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Abstract 

We analyze the link between virtual water trade, that is, the flow of water embodied in the international 
trade of agricultural goods, and vulnerability to external shocks from the vantage point of network 
analysis. While a large body of work has shown that virtual water trade can enhance water saving on a 
global scale, being especially beneficial to arid countries, there are increasing concerns that openness 
makes countries more dependent on foreign food suppliers and, in this way, more prone to external 
shocks. Our evidence reveals that the increased globalization witnessed in the last three decades is not 
associated with the increased frequency of adverse shocks (in food production). Furthermore, building 
on recent advances in network analysis that connect the stability of a complex system to its topological 
features, we find that the world is more interconnected, but not necessarily less stable.  
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1. Introduction 

This paper investigates whether the globalization of food trade has made the world more vulnerable to 

shocks and, as a result, whether there is a trade-off between stability and openness. To do so we exploit 

the insights provided by network analysis: we study the structural features of the web of bilateral trade 

flows in agricultural goods –and the associated flows of virtual water– to ascertain whether they have 

evolved in a way that makes the world system more (or less) prone to large disruptions. In our 

endeavor, we relate to several streams of the existing literature, and interweave them to provide novel 

and original insights on the relationship between international trade and food security. 

The idea of measuring the water ‘embodied’ in goods, and ‘virtually’ traded from one country to 

another when goods are sold across borders, has been introduced by Allan (1993). In his seminal study, 

Allan describes virtual water (VW) trade as a market-mediated mechanism that enables water-scarce 

regions to cope with water scarcity (and food security) over the past few decades. Subsequently, VW 

flows among countries engaged in trade have been estimated and widely studied (see, for instance, 

Hoekstra and Hung 2002; Oki and Kanae 2004; Hoekstra and Chapagain 2008; Roson and Sartori 

2015; or Antonelli and Sartori 2015 for a recent review of the literature).  

In the last decade, a number of studies have applied complex network analysis to study the features of 

VW trade as a global network. This has led to the unveiling of the main topological characteristics of 

the VW network (Konar et al. 2011; Tamea et al. 2013), highlighting clues of small-world behavior 

(Shutters and Muneepeerakul 2012), the occurrence of hubs and rich-club effects (Suweis et al. 2011), 

and the existence of a community structure (D’Odorico et al. 2012). In Carr et al. (2012), Dalin et al. 

(2012), and D’Odorico et al. (2012), the temporal evolution of the virtual water network is also 

analyzed, showing the progressive intensification of VW exchanges and the geography of these 

variations.  

We contribute to this literature by linking the topological features of the global network of VW trade to 

the resilience of the world system to shocks. In fact, the relationship between network topology and 

shock propagation has received considerable attention in the last few years, especially since the recent 

financial crisis has forcefully highlighted the importance of the issue. A series of recent contributions by 

Acemoglu et al. (2012, 2013, 2015) examine the interplay between idiosyncratic shocks to individual 

actors in a network and the probability of large cascade effects that could threaten the stability of the 

system. They show that the propagation of shocks depends on the presence of relatively few dominant 

sectors. This feature, captured by the presence of heavy (or fat) tails in the distributions of some key 

network indicators, imply that shocks hitting central players will quickly propagate to the rest of the 

economy, with the complex web of linkages magnifying (rather than dampening) their effect.  

Our analysis starts by looking at the distribution and frequency of large shocks in agricultural output 

over the last three decades, in order to see whether, due to climate change, population growth or other 

global trends, these shocks have become more common over time. Second, since the structural features 

of the international trade network connecting countries plays an important role in the transmission of 

shocks (Acemoglu et al. 2012), we study both the topology and the evolution of the network of trade in 

agricultural goods (translated into VW flows). We find no evidence of an increased frequency of 

adverse shocks in food production; moreover, while the globalization of food trade has made the VW 

network more interconnected over time, its structural characteristics have not evolved in a way that 

enhance systemic fragility.  

Our conclusions therefore contribute, from a novel perspective, to the debate on the relationship 

between food sovereignty, food security, and trade openness (Montalbano 2011; Burnett and Murphy 

2014), that is characterized by conflicting views. For instance, Headey (2011) suggests that trade 

integration may increase a country’s exposition to external disturbances, and this is especially true in the 

case of small countries. However, Paarlberg (2000) argues that transitory food insecurity in poor 

countries are not induced by changing conditions in international grain markets, rather by internal 
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conflicts and natural disasters, as the reliance of these countries on grain imports is usually low. 

Furthermore, Allouche (2011) points out that, when water and land resources are scarce, food imports 

represent the main channel though which countries fulfill their food needs, so that global trade 

enhances food and water security. For instance, Tanaka and Hosoe (2011) find that protection of the 

domestic rice market harms, rather than ensures, Japan’s national food security. Matthews (2014) claims 

that an open and predictable trading system plays an essential role in promoting global food security by 

making the system more efficient and more responsive to shocks. Similar conclusions are reached also 

by Huang et al. (2011) and Rutten et al. (2013). The former argue that international trade plays an 

important role in compensating climate-induced changes in productivity; the latter investigate the 

effects of trade policy responses to a negative supply shock (in the wheat market) and claim that 

liberalizing trade contributes to food security. 

To the best of our knowledge, ours is the first study that applies network analysis and investigates the 

structural features of VW trade to address the potential trade-off between trade openness and food 

security. The paper is structured as follows: the next section describes the data used and defines the 

basic network measures employed in the analysis; Section 3 illustrates the results of the empirical 

investigation, while the final section discusses the policy implications and draws some concluding 

remarks. 

 

 

2. Data and methodology 

 

2.1 Virtual water and virtual water trade  

The VW content of (agricultural) goods is the volume of water that is used to produce them. It 

depends on several aspects, such as the place and time of production, the technology used and water 

use efficiency. VW trade refers to the exchange of virtual water implied by international trade, with 

most authors focusing on agricultural goods, as we also do in this paper.  

When a good is exported (imported), its VW content is implicitly exported (imported) as well. Any 

trade flow can be translated in its VW equivalent by using country-specific measures of the VW content 

of each product. In this framework, the concept of VW becomes a useful indicator for the study of 

virtual water exchanges underlying food trade and represents a way to link international trade and water 

resources. A VW flow is obtained by multiplying the estimated (country-specific) VW content by the 

volume of trade in agricultural goods registered. Food production and international trade data for a 

total of 309 crops and animal products for the period 1986–2010 are obtained from the FAOSTAT 

database, while Mekonnen and Hoekstra (2011) provide estimates of the country-specific VW content 

of various goods. 1  The total number of countries considered is 253; since the number of active 

countries varies in time due to geo-political changes (e.g. they are 208 in 1986 and 211 in 2010), inactive 

countries in a given year were simply removed from the analysis. For each single year, the global matrix 

of aggregate VW trade is obtained by summing the flows relative to 309 individual crops for which we 

have information.  

