this paper we distinguish between a vector, which always 

has three components, and a vector component, which only refers to a single number.) Imagine, 

therefore, that a previous update step has used facially-averaged fluxes of fluid variables to 

update the zone-centered fluid variables. Likewise, the same update step has used edge-averaged 

electric fields to update the face-centered magnetic field components. The reconstruction step 

now produces the traditional WENO reconstruction of the fluid variables. It also produces the 

higher moments of the magnetic field components within each face. To carry out a predictor step 

within a zone, we need all of the spatial variation of all of the fluid plus magnetic field variables. 

(Variation just refers to the higher order modes that are needed for higher order accuracy. For 

zone-centered fluid variables, these are just the modes provided by classical, zone-centered 

WENO reconstruction.) We have the spatial variation of all of the fluid variables within the 

zone, but we have to build the spatial variation of the magnetic field variables within the entire 

zone in order to design an MHD predictor step. In Balsara [9] we present a strategy for using all 

the face-centered magnetic field information (face-averages and higher order moments) to obtain 

a divergence-free spatial representation of the magnetic field within a zone to sufficiently high 

order. The ADER predictor step then takes over. It takes the spatial information within a zone 

and, with the help of the governing PDE, produces a space and time evolution of the PDE within 

each zone. The corrector step then invokes face-centered one-dimensional Riemann solvers as 

well as edge-centered two-dimensional Riemann solvers to obtain facially-averaged fluid fluxes 

and edge-averaged electric field components. We are now ready for another update step. 

 The algorithm described here is a little more complicated, but its eventual 

implementation on unstructured meshes makes it vastly simpler and more practical. Please focus 

on Fig. 1b now and please keep comparing it with Fig. 1a. The fundamental difference is that we 

retain the zone-averaged magnetic field vector as an auxiliary or helping variable. We hasten to 

add that these zone-averaged magnetic fields will be reset in the course of a timestep with the 

help of the correct, divergence-free, face-centered magnetic field components. The update step is 

mostly unchanged. The only difference is that the facially-averaged fluxes that could update the 

auxiliary zone-averaged magnetic field variables are also retained. As a result, the auxiliary 

magnetic field variables are also updated in the update step. This gives us an accurate set of 

auxiliary zone-averaged magnetic field variables which can now be used for making a classical 

WENO reconstruction of the magnetic field within a zone. This reconstruction is in general not 

divergence-free. But it is still sufficiently high order accurate. From this, the higher order 

moments of the magnetic field components can be evaluated within each face. Subsequently, 

using a novel constrained L2 projection technique, we utilize all the magnetic field information 

in the faces (face-averages and higher order moments) to modify the classical WENO 

reconstruction of the magnetic field so that it becomes locally and globally divergence-free and 
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consistent with the facial information. This process also resets the zone-averaged magnetic field 

vector, making it consistent with the facial magnetic field information at each timestep. Because 

of this invention, we are able to rely on the well-known classical zone-based WENO 

reconstruction, which is subsequently post-processed by  the new constrained L2 projection. This 

results in a considerable simplification of the algorithm, since it completely avoids the 

cumbersome face-based WENO reconstruction that was necessary in [73]. The zone-centered 

fluid variables are still reconstructed with classical WENO reconstruction. The ADER predictor 

step is unchanged. The corrector step, which involves one- and two-dimensional Riemann 

solvers is mostly unchanged. The only difference is that we store the facially-averaged magnetic 

fluxes along with the facially-averaged fluid fluxes. This enables us to update the auxiliary zone-

averaged magnetic variables in the update step. In the rest of this paper we will amplify on the 

algorithm that we have sketched our here. The reader is welcomed to keep revisiting Fig. 1b 

while reading the paper.  

 Please realize that the predictor, corrector and update steps are mostly unchanged in our 

new algorithm for divergence-free MHD. Thus the real focus of this paper is on a careful 

reworking of the classical, finite volume WENO algorithm to adapt it so that it can work on Yee-

type meshes. Taken in that sense, this paper not only extends WENO to divergence-free MHD 

on unstructured meshes, but it also goes much further. The higher order WENO reconstruction 

reported here can touch all of computational electromagnetics. The other major focus of this 

paper is to show that multidimensional Riemann solvers play a crucial role in all divergence-free 

strategies applied to Yee-type meshes. Thus innovations made in MuSIC Riemann solvers are 

broad enough that they should also touch all of computational electromagnetics. While the focus 

of this paper is on WENO schemes, it is also realized that all finite volume type methods, like 

Discontinuous Galerkin and PnPm methods, will also benefit from this work. 

 The plan of the paper is as follows. In Section II we describe how the problem is set up 

and how the MuSIC Riemann solver is to be used for the time-update of the facial magnetic field 

components. In Section III we describe the role of zone-averaged auxiliary magnetic fields 

within each zone and show how they help in keeping the WENO reconstruction simple. In 

Section IV we describe how the results from the previous section are to be used to produce a 

divergence-free reconstruction of the magnetic field. Section V shows how the process of 

obtaining a divergence-free magnetic field can be automated on a computer at all orders using a 

constrained L2 projection method. Section VI presents a step-by-step synopsis of the algorithm 

that is suitable for computer implementation. Section VII presents accuracy analysis in two- and 

three-dimensions, showing that the schemes meet their design accuracy. Section VIII presents 

several stringent test problems. Section IX presents conclusions. 
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II) Problem Setup and Use of MuSIC Riemann Solver for Updating Magnetic Fields 

 We divide this section into two parts. In Sub-section II.a we describe the problem setup 

when triangular elements are used in two-dimensions. In Sub-section II.b we describe the 

problem setup when tetrahedral elements are used in three-dimensions. 

II.a) Problem Setup and Use of MuSIC Riemann Solver on Triangular Elements 

 The mesh is initialized by endowing each face of each triangle with a unit normal vector. 

Please see 
1 2 3PP P  in Fig. 2. The unit normal vector does not have to be outward-pointing 

relative to any triangular element, because we will presently describe a strategy for obtaining the 

outward pointing normal relative to any triangle. Fig. 2 also shows that the lengths of the faces 

are given by L1, L2 and L3. If the coordinates of the vertices of the triangle in question are known, 

the lengths of the faces are easily found. The unit normal vectors can be written in component 

form. For example, for  1 1 1,x yn nn  we can write 

2 1 2 1
1 1

1 1

   ;   x y

y y x x
n n

L L

 
           (2.1) 

This allows us to define a parametric coordinate, 
1l , in the segment 1 2PP  such that 

 1 1 1/ 2, / 2l L L  . The coordinates of the segment 1 2PP can be parameterized as 

   

   

1 1 1 1 1 1 1 1

1 1 2 1 1 2

       ;            ;

where     / 2    and    / 2

C y C x

C C

x l x n l y l y n l

x x x y y y

   

   
      (2.2) 

Here  1 1,C Cx y  is the midpoint of the segment 1 2PP  . The normal component of the magnetic 

field in face 1 2PP at any time 
nt can then be defined by 

    
1

1

/2

1 1 1 1 1

1 /2

1
, ,

L

n n

L

B x l y l t dl
L



  B n         (2.3) 

Here  , ,x y tB  is a divergence-free magnetic field vector at the space-time point  , ,x y t .  

Notice that
1

nB is just the line-averaged value of the magnetic field component integrated over the 

segment 1 2PP . In this fashion, the magnetic field components can be defined at all the faces of 

the triangular elements. Eqn. (2.3) serves to define the magnetic field component at any face of 

the triangle. These facially-averaged magnetic field variables are the evolutionary variables of 

our divergence-free MHD scheme. Please note that only the normal components of the magnetic 

field are defined at the zone-faces. I.e., we distinguish between the magnetic field component 
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and the entire magnetic field vector. In the rest of this paper we will meticulously refer to the 

facially-averaged magnetic field components, which are given by specifying one numerical value 

in each of the faces of each element. We will also feel a need to refer to the magnetic field, 

which consists of a vector that is specified at each point in space. 

 When implementing this algorithm it would help if one can check that the magnetic field 

components that have been initialized at the zone faces are indeed divergence-free on an 

element-by-element basis. To do that, we need the concept of an outward-pointing unit normal 

relative to an element. In the following we denote the simplex control volumes ( triangles in two-

dimensions and tetrahedra in three-dimensions) by iT  and the faces (line segments in two-

dimensions and triangles in three-dimensions) with 
jF . The set of faces that defines the control 

volume iT  is denoted by iF . Then the outward pointing unit normal vector of a face 
j iF F  

relative to element iT  is denoted by 
ij ij j n n , where the sign function 

ij is given by 

 ( )ij j i jsign   x x n . Here, ix and 
jx denote the barycenter of the control volume iT and of 

the face 
jF , respectively. With that convention, at any time 

nt the discrete divergence-free 

condition for the edge-averaged normal components of the magnetic field for a general element 

iT , like the one sketched in Fig. 2, can be written as 

0, .
i

n

ij j j i

j

B L T


 
F

         (2.4) 

It might also be useful to check that the previous identity is satisfied up to machine accuracy at 

various times during the course of a simulation. We also make an implementation-related 

suggestion. Each control volume iT only needs to retain one bit of information for each of its 

faces (3 faces in two-dimensions and 4 faces in three-dimensions) that tell it whether the unit 

normal vector in each of its three faces is outward- or inward-pointing, in order to store the sign 

function 
ij .With just this little extra information, one can evaluate eqn. (2.4). As we can see, 

the memory overhead and increased computational complexity for supporting a divergence-free 

formulation is minimal. The calculation just needs to be set up properly. 

 In Fig. 2, all the states that come together at a vertex can be provided to the MuSIC 

Riemann solver. The multidimensional MuSIC Riemann solver will, in turn, produce a z-

component of the electric field which can be used to update the three magnetic field components 

in the faces of the element. For two-dimensional calculations, it is best to retain the convention 

that the z-component of the magnetic field points out of the plane of the paper shown in Fig. 2. 

Let 1/2

1

n

zE   , 1/2

2

n

zE   and 1/2

3

n

zE   be the time-averaged electric field components at the vertices 
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P1, P2 and P3 of triangle iT  depicted in Fig. 2. Then, the time-update from time 
nt  to time 

1n nt t t    for the magnetic field components can be written as: 

1/2 1/2

2 11

1 1

1

1/2 1/2

3 21

2 2

2

1/2 1/2

1 31

3 3

3

   ;   

   ;   

n n

z zn n

n n

z zn n

n n

z zn n

E E
B B t

L

E E
B B t

L

E E
B B t

L

 



 



 




 


 


 

       (2.5a) 

It is very easy to show that if the divergence-free condition in eqn. (2.4) is satisfied at time 
nt  

then it will also be satisfied at time 
1nt 
 . The update in eqn. (2.5a) is easily implemented by 

visiting each face 
jF and using the z-components of the electric field computed by the MuSIC 

Riemann solver on the left and right node of the oriented face 
jF  as follows:  

1/2 1/2

, ,1 ,   

n n

z r z ln n

j j

j

E E
B B t

L

 




          (2.5b) 

where ( )l l j denotes the number of the left node lP and ( )r r j the number of the right node 

rP of the oriented face 
jF . Since zE can be either obtained from the seventh component of the x-

flux of the MHD equations or from the sixth component of the y-flux, we simply take an 

arithmetic average of the two to define zE  uniquely in eqn. (2.5b). This completes our 

description of the divergence-free time update of the face-averaged magnetic fields on two-

dimensional unstructured meshes. 

