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ABSTRACT 1 

Heterogeneity in transmission and stochastic events can play a significant role in shaping the 2 

epidemic dynamics of vector-borne infections, especially in the initial phase of an outbreak. In this 3 

work, by using multi-type branching process methodologies, we assess how heterogeneities in 4 

transmission among a large number of host groups can affect the invasion probabilities of a 5 

mosquito-borne disease. 6 

We show with both analytical and numerical methods that heterogeneities in transmission can shape 7 

the invasion probabilities differently from how they affect the basic reproduction number (R0). In 8 

particular, we find that, while R0 always increases with the heterogeneity, the invasion probability 9 

after the introduction of infected hosts can decrease with the increase of transmission heterogeneity, 10 

even approaching zero when the number of host groups is very large. In addition, we show that the 11 

invasion probability via infected vectors is always larger than via infected hosts when 12 

heterogeneous transmission is sufficiently high. 13 

Our findings suggest that, for multi-species infections (e.g. West Nile fever and Rift Valley fever) 14 

or for single-species infections with patchy host distribution, the introduction of primary infected 15 

vectors may represent a higher risk for major outbreaks occurrence than introductions of infected 16 

hosts.  17 

 18 

 19 

KEYWORDS: Vector-borne infection; Branching process; Multiple host; Heterogeneity; 20 

Stochasticity; Multi-group model 21 
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1. INTRODUCTION 1 

Vector-borne diseases are infections transmitted by the bite of infected arthropods, such as 2 

mosquitoes, ticks and fleas. Among them, mosquito-borne diseases (such as malaria, West Nile 3 

virus, chikungunya, dengue fever, Rift Valley fever and yellow fever) represent major threats to 4 

human and animal health.  5 

Mathematical models have been widely developed aiming at describing the complexity of host-6 

mosquito-pathogen interactions. The first mathematical description of mosquito-borne infections is 7 

due to Sir Ronald Ross, who provided a synthetic theoretical framework for the transmission of 8 

human malaria (Ross 1911). His pioneering work, later extended by Macdonald (1952), provided 9 

several insight on vector-borne disease control and prevention. The main achievement of the Ross-10 

Macdonald model was the identification of a threshold condition for disease invasion – the basic 11 

reproduction number – which still is, to this day, the most important metric in mathematical 12 

epidemiology (see Section 2.1 for more details). 13 

In more recent years the basic theory of the Ross-Macdonald model has been expanded to include 14 

eco-epidemiological complexities inherent in malaria and other mosquito-borne infections, such as 15 

waning immunity (Aron 1988), multiple strain co-circulation (Ferguson et al. 1999), cross-16 

immunity (Adams et al. 2006), seasonal variations (Dietz 1971), and spatial, behavioural or genetic 17 

heterogeneity in transmission (Woolhouse et al. 1997). Although this large amount of work 18 

significantly improved the understanding of vector-borne diseases epidemiology, two recent review 19 

articles on mathematical models of mosquito-borne diseases published by Reiner et al. (2013) and 20 

Smith et al. (2014) pointed out that there exist still a small number of studies looking at the 21 

consequences of poorly mixed vector-host encounter and spatial heterogeneity on disease dynamics.  22 

Several empirical surveys provided evidence for the existence of heterogeneities in the frequency of 23 

mosquito bites among humans. Differences in mosquito biting rate have been observed among 24 

people with different blood group type (Shirai et al. 2004), carbon dioxide emission – hence size – 25 

(Zainulabeuddin & Leal 2007), health status of both vector and host (Ferguson & Read 2004), skin 26 
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bacteria composition (Verhulst et al. 2011), etc. Similarly, heterogeneous biting rates have been 1 

observed among the avian community of West Nile virus host species both in USA (Kilpatrick et al. 2 

2006a) and Europe (Roiz et al. 2012). 3 

From the epidemiological point of view, seminal theoretical papers by Barbour (1978), Dye & 4 

Hasibeder (1986) and Hasibeder & Dye (1988) based on deterministic models showed that 5 

heterogeneities in the transmission of vector-borne infections play a major role in defining the 6 

threshold condition for disease invasion. In particular, they show that, when vector biting rate 7 

differs among host groups, the basic reproduction number is always larger than under the 8 

hypothesis of completely homogeneous mixing.  9 

However, deterministic models ignore the contribution of demographic stochasticity, which is 10 

especially relevant when the prevalence in hosts and/or vectors is low (for instance at the beginning 11 

of an outbreak). Historically, stochastic epidemic models have been developed within the 12 

framework of continuous-time Markov processes or branching processes at the population level 13 

(Bartlett 1964; Bailey 1975), although more complex models taking into account many details of 14 

mosquito-borne infections have been recently proposed (Magori et al. 2009; Perkins et al. 2013). 15 

The development of the theory of stochastic epidemic models has allowed, largely on the basis of 16 

branching process approximations, for the computation of disease invasion probabilities in several 17 

types of models (Andersson & Britton 2000). In the case of vector-borne diseases, branching 18 

process approximations have been extensively analysed in the case of one host (Bartlett 1964; 19 

Griffiths 1972; Ball 1983; Lloyd et al. 2007) and two host groups (Lloyd et al. 2007). Here, we 20 

extend the analysis to the case of n different host groups by studying the effect of stochastic 21 

processes on the invasion probability of a vector-borne infection under different assumptions of 22 

heterogeneous host-vector mixing. In particular, we analyse the role of the number of host groups 23 

(Subsection 3.3.1.) and of the heterogeneity in vector biting rates among them (Subsection 3.3.2.) in 24 

shaping the invasion probability of infections introduced in a new population by a single vector or 25 

host.  26 



 5 

  1 

2. THE DETERMINISTIC MULTI-GROUP MODEL 2 

The multi-group model (Dye & Hasibeder 1986) is a generalization of the classical Ross-3 

Macdonald host-vector model (Ross 1911; Macdonald 1952), which takes into account different 4 

host types. Each host type can indicate either a host species (Kilpatrick et al. 2007) or the patch (or 5 

group) to which an individual host belongs in populations characterized by spatial/behavioural 6 

heterogeneity (Woolhouse et al. 1997). The model assumes that the vector population (V) and the n 7 

host type populations (Hj, with j = 1,…,n) are constant in their sizes, and that they can be 8 

subdivided at any time t into two compartments with respect to the disease: infectious (I for vectors 9 

and Yj for type-j host) or susceptibles (V - I and Hj - Yj, respectively). 10 

A susceptible vector [host] can acquire infection by biting [being bitten by] an infected host [vector]. 11 