 

2.2 Network analysis: basic concepts 

The global VW trade system is populated by N nodes (countries), connected by links that represent 

VW flows. The network is represented by a square matrix 𝑊𝑁 (dimensions NxN), where exporters are 

                                                        
1 For a detailed description of the way in which the VW content of the trade flows was computed, we refer to Carr et al. (2012, 2013) and 
Tamea et al. (2014). We owe a debt of gratitude to these authors, who shared the data on virtual water trade flows. Appendix B reports 
the list of countries and FAO products considered in computing the virtual water flows. Dalin et al. (2012) and Konar et al. (2011) use a 
different method, namely the H08 global hydrological model, to determine the virtual water content of different goods.  
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on rows and importers on columns. Each cell 𝑤𝑖𝑗 captures the VW flow from country i to country j, 

with 𝑤𝑖𝑖 = 0. The sum over row i is the total amount of VW exports of country i, while the sum over 

column j is the total amount of VW imports of country j. The international VW trade gives rise to a 

weighted and directed network, in which the link direction goes from the exporting to the importing 

country, and the link of each weight is given by the volume of virtual water flowing between any 

country pair. From this directed and weighted network one can derive a binary (unweighted) version by 

disregarding the information on link weights and simply accounting for the presence/absence of a trade 

connection. In this case the NxN matrix representing the network is called an adjacency matrix 𝐴𝑁 and 

its generic element 𝑎𝑖𝑗 is either one or zero depending on whether countries i ad j are connected or not. 

The structural features of a network (its topology) are described through several indexes. One of the 

first ways to characterize a network is to count its players (nodes) and links, and to look at its density, 

given by the number of active links over their total possible number (if all nodes were connected with 

every other node).  

Node degree (𝑘𝑖), which measures the number of contacts maintained by each node, here translated as 

the number of trade partners of a country, is defined as 𝑘𝑖 = ∑ 𝑎𝑖𝑗𝑗 , where 𝑎𝑖𝑗 is the element of the 

binary adjacency matrix 𝐴𝑁. In the case of directed networks, the indegree counts the number of edges 

directed to a certain node, while the outdegree represents the number of outgoing links. Applied to the 

VW trade network, the former is the number of import flows, while the latter counts the number of 

destinations served.  

The weighted counterpart to degree is given by node strength (𝑠𝑖), i.e. is the sum of all the link weights 

𝑤𝑖𝑗 of each node (representing the total VW imports or exports), where 𝑠𝑖
𝑖𝑛 = ∑ 𝑤𝑗𝑖𝑗  is the indegree 

(import) strength, while 𝑠𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑗𝑗  is the outdegree (export) strength. In the case of VW network, 

link weights are virtual water flows. 

Another important feature of a network is its assortativity, i.e. the tendency of highly connected nodes to 

be link to other high-degree nodes. The assortativity index r for network G, computed following 

Newman (2003), is 𝑟 =  ∑ (𝑘𝑖 − 𝑘)(𝑘𝑗 − 𝑘)𝑖𝑗∈𝐺 ∑ (𝑘𝑖 − 𝑘)2
𝑖∈𝐺⁄ , where 𝑘𝑖 is the degree of node i and 𝑘 is 

the average degree in the network. The index r ranges between -1 and 1 and can be thought of as a 

correlation coefficient between the degree of a node and that of its partners.  

A further element to evaluate the structure of the networks is provided by the clustering coefficient 𝑐𝑖, 

which represents the tendency of nodes to form tightly connected groups. 

Formally, 𝑐𝑖 = 2𝑒𝑖 𝑘𝑖(𝑘𝑖 − 1)⁄ , where 𝑒𝑖 is the number of links between the neighbors of node i and 

𝑘𝑖(𝑘𝑖)/2 is the maximum possible number of links existing between the 𝑘𝑖 neighbors of i (Boguna and 

Pastor-Satorras 2003). In other words, 𝑐𝑖  counts the number of closed triangles formed in the 

neighborhood of node i. This value measures the local cohesiveness of the network and higher values 

indicate that the neighbors of i are themselves connected. The clustering coefficient for the whole 

network is then given by the average of each node i’s coefficient. 

Centrality is another popular network index, which is meant to capture, for each node, its position 

within the network and its relative importance. Node degree is the most basic measure of local 

centrality, as it only looks at the immediate neighborhood of each node. Many other centrality measures 

exist, each capturing a specific feature of the network and what flows in it. Here we use eigenvector 

centrality, which quantifies the influence of a node in the network and is defined recursively as the sum 

of centrality of all its neighbors (Bonacich 1972). It assigns relative scores to each node, based on the 

concept that connections to high-scoring nodes contribute more to the score of the node in question 

than links to low-scoring nodes. Eigenvector centrality appears to be more suitable in the case of the 

VW network, where the role of a country is positively related to its own position and that of the 

countries it is connected to, in terms of the volume of VW that it exchanges. Starting from the 

centrality of each node, we can compute a centralization index, which measures how tightly the graph is 

organized around its most central point. To do this, we compare the actual VW network with a start 
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graph, i.e. a structure where a single central node exists, connected to all other nodes, which in turn are 

not connected among them. Centralization is the ratio of the sum of the difference between the 

centrality of each node relative to the most central player to the maximum possible value of such a sum 

(which occurs in a star graph). The index is computed as 𝐶𝐼 = ∑ |𝑏𝑀𝐴𝑋 − 𝑏𝑖|𝑖 ∑ |𝜒𝑀𝐴𝑋 − 𝜒𝑖|𝑖⁄ , where 

𝑏𝑀𝐴𝑋 and 𝑏𝑖 are the centrality values of the most central node and the i-th node in the observed graph, 

while 𝜒𝑀𝐴𝑋 and 𝜒𝑖  are the corresponding values in a star graph composed of as many nodes as the 

observed network. The centralization index 𝐶𝐼 ranges between 0 and 1, where 0 indicates a balanced 

graph in which all the nodes have the same centrality and 1 implies a star graph with a single node as its 

center.  

 

 

3. Empirical analysis 

The research question that underlies this paper is whether the globalization of food trade, has made the 

world more vulnerable to shocks and, as a result, whether there is an actual trade-off between stability 

and openness. It is worth mentioning here that we take a systemic perspective, looking at the world as a 

whole rather than at any specific country.2 While we think network analysis could be very useful to 

define country-specific measures of vulnerability, this venture goes beyond the scope of the paper and 

represents an interesting venue for further research.3  

In Section 3.1 we examine the frequency of supply shocks that might be transmitted across borders via 

international trade, checking whether extreme events have become more likely over time due for 

instance to climate change of increased pressure on natural resources from population growth. Second, 

we investigate the topological properties of the VW trade network to determine whether its structure 

and evolution may give rise to a more fragile world system (Section 3.2). 

In fact, the global VW trade system, like many other global networks, is both interconnected and 

interdependent. These features may result in small, local shocks that have a strong systemic effect, 

potentially threatening the stability of the network, due to cascading failures transmitting across the 

network’s ties (see, for instance, Carlson and Doyle 2002 or Doyle et al. 2005). In the last few years, 

partly as a consequence of the recent financial crisis, this notion has percolated into economic analysis, 

and the relationship between network structure and stability has been attracting a large amount of 

attention, especially in financial economics. 4  Generally speaking, greater connectivity reduces the 

likelihood of system failures because shocks are more easily dissipated. However, the relationship 

between network topology and stability is highly non-linear and marked by the existence of extreme 

behaviors and tipping points (Haldane and May 2011; Acemoglu et al. 2015). Several studies link the 

possible emergence of contagion with the degree of heterogeneity in the network, which can refer 

either to nodes’ intrinsic characteristics (such as size, see Iori at al. 2006) or to nodes’ connectivity 

(Caccioli et al. 2012). Indeed, when the network is not homogeneous, the positive effect of greater 

density on diversification is counterbalanced by the fragility associated with the presence of very central 

(and therefore critical) players (Battiston et al. 2012). Acemoglu et al. (2015) provide a unifying 

framework that reconciles seemingly contradictory results in the field, and show under which 

conditions the structure of the network is conducive to cascades that threaten the stability of the 

system. The key intuition is that looking at the local centrality measures and the existence of very 

central nodes is not sufficient, but one should also investigate the higher-order features of the network.  