 In Xu et al. [73] a divergence-free algorithm was presented that only relied on the 

magnetic field components at zone faces. I.e., the zone-centered magnetic field plays no part in 

the timestep of that algorithm. Making that choice also meant that one has to use two different 

reconstruction steps: the first being defined on edge-based stencils, like the one used in [21] for 

the high order reconstruction of velocity fields from face-averaged normal velocity components 

on general unstructured meshes, and the second one using cell-based stencils, as the unstructured 

WENO finite volume reconstruction proposed in [39]. On an unstructured mesh, this can slow 

down the computation. The goal of this paper is to dramatically simplify the high order 

divergence-free reconstruction procedure for the magnetic field. For that, we retain the zone-

averaged magnetic field in each zone as an auxiliary (or helping) variable. However, an intricate 

rearrangement of the algorithm is used that enables us to overwrite the zone-averaged magnetic 

field at the start of each timestep by using the facially-averaged magnetic field components. The 
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detailed strategy for doing this is described in Section III and mathematically prescribed in 

Section IV. In Section V we show how the same strategy can be automated for use in computer 

code at all orders of accuracy. We just state here that after the zone-centered WENO 

reconstruction step and before the start of each ADER predictor step we overwrite the zone-

averaged magnetic field at the center of the triangular zone shown in Fig. 2 given by n

iB . The 

motivation for arranging the algorithm this way is also presented in Section III.  

 It is also useful to introduce the reader to some of the issues involved in making a 

divergence-free reconstruction of the magnetic field. At a time 
nt  we start with the facially-

averaged magnetic field components, see eqn. (2.3). Say we want fourth order accurate 

reconstruction.  By the time the facial reconstruction is completed, we want the magnetic field 

component in the segment 1 2PP of Fig. 2 to have spatial variation given by 

       
2 2

2 2 3 31 1
1 1 1 1 1

31 1

2 12 6 20

n n n n nL L
B B B B B      

   
           

   
   (2.6) 

In the above equation,   is a local coordinate in the face being considered and has the range 

 1 1/ 2, / 2L L . Notice that the use of the basis polynomials above ensures that the mean value of 

the magnetic field in the face is preserved. In practice, other kinds of orthogonal modal basis 

polynomials can also be used, like the classical Legendre polynomials. The first step in the 

reconstruction process consists of obtaining the first, second and third moments of eqn. 

(2.6).(The number of moments that are retained. In eqn. (2.6) depends on the desired order.) In 

other words, we wish to obtain  1

nB ,  2

1

nB and  3

1

nB respectively, as needed. Section III 

and Sub-section IV.a will describe how this is done. With the use of appropriate basis 

polynomials, eqn. (2.6) also illuminates the path to even higher orders. Equations that are 

analogous to eqn. (2.6) can be obtained for all the faces of the triangular element shown in Fig. 2. 

 Realize now that the first step from the previous paragraph only gives us the magnetic 

field component and its higher order moments in each of the three faces of a triangle. In order to 

provide input states to a Riemann solver, we want the magnetic field to be suitably reconstructed 

all over the zone. Furthermore, it helps if that reconstructed magnetic field is divergence-free 

everywhere within the triangular zone shown in Fig. 2. Such a divergence-free magnetic field 

will exactly match the magnetic field component and their variation within the faces of the 

triangles; thereby avoiding the formation of magnetic monopoles on the mesh. This is the second 

step in the reconstruction process and will be thoroughly described in Sub-section IV.a. Section 

V will subsequently show how this procedure can be automated on a computer at all orders. 

II.b) Problem Setup and Use of MuSIC Riemann Solver for Tetrahedral Elements 
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 The left panel from Fig. 3 shows an element from a tetrahedral mesh. Each triangular 

face has a unit normal vector. As before, the unit normal vector does not have to be outward-

pointing, because we will soon describe a strategy for obtaining the unit outward-pointing 

normal for each tetrahedron. The unit normal vector can be written in component form. For 

example, for  1 1 1 1, ,x y zn n nn  we can write  

1 2 1 3
1

1 2 1 3

PP PP

PP PP





n           (2.7) 

The right panel from Fig. 3 shows that within each face, we can also define two unit vectors that 

reside entirely within that face. Notice that the unit vectors 1ξ , 1η  and 1n  in 1 2 3PP P  form a 

right-handed coordinate system. In component form we can write  1 1 1 1, ,x y z  ξ and 

 1 1 1 1, ,x y z  η and distances measured along those two vectors constitute a local coordinate 

system,  ,   , within 1 2 3PP P  .  Let  1 1 1 1, ,C C CC x y z  denote the centroid of the 1 2 3PP P  and 

let the  ,   coordinate system within this triangle be centered at the centroid. The area of the 

1 2 3PP P  is then parameterized by 

     1 1 1 1 1 1 1 1 1,   ;  ,   ;  ,C x x C y y C z zx x y y z z                           (2.8) 

The facially-averaged normal component of the magnetic field in 1 2 3PP P at time 
nt can then be 

defined by 

      
1 2 3

1 1

1

1
, , , , , ,   n n

P P P

B x y z t d d
A

       


  B n      (2.9) 

Here 1A  is the area of 1 2 3PP P  and  , , ,x y z tB  is a divergence-free magnetic field vector at the 

space-time point  , , ,x y z t . Notice that 
1

nB  is the area-averaged magnetic field component 

integrated over 1 2 3PP P  . In this fashion, the magnetic field components can be defined at all the 

faces of the tetrahedral elements. Eqn. (2.9) serves to define the magnetic field component at any 

face of the tetrahedron. These facially-averaged magnetic field variables are the evolutionary 

variables of our divergence-free MHD scheme. In practice, a magnetic vector potential is used to 

initialize a divergence-free magnetic field at the faces of the computational mesh, see Balsara [8] 

for more details. 

 When implementing this algorithm it would help if one can check that the magnetic field 

components that have been initialized at the zone faces are indeed divergence-free also at the 

discrete level. To do that we use the same sign function 
ij  as defined before for triangular 
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elements in two space dimensions. With that convention, the discrete divergence-free condition 

at any time 
nt  for the face-averaged normal components of the magnetic field on the tetrahedron 

shown in Fig. 3 can be written as 

1 1 1 2 2 2 3 3 3 4 4 4 0n n n n

i i i iB A B A B A B A              (2.10) 

 The multidimensional MuSIC Riemann solver is designed to work in two dimensions. It 

returns two fluxes in the two-dimensional plane within which it is invoked. Those two fluxes can 

also be used to yield the electric field component in a direction that is orthogonal to the plane in 

which the multidimensional Riemann solver is invoked. For that reason, in Fig. 3, we specify a 

unit vector, generically called ke  within each edge kE of the tetrahedron. The update of the 

magnetic field component within each face takes place in the following three steps: 

1) Within each edge, visit all the zones around that edge and collect all the corresponding states 

for input to the MuSIC Riemann solver. Since the MuSIC Riemann solver accepts all input states 

with a counterclockwise orientation (Balsara&Dumbser [19]) it helps that each edge in the left 

panel of Fig. 3 has a pre-specified orientation. From the output of the MuSIC Riemann solver, 

we can obtain all the fluxes and electric fields at that edge. The fluxes can then be distributed to 

all the participating faces of the mesh. The electric field component is stored at the edge. This 

operation loops over all the edges of the mesh. 

2) For each oriented face
jF we first pick the corresponding unit normal

jn . For each edge 

kE spanned by the unit vector unit vector ke  we define a sign function 
'

jk  that has the value +1 

if the edge is oriented counterclockwise relative to the outward pointing unit normal, otherwise it 

has the value -1. The right panel in Fig. 3 shows such an example where the unit vectors in all 

the edges have a counter-clockwise orientation relative to the unit outward-pointing normal 1n .  

3) Let 1/2n

kE   be the electric field component that has been averaged over one space and one 

time direction along the unit vector ke , see the right panel of Fig. 3. The spatial averaging of 

those electric field components are done along the edges that they belong to. The time-averaging 

is done from time 
nt  to time 

1n nt t t   . At higher orders, this space-time averaging turns into 

a suitable quadrature in space and time. If we denote the set of edges that constitutes the face 

jF by 
jE , then the temporal update of the magnetic field component within a face 

jF reads  

1 ' 1/2

j

n n n

j j jk k k

kj

t
B B E L

A
 




  

E

        (2.11a) 

As a particular example, for the situation shown in the right panel of Fig. 3 we simply have  
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 1 1/2 1/2 1/2

1 1 1 1 2 2 3 3

1

n n n n nt
B B E L E L E L

A

   
         (2.11b) 

Proper application of this algorithm will yield a divergence-free update of the magnetic field on 

all the tetrahedral elements. 

 To implement the algorithm described in this paper, we need to obtain an adequately high 

order representation of the zone-averaged magnetic field within the tetrahedral zone shown in 

Fig. 3. This can be done by asserting that the zone-averaged magnetic field at the center of the 

triangle is given by n

iB  and is treated as an auxiliary variable. As with the two-dimensional case, 

these zone-averaged magnetic fields will be overwritten by using the facial magnetic field 

components after the WENO reconstruction but before the ADER predictor step. The detailed 

strategy for doing this is described in Section III and mathematically prescribed in Section IV. In 

Section V we show how the same strategy can be automated for use in computer code at all 

orders of accuracy. 

 We now wish to build the analogue of eqn. (2.6) in two-dimensions. In this context, 

realize that on a triangular face one should best use the orthogonal Dubiner basis polynomials 

given in [35],[65],[60], which is also what we have implemented in our computer code, but to 

give a quick and more concise overview of the basic ideas, we show simply Taylor monomials in 

the following. Before we do that, we need a quick strategy for evaluating the integral of 
p q  over a triangular face like the one shown in the right panel of Fig. 3. Here “p” and “q” are 

usually small non-negative integers. Such a strategy is presented in Section IV.a of Balsara & 

Dumbser [19]. We denote the moments over 1 2 3PP P   with the following compact notation 

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

0    ;       ;       ;

    ;       ;       ;   etc.

P P P P P P P P P

P P P P P P P P P

P P P P P P P P P

P P P P P P P P P

I d d I d d I d d

I d d I d d I d d

 

  

       

        

  

  

  

  

  

  

  

  
 (2.12) 

The analogue of eqn. (2.6) in two-dimensions is now given up to fourth order by 

     

     

 

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

1

1 1 1 1

2 2 2 2 2

1 1 10 0 0

2 3

1

,

1 1
              

2 2

1
              

6

n n n n

P P P P P P P P Pn n n

P P P P P P P P P

P P Pn

P P

B B B B

I I I
B B B

I I I

I
B

I

 

  

  





   

  



  

  





    

     
             

     
     

      

 

1 2 3 1 2 3

2 3 1 2 3 1 2 3

1 2 3

1 2 3

2 2

1 10 0 0

2 3

1 0

1 1
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1
              

6
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B

I

 
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

 

 




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     
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 
   

 
 
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            (2.13) 

Please note that the coordinates  ,   are defined relative to the facial centroid C1 in Fig. 3. The 

first line of eqn. (2.13) yields second order accuracy, consequently, specifying the coefficients 

 1

nB  and  1

nB  gives us second order accuracy. The second line of eqn. (2.13) gives third 

order of accuracy, consequently, third order accuracy requires us to specify the coefficients 

 2

1

nB ,  2

1

nB  and  2

1

nB . Analogously, the third and fourth lines of eqn. (2.13) give fourth 

order of accuracy. Section III and Sub-section IV.b will describe how these coefficients are 

specified. Note that the expansion basis functions shown in eqn. (2.13) are not orthogonal, but 

they do have the essential property that all the higher order basis functions have a zero average 

over the triangle. In our practical implementation, however, we have used the orthogonal 

Dubiner basis detailed in [35],[65],[60].  

 While specification of the coefficients in eqn. (2.13) is the first step in the divergence-

free reconstruction, there is a further second step. Section IV.b will show us how the 

specification of the magnetic field components and their variation within each boundary will, in 

turn, yield a divergence-free reconstruction of the magnetic field vector within the entire interior 

volume of the tetrahedron in Fig. 3. 

III) A preview of the new method  

III.a) Definition of divergence-free magnetic fields at the discrete level   

Before we start with the preview of our new numerical method and before motivating the 

introduction of a new auxiliary zone-averaged magnetic field, let us define what we exactly 

intend with divergence-free magnetic fields at the discrete level:   

Definition 1: The face-averaged normal magnetic field components 
n

jB  are said to be exactly 

divergence free at the discrete level, if the integral relations (2.4) and (2.10) hold up to machine 

precision for all elements Ti of the triangulation/tetrahedrization of the computational domain . 

This means that we require the integral identity  

     ( , ) 0,

i

n

i

T

t dS T


    B x n  

to be valid at the discrete level for all elements of the computatioanl domain .  