The multi-group model assumes that the rate at which vectors bite hosts is a constant, say 12 

independent of host density. This implies that host density does not represent a limiting factor for 13 

vectors to find a valuable meal. Then, the rate at which susceptible vectors become infected is equal 14 

to times the probability that the bite is on an infected host, times the probability that the vector 15 

becomes infected (assumed to be a constant value qV independent of host type). 16 

Letting j represent the proportion of vector bites allocated to type-j host (with 1 j j ) and  the 17 

mortality rate of vectors, one arrives at the equation 18 

I
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where  qV . 20 

Similarly, a susceptible host of type j gets infected when it is bitten by an infected vector (this 21 

occurs at rate j [1 - Yj/Hj]), times the probability of becoming infected in that case, say qH. Then, 22 

if  represents the recovery rate of infected hosts (assumed also to be constant among types), the 23 

equations for infected type-j hosts are 24 
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where qH. 2 

Equations (1)-(2) constitute the system of differential equations for the multi-group model as in Dye 3 

& Hasibeder (1986). 4 

Transmission is considered to be homogeneous if the fraction of bites j allocated to type-j hosts is 5 

proportional to their relative abundance, i.e. if j = hj (where HHh jj / and  j jHH  is total 6 

host abundance). Correspondingly, the heterogeneity generated by variations among different host 7 

types in their exposure to mosquito feeding can be measured by the variance of the j / hj weighted 8 

by the frequency distribution of hj, namely   
j jjjjjj hhhh /)();/var( 2 . 9 

 10 

2.1. The basic reproduction number 11 

The basic reproduction number, R0, represents the average number of secondary infections that one 12 

primary infective individual produces during its infectious period into an entirely susceptible 13 

population (Diekmann et al. 1990). In the case of vector-borne diseases the infection cycle lies in a 14 

two-step process: from host-to-vector and from vector-to-host. Then, as shown by Dye & Hasibeder 15 

(1986), the basic reproduction number for multi-group model (1)-(2) can be broken up in two 16 

different terms: jjHVjj

VH
hrHhVR j /)/(0   , which represents the average number of 17 

secondary infections among vectors that arise from a single type-j host; and jVHj

VH
rR j   /0 , 18 

which represents the average number of secondary infections among type-j hosts that arise from a 19 

single vector. Thus, over the entire transmission cycle, one infective host or vector gives rise to an 20 

average of 21 
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where  j jj h/2  is defined as the relative reproduction number, R0,rel, which represents the 1 

proportion of R0 due to the heterogeneous mixing among hosts and vectors (Woolhouse et al. 1997). 2 

In particular, Dye & Hasibeder (1986) showed that the relative reproduction number can be 3 

rewritten as 4 
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Equation (4) shows that heterogeneous vector biting rates and host frequencies in the community, 6 

corresponding to 0);/var( jjj hh , lead to a greater R0 value in (3) than in the case of 7 

homogeneous mixing, characterized by 0);/var( jjj hh . In summary, deterministic multi-group 8 

model (1)-(2) predicts that both infection invasion and persistence increase as a consequence of 9 

non-homogeneous mixing (Dye & Hasibeder 1986).  10 

We stated that the quantity R0 defined above can be interpreted either as the expected number of 11 

infected vectors generated over a cycle, in completely susceptible populations, by one infected 12 

vector, or the same quantity in terms of infected hosts. While the former interpretation is 13 

straightforward, the latter is subtler and relies on the argument by Diekmann et al. (1990). Indeed, 14 

an infected type-j host will generate on average ij VHVH
RR 00  infectives of type-i host for all i. Then, 15 

we can define a matrix M, with ij VHVH

ij RRM 00 , describing all average transmissions depending on 16 

the type of the initial infected. Following Diekmann et al. (1990), the average number of 17 

transmissions from an average infected host, R0, is defined as the spectral radius of M; a simple 18 

computation then leads to the expression (3). In this case, it is possible to provide a more intuitive 19 

understanding of the quantity R0 by saying that an initial type-j infected host will on average infect 20 

Mij type-i hosts for a total number of first generation infected (I1) 21 
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Now, each of the type-i hosts will infect on average Mki type-k hosts for a total number of second 1 

generation infected (I1) 2 


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Then, we obtain 4 

0

1

0012 / RRRII
n

i

VHVH ii 


, 5 

showing that each first generation infected host infects on average R0 hosts. This argument also 6 

shows that we can expect more variability in the outcome when an infected host is introduced than 7 

after the introduction of an infected vector. Indeed, the type of initial host influences the expected 8 

number of first generation infected.  9 

 10 

3. THE INDIVIDUAL-BASED MULTI-GROUP MODEL 11 

Deterministic models are useful tools for understanding pathogen dynamics, however the treatment 12 

of host and vector populations as continuously varying quantities can produce unrealistic results. 13 

For instance, in deterministic models pathogens never wholly die out and can regenerate from 14 

arbitrarily small amounts of residual infection (Mollison 1991). By including demographic 15 

stochasticity, we explicitly describe the movements of individuals between classes, instead of 16 

considering the average rates at which individuals move (Bartlett 1960). A stochastic description of 17 

the infection process allows for the last infected individual to recover or die before the infection is 18 

transmitted even in the case R0 is larger than 1. Thus, differently from the deterministic model, 19 

infection can go extinct as a consequence of stochastic events and can only reappear if it is 20 

reintroduced from outside the host-vector community. 21 

The stochastic model we consider is a continuous-time Markov chain. This implies that, given the 22 

state of the system at time t, the waiting time for the next event (i.e. infections, recovery and death) 23 

is exponentially distributed with a rate given by the sum of the rates of all possible events (Bartlett, 24 
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1960). The rules for the transition rates are patterned after the corresponding rates in the 1 

deterministic model (1)-(2) and are listed in Table 1. 2 

 3 

3.1. Branching process in the multi-group model 4 

As well known, pathogen extinction after introduction occurs in stochastic epidemic models either 5 

very early or later in time, after at least one major epidemic (Nasell 1999). In order to compute the 6 

probability of early extinction, it is possible to linearize the model and analyse the corresponding 7 

branching process. Disease extinction and disease invasion in the branching process model 8 

correspond to the occurrence of minor and major outbreaks, respectively, in the nonlinear model 9 