 

                                                        
2 For an interesting analysis of country-specific food security in presence of external supply risks, see the work by Hubbard and Hubbard 
(2013) on the UK. 
3 In line with our global perspective, the meaning of vulnerability that we use throughout the paper concerns systemic stability. For a 
discussion on alternative definitions of vulnerability in the context of food security see Dilley and Boudreau (2001). 
4 For an overview of the literature on financial networks, see Allen and Babus (2009) or Bougheas and Kirman (2014). 
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3.1 Supply shocks 

We start our investigation by looking at shocks to agricultural output. We study both their distribution, 

to gauge the likelihood of extreme events, and its evolution over time, to see whether large shocks have 

become more frequent over time. 

Fluctuations in output volumes may have different origins, like changes in factor productivity induced 

by climate and technological variations, demand-driven changes, and the like. All of them, trough 

different channels, may affect international trade, which in turn modifies VW flows among countries. 

Data on agricultural production (ton/yr) are available from 1961 to 2012. By fitting a linear trend to the 

data, we compute the yearly deviation of the empirical data from the values predicted by the trend. The 

use of a linear trend allows us to take into account variations in productivity or other long-run changes. 

As food crises are associated with drops in output, not over-abundance, we only consider those cases in 

which actual agricultural output falls short of the expected value of production.5  

Our analysis aims at detecting the likelihood of large negative shocks in agricultural production or, in 

other words, the presence of heavy (or fat) tails in the distribution of shocks. These in turn would 

suggest that the probability of extreme events (e.g. a sizable output loss) is larger than it would be under 

the Normal or another thin-tailed distribution.6 The extent to which the tails of the distribution have 

become heavier over time is also investigated. 

We calculate two indexes of tail heaviness commonly used in the literature (Table 1): the first is the 

percentage of observations that stay out of the interval “mean  double standard deviation”, while the 

second is the Obesity Index proposed by Cooke et al. (2014).7  The latter is computed as 𝑂𝑏(𝑋) =

𝑃(𝑋1 + 𝑋4 > 𝑋2 + 𝑋3|𝑋1 ≤ 𝑋2 ≤ 𝑋3 ≤ 𝑋4), and is based on the heuristic that, in the case of heavy-tailed 

distributions, larger observations lie further apart than smaller observations. {𝑋1, … , 𝑋4}  are 

independent and identically distributed values randomly sampled from the data.8 In our application, the 

index is based on 1,000 random samples of 4 observations.  

 

Table 1. Indexes of tail heaviness. 

Year 
% of obs out 

of interval 
Obesity  
Index 

1986 1 0.91 

1990 1 0.91 

1995 2 0.89 

2000 5 0.89 

2005 3 0.90 

2010 2 0.88 

 

                                                        
5 We are aware that positive output shocks, as well as negative ones, might affect world prices and, though this channel, impact on 
farmers’ income. This kind of analysis is however beyond the scope of the paper. 
6 Throughout the paper, we use heavy or fat tails interchangeably. In the presence of a thin-tailed probability distribution, the upper tail 
declines to zero exponentially or faster. Such a distribution has a moment generating function, and all moments exist. A normal or a 
gamma distribution is an example of the thin-tailed probability distribution function, as is any distribution with finite supports, like a 
uniform distribution or a discrete-point finite distribution. On the contrary, a fat-tailed distribution falls to zero much more slowly. The 
standard example of a fat-tailed probability distribution function is the power law or Pareto distribution, although a Student-t or inverted-
gamma distribution is also fat-tailed. 
7 The simple heuristic (mean ± 2 times standard deviation) computes the percentage of values that lie within a band around the mean in a 

normal distribution with a width of two standard deviations, approximately 95% of the observations. It is often employed as a quick and 

simple test for outliers, in presence of a Gaussian population, and as a normality test when the population is potentially not normal (as in 

this case). Extreme values of a distribution are more probable than in the case of a normal distribution for higher percentages of this 

heuristic. 
8 The Obesity Index is the probability that the sum of the largest and the smallest of four observations is larger than the sum of the other 
two observations; it captures the idea that larger values are further apart. It assumes value 0.5 and 0.75 in case of normal and exponential 
distributions, respectively. When the distribution has heavy tails, this index lies in the range [0.80; 1]. Decreasing values suggest a 
reduction in tail heaviness over time. 
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Table 1 shows that the percentage of outlier values lying more than two standard deviations away from 

the mean range is low, between 1% (in 1986 and 1990) and 5% (in 2000). In these cases, deviations are 

mostly associated with some of the largest agricultural producers in the world, namely China, Russia, 

and India. These deviations are never lower than -15% of the predicted values, with only one exception 

(in the year 2010, the observed value for Russia is 24% lower than the predicted one).9  The values of 

the Obesity Index are larger than the expected value for an exponential distribution (0.75) and close to 

those implied by a Zipf’s law (0.87), ranging between 0.88 and 0.91, but decrease over time. Although 

the procedure proposed by Clauset et al. (2009) to detect power-law behavior in the data does not 

provide us with clear-cut evidence, the tails of the distributions are likely to be heavy. Yet the likelihood 

of extreme events diminishes slightly over the period analyzed.  

A further method to look for fat tails in a distribution is to compare the plot of the mean excess 

function (MEF) of the data with the MEF plot obtained through aggregation of the original data set by 

m (as suggested by Cooke et al. 2014). The mean excess function of a random variable X gives the 

expected excess of the random variable over a certain threshold u, given that the random variable is 

larger than the threshold. It is defined as 𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢). Following the procedure by Cooke et 

al. (2014), we first divide the data set randomly into groups of size m = 2 and m = 4 and then we sum 

each of these m values.10 Aggregating the sample does not have much effect on the mean excess plot of 

data coming from heavy-tailed distributions, while this is no longer valid for data coming from thin-

tailed distributions. That is, in presence of heavy tails, the two mean excess plots should be very similar. 

As an example, Figure 1 plots the MEFs for the distribution for the years 1995 (left panel) and 2010 

(right panel).  

The qualitative result displayed in Figure 1 is the same for all the years in our sample. First of all, 

according to Burnecki and Weron (2008) and Ghosh and Resnick (2010), the upward-sloping shape 

followed by the MEF of the original data is consistent with the behavior expected for a Pareto 

distribution. Second, by tuning m, the MEF plot does not changes so much, being upward sloping and 

constant upon aggregation, suggesting that the data likely come from a heavy-tailed distribution. The 

likelihood of large output losses is bigger than one would expect under, say, a normal distribution of 

shocks. On the other hand, however, there is no evidence that large output losses have become more 

likely over time, at least in the last 25 years.  

 

  
Figure 1. MEFs of the original sample and aggregated data set. Years 1995 (left panel) and 2010 (right panel). 