Definition 2: A high order zone-centered piecewise polynomial reconstruction ( , )n n

h tB x    

of the magnetic field vector is said to be locally and globally divergence free at the discrete level, 

if the following two conditions hold:  
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 The field is locally divergence free everywhere in the entire computational domain , i.e. 

the following relation must hold pointwise everywhere inside the computational domain 

up to machine precision:  

      ( , ) 0,n n

h t   B x x         (3.1) 

 The normal component of the magnetic field is continuous across each face 
jF , i.e.    

    ( , ) ( , ) ,n n n n

h j h j jt t F     B x n B x n x           (3.2) 

where x
-
 and x

+
 denote the evaluation of the magnetic field from within the left and the right 

element attached to a face Fj, respectively. It is condition (3.2) that ensures, together with (3.1), 

that a high order zone-centered polynomial reconstruction of the magnetic field can also be 

called globally divergence-free at the discrete level.  

 

III.b) The Role of the Auxiliary Zone-Averaged Magnetic Field  

 Let us consider that the MHD computation has been evolved to a time 
nt . In Section II, 

we mentioned that the simplicity of our method derives from the fact that we use zone-centered 

magnetic fields as helping/auxiliary variables in the reconstruction. Thus the zone-averaged 

magnetic field n

iB  is presumed to be available within each two-dimensional triangle or three-

dimensional tetrahedron at the start of a timestep. These are the variables that have been 

computed using a preliminary zone-centered ADER-WENO finite volume update for the cell 

average of the magnetic field vector. Do please note though, that they are never the primary 

variables for the magnetic field and, furthermore, that these preliminary cell averages are 

overwritten after the divergence-free reconstruction step with the help of the facial components 

of the magnetic fields. This is done via the following three-step strategy:  

1) In the first step we apply the classical WENO reconstruction to all the zone-centered 

variables, including the zone-averaged, auxiliary magnetic fields. This gives us zone-centered 

reconstructing polynomials for the components of the zone-averaged magnetic field. These 

reconstructing polynomials for the magnetic field are in general not yet divergence free in the 

sense of conditions (3.1) and (3.2). They are, nevertheless, non-linearly hybridized by the 

classical WENO limiting. 

2) The above-mentioned zone-centered reconstructing polynomials for the components of the 

zone-averaged magnetic field are then used to provide the higher order moments of the magnetic 

field components in the faces of each zone. I.e. see eqns. (2.6) and (2.12) in two- and three-

dimensions. The mean magnetic field component in each face is left untouched. Using a 

procedure that is described in detail in Sections IV and V we now build a divergence-free higher 

order reconstruction of the magnetic field within each zone. 
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3) The divergence-free reconstructed polynomials for the magnetic field within each zone are 

now used to obtain a new zone-averaged magnetic field which overwrites the auxiliary zone-

averaged magnetic field. 

Notice that this entire three-step strategy takes place at time 
nt  before any ADER predictor step 

is applied. We explain why this strategy is very useful in the next few paragraphs. 

 Each timestep starts with the zone-centered fluid variables, the face-averaged magnetic 

field components as well as the auxiliary zone-averaged magnetic fields. Using the zone-

centered fluid variables and the zone-averaged magnetic fields, we carry out the classical zone-

based WENO reconstruction on unstructured meshes using the algorithm of Dumbser & Käser 

[39]. Amongst other things, this gives us the variation of the magnetic field on either side of a 

face. Consequently, each face can provide higher order moments to its magnetic field component 

by using the zone-centered reconstruction that has been carried out in the two zones on either 

side of it. Typically, we take a minmod of the two higher order moments coming from either 

side.  

 Let us illustrate this in two-dimensions by focusing on eqn. (2.6) and Fig. 2. There will 

always be two triangles on either side of any interior zone boundary. The zone-centered classical 

WENO reconstruction, therefore, gives us two alternative ways of specifying the higher order 

moments in eqn. (2.6). We follow Xu et al. [73] and take the minmod function of the two 

choices. This fully specifies all the moments in eqn. (2.6). An entirely analogous procedure in 

three-dimensions will give us the higher order moments in eqn. (2.13). Note that in either eqn. 

(2.6) or eqn. (2.13) we leave the face-averaged magnetic field component, 
1

nB , untouched. 

 Once the moments of the facial variables are available, we make a higher order 

divergence-free reconstruction of the entire magnetic field within each zone using methods that 

are described in Section IV and automated for use on a computer in Section V. This divergence-

free reconstruction is averaged over each zone to yield a new zone-averaged magnetic field. This 

zone-averaged magnetic field is high-order accurate, i.e. of an accuracy that is sufficient to 

match the accuracy of the rest of the scheme. It is also a natural byproduct of making a 

sufficiently accurate divergence-free reconstruction within a zone. We use that magnetic field to 

overwrite the auxiliary, zone-averaged magnetic field n

iB  in two- and three-dimensions. Section 

V shows exactly how this is done at all orders. This completes the higher order reconstruction 

step. Please notice that by overwriting the zone-averaged field, we ensure that the zone-averaged 

magnetic field variables are always well-coupled to the facial magnetic field components. It is 

also apparent now that the facial magnetic field components are the primary variables for the 

magnetic field. 

 We are now ready for the ADER predictor-corrector sequence. The spatial variation of 

the flow variables and the magnetic field are now in hand. The ADER predictor step from 

Dumbser et al. [36] yields its temporal extension. The ADER predictor step is always done in the 
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zone because that is where the full spatial variation within a zone can be exploited, along with 

the structure of the PDE, to obtain the space-time extension of the flow variables and the 

magnetic field. The corrector step, which is based on Riemann solvers, can now be applied. In 

the corrector step we update the five flow variables in eqn. (1.2) as well as the auxiliary zone-

centered magnetic field components. This is done using the traditional flux formulation from 

eqn. (1.2). We also use eqns. (2.5) or (2.11), as appropriate, to obtain the update of the face-

averaged magnetic field components. Please observe that by this point in the narrative the zone-

centered flow variables and facial magnetic field variables have reached a time 
1nt 
 . However, 

since we updated all eight variables in eqn. (1.2), we also have the auxiliary zone averages of the 

magnetic field 1n

i


B  in two- and three-dimensions. Furthermore, these are perfectly good higher 

order updates which can now be used to initiate the classical WENO reconstruction at time 
1nt 
 . 

Thus the order property is preserved in our update. 

 The reason for overwriting the zone-averaged magnetic field in every timestep is as 

follows. In very long-running calculations, the zone-averaged magnetic field can slowly become 

disconnected from the facial magnetic field components if nothing is done. Since the facial 

magnetic field variables are the primary variables in our scheme, they should provide correction 

to the zone-centered magnetic field at each timestep. Our construction is such that the correction 

with sufficient order of accuracy is always provided. In that sense, the zone-averaged magnetic 

field is only an auxiliary variable, not a primary variable. It is only evolved for one timestep and 

then it is overwritten. Also notice that our primary magnetic field variables (the face-averaged 

magnetic field components) are divergence-free at a discrete level in the sense of equations (2.4) 

and (2.10), and they remain so throughout the entire simulation. As a result, any slight build-up 

of divergence in the zone-averaged magnetic field is negligible in the course of one timestep. 

After the zone-averaged magnetic field has helped us in making the classical WENO 

reconstruction within a zone, it will indeed be overwritten. 

III.c) Comparison with the algorithm proposed by Xu et al. in [73]  

As already mentioned before, the new method introduced in this paper has the aim to avoid the 

cumbersome face-based WENO reconstruction that is necessary to produce a high order 

polynomial reconstruction of the magnetic field from the known face-averaged magnetic field 

components. More precisely, the algorithm presented in [73] requires two completely different 

WENO reconstruction steps. The first one is a conventional zone-based WENO reconstruction 

that converts the zone-averaged fluid variables into high order zone-centered piecewise 

polynomial reconstructions. The second one is a face-based WENO reconstruction, which 

converts the face-averaged normal magnetic field components into a high order reconstruction 

polynomial.  

By introducing the auxiliary zone-averaged magnetic field, we can completely avoid the second 

face-based WENO reconstruction step that was necessary in [73]. Instead, we can just perform 
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one simple classical zone-based WENO reconstruction for all quantities, including fluid 

variables and magnetic field. The resulting high order piecewise polynomial reconstruction of 

the magnetic field is then made locally and globally divergence-free  in the sense of conditions 

(3.1) and (3.2). This is achieved by using the information from the known face-averaged normal 

magnetic field components and the new constrained L2 projection technique detailed in Section 

V.  

IV) Divergence-free Reconstruction of the Magnetic Field 

 The one-dimensional Riemann problem for MHD carries with it one essential subtlety 

(Jefferey&Taniuti [47]): The normal component of the magnetic field has to be continuous 

across the Riemann problem in order for the Riemann problem to be well-defined. This is the 

very reason for requiring condition (3.2) to be satisfied for a high order polynomial 

reconstruction of the magnetic field. As a result, in two- and three-dimensions we want the 

coefficients of the magnetic field components in eqns. (2.6) and (2.13) to be uniquely specified at 

a zone-boundary.  

 Following Balsara [7], [8] and [9] it is possible to demand that the magnetic field should 

be divergence-free everywhere within a zone. Such a divergence-free magnetic field should 

coincide with the normal component of the magnetic field and its facial variation within the faces 

of each element. There is much merit in such an enterprise. Most importantly, it ensures that the 

one-dimensional Riemann problem for MHD remains well-defined. Additionally, it can open the 

door to divergence-free adaptive mesh refinement for MHD on unstructured meshes. (Please see 

Balsara [7] for an example of divergence-free adaptive mesh refinement for MHD on structured 

meshes.) For that reason, the next two sub-sections provide details about the divergence-free 

reconstruction of the magnetic field on unstructured meshes.  

IV.a) Divergence-free Reconstruction of the Magnetic Field on Two-dimensional 

Triangular Meshes 

 In this subsection we give the reader an easy introduction to divergence-free 

reconstruction of the magnetic field within a triangular element. The easiest way is to focus on 

the triangle shown in Fig. 2 and consider just the second order case. For this very simple case, 

we will build up all the formulae explicitly. We also sketch out the third order case. Once those 

two cases are presented, the extension to all higher orders should be transparent. (Please note that 

because our method is based on classical zone-centered WENO reconstruction, which extends to 

all orders, our present method also extends to all orders. I.e. our method requires nothing but a 

classical finite volume WENO algorithm, coupled with the innovations reported here. This will 

become even more apparent in Section V.) In Section V we show how the divergence-free 

reconstruction procedure that is described here can be automated on a computer at all orders of 

accuracy. We should mention that a similar process is also described in Sub-section 3.2.6 of Xu 
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et al. [73]; but the notation in that paper is not as transparent as the notation here. Also see 

Appendix A.5 of Xu et al. [73]. 

 Assume, therefore, that the WENO reconstruction has produced a piecewise linear profile 

in eqn. (2.6). Equations that are analogous to eqn. (2.6) are also posited for the other two faces of 

Fig. 2. Assume too that such linear profiles are available at each face of the triangle in Fig. 2. As 

always, we consider the simple case where all the normal vectors in Fig. 2 are outward-pointing. 

Therefore, in segment 1 2PP  we have two pieces of information, 
1

nB and  1 1

n

l B . In segment 2 3P P  

we have two pieces of information, 
2

nB and  2 2

n

l B . Similarly, in segment 3 1P P  we have two 

pieces of information, 
3

nB and  3 3

n

l B . These six pieces of information are not independent. 

Because of eqn. (2.4) we only have five independent pieces of information residing in the three 

faces of Fig. 2. Using this information, we wish to obtain a second order accurate divergence-

free magnetic field everywhere within the triangular element shown in Fig. 2. Consider the most 

general specification of a piecewise linear magnetic field within the triangular element. It is 

given by 

   0 0,     ;     ,x x y y x yB x y a a x a y B x y b b x b y           (4.1) 

Eqn. (4.1) has six coefficients. However, because of the local divergence-free condition on the 

high order reconstruction given by (3.1), only five of them are independent, as shown by the 

equation below 

   , , 0        0x x y y x yB x y B x y a b            (4.2) 

Notice, therefore, that the five independent pieces of information in the boundary of Fig. 2 are 

matched exactly by the five independent coefficients in eqn. (4.1) which holds inside the triangle 

shown in Fig. 2. This will allow us to satisfy also the second condition on a divergence free 

piecewise polynomial reconstruction, given by relation (3.2). Our task is now to find five linear 

equations for the five coefficients in eqn. (4.1). 