(Ball 1983). 10 

Branching process models assume that that the numbers of secondary cases caused by each 11 

infectious individual are independent and identically distributed (Bartlett 1955; Kendall 1956), 12 

implying that the supply of susceptible individuals is not a limiting factor for the outbreak. Then, if 13 

the process is also Markov, the number of infectious individuals follows a birth-and-death linear 14 

process. 15 

A branching process can then be summarized by the probability generating function of the 16 

secondary cases distribution, G(s). When the process is one-dimensional, the probability generating 17 

function can be defined as 18 







0

)Pr()(
k

k kZssG     19 

where Pr(Z = k) – for k = 0,1,2,3,… – is the probability distribution of the discrete random variable 20 

Z, describing the number of new cases caused by each infectious individual (see Harris 1989). 21 

Branching process theory (see Cournot 1847; Athreya & Ney 1972; Haccou et al. 2005) ensures that 22 

extinction probability after the introduction of a single infectious individual is the smallest non-23 

negative solution of the equation: 24 

ssG )( .        (5) 25 



 10 

In a Markov process, infection transmission can be represented by a Poisson process and infection 1 

duration is exponentially distributed, so that secondary cases follow a geometric distribution with 2 

mean  (Diekmann & Heesterbeek 2000) leading to 3 

)1(1

1
)(

s
sG


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
.       4 

The basic reproduction number is, by definition, the average value of Z. Hence, in the case of 5 

infection processes = R0 Extending this to multi-type branching processes, as required by the 6 

host-vector model, the distributions of secondary infections of each type can be described by an m-7 

dimensional generating function (Griffiths 1972; Ball 1983) whose i-th component is:  8 

  9 
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where 
j

iR ,0  represents the average number of secondary type-i infections produced by an infected 11 

host of type j. Extinction probabilities can still be obtained by solving equation (5) which is now m-12 

dimensional. A solution s=(s1,…,sm) of (5) represents extinction probabilities in the sense that si is 13 

the probability of extinction after introduction of 1 individual of type i. 14 

In the case of vector-borne diseases with one vector and n host types, probability generating 15 

functions (6) can be written, as already shown in Lloyd et al. (2007), as 16 
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Then, by imposing condition (5) in equations (7) and (8), we compute the probability of pathogen 19 

extinction following the introduction of a single infected type-j host (
jHs ) or a single infected 20 

vector ( Vs ) as: 21 
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Equation (10) is obtained by first imposing GV = sV, then substituting in it sHj with the LHS of (9). 3 

Assuming that j is the introduction probability of an infected type-j host, it is possible to define the 4 

pathogen extinction probability following the introduction of a randomly selected host ( Hs ) as the 5 

weighted sum of the type-j extinction probabilities,  

n

j Hj j
s

1
  (Becker & Marschner 1990; Lloyd 6 

et al. 2007). Then 7 
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3.2. Invasion probabilities 10 

System (9)-(10) always have a trivial solution: 1Vs , njs
jH ,,11  . In addition, when R0 11 

defined as in (3) is larger than 1, there also exists a solution with all the s strictly lower than 1 12 

(Athreya & Ney 1972); then a major outbreak can occur. 13 

Rewriting expression (10) with jVHj

VH
rR j   /0 , jjHVjj

VH
hrHhVR j /)/(0    as in (3) 14 

and rearranging under the assumption that sV  1 (since sV = 1 represents the trivial solution of 15 

equation 10), we see that sV can be obtained as the unique solution in (0,1) of 16 

1
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In addition, by assuming as in Becker & Marschner (1990) and Lloyd et al. (2007) that each host 18 

individual has the same probability to introduce the pathogen (which corresponds to assume that j 19 

= hj), equation (11) becomes: 20 
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From (12) and (13), it is straightforward to prove that in the case of homogeneous feeding 2 

preferences (i.e., j ≡ hj) the extinction probabilities ( VhyV ss
jj




, HhyH ss
jj




) in the multi-host 3 

branching process are the same as in the one-host case, as shown in Lloyd et al. (2007): 4 
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Then, if vector-to-host and host-to-vector transmissions are the same ( rrr HVVH  ), invasion 6 

probabilities from an introduced infected vector or random host are the same: 7 

r
ss HV

1
111  .      (15) 8 

Hereafter we show that, in the presence of heterogeneous feeding preferences, the invasion 9 

probabilities due to pathogen introduction in the multi-group branching process can significantly 10 

differ from the homogeneous case. Specifically, we show that in the presence of heterogeneity in 11 

the vector feeding preferences: 12 

i) the invasion probability following the introduction of an infected vector, VV sp 1 , is 13 

always larger than in the homogeneous case, i.e. VVVV pssp  11  (see Proposition 1 14 

in Appendix A); 15 

ii) on the other hand, the invasion probability following the introduction of a random infected 16 

host, HH sp 1 , can be lower than in the homogeneous case despite the increase of R0,rel 17 

(see (4)). In particular, condition HHH psp 1  is always satisfied for sufficiently high 18 

values of rHV, i.e. VHVHHV rrr /)11(  . In the specific case of symmetry in the 19 

homogeneous components of transmission (i.e. rrr VHHV  ) the condition HH pp   is 20 

always satisfied for r  (where 2/)51(   represents the golden ratio), see Proposition 21 

2 in Appendix A; 22 
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iii) moreover, in the case of homogeneity in host group abundance and a large number of host 1 

groups ( n ), VV sp 1  tends to )1/( VHVH rr  and HH sp 1  tends to zero under the 2 

heterogeneous feeding rates that maximize R0,rel (Propositions 4 and 5 in Appendix A); 3 

In accordance with previous claims, we show that expression (15), which defines the invasion 4 

probabilities in the case of homogeneous biting rate, does not hold in the presence of heterogeneous 5 

biting rates. Specifically, we show that: 6 

iv) in the case rrr HVVH  , the invasion probability following the introduction of an infected 7 

vector is always larger than that of an infected host, i.e. HV pp   (see Proposition 3 in 8 