 

 

                                                        
9 1986: China -13%; 1990: China -11%; 1995: China -6%; 2000: Russia -11%; 2005: India -4%; 2010: Russia -24%. As a percentage of 
global agricultural production, these lower output volumes are respectively: -2.7%, -2.5%, -1.5%, -0.3%, -0.4%, and -0.6%. 
10 The value of aggregation m is arbitrarily chosen, proportionally to the size of the sample. 
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3.2 The topology of the virtual water network 

As mentioned in the Introduction, a recent body of research has shown that network structure may 

play a very important role in the transmission of shocks, both within a single economy and across 

borders. Hence, the second step of our analysis focuses on the topological properties of the global 

network of VW flows and its evolution over time.  

Like many other global networks, the global VW trade system has the feature of being both 

interconnected and interdependent, with its pros and cons. On the one hand, the growing 

interconnectivity of global trade increases the robustness of the system to local crises. On the other 

hand, the increasing interdependency among climatic, demographic and economic networks could 

make the system prone to these crises (Allouche 2011), since cascading failures may transmit more or 

less quickly across the interconnected network. Assessing the vulnerability of the system to local crisis 

situations, geo-political crises, uncontrolled fluctuations in food prices and production volumes, is 

therefore worthy, since one may ask whether the benefits of being part of this network may be 

cancelled out by its intrinsic vulnerability. The recent contributions by Acemoglu et al. (2012, 2015) 

show that the propagation of the shocks at the macro level depends on some specific network 

characteristics, in particular the presence of relatively few dominant nodes, with several connections to 

many others. This characteristic implies that any shock affecting the central dominant nodes would 

propagate more easily to the rest of the network, affecting its stability.  

Table 2 summarizes some of the topological features of the VW network, as described by the most 

commonly used network indicators. Over time, the number of active nodes increases, as well as the 

number of trade connections and the volume of water associated with global food trade, which more 

than doubles in 25 years, alongside a relatively stable maximum degree. The number of active nodes 

varies over time due to geo-political changes (mainly the dissolution of the Soviet Union), but remains 

otherwise stable. This is associated with a more than proportional increase in the number of links: 

network density (defined as the number of active links over the total number of possible connections) 

moves from 20% to 33%, testifying to rising global trade. The maximum number of trade partners is 

always smaller than the number of players, meaning that none of the countries is connected with 

everybody else. There is a large difference between the average and the maximum number of partners, 

while the variability of node degree (the coefficient of variation) decreases over time. 

 

Table 2. Topological features and descriptive statistics of the virtual water network. 

Year 
Active 
Nodes 

Links Density 

Global 
VW 

Flow 
(109m3) 

Max 
Str.Out 
(Str.In)  
(109m3) 

Average 
Strength 
(109m3) 

Max 
Outd 
(Ind). 

Max 
Degree 

(In+Out -
Bil) 

Average 
Degree

** 

St. 
Dev./ 
Mean 

Assort. Clust. 
Centr. 
Index 

1986 208 8,644 20.08% 1,064.01 
176.78 
(89.98) 

5.12 
179 

(164) 
184 55.30 0.85 -0.43 0.80 0.16 

1990 205 8,643 20.67% 1,182.88 
198.11 
(98.49) 

5.77 
181 

(161) 
184 54.84 0.86 -0.47 0.72 0.16 

1995 238* 11,605 20.57% 1,431.71 
239.44 

(100.10) 
6.02 

204 
(178) 

205 63.60 0.85 -0.45 0.70 0.14 

2000 213 13,362 29.59% 1,845.18 
243.77 

(130.01) 
8.66 

191 
(173) 

195 81.44 0.64 -0.35 0.65 0.11 

2005 211 14,432 32.57% 2,355.30 
243.61 

(179.10) 
11.16 

198 
(171) 

200 90.01 0.58 -0.32 0.65 0.11 

2010 211 14,669 33.11% 2,769.11 
298.11 

(278.09) 
13.12 

197 
(169) 

202 90.63 0.59 -0.33 0.64 0.10 

* This higher value is due to the dissolution of the Soviet Union 
** Both the “average degree” indicator and the ratio “standard deviation over mean” indicator are computed on the degree distribution (the sum of in- and 
outdegree net of bilateral links) 

 

The negative assortativity displayed by the VW network suggests a hub-and-spoke structure whereby 

low-connectivity countries establish links mainly with hubs, meaning countries with many partners. 

Similar results have already been found in the literature, both relative to the overall trade network 

(where it is, however, much more pronounced, see Fagiolo et al. 2010) and, more specifically, for VW 
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trade (Konar et al. 2011). Similar to what happens for assortativity, which declines (in absolute value) 

over the years, the clustering coefficient also displays a marked reduction, moving from 0.80 to 0.64. 

This suggests that as the number of players increases, the relative importance of tightly connected 

cliques goes down. 

The low and decreasing values of centralization are consistent with the idea that over time the system 

has become more balanced and homogeneous. Overall, the figures summarized in Table 2 suggest that 

from 1986 onward, the VW trade network has been evolving toward a less centralized and less 

disassortative network, with a decreasing number of clusters and a greater density. This qualitative 

picture is consistent with the results obtained in previous studies by Dalin et al. (2012) and Konar et al. 

(2011) and suggests that peripheral countries have increased their relative importance in terms of their 

number of trade partners, making the network more interconnected and interdependent, in other 

words more balanced. It is worth noting that this evolution could be identified just by looking at the 

increase in the volume of trade or in network density, but depends on the structural evolution of the 

network. In particular, as shown also in Figure 2 below, the data suggest that the network becomes 

more symmetric over time.11  

To dig deeper into the possible role of network topology in the propagation of shocks, we consider 

whether the degree distribution features heavy tails, whereby the number of highly connected nodes is 

larger than one would expect. A fat-tailed distribution for node degree would imply the presence of a 

small core of very connected countries, featuring a much larger number of links than the rest of the 

nodes. Any shock affecting these central nodes would propagate easily to the rest of the network, and 

would not be completely compensated by shocks in the opposite direction. 

In fact, several studies highlight that large heterogeneity in connectivity plays an important role in 

determining the fragility of a network (see for instance Caccioli et al. 2012). In particular, Acemoglu et 

al. (2012) suggest that when the degree distribution features heavy tails, systemic failures may result 

from cascade effects even in the presence of small original disturbances. We focus on the indegree 

distribution because the shocks that we are mainly interested in are supply-side disturbances, and also 

in the food policy discourse vulnerability is mainly associated with imports.12  

  
Figure 2. Normalized first-order (left panel) and second-order (right panel) indegree distribution. 

 

Looking at the distribution of indegree (see left panel of Figure 2, in which normalization sets the index 

                                                        
11 Indeed, the network analysis allows us to appreciate that countries featuring the same degree of trade openness (measured for instance 
as exports plus imports over GDP) may have a very different position within the network.     
12 In fact, the same analysis is also carried out on the distributions of the outdegree and total degree (the sum of the in- and outdegree net 
of bilateral links). The qualitative picture is unchanged. The interested reader will find a sample of results derived from the analysis of the 
outdegree in Appendix A.  
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between 0 and 1 for all years to enhance comparability), we can see that alongside a small fraction of 

highly connected nodes, there is a large group of peripheral countries. However, skewness decreases 

over time and the distribution becomes more symmetric: over time the body of the distribution shifts 

rightward, signaling an increase in the number of trade partners to which the average country is 

connected. This is consistent with results presented by Konar et al. (2011), who find that the 

distribution of the number of trade connections held by each country follows an exponential 

distribution, the tail of which becomes thinner over time. Our data confirm these findings show that 

they extend to 2010 as well. A Lilliefors test performed on the indegree distribution cannot reject the 

null hypothesis that the distribution is exponential and thus not heavy tailed.  