 Putting eqn. (2.2) into eqn. (4.1) and projecting the magnetic field along the normal 

vector 1n  gives us 

         

     

   

1 1 1 1 1 1

1 0 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1

, ,

             

          + 

x x y y

x y x x y x C x y y y C

y x x y x x x y y y

n B x l y l n B x l y l

n a n b n a n b x n a n b y

n n a n b n n a n b l

 

     
 

    
 

    (4.3) 

Now matching the constant part of eqn. (4.3) with the constant part in eqn. (2.6) gives us 
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     1 0 1 0 1 1 1 1 1 1 1

n

x y x x y x C x y y y Cn a n b n a n b x n a n b y B           (4.4) 

Likewise, matching the linear part of eqn. (4.3) with the linear part in eqn. (2.6) gives us 

     1 1 1 1 1 1 1 1

n

y x x y x x x y y y ln n a n b n n a n b B            (4.5) 

The previous two equations were obtained by focusing on segment 1 2PP  . Equations that are 

analogous to eqn. (2.2) are also posited for the other two faces of Fig. 2. Doing the same 

procedure for segment 
2 3P P  gives 

     2 0 2 0 2 2 2 2 2 2 2

n

x y x x y x C x y y y Cn a n b n a n b x n a n b y B          (4.6) 

and 

     2 2 2 2 2 2 2 2

n

y x x y x x x y y y ln n a n b n n a n b B            (4.7) 

Likewise, focusing on segment 
3 1P P  gives 

     3 0 3 0 3 3 3 3 3 3 3

n

x y x x y x C x y y y Cn a n b n a n b x n a n b y B          (4.8) 

and 

     3 3 3 3 3 3 3 3

n

y x x y x x x y y y ln n a n b n n a n b B            (4.9) 

Eqn. (2.4) shows us that the three equations, (4.4), (4.6) and (4.8), are not mutually independent. 

Consequently, only two equations out of the three equations, (4.4), (4.6) and (4.8), are used. All 

three equations, (4.5), (4.7) and (4.9) are used. This gives us the desired 5×5 system of equations 

for the coefficients in eqn. (4.1).  

 It is worth observing that all the coefficients on the left hand sides of eqns. (4.4) to (4.9) 

only depend on the geometry of the triangle. Only the right hand sides of eqns. (4.4) to (4.9) 

change as time evolves. This is consistent with the fact that the divergence-free condition is a 

topological constraint on the structure of the magnetic field. If the mesh does not move from one 

timestep to another, the 5×5 system of equations can be inverted once and for all within each 

zone. The inverse matrix can be stored, further speeding up the divergence-free reconstruction. 

Lastly, it is important to recall that we are now ready to overwrite
0 0
ˆ ˆ:n

i a b B x y . This ensures 

that the zone-averaged magnetic field is actually connected to, and depends on, the facial 

magnetic field components. The zone-averaged magnetic field is truly just a helping variable that 

helps us retain order of accuracy in the algorithm. The detailed description of second order 

accurate divergence-free reconstruction on triangular elements is now complete. 
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 We now turn to a description of third order accurate divergence-free reconstruction. 

Assume, therefore, that the WENO reconstruction has produced a piecewise quadratic profile in 

eqn. (2.6). Equations that are analogous to eqn. (2.6) are also posited for the other two faces of 

Fig. 2. Assume too that such quadratic profiles are available at each face of the triangle in Fig. 2. 

As always, we consider the simple case where all the normal vectors in Fig. 2 are outward-

pointing. Therefore, in segment 1 2PP  we have three pieces of information, 
1

nB ,  1 1

n

l B and 

 2

1 1

n

l B . In segment 2 3P P  we have three pieces of information, 
2

nB ,  2 2

n

l B and  2

2 2

n

l B . 

Similarly, in segment 3 1P P  we have three pieces of information, 
3

nB ,  3 3

n

l B and  2

3 3

n

l B . These 

nine pieces of information are not independent. Because of eqn. (2.4), we only have eight 

independent pieces of information residing in the three faces of Fig. 2. Using this information, 

we wish to obtain a third order accurate divergence-free magnetic field everywhere within the 

triangular element shown in Fig. 2. Consider the most general specification of a piecewise 

quadratic magnetic field within the triangular element. It is given by 

 

 

2 2

0

2 2

0

,     ;

,

x x y xx xy yy

y x y xx xy yy

B x y a a x a y a x a xy a y

B x y b b x b y b x b xy b y

     

     
      (4.10) 

Eqn. (4.10) has twelve coefficients. However, because of the local divergence-free constraint 

(3.1), only nine of them are independent as shown in the equation below 

   , , 0        0  ;  2 0  ;  2 0x x y y x y xx xy xy yyB x y B x y a b a b a b            (4.11) 

Notice, therefore, that the eight independent pieces of information in the boundary of Fig. 2 now 

have to be matched by the nine independent coefficients in eqn. (4.10) which holds inside the 

triangle shown in Fig. 2. A possible simplification would be to set
yy xxa b in eqn. (4.10), thereby 

bringing the number of independent coefficients down to eight. (Notice that we pick the highest 

order terms in eqn. (4.10) that do not participate in the divergence-free constraint. That way, all 

the variation in the lower order terms is fully retained. I.e., we would like to minimize the 

variation in a least squares sense.) A divergence-free magnetic field just does not have these 

extra degrees of freedom where 
yya  and xxb  can be set independently. Therefore, equating them 

does not damage the order property. 

 An equation that is analogous to eqn. (4.3) can be built. The coefficients in eqn. (4.10), 

along with the constraints in eqn. (4.11) can be adjusted so that the divergence-free magnetic 

field within the zone coincides with the piecewise quadratic variation in the boundary of Fig. 2. 

The solution procedure can be automated on a computer following the general description of the 

weak form of the constrained L2 projection given in Section V. Once the divergence-free 

reconstruction has been built in a zone, we are now ready to overwrite n

iB . In the third order case, 

the zone-averaged magnetic field depends not only on 0a  and 0b  in eqn. (4.10). Instead, it also 
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depends on the quadratic terms in eqn. (4.10). This completes our description of third order 

accurate divergence-free reconstruction in two-dimensions. Such a process can be extended to 

fourth and higher orders, see the next Section V for all details. 

 The observant reader will notice that the divergence-free reconstruction described here is 

completely linear, i.e. it is based on the inversion of 5×5 or 8×8 matrices. As a result, it is fair to 

ask about the non-linear hybridization that is required to stabilize the magnetic field. Notice that 

such a non-linear hybridization was built into the zone-centered classical WENO reconstruction 

in Section III. As a result, the linear or quadratic variations in eqn. (2.6) have already been non-

linearly stabilized. In this Sub-section we only show how to take those non-linearly stabilized 

variations that reside in the boundary of the triangular element and build a divergence-free 

magnetic field everywhere within the triangular element. 

 Within each face of the triangle we will want to invoke one-dimensional Riemann 

solvers. For that Riemann problem to be well-defined, the normal component of the magnetic 

field has to be continuous at all the interior faces of the mesh. Our construction in this Section is 

such that this requirement is ensured. 

IV.b) Divergence-free Reconstruction of the Magnetic Field on Three-dimensional 

Tetrahedral Meshes 

 The easiest way to introduce the reader to divergence-free reconstruction within the 

tetrahedral element shown in Fig. 3 is to consider just the second order case. For this very simple 

case, we will build up all the formulae explicitly. We also sketch out the third order case. Once 

those two cases are presented, the extension to all higher orders is transparent. In Section V we 

show how the divergence-free reconstruction procedure that is described here can be automated 

on a computer at all orders of accuracy. While the two-dimensional case has been discussed 

before in Xu et al. [73], the present discussion is original to the best of our knowledge. 

 Assume, therefore, that the WENO reconstruction has produced a piecewise linear profile 

in eqn. (2.13). Equations that are analogous to eqn. (2.13) are also posited for the other three 

faces of Fig. 3. Assume too that such linear profiles are available at each face of the tetrahedron 

in Fig. 3. As always, we consider the simple case where all the normal vectors in Fig. 3 are 

outward-pointing. Therefore, in 1 2 3PP P  we have three pieces of information, 
1

nB ,  1

nB  and 

 1

nB . Likewise, in 1 3 4PP P  we have three pieces of information, 
2

nB ,  2

nB  and  2

nB . 

Similarly, in 1 4 2PP P  we have three pieces of information, 
3

nB ,  3

nB  and  3

nB . 

Furthermore, in 4 3 2P P P  we have three pieces of information, 
4

nB ,  4

nB  and  4

nB . These 

twelve pieces of information are not independent. Because of eqn. (2.10) we only have eleven 

independent pieces of information residing in the four faces of Fig. 3. Using this information, we 

wish to obtain a second order accurate divergence-free magnetic field everywhere within the 
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tetrahedral element shown in Fig. 3. Consider the most general specification of a piecewise linear 

magnetic field within the tetrahedral element. It is given by 

 

 

 

0

0

0

, ,     ;

, ,     ;

, ,

x x y z

y x y z

z x y z

B x y z a a x a y a z

B x y z b b x b y b z

B x y z c c x c y c z

   

   

   

        (4.12) 

Eqn. (4.12) has twelve coefficients. However, because of the local divergence-free constraint 

(3.1), only eleven of them are independent as shown by the equation below 

     , , , , , , 0        0x x y y z z x y zB x y z B x y z B x y z a b c           (4.13) 

Notice, therefore, that the eleven independent pieces of information in the boundary of Fig. 3 are 

matched exactly by the eleven independent coefficients in eqn. (4.12) which holds inside the 

tetrahedron shown in Fig. 3. Our task is now to find eleven linear equations for the eleven 

coefficients in eqn. (4.12) that also satisfy condition (3.2).  

 Putting eqn. (2.8) into eqn. (4.12) and projecting the magnetic field along the normal 

vector 
1n  gives us 

             

      

       

1 1

1

1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1

, , , , , , , , , ,

                                                   , , , , ,

+ 

x x y y

z z

x y z x x y x z x C x y y y z y C x z y z z z C

x

n B x y z n B x y z

n B x y z

n a n b n c n a n b n c x n a n b n c y n a n b n c z

           

     





 

           
 

     

     

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1+ 

x x y x z x y x y y y z y z x z y z z z

x x x y x z x y x y y y z y z x z y z z z

n a n b n c n a n b n c n a n b n c

n a n b n c n a n b n c n a n b n c

  

   

        
 

        
 

            (4.14) 

Now matching the constant part of eqn. (4.14) with the constant part in eqn. (2.13) gives us 

   

   

1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1 1

x y z x x y x z x C

n

x y y y z y C x z y z z z C

n a n b n c n a n b n c x

n a n b n c y n a n b n c z B

    

      
     (4.15) 

Likewise, matching the linear parts of eqn. (4.14) with the linear parts in eqn. (2.13) gives us 

       1 1 1 1 1 1 1 1 1 1 1 1 1

n

x x x y x z x y x y y y z y z x z y z z zn a n b n c n a n b n c n a n b n c B             (4.16) 

and 

       1 1 1 1 1 1 1 1 1 1 1 1 1

n

x x x y x z x y x y y y z y z x z y z z zn a n b n c n a n b n c n a n b n c B             (4.17) 
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Eqns. (4.15) to (4.17) represent three equations that we get from 
1 2 3PP P  , i.e. the first face of the 

tetrahedral element shown in Fig. 3. There are three more faces. By replacing the subscript “1” in 

eqns. (4.15) to (4.17) with the subscript “2”, we get three more equations that hold in the second 

face of the tetrahedral element shown in Fig. 3. To get three more equations in the third face of 

the tetrahedral element shown in Fig. 3, replace the subscript “1” in eqns. (4.15) to (4.17) with 

the subscript “3”. Likewise, to get three more equations in the fourth face of the tetrahedral 

element shown in Fig. 3, replace the subscript “1” in eqns. (4.15) to (4.17) with the subscript “4”. 