Appendix A). 9 

Formal proofs of (i)-(iv) are given in Appendix A. 10 

 11 

The previous results show that the invasion probability following the introduction of an infected 12 

vector increases with the heterogeneity in hosts-vectors mixing (Propositions 1 in Appendix A) and 13 

it can reach its maximum value when R0,rel is maximized (see Remark on Proposition 4 in Appendix 14 

A). On the other hand, the invasion probability following the introduction of an infected host shows 15 

a more complex relationship with the heterogeneity in host-vector mixing (Proposition 2 in 16 

Appendix A), even showing cases where it can tend to zero when R0,rel is maximized (see Remark 17 

on Proposition 5 in Appendix A). In addition, differently from the one-host model, differences in 18 

invasion probabilities via infected vectors (pV) or hosts (pH) emerge also in the case of symmetric 19 

transmission between vector-to-host and host-to-vector (i.e. rrr HVVH  ), see Proposition 3.  20 

 21 

3.3 Numerical analyses 22 

Through numerical analyses, we investigate more in-depth the effects of heterogeneity in host 23 

spatial, behavioural or genetic structure and vector biting rate on disease establishment. Specifically, 24 
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we analyse the role of the number of host types (n), the distribution of host densities (hj), and the 1 

distribution of vector feeding preferences (j) on invasion probabilities. 2 

In order to compare the role of heterogeneous mixing on invasion probabilities via infected 3 

vector/host introduction, we assumed in our numerical analyses that the homogeneous components 4 

of the vector-to-host (rVH) and host-to-vector (rHV) basic reproduction number are the same, i.e. 5 

rrr HVVH  . The previous assumption implies that invasion probabilities pV and pH are the same 6 

in the presence of a single host type (i.e. n = 1, see Lloyd et al. 2007) or when vectors feed on host 7 

types in proportion to their frequency in the community (i.e., j ≡ hj, see (15)). As a consequence, 8 

the differences observed in our numerical analyses between pV and pH are uniquely due to the effect 9 

of heterogeneous mixing.  10 

 11 

3.3.1 Invasion probabilities and number of host groups 12 

In Fig. 1 we show the effect of the number of host types on invasion probabilities via infected 13 

vectors (blue) or hosts (red) for two different values of r (r = 1, panel a; r = 3, panel b), under the 14 

assumptions  
j jjj /  and 

j jjj HHh / , where j and Hj are random extractions from 15 

independently distributed standard lognormals, Lognorm(0,1). In particular, in Fig. 1 we show 16 

invasion probabilities obtained from the numerical solutions of equations (11) and (12) – see filled 17 

(dark and shaded) boxes –, together with simulations obtained from the individual-based model as 18 

in Tab. 1 – see open dots –. The simulations of the individual-based model were stopped either 19 

when no infected individuals were left in the system, or when 10,000 events had occurred. We see a 20 

very good agreement between the individual-based model and its branching process approximation. 21 

In agreement with Propositions 1 and 2, Fig. 1 shows that pV always increases with n, while – 22 

according to Proposition 2 – pH increases with n for low values of r (Fig. 1a) and decreases for high 23 

values of it (Fig. 1b). In addition, Fig. 1 reveals that asymptotic values of invasion probabilities are 24 

approached already for relatively low number of host types (n = 10-20). 25 
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[Fig. 1 about here] 1 

 2 

3.3.2 Invasion probabilities and the heterogeneity in biting rate 3 

Furthermore, numerical analysis allows to highlight more complex behaviours emerging as a 4 

consequence of heterogeneous mixing among hosts and vectors. Fig. 2 displays the effect of the 5 

variability in the distributions of biting rates, ),0( 2Lognormj  , and host type frequencies in 6 

the community, ),0( 2LognormH j  , defined by the log-standard deviation parameter  of the 7 

distributions on invasion probabilities via infected vectors (blue) or hosts (red). Since the 8 

heterogeneity in host-vector mixing measured as  jjj hh ;/var   increases with , we can read Fig. 9 

2 as the effect of increased heterogeneity on the invasion probabilities, ranging from a 10 

homogeneous mixing condition, i.e.   0;/var jjj hh , when  = 0 to a maximum heterogeneity 11 

condition when  is maximized. In particular, Fig. 2 shows that, in the case r = 1, the invasion 12 

probability pV, obtained from the solution of equation (12), is always an increasing function of  13 

with a minimum value 0/11
0




rpp VV 
 (for  = 0), and an asymptotic value for large 14 

heterogeneities 5.0)1/(11 


rpV 
 (for large values of ) as predicted by Proposition 1. 15 

On the other hand, pH, obtained from the solution of equation (11), follows a unimodal pattern with 16 

0
0


  HH pp  and a maximum value for intermediate  (i.e. heterogeneity). 17 

[Fig. 2 about here] 18 

In Fig. 3 we show a generalisation of the results obtained in Fig. 2. Specifically, we computed the 19 

invasion probabilities pV, in panel A, and pH, in panel B, as solutions of equations (11) and (12) for 20 

different values of r. We show that, similarly to Proposition 4, pV tends to an asymptotic value 21 

)1/(11 


rpV 
 for large values of , i.e. heterogeneity (see dot-dashed lines in panel A). On 22 

the other hand, pH displays a unimodal pattern for values of r lower than the golden ratio 23 

( 2/)51( r ), in contrast to a monotonically decreasing function of  for r > .  24 
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[Fig. 3 about here] 1 

3.3.3. Effect of correlation among bites and host groups abundance 2 

In this Section, we present the consequences of removing the hypothesis of independence between 3 

biting rate, j, and host type frequency in the community, hj. In particular, in Fig. 4 we show the 4 

invasion probabilities pV and pH, obtained by numerically solving equations (11) and (12), as 5 

functions of the log-standard deviation parameter  in biting rates (j) and host type frequencies in 6 

the community (hj), which represents increasing heterogeneities, for different values of Spearman 7 

rank correlation between  and H log-normal distributions. Correlated lognormal random variables 8 

were generated from exponentiating bivariate normal distributions with non-zero cross-covariance. 9 