 

Table 3. Descriptive statistics and indexes of tail-haviness. First- and second-order indegree distributions.  

Year 

First-Order Indegree Second-Order Indegree 
(1) (2) (3) (4) (5) (6) (7) (8) 

Kurtosis  Skewness  
% Out of 
Interval 

Obesity 
Index 

Kurtosis  Skewness  
% Out of 
Interval 

Obesity 
Index 

1986 4.37 1.32 7.2 0.71 2.40 0.35 3.8 0.57 

1990 4.29 1.35 7.3 0.72 2.42 0.40 4.4 0.59 

1995 3.95 1.24 6.3 0.71 2.39 0.37 3.4 0.58 

2000 2.75 0.68 4.7 0.63 2.21 0.12 1.9 0.53 

2005 2.75 0.52 3.8 0.58 2.29 0.004 2.4 0.50 

2010 2.55 0.44 4.2 0.57 2.21 -0.04 1.0 0.49 

 

The same conclusion is further confirmed by the values taken by the Obesity Index (see column 4 of 

Table 3), which are always lower than the theoretical value under an exponential distribution (0.75) and 

decrease over time. Similarly, the percentage of observations outside the interval “meandouble 

standard deviation” (column 3 of the table) and the downward sloping shape of the MEF plots (left 

panel of Figure 3) consistently point in the same direction. 

Yet, looking at first-order connectivity may not be enough. In fact, Acemoglu et al. (2012) show that 

the first-order degree distribution provides only partial information on the network structure. In other 

words, examining the first-order connectivity only, as the existing literature does, may not be enough to 

rule out the possibility of cascade effects. Two networks with identical first-order degree distribution 

may exhibit considerably different levels of vulnerability. This is because country-specific idiosyncratic 

shocks affect not only the countries immediately connected to it, but also those indirectly connected. 

As we are interested in discovering possible intrinsic features favoring network instability, we need to 

explore higher-order connectivity. Following Acemoglu et al. (2012), we compute the second-order 

degree vector  𝑞𝑖 of the VW trade network by multiplying the adjacency matrix  𝐴(𝑁𝑥𝑁) of the VW 

network by the degree vector 𝐾 , according to the formula  𝑞𝑖 ≡ ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 𝑘𝑗 , where  𝑘𝑗  is the degree 

distribution of node j and  𝑎𝑖𝑗 is the element of the adjacency matrix 𝐴(𝑁𝑥𝑁), which assumes the value 

of one if there is a link between nodes i and j.  

Again, this analysis aims to test for the presence of heavy tails and to check the extent to which the tails 

of the distribution have become heavier over time.  

The distribution of second-order degrees (right panel of Figure 2), becomes less skewed over time: the 

decreasing values of skewness and kurtosis (Table 3, columns 5-6) confirm that the distribution 

becomes more balanced over time and tails become thinner. In fact, kurtosis is always lower than the 

reference level for a Gaussian distribution, suggesting the presence of thin tails. This feature is further 

confirmed by the  (decreasing) values of the Obesity Index (column 8 of Table 3) and the downward 

shape of the MEF plots (right panel of Figure 3). 
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Figure 3. MEF of the original sample and aggregated data set at the year 2000.  

First-order (left panel) and second-order (right panel) degree distribution. 

 

By interpreting the latter findings together with the qualitative results discussed above, we can conclude 

that the network structure is becoming more balanced over time. In fact, the data show a reduction in 

the cross-country heterogeneity in both direct (first-order) and indirect (second-order) connectivity.  

This reshaping of the topological structure of the network is driven by the fact that more countries are 

integrating in the system and playing a more active role in international VW trade, lessening the 

importance of the dominant players and thus making the system more balanced. This in turn suggests a 

reduction in systemic vulnerability: a less asymmetric structure of the network implies that the resilience 

generated by the dissipation of shocks through the network outweighs the fragility effect that comes 

from the possible propagation of local crises. In other words, in a balanced network disturbances are 

dissipated at a faster rate and are less likely to generate extreme cascading effects (Battiston et al. 2012; 

Acemoglu et al. 2012).  

Overall, the topological characteristics of the global agricultural trade network (represented by VW 

flows) suggest that VW trade favors neither country’s vulnerability to external crises nor the 

propagation of shocks through the system. 

A further step in the analysis entails considering link weights in the picture, in order to evaluate 

heterogeneity in the intensity of trade relations, which is normally very large and should not be 

disregarded (Fagiolo et al. 2010). In the weighted version of the VW trade network, each link is 

assigned a value 𝑧𝑖𝑗 > 0, proportional to the weight of that link. Since we are mainly interested in 

inflows, the weight 𝑧𝑖𝑗 for each flow is computed as the ratio of a country’s in-flow of VW over the 

country’s outstrength, such that the row sum ∑ 𝑧𝑖𝑗 = 1𝑗 . Formally, 𝑧𝑖𝑗 = 𝑤𝑖𝑗 ∑ 𝑤𝑖𝑗
𝑛
𝑗=1⁄ . In this way, the 

weighted VW trade network is fully described by its (𝑁𝑥𝑁) weighted matrix 𝑍 = {𝑧𝑖𝑗}, where 𝑧𝑖𝑗 = 0 

for all 𝑖 = 𝑗. Figure 4 shows the graphical representation of the weighted first-order and the weighted 

second-order degree distributions for 1990, 2000, and 2010. Here as well we can see that the 

distributions become less skewed and more balanced over time (in fact, both skewness and kurtosis 

decline markedly): this pattern is common to first- and second-order (weighted) indegree, and is 

particularly relevant since second-order connectivity, which captures indirect links across countries, 

plays an important role in determining systemic vulnerability (Acemoglu et al. 2012, 2015).  
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Figure 4. Weighted first- (left panel) and second-order (right panel) indegree distributions for selected years. Horizontal axis in log scale. 

 

The values of the Obesity Index reported in Table 4 are large, well above the expected value implied by 

an exponential distribution (0.75), but declines over time. The MEF plots displayed in Figure 5 have an 

inverted-U shape and although the shape does not change dramatically, we do see that upon 

aggregation the downward sloping part of the MEF appears more evident. 

With respect to their unweighted counterparts, both first- and second-order weighted indegree 

distributions seem to display heavier tails. Different indexes give conflicting results: the share of 

observations in the upper tail is small but increases over time, whereas the Obesity index displays high 

values but goes down in more recent years. Also, the inverted U-shape followed by the MEF is not 

fully consistent with a heavy-tail distribution. Hence, we do not find a clear evidence of heavy tails in 

the distributions, but at the same time the evidence does not allow us to exclude it completely. 

 

Table 4. Indexes of tail heaviness. Weighted first- and second-order indegree. 