 In each of the four faces of the tetrahedron, we have eqn. (4.15) or one of its variants. 

Because of eqn. (2.10), those four equations are not mutually independent. Consequently, we can 

only pick three of them. However, we can pick all four variants of eqn. (4.16) and all four 

variants of eqn. (4.17). The result is an 11×11 system of equations for the eleven independent 

coefficients of eqn. (4.13). When the mesh does not move from one timestep to another, it is 

even possible to invert the 11×11 system of equations within each zone and store the inverse. 

Lastly, it is important to recall that we are now ready to overwrite
0 0 0
ˆ ˆ ˆ:n

i a b c  B x y z  . This 

ensures that the zone-averaged magnetic field is actually connected to, and depends on, the facial 

magnetic field components. The detailed description of second order accurate divergence-free 

reconstruction on tetrahedral elements is now complete. 

 We now turn our attention to a description of third order accurate divergence-free 

reconstruction. Assume, therefore, that the WENO reconstruction has produced a piecewise 

quadratic profile in eqn. (2.13). Equations that are analogous to eqn. (2.13) are also posited for 

the other three faces of Fig. 3. Assume too that such quadratic profiles are available at each face 

of the tetrahedron in Fig. 3. As always, we consider the simple case where all the normal vectors 

in Fig. 3 are outward-pointing. Therefore, in 1 2 3PP P  we have six pieces of information, 
1

nB , 

 1

nB ,  1

nB  ,  2

1

nB  ,  2

1

nB  and  2

1

nB . The other three faces of the tetrahedron will 

also contain six pieces of information each. Because of eqn. (2.10) we only have twenty-three 

independent pieces of information residing in the four faces of Fig. 3. Using this information, we 

wish to obtain a third order accurate divergence-free magnetic field everywhere within the 

tetrahedral element shown in Fig. 3. Consider the most general specification of a piecewise 

quadratic magnetic field within the tetrahedral element. It is given by 

 

 

 

2 2 2

0

2 2 2

0

2 2 2

0

, ,     ;

, ,     ;

, ,

x x y z xx yy zz xy yz xz

y x y z xx yy zz xy yz xz

z x y z xx yy zz xy yz xz

B x y z a a x a y a z a x a y a z a xy a yz a xz

B x y z b b x b y b z b x b y b z b xy b yz b xz

B x y z c c x c y c z c x c y c z c xy c yz c xz

         

         

         

  (4.18) 

Eqn. (4.18) has thirty coefficients. However, because of the local divergence-free constraint 

given by relation (3.1), only twenty-six of them are independent, as shown by the equation below 



 

27 
 

     , , , , , , 0    0  ;  2 0  ;

                                                                                   2 0  ;  2 0

x x y y z z x y z xx xy xz

xy yy yz xz yz zz

B x y z B x y z B x y z a b c a b c

a b c a b c

          

     
 

            (4.19) 

In principle, one might use least squares minimization in this situation. However, as with the 

third order case in two-dimensions, it is possible to restrict the variation in terms at the highest 

order so that all the essential variation in the lower order terms is exactly preserved. Several 

options are available for reducing the number of independent coefficients in eqn. (4.18). We can 

try the first option 

0   ;   0  ;   0yz xz xya b c            (4.20a) 

or we can try the second option 

   ;       ;    xx xx yy yy zz zzb c a c a b           (4.20b) 

or the third option 

   ;       ;    yy zz xx zz xx yya a b b c c           (4.20c) 

An equation that is analogous to eqn. (4.14) can be built and used to match to the piecewise 

quadratic variation in the boundary of Fig. 3. The solution procedure can be automated on a 

computer. Once the divergence-free reconstruction has been built in a zone, we are now ready to 

overwrite n

iB . In the third order case, the zone-averaged magnetic field is not only dependent on 

0a , 0b and 0c  in eqn. (4.18). Instead, it also depends on the quadratic terms in eqn. (4.18). This 

completes our description of third order accurate divergence-free reconstruction in three-

dimensions. Such a process can be extended to fourth and higher orders, see the next Section V 

for all details. 

V) Divergence-free Reconstruction of the Magnetic Field Based on Constrained L2 

Projection 

The motivation for the narrative in Section IV was to show that one can start with the 

face-averaged normal components and a classical zone-based WENO reconstruction of the 

magnetic field in order to arrive at a divergence-free reconstruction of the magnetic field within 

each zone that satisfies conditions (3.1) and (3.2). We showed that this can, in principle, be done 

at all orders. Its computer implementation at each order would, however, be very cumbersome. 

In the following section we will present a new and general strategy for producing such a 

high order accurate divergence-free reconstruction of the magnetic field. As input, the new 

method requires a classical high order accurate, but non divergence-free, zone centered WENO 

reconstruction of the magnetic field. It further requires as input a set of face-averaged magnetic 
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field components  that are divergence-free in the sense of eqn. (2.4) and (2.10). On output, the 

new method returns a high order zone-centered polynomial reconstruction of the magnetic field 

that is locally and globally divergence-free, i.e. that satisfies (3.1) and (3.2). In Sub-Section V.a 

we first motivate the need for our new constrained L2 projection-based scheme and then in Sub-

section V.b we present all the necessary details.  

V.a) Motivation for a more general approach – comparing the number of constraints with 

the number of degrees of freedom for the magnetic field   

 The case studies in Section IV have shown that the second order divergence-free 

reconstructions in two- and three-dimensions have a special property, namely that the number of 

unknowns in the reconstructed polynomial exactly match the number of constraints provided by 

the face-averaged magnetic field components and their first moments on the element boundary. 

In general, Section IV also shows us that for third and higher order schemes on simplex elements 

the number of unknown degrees of freedom for the divergence-free magnetic field is in general 

larger than the number of available constraints on the element boundary and within each 

element. Therefore, it became necessary to choose additional ad hoc equations based on 

symmetry considerations, such as e.g. (4.20), in order to close the system. In Section IV we had 

an inkling that a least squares-like approach might provide a resolution for this problem. In this 

motivational sub-section we show that the use of a constrained least squares type approach is 

inevitable for very high order schemes. In the next sub-section we show how such a process can 

be automated on a computer. 

 In the following we denote the number of degrees of freedom associated with a 

polynomial of maximum degree N in d space dimensions with the symbol ( , )N dN N , given 

by the relation  

 
1( , )

!

d

i

N i

N d
d








N

         (5.1)  

For example, each of the degree one polynomials in the two-dimensional eqn. (4.1) has 

(1,2) 3N  , while each of the degree one polynomials in the three-dimensional eqn. (4.12) has 

(1,3) 4N  . Likewise, each of the degree two polynomials in the two-dimensional eqn. (4.10) 

has (2,2) 6N  , while each of the degree two polynomials in the three-dimensional eqn. (4.18) 

has (2,3) 10N  . 

 The number of unknowns for the divergence-free magnetic field is then ( , )d N dN , 

since each component of the magnetic field vector is reconstructed by a polynomial of degree N. 

The number of constraints to get a locally divergence-free magnetic field within each zone is 

( 1, )N dN . Matching the face-averaged magnetic fields adds additional 1fn   constraints, 
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where 
fn  denotes the number of faces for each element (i.e., 3fn   for triangles and 4fn   for 

tetrahedra). Recall from eqns. (2.4) and (2.10) that one of the magnetic field components in one 

of the faces of the element is redundant because of the divergence-free property. The remaining 

number of constraints for the higher order moments on the faces of an element is equal to 

 ( , 1) 1fn N d  N . By putting it all together, we obtain the number of additional equations, 

An , that must be specified in order to determine a higher order piecewise polynomial divergence-

free magnetic field according to relations (3.1) and (3.2). It is obtained by taking the difference 

between the number of unknowns and the number of constraints:  

 ( , ) ( 1, ) ( 1) ( , 1) 1A f fn d N d N d n n N d         N N N     (5.2)  

We examine this equation in detail in the next paragraph. 

 For triangles, with 2d   , the number of additional (ad hoc) equations that need to be 

specified in order to define a divergence-free magnetic field is 

 tri 1
1

2A
n N N            (5.3). 

For tetrahedra, with 3d  , the number of additional (ad hoc) equations that need to be specified 

in order to define a divergence-free magnetic field is  

  tetra 1
2 5 1

6A
n N N N            (5.4). 

It is obvious from eqns. (5.3) and (5.4) that for second order schemes, i.e. with N=1, the number 

of unknowns is equal to the number of constraints. However, for third and higher order schemes, 

i.e. with 1N  , the number An  grows quickly with increasing polynomial degree, in particular 

for the three dimensional case. We therefore realize that it is not enough to require only that the 

divergence-free polynomial reconstruction within a zone satisfies the constraints (3.1) and (3.2). 

Instead, we need an additional ingredient for its construction. Such a new ingredient is proposed 

in this paper in the following: we will require that the divergence-free polynomial to be found is 

in some sense also "as close as possible" to the original zone-centered WENO reconstruction of 

the magnetic field, while satisfying at the same time also the constraints (3.1) and (3.2). The new 

approach for obtaining a high order divergence-free magnetic field inside each zone is based on a 

novel constrained L2 projection that is described in detail below.  

V.b) Constrained L2 projection  

 At the beginning of each timestep we have our zone-averaged flow variables of density, 

momentum and energy density from eqn. (1.2). We also have the face-averaged magnetic field 

components, which are indeed divergence-free according to (2.4) and (2.10). We also have an 
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auxiliary zone-averaged magnetic field that has been obtained from a previous timestep. 

However, since the previous timestep was order preserving in all the zone-averaged fluid and 

magnetic variables, the zone-averaged magnetic field will be accurate enough to be used for the 

reconstruction process. Our overarching goal is to simplify the reconstruction by basing it on the 

well-known classical zone-based WENO reconstruction algorithm from Dumbser & Käser [39]. 

This reconstruction strategy acts on all the zone-averaged variables, including the zone-averaged 

magnetic field vector. The zone-averaged magnetic field is, therefore, an auxiliary variable that 

helps us with the initial WENO reconstruction. 

 Within each element iT  let us define the preliminary reconstruction polynomial of the 

magnetic field vector that is the result of a classical WENO reconstruction according to Dumbser 

& Käser [39]. Recall that this classical WENO reconstruction at time 
nt   does in general not yet 

satisfy the local and global divergence-free condition (3.1) and (3.2). It is written as  

, ,
ˆ ˆ( , ) ( ) : ( ) , ,n n n n

h m i m m i m i

m

t T    B x x B x B x       (5.5)  

where we have used the Einstein summation convention over two repeated indices. In the 

relation above, the functions d

m N P  are the orthogonal reconstruction basis functions from the 

space d

NP  of piecewise polynomials of degree N in d space dimensions. The ˆ n

mB  are the so-called 

degrees of freedom, or moments, and are obtained from the classical Dumbser & Käser WENO 

reconstruction [39]. For example, at second order, eqn. (5.5) will have as many terms as are 

contained in eqns. (4.1) and (4.12) in two- and three-dimensions respectively. Likewise, at third 

order, eqn. (5.5) will have as many terms as are contained in eqns. (4.10) and (4.18) in two- and 

three-dimensions respectively. However, the magnetic field defined by eqn. (5.5) is in general 

not yet divergence-free, because it does not satisfy the constraints given in eqns. (3.1) and (3.2). 

The task of the constrained L2 projection is now to make a small modification to the degrees of 

freedom in eqn. (5.5) that are in some sense optimal. The modified version of eqn. (5.5) should 

be divergence-free within the element and must match the moments of the facial magnetic field 

components, according to (3.1) and (3.2). 