We notice that by increasing the correlation between biting rates and host frequencies, corr(j, hj), 10 

the values of pV and pH mutually tend towards each other. However, Fig. 4 highlights that the 11 

qualitative behaviour observed in the case of independent distributions holds also in the presence of 12 

large value of correlation, e.g. corr(j, hj) = 0.75. 13 

[Fig. 4 about here] 14 

3.3.4 Alternative assumptions on the introduction probabilities of infected hosts 15 

In Section 3.1. we assumed, as in Becker & Marschner (1990) and Lloyd et al. (2007), that each 16 

host individual has the same probability to introduce the pathogen (i.e. j = hj). Here, we examine 17 

the consequences of assuming that the probability of each type-j host to introduce the infection is 18 

proportional to the fraction of bites allocated to that type, i.e. 19 




j jj

jj

j
h

h

)( 


 .       (16) 20 

In particular, in Fig. 5 we show the invasion probabilities pV and pH, obtained by numerically 21 

solving equations (11) and (12) with j as in (16), as functions of the log-standard deviation 22 

parameter  in biting rates (j) and host type frequencies in the community (hj), which represents 23 

increasing heterogeneities, for different values of the homogeneous components of the basic 24 
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reproduction number ( rrr HVVH  ) when expression (16) holds. As in Figs. 2 and 3, we find that: 1 

(i) the invasion probability via infected vector (pV) is larger than via infected host (pH), and (ii) the 2 

invasion probability via infected host (pH) increases [decreases] as heterogeneity increases for low 3 

[high] values of the homogeneous component of the basic reproduction number (r).  4 

[Fig. 5 about here] 5 

 6 

4. DISCUSSION AND CONCLUSIONS 7 

In this work, we explored the effect of heterogeneities in host-vector mixing on the probability of 8 

invasion of mosquito-borne infections in a multi-group model. In particular, we investigated the 9 

role of the distribution of vector feeding preferences and host densities in shaping disease invasion 10 

probabilities using a branching process framework. Our analytical and numerical results suggest 11 

that increasing the heterogeneity in feeding preferences and/or host densities always increases the 12 

invasion probability following the introduction of an infected vector (pV), see Proposition 1 and Fig. 13 

3a. On the other hand, the invasion probability following the introduction of an infected host (pH) 14 

follows a more complex pattern. Precisely, pH is a decreasing function of heterogeneity when the 15 

homogeneous parts of transmission (rHV and rVH) are high, while a unimodal function when rHV and 16 

rVH are low (see Proposition 2 and Fig. 3b). In simple terms, large heterogeneities in host-vector 17 

mixing in multi-host models tend to favour the invasion of diseases introduced by vectors and tend 18 

to hinder those introduced by hosts. From our results follows the unexpected consequence that, in 19 

multi-host models, the invasion probability pH can exhibit a decreasing relationship with 20 

heterogeneity which runs opposite to that of the most classical measure of disease invasion: the 21 

basic reproduction number (Dye & Hasibeder 1986); indeed, it can even approach zero at parameter 22 

values such that R0,rel is maximized (see Fig. 3b).  23 

The biological explanation for the observed patterns relies on the remark that, as heterogeneity 24 

increases, so does the preference of vectors for certain host types; as a consequence vector bites will 25 

be concentrated in a few preferred host groups. In this scenario, highly preferred and little abundant 26 
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host types may act as disease super-spreaders. Then, an infected vector is more likely to introduce 1 

the infection into a preferred host group from which disease transmission is effective, whereas a 2 

randomly introduced infected host is more likely to belong to a host type with ineffective 3 

transmission. Thus, introducing an infected vector is much riskier, by the very nature of the 4 

heterogeneity.  5 

The complex pattern of invasion probability following the introduction of an infected host is 6 

analogous to the effect of individual variations in directly-transmitted infections. In these cases, 7 

when transmission is low, heterogeneity initially increases invasion probability, due to the increase 8 

in R0; as heterogeneity is further increased, the effect of heterogeneity itself becomes dominant and 9 

causes a decrease in invasion probability. On the other hand, when the homogeneous component of 10 

the basic reproduction number is already high, the increase in R0 due to the heterogeneity becomes 11 

less relevant than the increase in the probability to introduce primary hosts with ineffective 12 

transmission; this causes pH to always decrease with heterogeneity. 13 

Differences in the effect of heterogeneities when the disease is introduced by either an infected 14 

vector or host have been observed by Smith et al. (2007) by adapting, in the context of a 15 

deterministic vector-host model, the basic reproduction number metric to the case of finite host 16 

populations. Analogously to our findings, Smith et al. (2007) showed that, in finite host populations, 17 

heterogeneous biting amplifies disease transmission in the case of a primary infected vector, while 18 

may reduce disease transmission in the case of a primary infected host, especially when the 19 

homogeneous component of R0 is large. The explanation of Smith et al. (2007) findings relies on the 20 

remark that, when the host population size is infinite, each infected vector bite lands on a different 21 

host. On the other hand, when the host population is low, the same host can receive multiple 22 

infected bites, then reducing the basic reproduction number. It is interesting to notice that the 23 

biological mechanism shaping the patterns observed by Smith et al. (2007) is completely different 24 

from what observed here, where the branching process approximation works under the assumption 25 

of infinite populations. 26 
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Similarly to the behaviour of pH found here for high values of the homogeneous component in the 1 

transmission terms, several authors showed that, in Susceptible-Infected-Recovered (SIR) model for 2 

directly transmitted infections, increasing heterogeneity in transmission among individuals (Lloyd-3 

Smith et al. 2005) or groups (Xiao et al. 2006) leads to a decrease in the disease invasion probability. 4 

However, SIR-like models incorporating a metapopulation structure in host distribution found that 5 

heterogeneity does not always make extinction more likely. In fact, the hump-shaped behaviour of 6 

pH as a function of heterogeneity (as in Fig. 2) is similar to the relationship observed between 7 

infections persistence and variability in between-patch transmission in metapopulations. As shown 8 

by Bolker & Grenfell (1995), Keeling (2000), and Hagenaars et al. (2004), the global persistence of 9 

infections in SIR-like metapopulation models may be maximized for intermediate levels of spatial 10 

heterogeneity. This pattern arises when the coupling among patches is sufficiently strong to 11 

generate frequent between-patch transmission (which favours disease re-introduction in different 12 

patches), but not so strong that spatial desynchronization (which is needed to avoid global 13 

extinctions) is lost. There is definitely an analogy between the mechanism observed in SIR-like 14 

metapopulation models and the above described mechanism found here for the invasion via primary 15 

infected host.  16 

We also show that the results obtained with the multi-group model significantly differ from those of 17 

the homogeneous branching process (thoroughly investigated by Lloyd et al. 2007). Lloyd et al. 18 