Year 

First-Order Indegree Second-Order Indegree 

(1) (2) (3) (4) 

% obs out of 
interval  

Obesity 
Index 

% obs out of 
interval 

Obesity 
Index  

1986 3.4 0.93 3.8 0.91 

1990 3.4 0.93 4.9 0.92 

1995 4.2 0.92 4.6 0.92 

2000 5.2 0.89 5.2 0.89 

2005 5.7 0.87 4.7 0.89 

2010 6.2 0.87 5.1 0.88 

 

 

The analysis carried out so far has the merit of shedding light on two facts: first, both the unweighted 

and the weighted analysis of the same network are useful, because different characteristics may be 

highlighted; second, the first-order interconnections provide only partial information about the 

structure of the VW network. The need to look at higher-order degree distributions is thus confirmed.  
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Figure 5. MEF of the original sample and aggregated data set at the year 2000.  
Weighted first- (left panel) and second-order (right panel) indegree distribution. 

 

 

4. Policy implications and concluding remarks 

This work investigates the relationship between countries’ participation in international trade in 

agricultural goods and their vulnerability to external shocks from a network perspective.  

Our work contributes to the debate on the potential merits and risks associated with openness to trade 

in agricultural and food products. On the one hand, trade helps to ensure that even countries with 

limited water (and other relevant) resources have access to sufficient food and contribute to the global 

saving of water. On the other hand, there are fears that openness may increase the vulnerability to 

external shocks and thus make countries worse off. Here we abstract from political considerations 

about food sovereignty and independence from imports and focus instead on investigating whether the 

likelihood of large output shocks has increased over time, alongside globalization, and whether the 

topological features of the network of international trade in agricultural goods makes the world system 

prone to large systemic crises. 

Our analysis reveals a number of interesting and relevant features. First of all, the probability of large 

supply shocks hitting the system is larger than one would predict under the Normal (Gaussian) 

distribution, but has not increased over time. Second, the structure of the VW network has become 

more balanced over time, as more countries integrate further in the world system and increase their 

import and export activity. As a result, the topological characteristics of the VW network, which play an 

important role in the transmission of shocks, are not such as to favor the systemic risk associated with 

shock propagation. The structure of international trade has evolved in a way that makes the benefits 

from the dissipation of shocks through the network outweigh the potential costs of shock propagation 

and magnification, at least from a systemic point of view. Yet, the high concentration of trade flows, 

with a few very strong relations accounting for the bulk of world trade, makes some of the nodes 

critically important. The analysis of higher-order interconnections reveals important information about 

the structure of a network: this paper represents an interesting first step in this direction, but further 

research is needed to identify critical nodes at the global and regional level.  

In a nutshell, we find that the increased globalization, witnessed by both the increasing number of 

trading countries and the increase in total trade flows, is not associated with an increased likelihood of 

adverse shocks in food production. Furthermore, building on recent advances in network analysis, we 

find that the world is more interconnected, but not necessarily less stable. While the number of trade 

connections and the volume of water associated with global food trade has almost doubled, the degree 

of network asymmetry has decreased. Central players are gradually lessening their importance as 

dominant-hubs, giving rise to a more balanced topological structure and, therefore, reducing the 

systemic vulnerability of the VW network.  
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From these results we derive two main implications. First, with respect to the relationship between 

trade openness and food security, we conclude that global trade cannot be regarded as a major source 

of systemic instability, and policies of national self-sufficiency in food production that progressively 

reduce a country’s participation in agricultural trade may be globally defeating if they end up increasing 

the heterogeneity in the network. In fact, by highlighting the crucial role of interconnections and 

second-order linkages across countries, network analysis forcefully shows that international 

coordination plays a crucial role in making the system more resilient to food crises. Moreover, as 

discussed by Allouche (2011), in places where water and land are scarce, a target of national self-

sufficiency may simply not be viable or, by increasing pressure on natural resources, become 

unsustainable in the long-run. 

Second, from a policy perspective our results suggest that the process of globalization in food trade 

makes countries strongly interdependent. Hence, none of them can imagine to be completely insulated 

from external shocks. As a result, international coordination should be enhanced. In fact, isolated 

moves by individual countries seeking to limit their exposure may have unintended global 

consequences if they alter the topological structure of the network (for instance by increasing its 

heterogeneity). On the contrary, concerted actions are more likely to make the global system more 

resilient to food crises, as already emphasized in a recent contribution by Rutten et al. (2013). For 

instance, an effort to reduce the remaining trade barriers to trade in agricultural goods would offer new 

trade opportunities: as long as this also reduces heterogeneity in the network –for instance by 

enhancing the integration of peripheral countries- it would have a beneficial effect on stability. 

We claim network analysis can offer a fruitful avenue of research in the area of food security. Looking 

at commodity-specific networks more directly related with food security in some part of the world (e.g. 

grains, rice or other staple food) may highlight important features that are not evident in the aggregated 

analysis performed here. Furthermore, in this paper we have deliberately focused on the global stability 

of the network, abstracting from analyzing the position of each and every country. Investigating the 

presence of regional or country-specific fragilities represents another interesting avenue for further 

research. 
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Appendix A 

We present a sample of results derived from the analysis of the outdegree probability distribution 
functions, for the same selected years. A comparison with the indegree analysis carried out previously 
shows that the qualitative picture does not change. 

 

  
Figure A1. Normalized first-order (left panel) and second-order (right panel) outdegree distributions. 

 

 

Table A1. Descriptive statistics and indexes of tail heaviness. First- and second-order outdegree distributions. 

Year 

First-Order Outdegree Second-Order Indegree 

Kurtosis  Skewness  
% Out of 
Interval  

ObIn Kurtosis  Skewness  
% Out of 
Interval 

ObInd.  

1986 4.11 1.40 6.7 0.78 2.09 0.52 2.4 0.6463 

1990 4.06 1.41 6.3 0.78 2.03 0.50 1.5 0.6361 

1995 3.97 1.37 5.9 0.78 2.07 0.52 2.1 0.6460 

2000 2.75 0.88 7.0 0.70 1.80 0.26 0 0.5737 

2005 2.39 0.73 5.2 0.69 1.71 0.23 0 0.5730 

2010 2.27 0.68 4.3 0.68 1.63 0.15 0 0.5471 

 

 

  
Figure A2. MEF of the original sample and aggregated data set at the year 2000.  

First-order (left panel) and second-order (right panel) degree distribution of the unweighted VW network. 
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Figure A3. Weighted first-order (left panel) and second-order (right panel) outdegree distributions for selected years. Horizontal axis in 
log scale. 

 

 

Table A2. Indexes of tail heaviness. Weighted first- and second-order outdegree. 

Year 

First-Order Outdegree Second-Order Outdegree 

% Out of 
Interval  

ObIn 
% Out of 
Interval 

ObInd.  

1986 2.5 0.9284 3.9 0.9220 

1990 2.9 0.9425 4.4 0.9275 

1995 3.8 0.9348 5.1 0.9193 

2000 3.8 0.9062 5.2 0.9040 

2005 4.3 0.9054 4.8 0.9074 

2010 4.3 0.9032 4.7 0.9112 

 

 

 

  
Figure A4. MEF of the original sample and aggregated data set at the year 2000.  