 Let ξ  be a “ 1d  ” dimensional coordinate system within the face 
jF . Note that  

,( , ) ( )n n

j m j mB t Bξ ξ           (5.6) 

is our short-hand notation for a high order polynomial expansion of the normal component of the 

magnetic field inside each oriented face 
jF in terms of some orthogonal basis functions 

1( ) d

m N

 ξ P . I.e., the basis functions ( )m ξ   are again piecewise polynomials of degree N, but 

in one spatial dimension less than the basis functions m . For example, notice that eqns. (2.6) 

and (2.13) are written in terms of facial coordinates in two- and three-dimensions respectively. 
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The mean value of the magnetic field component and its derivatives within eqns. (2.6) and (2.13) 

are indeed the facial modes, ,

n

j mB  , in eqn. (5.6). 

In this paper we propose to use classical one-dimensional Legendre polynomials for the 

faces of triangular grids and the two-dimensional Dubiner basis on triangles in case of a three-

dimensional tetrahedral mesh. The zeroth order moment of this expansion within each face is set 

to the face averaged normal magnetic field component defined within 
jF , i.e. we set

,0 :n n

j jB B . 

The higher order moments for j>0 are obtained from the preliminary WENO reconstruction 

polynomials ( , )n

h tB x using L2 projection and a minmod technique as follows:  

 , , ,minmod , , 0n

j m j m j mB B B m           (5.7) 

with 

,( ) ( ) ( , ) , 0,

j j

n n

m j m m h j

F F

B d t d m       ξ ξ ξ B ξ n ξ      (5.8) 

where the 
ξ denotes the left and the right side of the oriented face 

jF , respectively. Notice that 

the mean values of the magnetic field components are left unchanged. However, the higher 

moments in each face can be obtained from our classical WENO reconstruction from either side 

of the face. It is by this simplification that we avoid the complicated facial WENO reconstruction 

from Xu et al. [73]. 

At time 
nt  we are now looking for a divergence-free reconstruction within the element Ti 

of the magnetic field that satisfies (3.1) and (3.2) and which is denoted by  

,( , ) ( )n n n

h m i mt B x x B ,          (5.9) 

It should be as close as possible to the original WENO polynomial ( , )n n

h tB x from eqn. (5.5). We 

bring about this proximity in the L2 norm because this is a physically-motivated energy norm for 

the magnetic field, as will be explained later. A least squares approach is a natural way to 

minimize this distance. But recall from our study of Section IV that divergence-free 

reconstruction also requires the satisfaction of constraints. Consequently, we need to use a 

constrained optimization method that minimizes the distance in L2 norm, while satisfying the 

constraints (3.1) and (3.2). In particular, the divergence-free polynomial has to satisfy:  

i) We want the magnetic field to be locally divergence-free at each and every point inside all 

elements iT , according to (3.1).   

ii) We further require that for each face 
j iF F  of the element, the normal component of the 

reconstructed polynomial of the magnetic field vector matches the higher order representation 
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given by ( , )n

jB tξ pointwise according to (3.2). In order words, the normal component of the 

magnetic field must be pointwise continuous across each face 
j iF F . This is achieved by 

requiring that our reconstructed polynomial matches the facially-averaged magnetic field 

component in each face of iT . We also require that our reconstructed polynomial matches all the 

higher order moments of the normal component of the magnetic field in each face of iT .  

In a weak integral formulation this constrained L2 projection reads:  

 
2

' '

1

1

minimize : ( , ) ( , ) ,

with the three constraints :

( , ) 0, ,

( , ) , .

( , ) ( , ) ,

i

i

jj i

jj i

n n n n

h h

T

n n d

k h k N

T

n n

h ij ij j j i i

FF

n n n d

k h ij k ij j k N

FF

t t d

t d

t dS B dS F

t dS B t dS



















    

    

     





 

 

B x B x x

B x x

B x n

B x n ξ

F

F

P

F F

P 1

0 , .d

j iF  P F

   

            (5.10) 

Here the symbol 
i i

 F F denotes an arbitrary subset of d faces from the d+1 faces contained in 

iF . Excluding one face from the set of faces 
iF is necessary due to the fact that if the magnetic 

field is locally divergence-free (second relation in 5.10), the boundary integral is automatically 

divergence-free because of the Gauss theorem, hence using all faces 
iF  would give redundant 

information. The symbol '

k  in (5.10) denotes test functions that are from the space of piecewise 

polynomials of degree N-1 in d dimensions. 

 

 It is important to develop an intuitive feeling for the meaning of eqn. (5.10), which is 

discussed in the following. The first equation in (5.10) is the minimization of the distance 

between the auxiliary WENO reconstruction and the sought divergence-free reconstruction of the 

magnetic field in L2 norm. The second one enforces the divergence-free constraint locally and 

pointwise inside each element, hence imposing condition (3.1). The third one requires that the 

facial average n

jB  of the normal component of the magnetic field is matched exactly by the 

reconstruction. The fourth equation ensures that all the higher order moments of the normal 

component of the magnetic field are matched exactly on the face. The third and fourth equation 

of (5.10) are necessary to impose constraint (3.2) of our divergence-free reconstruction.  

 

The first relation of (5.10) can equivalently be rewritten as 

    
2

, , , ,
ˆ ˆmin imize : ( , ) ( , ) ( ) ( )

i i

n n n n n n n n

h h k m i k i k i m i m

T T

t t d d      B x B x x x x B B B B x . 
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The constraints in eqn. (5.10) are then added to the system using a classical Lagrangian 

multiplier technique [39], so the function g to be minimized reads  

   

 

2
'( , ) ( , ) ( , ) ( , )

( , ) ( , ) .

i i j i

j i

n n n n n n n n n

h h k h h ij ij j

T T F

n n n

k h ij ij j

F

g t t d t d t B dS

t B t dS









  
         

   
   

 
    
 
 

  



B x B x x λ B x x μ B x n

ν B x n ξ

F

F

 

(5.11) 

In the above equation, the zonal degrees of freedom 
,

ˆ n

i mB  are known from our preliminary 

WENO reconstruction in eqn. (5.5). The facially-averaged magnetic field components, 
n

jB  , are 

also known in the previous equation. Also, in the above equation, the facial degrees of freedom  

,

n

j mB  are known from eqns. (5.6) and (5.7). The divergence-free degrees of freedom ,

n

i kB   in eqn. 

(5.9) are indeed the unknowns that we wish to compute. They are obtained from eqn. (5.11) by 

enforcing the following conditions for our constrained optimization problem:  

,

0, 0, 0, 0.
n

i m

g g g g   
   

   B λ μ ν
       (5.12) 

I.e., we obtain the following linear equation system for the Lagrange multipliers λ , μ and ν  and 

also for the unknown degrees of freedom 
,

n

i kB of the final divergence-free magnetic field:  

  '

, ,

,

ˆ2 0,

i i j i j i

n n

k m i k i k k m m ij k m ijn

i m T T F F
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d d dS dS
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F
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            (5.13) 

 

The resulting polynomial is actually a minimizer of the quadratic optimization problem because 

the mass matrix in (5.13) is symmetric and positive definite. In practice, the integrals in eqn. 

(5.13) are computed by using sufficiently high order numerical quadrature formulae enforced on 

the reference triangle or tetrahedron in two- and three-dimensions respectively. For polynomial 

bases, the quadrature formulae can be made exact, see the well-known book of Stroud [76]. As a 

result, the reconstructed magnetic field is pointwise divergence-free while matching the face-

averaged magnetic field components and their higher order moments at the zone faces, according 

to (3.1) and (3.2). This completes the general description of the constrained L2 projection 

algorithm. We stress that our constrained optimization approach is not minimizing the 
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divergence of the magnetic field. In fact, after this optimization process, the divergence of the 

magnetic field is always exactly zero in the sense of (3.1) and (3.2). Instead, our method 

minimizes the distance in L2 norm of the sought after divergence-free polynomial, given by eqn. 

(5.9), to the preliminary WENO reconstruction polynomial, given by eqn. (5.5). 

 

 It is also worthwhile to note that in MHD, as in electromagnetism, the magnetic energy is 

given by the square of the magnetic field. As a result, our constrained optimization procedure 

minimizes the variance in the magnetic energy from the classical WENO reconstruction, 

consistent with preserving all the constraints. In Section IV, at third order, we were forced to 

make some ad hoc choices for some of the coefficients. See the paragraph after eqn. (4.11) for 

the two-dimensional case; or see eqn. (4.20) in the three-dimensional case. Our constrained L2 

projection algorithm gets rid of such ambiguity, yielding a solution that is well-defined in an 

energy norm. 

 

Once we have obtained the divergence-free magnetic field ( , )n n

h tB x , given by eqn. (5.9), 

inside each zone from the solution of (5.13), we overwrite the auxiliary cell-average for the 

magnetic field B  by the average of the divergence-free magnetic field as follows:  

 

1
: ( , )

i

n n n

i h

i T

t d
T

 B B x x           (5.14) 

Realize that eqn. (5.14) completes the discussion in this Section because it shows us how to build 

the true cell averaged magnetic field that only depends on the face-averaged magnetic field 

components and the high order divergence-free reconstruction. In the course of the timestep that 

takes us from time 
nt  to time 

1n nt t t    , we will now evolve the facial magnetic field 

components using either eqn. (2.5) or eqn. (2.11) in two or three dimensions. We will also evolve 

the zone-averaged fluid variables, as well as the zone-averaged magnetic field variables from 

eqn. (5.14). This zone-averaged update is made by using a flux conservative approach from eqn. 

(1.2). The resulting auxiliary zone-averaged magnetic field at time 
1nt 
 will not be divergence-

free; although it will have the desired order of accuracy. However, the face-averaged magnetic 

field components at time 
1nt 
 will indeed be divergence-free in the sense of (2.4) and (2.10) and 

they will also have the desired order of accuracy. At time 
1nt 
 , the zone-averaged magnetic field 

will, nevertheless, be useful as an auxiliary variable because it will simplify the reconstruction 

process in the next timestep. 

VI) Pointwise Synopsis of the Algorithm 

 In the following, we summarize all the necessary steps of our new algorithm in their 

proper sequential order:  

1) At the start of the computation, initialize the zone-centered mass, momentum, energy densities 

and magnetic fields as well as the facial components of the divergence-free magnetic field. If an 

analytical divergence-free specification of the magnetic field vector is available for use in eqn. 
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(2.3) then this can be done via exact integration. In practice, this is usually done by realizing that 

the magnetic field can be specified in terms of a magnetic vector potential (  B A ). Please 

see Balsara [8] for examples of a magnetic vector potential and how it is used to initialize a 

divergence-free magnetic field on a mesh.  

2) At the start of each timestep, start with the conservative variables at the zone center. Then, 

compute the primitive variables at the zone center and use them to build eigenvalues and 

eigenvectors as needed. Since MHD is a non-convex system, reconstruction via characteristic 

variables proves to be particularly useful. Use the zone-centered reconstruction strategy from 

Dumbser & Käser [39] to reconstruct all the flow variables including the magnetic fields. If 

needed, use the positivity-preserving strategy from Balsara [20]. Please also see Cheng, Li, Qiu 

& Xu [26]. This completes the preliminary WENO reconstruction step. 

3) Using the description from Section V, obtain a unique specification of the moments of the 

magnetic field components within the faces of each of the elements, see eqn. (5.7) and (5.8). Use 

the constrained L2 projection algorithm of Section V to make a divergence-free reconstruction of 

the magnetic field within the zone. Once the divergence-free reconstruction is in hand, use it to 

overwrite the auxiliary zone-averaged magnetic field at the aid of eqn. (5.14). 

4) By the end of the previous step, the spatially reconstructed flow variables and the divergence-

free, spatially reconstructed magnetic field variables are available within each zone. This is 

exactly the information that the PDE needs to evolve the system further in time. Use the ADER 

time-update strategy (Titarev & Toro [70], [71], Toro & Titarev [72], Dumbser et al. [36], [37], 

Balsara et al. [13], [14]) to obtain the space-time evolution of the MHD system within each zone. 

5) Invoke the MuSIC Riemann solver at each edge, as described in the narrative surrounding 

eqn. (2.5). This should provide edge-centered electric field components and also 

multidimensional contributions to the face-centered fluxes. Using face-centered invocations of 

the one-dimensional Riemann solver, build a high order facial flux. As needed, use quadrature in 

time to build space-time accurate electric field components at the edges of the mesh and space-

time accurate fluxes at the faces of the mesh. 