(2007) proved that the invasion probabilities in the homogeneous model are the same when 19 

transmission from host-to-vector and vector-to-host are symmetric (i.e. rHV = rVH) following either 20 

the introduction of an infected host or vector. Here, we show that, in the case of symmetric 21 

transmission, pV is always larger than pH (see Proposition 3 and Figs. 2,3,4), suggesting that the 22 

introduction of infected mosquitoes can more likely generates major outbreaks than the introduction 23 

of infected hosts. Even when host-to-vector transmission is larger than vector-to-host, the multi-24 

group model predicts larger invasion probabilities due to the introduction of primary infected 25 

vectors than hosts (i.e. pV > pH), as long as heterogeneity in feeding preferences and/or host 26 
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densities is sufficiently high (see Fig. S1 in the electronic supplementary material); this contrasts 1 

with the homogeneous branching process which, in such cases, predicts pH > pV. This result can 2 

provide a general theoretical framework for programs dealing with outbreak control occurring after 3 

mosquito-borne pathogen introduction and supporting specific surveillance and control depending 4 

on different introduction pathways. For instance, in the case of West Nile virus, it has been shown 5 

that the highest risk of virus introduction into the Galapagos Islands is due to infected mosquitoes 6 

while the risk due to infected hosts (e.g. avian migration pathway) is much lower (Kilpatrick et al., 7 

2006b). Under our model assumptions, such an introduction would increase the risk of a disease 8 

outbreak occurrence, indicating that a greater effort should be devoted to contain infected 9 

mosquitoes introduction. 10 

In our numerical analyses we also investigated the role of correlation between biting rate, j, and 11 

host type frequency in the community, hj. Intuitively, we should expect a larger proportion of 12 

mosquito bites in more abundant host groups, corresponding to positive correlation values. 13 

However, field studies on mosquito feeding preferences performed in avian host communities 14 

display a mixed pattern of relationships between biting rate and host abundance. We analysed data 15 

published by Hassan et al. (2003, see Tables 2 and 3 therein), Kilpatrick et al. (2006a, see Figure 1 16 

therein), and Thiemann et al. (2011, see columns “Winter” in Table 2 therein), and we found no 17 

significant correlations between mosquito blood meals and avian census data, while we found 18 

significant positive correlations in data published by Hamer et al. (2009, see Table 2 therein), 19 

Spearman-correlation coefficient = 0.55 (p-value = 0.005), and Thiemann et al. (2011, see 20 

columns “Late summer” in Table 2 therein), Spearman-= 0.42 (p-value = 0.044). Our numerical 21 

analyses show that, even assuming a correlation value higher than those observed in the mentioned 22 

studies (i.e. Spearman- = 0.75), results are consistent with those obtained assuming independency 23 

between j and hj (see Fig. 4).  24 

The results we obtained for pH depend on the assumption that each host individual has the same 25 

probability to introduce the pathogen (i.e. j = hj; as in Becker & Marschner 1990 and Lloyd et al. 26 
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2007). While this assumption can be generally accepted when different groups represent spatial or 1 

behavioural heterogeneity in the same host population, it can not be adequate in describing disease 2 

invasion in groups representing different host species. In effect, different host species may differ in 3 

competence levels, as observed in West Nile virus (Kilpatrick et al. 2007) and Borrelia infections 4 

(Ginsberg et al. 2005). It must be however remarked that, in the case of West Nile virus, Komar et 5 

al. (2003) showed that avian host species characterized by different competence display very 6 

different levels of infectiousness and duration of viraemia (which affect the ability to spread the 7 

disease), but similar levels of susceptibility (which mainly affects the ability to become infected and 8 

eventually introduce the pathogen in a new environment through dispersal or migration, i.e. j).  9 

We tested the robustness of our results to alternative assumptions on j, by computing sH under the 10 

assumption that the probability of each type-j host to introduce the infection is proportional to the 11 

fraction of bites allocated to him, i.e. see (16). This assumption is equivalent to assume that vector 12 

feeding preferences in the community from which the first infected host originated and in the 13 

community of destination are similar. When probability of each type-j host to introduce the 14 

infection is proportional to the fraction of bites allocated to him, we found that, similarly to the case 15 

j = hj, the invasion probability via infected vector is larger that that via infected host, and the 16 

invasion probability via infected host increases [decreases] as heterogeneity increases for low [high] 17 

values of the homogeneous component of the basic reproduction number (r). However, when r is 18 

low, the unimodal pattern of pH with heterogeneity observed in the case j = hj, does not hold any 19 

longer. 20 

Finally, we remark that our results hold also under different hypotheses than those assumed in 21 

numerical simulations on the distribution of blood meals and host group abundance (e,g., power-law 22 

distributed, see Fig. S2 in the electronic supplementary material) and the duration of the infectious 23 

periods (e.g., fixed instead of exponentially distributed, see Fig. S3 in the electronic supplementary 24 

material). 25 
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Other ecological and epidemiological aspects that can play a significant role in the invasion of new 1 

infections were not included in the present study. Here, we assumed a constant and homogeneous 2 

vector population. However, mosquito species can display marked seasonal dynamics with 3 

population abundance depending on several biotic and abiotic factors (Kilpatrick & Pape 2013, 4 

Rosà et al. 2014) and spatial heterogeneity (Smith et al. 2004); moreover, infections can be 5 

transmitted by multiple vectors (Goddard et al. 2002). These aspects are likely to affect significantly 6 

the probability of disease invasion and the occurrence of major outbreaks. In particular, in the case 7 

of spatial heterogeneity, the assumption of homogenous vector population coupled with a patchy 8 

host population may not be acceptable. However, we expect our results to hold also when the 9 

assumption of homogenous vector population is violated, if the vector feeding preferences among 10 

patches are similar (analogously to what shown in Hasibeder & Dye 1988 for the basic reproduction 11 

number). On the other hand, when feeding preferences significantly change among patches, we 12 

expect more complex behaviours to emerge, especially for infections introduced via primary 13 

infected vectors. Despite the limitations acknowledged above, we are confident that our work, 14 

thanks to the simplicity and generality of the used framework, will serve as a useful baseline for 15 

future investigations. 16 

17 
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APPENDIX A. Computation of invasion probabilities 1 