Weighted first-order (left panel) and second-order (right panel) outdegree distribution. 
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Appendix B 
 

Table B1. List of countries. 

id Countries id Countries id Countries 

1 Afghanistan 46 China, Hong Kong SAR  91 Ghana 

2 Albania 47 China, Macao SAR  92 Gibraltar 

3 Algeria 48 China, Taiwan Province of 93 Greece 

4 American Samoa 49 China, mainland 94 Greenland 

5 Andorra 50 Christmas Island 95 Grenada 

6 Angola 51 Cocos (Keeling) Islands 96 Guadeloupe 

7 Anguilla 52 Colombia 97 Guam 

8 Antarctica 53 Comoros 98 Guatemala 

9 Antigua and Barbuda 54 Congo 99 Guinea 

10 Argentina 55 Cook Islands 100 Guinea-Bissau 

11 Armenia 56 Costa Rica 101 Guyana 

12 Aruba 57 Croatia 102 Haiti 

13 Australia 58 Cuba 103 Heard and McDonald Is. 

14 Austria 59 Cyprus 104 Holy See 

15 Azerbaijan 60 Czech Republic 105 Honduras 

16 Bahamas 61 Czechoslovakia 106 Hungary 

17 Bahrain 62 Côte d'Ivoire 107 Iceland 

18 Bangladesh 63 
Dem. People's Rep. of 
Korea 

108 India 

19 Barbados 64 Dem. Rep. of the Congo 109 Indonesia 

20 Belarus 65 Denmark 110 Iran (Islamic Republic of) 

21 Belgium 66 Djibouti 111 Iraq 

22 Belize 67 Dominica 112 Ireland 

23 Benin 68 Dominican Republic 113 Israel 

24 Bermuda 69 EU(12)ex.int 114 Italy 

25 Bhutan 70 Ecuador 115 Jamaica 

26 Bolivia 71 Egypt 116 Japan 

27 Bosnia and Herzegovina 72 El Salvador 117 Johnston Island 

28 Botswana 73 Equatorial Guinea 118 Jordan 

29 Bouvet Island 74 Eritrea 119 Kazakhstan 

30 Brazil 75 Estonia 120 Kenya 

31 British Ind. Ocean Terr. 76 Ethiopia 121 Kiribati 

32 British Virgin Islands 77 Falkland Islands (Malvinas) 122 Kuwait 

33 Brunei Darussalam 78 Faroe Islands 123 Kyrgyzstan 

34 Bulgaria 79 Fiji 124 Lao People's Dem. Rep. 

35 Burkina Faso 80 Finland 125 Latvia 

36 Burundi 81 France 126 Lebanon 

37 Cambodia 82 French Guiana 127 Lesotho 

38 Cameroon 83 French Polynesia 128 Liberia 

39 Canada 84 French South. Ant. Terr. 129 Libyan Arab Jamahiriya 

40 Canton and Enderbury Is. 85 Gabon 130 Liechtenstein 

41 Cape Verde 86 Gambia 131 Lithuania 

42 Cayman Islands 87 Gaza Strip (Palestine) 132 Luxembourg 

43 Central African Republic 88 Georgia 133 Madagascar 

44 Chad 89 Germany 134 Malawi 

45 Chile 90 Germany Nl 135 Malaysia 
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Table B1. (continue…). 

id Countries id Countries id Countries 

136 Maldives 176 Peru 216 Sweden 

137 Mali 177 Philippines 217 Switzerland 

138 Malta 178 Pitcairn Islands 218 Syrian Arab Republic 

139 Marshall Islands 179 Poland 219 Tajikistan 

140 Martinique 180 Portugal 220 Thailand 

141 Mauritania 181 Puerto Rico 221 Macedonia (FYR) 

142 Mauritius 182 Qatar 222 Timor-Leste 

143 Mayotte 183 Republic of Korea 223 Togo 

144 Mexico 184 Republic of Moldova 224 Tokelau 

145 Micronesia 185 Romania 225 Tonga 

146 Midway Island 186 Russian Federation 226 Trinidad and Tobago 

147 Monaco 187 Rwanda 227 Tunisia 

148 Mongolia 188 Réunion 228 Turkey 

149 Montenegro 189 Saint Helena 229 Turkmenistan 

150 Montserrat 190 Saint Kitts and Nevis 230 Turks and Caicos Islands 

151 Morocco 191 Saint Lucia 231 Tuvalu 

152 Mozambique 192 Saint Pierre and Miquelon 232 US Minor Is. 

153 Myanmar 193 Saint Vincent and the Gren. 233 USSR 

154 Namibia 194 Samoa 234 Uganda 

155 Nauru 195 San Marino 235 Ukraine 

156 Nepal 196 Sao Tome and Principe 236 United Arab Emirates 

157 Netherlands 197 Saudi Arabia 237 United Kingdom 

158 Netherlands Antilles 198 Senegal 238 United Rep. of Tanzania 

159 New Caledonia 199 Serbia 239 United States Virgin Islands 

160 New Zealand 200 Serbia and Montenegro 240 United States of America 

161 Nicaragua 201 Seychelles 241 Uruguay 

162 Niger 202 Sierra Leone 242 Uzbekistan 

163 Nigeria 203 Singapore 243 Vanuatu 

164 Niue 204 Slovakia 244 Venezuela 

165 Norfolk Island 205 Slovenia 245 Viet Nam 

166 Northern Mariana Islands 206 Solomon Islands 246 Wake Island 

167 Norway 207 Somalia 247 Wallis and Futuna Islands 

168 Occ. Palestinian Terr. 208 South Africa 248 West Bank 

169 Oman 209 South Georgia Sandwich Is. 249 Western Sahara 

170 Pacific Islands Trust Terr. 210 Spain 250 Yemen 

171 Pakistan 211 Sri Lanka 251 Yugoslav SFR 

172 Palau 212 Sudan 252 Zambia 

173 Panama 213 Suriname 253 Zimbabwe 

174 Papua New Guinea 214 Svalbard and Jan Mayen Is.   

175 Paraguay 215 Swaziland   
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Table B2. List of the 309 items considered in the analysis, with corresponding FAOSTAT identification number. 