6) Use eqn. (2.5) to update the facial components of the magnetic field. The zone-centered mass, 

momentum and energy densities as well as the auxiliary zone-centered magnetic fields are 

updated in the usual conservative way using eqn. (1.2). This completes our description of a 

timestep of our MHD algorithm. 

VII) Accuracy Analysis 

 We present two accuracy analyses, one in two-dimensions and the other in three-

dimensions. The magnetized isodensity vortex problem described in Balsara [8] consists of a 

magnetized vortex moving across a domain given by [-5,5]² in two-dimensions and by [-5,5]³ in 

three-dimensions. The length of the domain along each dimension is denoted by L=10 in the 
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following. The vortex propagates in the x-y plane at an angle of 45° for a time of 10 units. 

Periodic boundary conditions are applied everywhere. Since the problem is well-known in the 

literature, we do not describe it in detail here. We report on the accuracy of the x-magnetic field 

of the vortex after it has completed one orbit in the computational domain, see Table I for the 

two-dimensional case and Table II for the three-dimensional domain. All the schemes meet their 

design accuracy. 

TABLE I shows the accuracy analysis for the MHD vortex problem in 2D as measured in 

the x-magnetic field. 

Method h 
1L   Error 1L   Order L   Error L   Order 

ADER-WENO 

2
nd

 Order 

     

 h=L/32 9.6533E-01  1.8442E-01  

 h=L/64 2.2159E-01 2.12 4.7733E-02 1.95 

 h=L/128 5.9102E-02 1.91 1.3195E-02 1.85 

 h=L/256 1.5625E-02 1.92 4.3679E-03 1.59 

ADER-WENO 

3
rd

 Order 

     

 h=L/32 6.2396E-01  1.1050E-01  

 h=L/64 9.6015E-02 2.70 1.9574E-02 2.50 

 h=L/128 1.2064E-02 2.99 2.5521E-03 2.94 

 h=L/256 1.5101E-03 3.00 3.3083E-04 2.95 

ADER-WENO 

4
th

 Order 

     

 h=L/32 8.8702E-02  1.8884E-02  

 h=L/64 4.7539E-03 4.22 1.2242E-03 3.95 

 h=L/128 3.0801E-04 3.95 7.5591E-05 4.02 

 h=L/256 2.3889E-05 3.69 1.7298E-05 2.13 

 

TABLE II shows the accuracy analysis for the MHD vortex problem in 3D as measured in 

the x-magnetic field. 

Method h 
1L   Error 1L   Order L   Error L   Order 

ADER-WENO 

2
nd

 Order 

     

 h=L/20 2.0056E+00  3.1544E-01  

 h=L/40 5.7328E-01 1.81 1.3965E-01 1.18 

 h=L/60 2.4157E-01 2.13 7.5446E-02 1.52 

ADER-WENO 

3
rd

 Order 

     

 h=L/20 8.3151E-01  1.5921E-01  

 h=L/40 1.5198E-01 2.45 3.4847E-02 2.19 
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 h=L/60 4.6681E-02 2.91 1.0967E-02 2.85 

ADER-WENO 

4
th

 Order 

     

 h=L/20 3.1118E-01  5.6388E-02  

 h=L/40 1.5365E-02 4.34 4.5475E-03 3.63 

 h=L/60 2.9836E-03 4.04 1.0210E-03 3.68 

ADER-WENO 

5
th

 Order 

     

 h=L/20 2.9646E-01  5.8322E-02  

 h=L/40 6.7662E-03 5.45 1.8454E-03 4.98 

 h=L/60 8.7482E-04 5.05 2.4588E-04 4.97 

 

 

VIII) Test Problems 

In all the following test problems, as well as in the previous accuracy analysis, we have always 

used the self-adjusting and positivity preserving flattener strategy outlined by Balsara in [20].  

VIII.a) Rotor Problem in Two-Dimensions 

 This well-known MHD problem was first documented in Balsara & Spicer [6] and also 

Balsara [8]. It consists of a central, uniformly rotating vortex in a non-rotating ambient medium. 

An initially uniform magnetic field threads through both regions. The details are described in the 

above-mentioned references. A circular region with radius 0.5 was triangulated using 71046 

elements of characteristic size h=0.005. A third order divergence-free ADER-WENO scheme 

was used with a CFL of 0.95. The MuSIC Riemann solver was used with a one-dimensional 

HLLD Riemann solver in the side panels. Fig. 4 shows the final results for the rotor problem, at a 

time of 0.25. Figs. 4a, 4b, 4c and 4d show the density, pressure, Mach number and magnetic 

pressure at the final time. All the requisite MHD flow features are nicely captured in our 

simulations. 

VIII.b) Orzag Tang Problem in Two-Dimensions 

 This well-known problem by Orszag & Tang [58] was initialized on a periodic domain 

spanning [0,2]×[0,2]. It was run to a stopping time of t=3.0 with a third order accurate 

divergence-free ADER-WENO scheme using a CFL of 0.95 and an unstructured triangular mesh 

of 90126 elements of characteristic mesh size h=0.03. The MuSIC Riemann solver was used with 

a one-dimensional HLLD Riemann solver in the side panels. Figs. 5a, 5b, 5c and 5d show the 

density, pressure, Mach number and magnetic pressure at the final time. The simulation forms a 

current sheet with oppositely oriented x-components of magnetic field in the center of the 

computational domain, as can be surmised from Fig. 5d. The velocity field also shows fluid 

squirting out in the positive and negative x-directions at the location of the current sheet. 
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VIII.c) Propagation of Finite Amplitude Torsional Alfven Waves in Two-Dimensions 

 In several fields, like astrophysics or space physics, one is interested in the evolution of 

waves to simulate certain problems such as turbulence. The ability to propagate finite amplitude 

Alfven waves over large distances and long times on a computational mesh is crucial for 

carrying out simulations of MHD turbulence. If the Alfven waves are damped strongly because 

of inherent numerical dissipation in a code, the code will fail to capture the resulting turbulence. 

This is because MHD turbulence is mainly sustained by Alfven waves. The Alfven wave decay 

test problem, first presented by Balsara [8], examines the numerical dissipation of torsional 

Alfven waves in two dimensions. In this test problem torsional Alfven waves propagate at an 

angle of 9.462
o
 to the y-axis through a domain given by [-3, 3] x [-3, 3] . The domain was set up 

with a two-dimensional triangular mesh of characteristic size h=0.05. Periodic boundary 

conditions have been applied everywhere. The ratio of specific heats was chosen as 1.4  , the 

reference density was set to 0 1   and a background pressure of  0 2p   has been used. We do 

not present the remaining details of the set-up, because the problem is already well-described in 

the above-mentioned reference. The simulation was stopped at 129 time units by which time the 

Alfven waves had crossed the domain several times. 

 We performed one set of simulations where this problem was run with second, third and 

fourth order divergence-free ADER-WENO schemes and the MuSIC Riemann solver. Since this 

problem is subsonic, the strongly interacting state plays a major role in the evolution of Alfven 

waves. The problem was run with a multidimensional Riemann solver that utilized a one-

dimensional HLLD Riemann solver that was patterned after the work of Miyoshi &Kusano [74].  

 Fig. 6a shows the evolution of the maximum z-velocity in the torsional Alfven wave as a 

function of time. Fig. 6b shows the evolution of the maximum z-magnetic field in the torsional 

Alfven wave as a function of time. For Fig. 6 we used second, third and fourth order divergence-

free ADER-WENO schemes. We see that the fourth order ADER-WENO scheme has the least 

numerical dissipation while the second order ADER-WENO scheme had the most dissipation, as 

expected. 

VIII.e) MHD Blast Wave Problem in Two and Three Space-Dimensions 

 Here we solve a two-dimensional and a three-dimensional variant of a problem that was 

originally presented in Balsara & Spicer [6]. The plasma  measures the ratio of the thermal 

pressure to the magnetic pressure. As the plasma’s  becomes smaller, this problem becomes 

increasingly stringent. The problem consists of a 1.4  gas with unit density and a pressure of 

0.1 initialized on a circular two-dimensional or a spherical three-dimensional computational 

domain with radius R=0.5. For the 2D setup we use an initially constant magnetic field of 

(70,0,0)B , while in the 3D case we use 50 3 (1,1,1)B . The pressure is reset to a value of 

1000 inside a central region with a radius of 0.1. The plasma’s  is initially given by 1.005×10
-3
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for the three-dimensional problem. A CFL number of 0.45 was used for the 2D simulations and 

0.3 for the 3D computations. The problem is run up to a time of 0.012, by which time a strong 

magnetosonic blast wave propagates through the domain. The problem was run with a third order 

divergence-free ADER-WENO scheme and a MuSIC Riemann solver with linear variation in the 

similarity variables. The 2D simulations have been carried out on a triangular mesh composed of 

71046 elements with characteristic size h=1/200. For the 3D computations we have used an 

unstructured tetrahedral mesh of 422468 elements with a characteristic mesh size of h=0.02.  

 First we present the two-dimensional results. Figs. 7a, 7b, 7c and 7d show the plots for 

density, pressure, velocity magnitude and magnetic field magnitude, respectively. We see that 

the densities and pressures are positive, as expected. The previously-cited positivity preserving 

methods are very useful in that regard. Figs. 8a, 8b, 8c and 8d contain the results obtained for the 

same quantities in the three dimensional case within the z=0 slice plane. A sketch of the 

unstructured tetrahedral mesh together with the iso-contour surfaces of the magnetic field 

intensity are depicted in Fig. 9.  

VIII.d) MHD Field Loop Advection Problem in Two and Three Space-Dimensions 

 This problem is first set up on a two-dimensional domain that spans [-1,1]×[-0.5,0.5] and 

that has been discretized using 45008 triangular elements of characteristic mesh size h=1/100. 

The problem consists of a two-dimensional loop of magnetic field with a very low magnetic 

pressure compared to the gas pressure. The magnetic pressure is constant inside the loop and 

falls abruptly to zero at the loop’s boundary which is initially set up at a radius of 0.3 units. The 

details of the set-up are described in Gardiner & Stone [43] and are not repeated here. The 

problem was run to a final time of t=1.0 with a third and fourth order divergence-free ADER-

WENO scheme and the MuSIC Riemann solver. The multidimensional Riemann solver used a 

one-dimensional HLLD Riemann solver and had linear variation in the similarity variables. A 

CFL number of 0.95 was used and no doubling of the numerical dissipation was seen to be 

necessary when evaluating the edge-centered electric fields. The resulting magnitudes of the 

magnetic field are shown in Fig. 10a and 10b for the third and fourth order cases. From Fig. 10 

we see that the loop’s profile is almost perfectly isotropic, owing to the use of the 

multidimensional Riemann solver technology in combination with high order divergence-free 

finite volume schemes on unstructured meshes. The fourth order results are sharper than the third 

order results, as expected. 

 We now run the same test case again on a three-dimensional periodic domain [-

0.5,0.5]×[-0.5,0.5]×[-0.5,0.5] , discretized by 1,772,044 tetrahedral elements with characteristic 

mesh size h=1/64. The velocity vector of this advection problem is given by (1,1,0)v  and the 

final result is shown at a time of unity so that the field loop returns to its original location. In the 

case of unstructured tetrahedral meshes the field loop is in general not aligned with the element 

faces, hence it is not necessary to tilt the 3D field loop as in [44]. A third order divergence-free 

ADER-WENO scheme and the MuSIC Riemann solver were used for this simulation. The 
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unstructured mesh used for our computations is displayed in Fig. 11a. A three-dimensional iso-

contour surface plot of the magnetic field intensity is drawn in Fig. 11b. A two-dimensional cut 

through our computational results is presented in Fig. 11c. We find that the isotropic shape of the 

field loop is perfectly preserved after one periodic passage through the computational domain. 