 2 

Proposition 1. The invasion probability following the introduction of an infected vector, 3 

VV sp 1 , defined as the solution of (12), satisfies the inequalities 4 
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r
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Inequality (A.1) states that invasion probability with heterogeneity is higher than in the 8 

homogeneous case (compare (14)), while (A.2) gives an absolute upper bound. In order to prove 9 

Proposition 1, we start from two simple Lemmas. In both, for ease of notation, we use the functions 10 

)1()( srhsf HVjjj   . 11 
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with equality if and only if jj h  for all j = 1,…,n. 14 
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Note that, in order to obtain the second line in (A.4), we used the identities 17 
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(A.4) yields the inequality (A.3). Equality in (A.4) holds if and only if 19 
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yielding the thesis.          □ 2 

Lemma 2. 3 
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Proof. We take   
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It is easy to see, by carefully computing its first and second derivatives, that, for any s ≤ 1, each gj(x) 7 

is an increasing and convex function of x  0. 8 

Then G is a convex function, so that its maximum on the simplex 9 

 1,0:,, 11  nin    will be obtained on one corner. 10 

Assuming, without loss of generality, nhhh  ...0 21 , it is easy to see that, for each 11 

 n ,,, 21   in the simplex, it holds 12 
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□ 14 

The strict inequality in (A.6) arises from the fact that all populations are assumed to have positive 15 

densities. More generally, note that the maximum ))1(1/(1 srHV   will be approached as 16 

preference j approaches 1 on a species whose density approaches 0, something not very 17 

biologically realistic. 18 

Proof of Proposition 1. As noted above sV can be obtained as the solution of (12) that we can 19 

rewrite as 20 
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It is immediate to see that H is an increasing function, H(0) = 0 and 01
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n
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Hence, when R0 > 1, (A.7) has a unique solution in (0,1) which is the extinction probability sV . 3 

Now Lemmas 1 and 2 yield immediately 4 

)()()( 21 sHsHsH   with 
)1(1

)(1
sr

srr
sH

HV

VHHV


  and 

s

sr
sH VH




1
)(2 .   (A.8) 5 

Note that H1 and H2 are also increasing functions satisfying H1(0) = H2(0) = 0, so that there 6 

exists unique 0*
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The inequalities (A.8) imply *

1
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2 sss  , which are (A.1) and (A.2).    □ 9 

Remark 1. Note that, using (A.4) in Lemma 1, H(s) can be written as 10 
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Following the same argument as in the proof of Proposition 1, it follows that, if heterogeneity 12 

 jjj hh ;/var   is increased in the sense of increasing  )();(/var sfsf jjj , necessarily sV decreases, 13 

hence the probability of invasion increases. 14 

Unfortunately, we were not able to find a simple relation between the heterogeneity  jjj hh ;/var   15 

and  )();(/var sfsf jjj ; however, it seems quite plausible that if j and hj depend (as in the 16 

numerical analyses) on a single parameter  such that  jjj hh ;/var   increases with , the same 17 

will be true for  )();(/var sfsf jjj , so that sV will decrease with . In this sense, we believe we 18 

can safely state that sV decreases with heterogeneity. 19 

 20 
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We now switch to considering pH, the probability of infection invasion when a random host is 1 

introduced in the population. We start from (13) that can be rewritten as 2 
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Simple algebraic manipulations, remembering that )1()( srhsf HVjjj   , then yields 4 
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finally using H(sV) = 1. 6 

Equation (A.9) can be summarised as sH = q(sV) where 7 
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Proposition 2. (1) If 
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, HH pp  , the value for the homogeneous case. 10 

Furthermore, if pV increases with a parameter  describing heterogeneity, pH decreases 11 

with . 12 

(2) If 
VH

VH

HV
r

r
r




11
, Hp  can becomes larger than Hp . More precisely, if pV increases with a 13 

heterogeneity parameter , pH initially increases up to a maximum, then decreases.  14 

Proof. We always work with the quantities sH= 1 – pH and sV = 1 – pV, as they appear in equations 15 

(A.7) and (A.9). 16 

First of all, observe that q(.) is a decreasing function in (0,sm) and increasing in (sm,1) where 17 

VH

m
r

s



1

1
. 18 

Then, if mV ss  , decreasing sV as a result of heterogeneity will increase sH = q(sV ). A simple 19 
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calculation show that this happens if and only if 
VH

VH

HV
r

r
r




11
. 1 

Vice versa, if mV ss  , decreasing sV results in a decrease of sH up to the minimum q(sm). 2 

Decreasing sV further will result then in an increase of sH.    □ 3 

 4 

The previous Proposition states that the invasion probability following the introduction of a random 5 

infected host will often be lower than in the homogeneous case despite the increase of R0,rel (see (4)). 6 

In particular, it will always be lower for sufficiently high values of rHV, i.e. 
VH

VH

HV
r

r
r




11
. 7 

In the symmetric case rrr HVVH  , the condition HH pp   is always satisfied for r , the 8 

golden ratio. 9 

For the symmetric case, the identity (15) states that, in the case of homogeneous biting rates, the 10 

invasion probability is the same after the introduction of a random infected host or an infected 11 

vector. We now show that this is not true in the presence of heterogeneous biting rates. Specifically, 12 

we show: 13 

Proposition 3. Given rrr HVVH  , the invasion probability following the introduction of a 14 

random infected host in the presence of heterogeneity in vector feeding preferences, pH , can not 15 

be larger than that for an infected vector, i.e. pV . 16 

Proof. We need to show sH = q(sV ) > sV. Under the assumption rrr HVVH  ,  17 

rsrsrss
s

s
srssq /101)1(

)1(
)1(1)( 2

2




  18 

considering only )1,0(s . 19 

Now, Proposition 1 states, for the case rrr HVVH  , exactly sV < 1/r. Hence, q(sV ) > sV. □ 20 

 21 
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In case each host type in (1)-(2) contains the same number of individuals – i.e. 1 

njnh j ,,1/1   –, Dye and Hasibeder (1986) proved that the relative reproduction number in 2 