id FAO Products id FAO Products id FAO Product 

15 Wheat 150 Flour of Roots and Tubers 243 Groundnuts Shelled 

16 Flour of Wheat 156 Sugar cane 244 Groundnut oil 

18 Macaroni 157 Sugar beet 249 Coconuts 

20 Bread 160 Maple Sugar and Syrups 251 Copra 

27 Rice, paddy 161 Sugar crops, nes 252 Coconut (copra) oil 

28 Rice Husked 162 Sugar Raw Centrifugal 256 Palm kernels 

31 Rice Milled 164 Sugar Refined 257 Palm oil 

32 Rice Broken 165 Molasses 258 Palm kernel oil 

38 Rice Flour 166 Other Fructose and Syrup 259 Cake of Palm Kernel 

44 Barley 167 Sugar, nes 260 Olives 

46 Barley Pearled 171 Sugar flavoured 261 Olive oil, virgin 

48 Barley Flour and Grits 172 Glucose and Dextrose 262 Olives Preserved 

49 Malt 176 Beans, dry 263 Karite Nuts (Sheanuts) 

51 Beer of Barley 181 Broad and horse beans, dry 264 Butter of Karite Nuts 

56 Maize 187 Peas, dry 265 Castor oil seed 

58 Flour of Maize 191 Chick peas 266 Oil of Castor Beans 

60 Maize oil 195 Cow peas, dry 267 Sunflower seed 

71 Rye 197 Pigeon peas 268 Sunflower oil 

72 Flour of Rye 201 Lentils 269 Sunflower Cake 

75 Oats 203 Bambara beans 270 Rapeseed 

76 Oats Rolled 205 Vetches 271 Rapeseed oil 

79 Millet 210 Lupins 272 Cake of Rapeseed 

83 Sorghum 211 Pulses, nes 273 Olive Residues 

89 Buckwheat 212 Flour of Pulses 278 Oil of Jojoba 

92 Quinoa 216 Brazil nuts, with shell 280 Safflower seed 

94 Fonio 217 Cashew nuts, with shell 289 Sesame seed 

97 Triticale 220 Chestnuts 290 Sesame oil 

101 Canary seed 221 Almonds, with shell 292 Mustard seed 

103 Mixed grain 222 Walnuts, with shell 296 Poppy seed 

108 Cereals, nes 223 Pistachios 299 Melonseed 

116 Potatoes 224 Kolanuts 329 Cottonseed 

117 Potatoes Flour 225 Hazelnuts, with shell 331 Cottonseed oil 

118 Frozen Potatoes 226 Arecanuts 332 Cake of Cottonseed 

120 Potato Offals 231 Almonds Shelled 333 Linseed 

121 Tapioca of Potatoes 232 Walnuts Shelled 334 Linseed oil 

122 Sweet potatoes 233 Hazelnuts Shelled 335 Cake of Linseed 

125 Cassava 234 Nuts, nes 336 Hempseed 

126 Flour of Cassava 235 Prepared Nuts 339 Oilseeds, Nes 

127 Tapioca of Cassava 236 Soybeans 
 
 
 
 
 
 

340 Oil of vegetable origin, nes 

128 Cassava Dried 237 Soybean oil 358 Cabbages 

129 Cassava Starch 238 Cake of Soybeans 366 Artichokes 

135 Yautia (cocoyam) 239 Soya Sauce 367 Asparagus 

136 Taro (cocoyam) 240 Soya Paste 372 Lettuce and chicory 

137 Yams 241 Soya curd 373 Spinach 

149 Roots and Tubers, nes 242 Groundnuts, with shell 388 Tomatoes 
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Table B2. (continue…). 

id FAO Products id FAO Products id FAO Products 

389 Tomatojuice Conc. 536 Plums and sloes 698 Cloves 

390 Juice of Tomatoes 537 Plums Dried (Prunes) 702 Nutmeg, mace and card. 

391 Paste of Tomatoes 541 Stone fruit, nes 711 Anise, badian, fennel 

392 Tomato Peeled 544 Strawberries 720 Ginger 

393 Cauliflowers and broccoli 547 Raspberries 723 Spices, nes 

394 Pumpkins, squash 549 Gooseberries 748 Peppermint 

397 Cucumbers and gherkins 550 Currants 767 Cotton lint 

399 Eggplant-baseds 552 Blueberries 768 Cotton Carded,Combed 

401 Chillies and peppers 554 Cranberries 769 Cotton Waste 

402 Onions (inc. shallots) 558 Berries Nes 770 Cotton Linter 

403 Onions, dry 560 Grapes 773 Flax fibre and tow 

406 Garlic 561 Raisins 774 Flax Tow Waste 

414 Beans, green 562 Grape Juice 777 Hemp Tow Waste 

417 Peas, green 563 Must of Grapes 780 Jute 

423 String beans 564 Wine 782 Other Bastfibres 

426 Carrots and turnips 565 Vermouths and Similar 788 Ramie 

430 Okra 566 Marc of Grapes 789 Sisal 

446 Maize, green 567 Watermelons 800 Agave Fibres Nes 

447 Sweet Corn Frozen 568 Other melons 809 Manila Fibre (Abaca) 

460 Veg.Prod.Fresh Or Dried 569 Figs 821 Fibre Crops Nes 

461 Carobs 571 Mangoes, mangosteens 826 Tobacco, unmanufactured 

463 Vegetables fresh nes 572 Avocados 836 Natural rubber 

466 Juice of Vegetables Nes 574 Pineapples 866 Cattle 

469 Vegetables Dehydrated 576 Juice of Pineapples 867 Cattle meat 

471 Vegetables in Vinegar 577 Dates 868 Offals of cattle, edible 

472 Vegetables Preserved Nes 591 Cashew apple 870 Meat-Cattle, boneless 

473 Vegetable Frozen 592 Kiwi fruit 872 Meat of Beef,Drd 

486 Bananas 600 Papayas 874 Sausage Beef and Veal 

489 Plantains 603 Fruit, tropical fresh nes 882 Cow milk, whole, fresh 

490 Oranges 604 Fruit Tropical Dried Nes 886 Butter Cow Milk 

491 Orange juice 619 Fruit Fresh Nes 888 Milk Skm of Cows 

495 Tangerines, mandarins 622 Fruit Juice Nes 889 Milk Whole Cond 

497 Lemons and limes 656 Coffee, green 890 Whey Condensed 

507 Grapefruit (inc. pomelos) 657 Coffee Roasted 891 Yoghurt 

509 Juice of Grapefruit 661 Cocoa beans 893 Butterm.,Curdl,Acid.Milk 

512 Citrus fruit, nes 662 Cocoa Paste 897 Milk Whole Dried 

513 Citrus juice,  663 Cocoahusks;Shell 898 Milk Skimmed Dry 

515 Apples 664 Cocoa Butter 901 Cheese of Whole Cow Milk 

517 Cider Etc 665 Cocoapowder and Cake 905 Whey Cheese 

518 Apple juice 666 Chocolate Prsnes 907 Processed Cheese 

521 Pears 667 Tea 909 Prod.of Nat.Milk Constit 

526 Apricots 677 Hops 919 Cattle hides 

527 Dry Apricots 687 Pepper (Piper spp.) 920 Hides Wet Salted Cattle 

530 Sour cherries 689 Chillies and peppers, dry 921 Hidesdry S.Cattle 

531 Cherries 692 Vanilla 976 Sheep 

534 Peaches and nectarines 693 Cinnamon (canella) 977 Sheep meat 
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Table B2. (continue…). 

id FAO Products id FAO Products id FAO Products 

978 Offals of Sheep,Edible 1037 Fat of Pigs 1096 Horses 

984 Cheese of Sheep Milk 1039 Bacon and Ham 1097 Horse meat 

998 Skins Nes Sheep 1041 Sausages of Pig Meat 1100 Hair of Horses 

999 Skins With Wool Sheep 1042 Prep of Pig Meat 1103 Hides Wet Salted Horses 

1016 Goats 1057 Chickens 1104 Hides Dry Slt Horses 

1017 Goat meat 1062 Hen eggs, in shell 1105 Hides Unsp Horse 

1018 Offals of Goats, Edible 1063 Eggs Liquid 1107 Asses 

1021 Cheese of Goat Mlk 1064 Eggs Dried 1110 Mules 

1025 Goatskins 1069 Duck meat 1159 Offals other camelids 

1034 Pigs 1073 Goose, guinea fowl meat 1187 Cocoon Unr. and Waste 

1035 Pig meat 1080 Turkey meat 1219 Hair Coarse Nes 

1036 Offals of Pigs, Edible 1091 Other bird eggs,in shell 1232 Food Prep Nes 

 

 
 