IX) Conclusions 

 Numerical MHD serves as a prototype for a large class of very useful mimetic partial 

differential equations. This justifies the interest in developing high quality numerical algorithms 

for this system of equations. Staggered mesh formulations for MHD that draw on the dualism 

between electric fields and Godunov fluxes have already been developed for structured meshes 

(Balsara & Spicer [6]). In recent years it has been realized that there are two essential new 

innovations that are needed for divergence-free MHD simulations on structured meshes. The first 

new innovation is the divergence-free reconstruction of magnetic fields at all orders (Balsara [7], 

[8], [9]). The second new innovation is the development of multidimensional Riemann solvers 

(Balsara [15], [16], [18]) along with the realization in these papers that the multidimensional 

Riemann problem provides the correct multidimensional upwinding that is needed for the edge-

centered electric fields. Analogous multidimensional Riemann solvers that are suitable for 

unstructured meshes have also been developed (Balsara, Dumbser & Abgrall [17], Balsara & 

Dumbser [19]). Positivity preserving schemes for MHD have also been developed (Balsara & 

Spicer [5], Balsara [20]) which lend an additional measure of robustness to structured or 

unstructured mesh MHD calculations. To achieve full geometric versatility, it is only natural that 

one should want the same advances in numerical MHD to be made for unstructured meshes.  

 In this paper we have presented a novel strategy for carrying out high order accurate 

divergence-free calculations of MHD flow on unstructured triangular and tetrahedral meshes in 

two and three space dimensions. Our new divergence-free reconstruction operator is based on a 

staggered mesh for the facially-averaged magnetic field components, together with a constrained 

L2 projection strategy that can be easily implemented as a post-processor of an existing, classical 

finite volume WENO reconstruction algorithm based on cell averages. Results for such 

divergence-free WENO reconstruction schemes with second, third, fourth and fifth order of 

accuracy have been presented. We have also shown the value of using multidimensional 

Riemann solvers for obtaining the electric field. In particular, the MuSIC Riemann solver has 

been shown to work very well for unstructured mesh MHD calculations. It is also shown that 

ADER timestepping works very well when it is coupled with divergence-free WENO 

reconstruction of the magnetic fields and a genuinely multidimensional Riemann solver. Several 

stringent test problems are shown to operate well on two-dimensional and three-dimensional 

unstructured meshes. While we have proved the applicability of our method to triangulated and 

tetrahedral meshes, Balsara [8], [9] has also shown its applicability to hexahedral meshes. We 

can therefore safely conjecture that the method might have applicability to engineering 

applications where the elements might be combinations of tetrahedrons, prisms and pyramids. 



 

41 
 

 In this paper we have focused on finite volume, WENO-based reconstruction methods for 

divergence-free MHD which are based on multidimensional Riemann solvers. The design of 

multidimensional Riemann solvers is now well-understood (Balsara [15], [16], [18], Balsara, 

Dumbser & Abgrall [17], Balsara & Dumbser [19]) and we see that MuSIC Riemann solvers 

play a central role in the update of the magnetic field. Higher order timestepping with a simple 

one-step structure has also become a reality with the advent of the family of high order ADER 

schemes (Titarev & Toro [70], [71], Toro & Titarev [72], Dumbser et al. [36], [38], Balsara et al. 

[13], [14]). The whole field of higher order DG and PNPM schemes has opened up, with 

nonlinearly-stabilized schemes that have now become a reality (Diot, Clain & Loubere [34], 

Loubere, Dumbser & Diot [55], Dumbser et al. [40]). Consequently, this paper is but a first step 

in the development of advanced higher order constraint-preserving methods for unstructured 

meshes that use these very important computational innovations. 
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Figure Captions 

Fig. 1a shows the flowchart of operations in a traditional divergence-free ADER-WENO 

algorithm for MHD. 

Fig. 1b shows the flowchart of operations in our new divergence-free ADER-WENO algorithm 

for MHD. 

Fig. 2 shows the vertices of a triangular element in two-dimensions. The three outward normals 

to the faces are also shown along with the lengths of the faces. In each face we can set up a local 

coordinate system with range  [-1/2,1/2]. 

Fig. 3 The left panel shows the vertices of a tetrahedral element in three-dimensions. The four 

unit outward normal vectors to the faces are also shown along with the areas of the faces. The 

unit vectors along each of the edges are also shown. In each face we can set up a locally 

orthogonal coordinate system. This is shown for the triangular face P1P2P3 in the right panel 

where the coordinate system is set up at the centroid C1 of that face. 

Figs. 4a, 4b, 4c and 4d show the density, pressure, Mach number and magnetic pressure for the 

MHD rotor problem at the final time. A third order divergence-free ADER-WENO scheme was 

used along with the MuSIC Riemann solver . 

Figs. 5a, 5b, 5c and 5d show the density, pressure, Mach number and magnetic pressure for the 

Orzag-Tang problem. A third order divergence-free ADER-WENO scheme was used along with 

the MuSIC Riemann solver . 

Fig. 6a shows the evolution of the maximum z-velocity in the torsional Alfven wave as a function 

of time. Fig. 6b shows the evolution of the maximum z-magnetic field in the torsional Alfven 

wave as a function of time. For Fig.6 we used second, third and fourth order divergence-free 

ADER-WENO schemes with the MuSIC Riemann solver.  

Figs. 7a, 7b, 7c and 7d show the density, pressure, velocity magnitude and magnetic field 

magnitude for the two-dimensional blast problem. A third order divergence-free ADER-WENO 

scheme was used along with the MuSIC Riemann solver . 

Figs. 8a, 8b, 8c and 8d show the density, pressure, velocity magnitude and magnetic field 

magnitude for the three-dimensional blast problem. A third order divergence-free ADER-WENO 

scheme was used along with the MuSIC Riemann solver . 

Fig. 9 shows a sketch of the unstructured tetrahedral mesh together with the iso-contour surfaces 

of the magnetic field intensity for the three-dimensional blast problem. 
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Fig. 10 shows the result of the field loop advection problem in two-dimensions. The resulting 

magnitudes of the magnetic field are shown in Fig. 10a and 10b for the third and fourth order 

cases respectively. The fourth order results are sharper than the third order results, as expected.  

Fig. 11 shows the result of the field loop advection problem in three-dimensions. The 

unstructured mesh used for our computations is displayed in Fig. 11a. A three-dimensional iso-

contour surface plot of the magnetic field intensity is drawn in Fig. 11b. A two-dimensional cut 

through our computational results is presented in Fig. 11c. We find that the isotropic shape of 

the field loop is perfectly preserved after one periodic passage through the computational 

domain. 

 

 



Reconstruction: Reconstruct high order zone-centered fluid variables from the 
known zone averages (requires a zone-based WENO reconstruction). 
Reconstruct high order moments of the magnetic field in the faces from the known 
face-averaged magnetic fields (requires a face-based WENO reconstruction). 
Facial averages and higher order moments of the magnetic field in the faces are used 
to obtain a high order divergence-free magnetic field within each zone. 

Predictor: All spatial moments of fluid variables and magnetic fields are available in 
each zone. 
Use ADER to build all needed moments in time for fluid variables & magnetic fields 
within each zone. 

Corrector : Invoke 1D RS at face-centers and MuSIC RS at edge-centers.  
Obtain high order facially-averaged fluid fluxes.  
Also obtain high order edge-averaged electric fields from MuSIC RS. 

Update: Use facially-averaged fluxes to update the zone-averaged fluid variables. 
Use edge-averaged electric fields to update the face-averaged magnetic fields, see 
(2.5) and (2.11). The face-averaged magnetic fields remain div-free according to (2.4) 
and (2.10). 

Fig. 1a shows the flowchart of operations in a traditional divergence-free ADER-
WENO algorithm for MHD, see [14,18,73]. 

http://ees.elsevier.com/jcomp/download.aspx?id=682335&guid=c035392d-f64f-4f1f-83f4-e78fbe421200&scheme=1


Reconstruction: Reconstruct high order zone-centered fluid variables and an auxiliary high order zone-
centered magnetic field from the known zone averages (requires only one zone-based WENO 
reconstruction). The resulting reconstructed magnetic field within the zone is not divergence-free, but is 
used to obtain the higher order moments of the magnetic field in the faces.  
Use the constrained L2 projection (5.5)-(5.13) to obtain a high order accurate zone-centered reconstruction 
of the magnetic field that is locally and globally divergence-free according to (3.1) and (3.2).  
The auxiliary variables, i.e. the zone-averaged magnetic fields, are reset after the projection step, see 
(5.14). This makes the zone-averaged magnetic fields consistent with the face-averaged magnetic fields. 

Predictor: All spatial moments of fluid variables & magnetic fields are available in each zone. 
Use ADER to build all needed moments in time for fluid variables & magnetic fields within each zone. 

Corrector: Invoke 1D RS at face-centers and MuSIC RS at edge-centers.  
Obtain high order face-averaged fluid fluxes & face-averaged magnetic fluxes, which are needed for 
updating the helping variables, i.e. auxiliary zone-averaged magnetic fields. 
Also obtain high order edge-averaged electric fields from MuSIC RS. 

Update: Use face-averaged fluid fluxes to update the zone-averaged fluid variables. 
Also use facially-averaged magnetic fluxes to update the auxiliary zone-averaged magnetic fields, i.e. the 
helping variables. 
Use edge-averaged electric fields to update the face-averaged magnetic fields, see (2.5) and (2.11). The 
face-averaged magnetic fields remain div-free according to (2.4) and (2.10). 

Fig. 1b shows the flowchart of operations in our new divergence-free ADER-WENO 
algorithm for MHD. 
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Fig. 2 shows the vertices of a triangular element in two-dimensions. The three outward 
normals to the faces are also shown along with the lengths of the faces. In each face we 
can set up a local coordinate system with range  [-1/2,1/2]. 



Fig. 3 The left panel shows the vertices of a tetrahedral element in three-dimensions. 
The four unit outward normal vectors to the faces are also shown along with the areas 
of the faces. The unit vectors along each of the edges are also shown. In each face we 
can set up a locally orthogonal coordinate system. This is shown for the triangular face 
P1P2P3 in the right panel where the coordinate system is set up at the centroid C1 of that 
face. 
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Figs. 4a, 4b, 4c and 4d show the density, pressure, Mach number and magnetic pressure 
for the MHD rotor problem at the final time. A third order divergence-free ADER-
WENO scheme was used along with the MuSIC Riemann solver . 

a) b) 

c) d) 



Figs. 5a, 5b, 5c and 5d show the density, pressure, Mach number and magnetic pressure 
for the Orzag-Tang problem. A third order divergence-free ADER-WENO scheme was 
used along with the MuSIC Riemann solver . 

a) b) 

c) d) 



Fig. 6a shows the evolution of the maximum z-velocity in the torsional Alfven wave as a 
function of time. Fig. 6b shows the evolution of the maximum z-magnetic field in the 
torsional Alfven wave as a function of time. For Fig.6 we used second, third and fourth 
order divergence-free ADER-WENO schemes with the MuSIC Riemann solver.  

a) b) 



Figs. 7a, 7b, 7c and 7d show the density, pressure, velocity magnitude and magnetic 
field magnitude for the two-dimensional blast problem. A third order divergence-free 
ADER-WENO scheme was used along with the MuSIC Riemann solver . 

a) b) 

c) d) 



Figs. 8a, 8b, 8c and 8d show the density, pressure, velocity magnitude and magnetic 
field magnitude for the three-dimensional blast problem. A third order divergence-free 
ADER-WENO scheme was used along with the MuSIC Riemann solver . 

a) b) 

c) d) 



Fig. 9 shows a sketch of the unstructured tetrahedral mesh together with the iso-
contour surfaces of the magnetic field intensity for the three-dimensional blast problem. 



a) b) 

Fig. 10 shows the result of the field loop advection problem in two-dimensions. The 
resulting magnitudes of the magnetic field are shown in Fig. 10a and 10b for the third 
and fourth order cases respectively. The fourth order results are sharper than the third 
order results, as expected.  



a) b) 

c) 
Fig. 11 shows the result of the field loop 
advection problem in three-dimensions. The 
unstructured mesh used for our computations is 
displayed in Fig. 11a. A three-dimensional iso-
contour surface plot of the magnetic field 
intensity is drawn in Fig. 11b. A two-dimensional 
cut through our computational results is 
presented in Fig. 11c. We find that the isotropic 
shape of the field loop is perfectly preserved after 
one periodic passage through the computational 
domain. 