(4) can be written as )/1;var(1 2

,0 nnR jrel  , which is an always increasing function of the 3 

variance in mosquito feeding preferences. Under the same conditions, we will compute the 4 

asymptotic behaviour of the invasion probabilities pV and pH when the variance in mosquito feeding 5 

preferences (and consequently relR ,0 ) tends to maximize its value. 6 

As shown by Dye and Hasibeder (1986), 7 

2
1

2 111
;var

nnn

n

j

jj 








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 .      (A.10) 8 

Since 9 


 


n

j ji

ij

n

j

j

11

2 1  ,     10 

it follows that (A.10) is maximized when there exists a ],,1[ nk   such that 1k  (and all others 11 

0kj ). Then, when 
2/1/1)]/1;max[var()/1;var( nnnn jj    the following propositions 12 

hold: 13 

 14 

Proposition 4. Let us assume there exists a ],,1[ nk   such that 1k , 0kj  and that 15 

njnh j ,,1/1  ; then, the invasion probability following the introduction of an infected vector, 16 

VV pp ˆ , as defined in (12) can be written as:  17 

)1(

/1
1ˆ






VHHV

HV
V

rr

nr
p .       (A.11) 18 

Proof. From the assumptions follows that  19 

)ˆ1(/1

1
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j VHVjj
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
 


.     (A.12) 20 

with VV ps ˆ1ˆ  . 21 
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By substituting (A.12) in (12) and rearranging, we obtained the following expression for Vŝ  1 

)1(

/1
ˆ






VHHV

HV
V

rr

nr
s ,        (A.13) 2 

which proves the proposition.  □ 3 

Remark 2. For very large numbers of host type populations (i.e., n ) the invasion probability 4 

following the introduction of an infected vector ( Vp̂ ), as defined in (A.11), tends towards the 5 

maximum value of pV as defined in proposition 2, i.e.: 6 

1
)max(ˆ





VH

VH
VnV

r

r
pp .  7 
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Proposition 5. Let us assume there exists a ],,1[ nk   such that 1k , 0kj  and that 9 

njnh j ,,1/1  ; then, the invasion probability following the introduction of an infected host, 10 

HH pp ˆ , as defined in (13) can be written as: 11 

n
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Proof. From the assumptions follows that expression (13) can be written as 13 
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 ,      (A.15) 14 

with HH ps ˆ1ˆ  . By substituting Vŝ  as defined in (A.13), expression (A.14) becomes 15 
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





 , 16 

which proves the proposition.  □ 17 

Remark 3. For very large numbers of host type populations (i.e., n ) the invasion probability 18 

following the introduction of an infected host ( Hp̂ ), as defined in (A.14), tends towards zero 19 

( 0ˆ 
nHp ). 20 
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TABLES 1 

 2 

Event Transition rule Rate 

infection of host j 1 jj YY  jjjj HYHI /)(   

infection of vector 1 II  



n

j

jjj HYIV
1

)/()(   

recovery of host j 1 jj YY  jY  

death of vector 1 II  I  

 3 

Table 1: Rules for the transition rates in the stochastic model 4 

 5 

6 
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FIGURE CAPTIONS 1 

Figure 1: The invasion probabilities pV (in blue) and pH (in red) as functions of the number of host 2 

types, n, in the presence of heterogeneous biting rate (j) and host type frequency in the community 3 

(hj). Filled squares represent the median values and shaded boxes represent the inter-quartile ranges 4 

of the invasion probabilities obtained by solving equations (11) and (12); open dots represent the 5 

invasion probabilities obtained from 10,000 runs of the individual-based model (see Tab. 1). 6 

Parameters: )1,0(, LognormH  ;  
j jjj /  and 

j jjj HHh / ; j = hj; 1 HVVH rr  7 

(panel A); 3 HVVH rr  (panel B). For the individual-based model:  =  = 1; H = V = 10,0000. 8 

(For interpretation of the references to colour in this figure caption, the reader is referred to the web 9 

version of this article.) 10 

 11 

Figure 2: The invasion probabilities pV (in blue) and pH (in red) obtained by solving equations (11) 12 

and (12) as functions of the log-standard deviation parameter  in biting rates (j) and host type 13 

frequencies in the community (hj), which represents increasing heterogeneities. Tick lines represent 14 

the median values, while shaded areas represent the inter-quartile range. Other parameters: 15 

1 HVVH rr ; n = 50; ),0(, 2LognormH  ;  
j jjj / ; and 

j jjj HHh / ; j = hj. 16 

(For interpretation of the references to colour in this figure caption, the reader is referred to the web 17 

version of this article.) 18 

 19 

Figure 3: The invasion probabilities pV (panel A) and pH (panel B) obtained by solving equations 20 

(11) and (12) as functions of the log-standard deviation parameter  in biting rates (j) and host type 21 

frequencies in the community (hj), which represents increasing heterogeneities, for different 22 

rrr HVVH  . Tick lines represent the median values, while shaded areas represent the inter-23 

quartile range. Dot-dashed lines represent the asymptotic value of pV as in Proposition 1 in 24 
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Appendix A. 3,,1,75.0 r  (where  represents the golden number). Other parameters as in Fig. 2. 1 

(For interpretation of the references to colour in this figure caption, the reader is referred to the web 2 

version of this article.) 3 

 4 

Figure 4: Median values of invasion probabilities pV (in blue) and pH (in red) obtained by solving 5 

equations (11) and (12) as functions of the log-standard deviation parameter  in biting rates (j) 6 

and host type frequencies in the community (hj), which represents increasing heterogeneities, for 7 

different values of spearman rank correlation between j and hj. Solid lines: corr(j, hj) = 0.25; 8 

dashed lines: corr(j, hj) = 0.5; dot-dashed lines: corr(j, hj) = 0.75. Other parameters as in Fig. 2. 9 

(For interpretation of the references to colour in this figure caption, the reader is referred to the web 10 

version of this article.) 11 

 12 

Figure 5: Median values of invasion probabilities pV (in blue) and pH (in red) obtained by solving 13 

equations (11) and (12) as functions of the log-standard deviation parameter  in biting rates (j) 14 

and host type frequencies in the community (hj), which represents increasing heterogeneities, for 15 

two different values of r = 1 (solid lines) and r = 3 (dashed lines), and under the assumption 16 


j jjjjj hh )(/  ; where j represents the introduction probability of an infected type-j host. 17 

Other parameters as in Fig. 2. (For interpretation of the references to colour in this figure caption, 18 

the reader is referred to the web version of this article.) 19 
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