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In this paper, the topographical relationship between functional connectivity (intended as

inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas

of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous

activity during wakeful idleness, node degree maps are determined by thresholding the temporal

correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the

relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined

with respect to Fourier amplitude and value distribution matched surrogate data, are measured.

Across cortical areas, high node degree is associated with a shift towards lower frequency activity

and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting

presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-

transistor oscillators is made, based on a diffusive ring (n¼ 90) with added long-distance links

defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the

hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer sat-

uration to a lower correlation dimension compared to surrogates. The effect emerges more

markedly close to criticality. The homology observed between the two systems despite profound

differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental

results motivate further investigation into the heterogeneity of cortical non-linear dynamics in

relation to connectivity and underline the ability for small networks of single-transistor oscillators

to recreate collective phenomena arising in much more complex biological systems, potentially

representing a future platform for modelling disease-related changes. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914938]

Understanding brain function requires considering two

properties that are increasingly deemed fundamental: (1)

structural connections among cortical regions and, conse-

quently, activity synchronization are architected so that a

minority of areas have a disproportionately high number

of connections, including long-distance connections, con-

ferring them the role of “hubs”; (2) brain circuits are

somehow attuned so that their collective operation takes

place preferentially close to the “point of criticality”, that

is, fluctuating around order-to-chaos transition, which

may confer specific computational advantages. Previous

studies have shown that these properties can be inferred

from time-series acquired using functional MRI during

idle wakefulness, representing intrinsic or “spontaneous”

brain activity. However, not much is known regarding

whether the known differences in connectivity among

cortical regions are topographically associated with gen-

eration of activity having diverse non-linear dynamical

properties, particular with regards to hallmarks of

possible chaoticity. Here, we addressed this question and

found that the cortical areas that are more intensely

synchronized with other regions tend to generate activity

with stronger low-frequency fluctuations and more evi-

dent non-linear structure than the others. We speculated

that this could indicate a shift of the underlying neural

activity towards chaos and went on to test this hypothesis

indirectly by studying a simple network of electronic

oscillators, in which, despite profound structural and dy-

namical differences, a similar relationship was observed.

I. INTRODUCTION

The brain is a complex non-linear system characterized

by non-trivial topological and dynamical properties. Its

structural connectivity exhibits small-world and scale-free

organization that hinges around “cortical hub” regions.

These regions, including precuneus, superior-lateral parietal,

and medial frontal cortex, are heavily interconnected and

hypothesized to subserve high-order cognitive processes.1–4

Further, the brain plausibly operate collectively as a thermo-

dynamic system close to a phase transition corresponding to
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instability between laminar and chaotic flow. As such, it can

rapidly explore different dynamical regimes, generating ava-

lanches of activity that propagate across the entire

network.5–7

Based on realistic models of structural connectivity,

numerical simulations predict the emergence of functional

connectivity (activity synchronization between regions) in

the form of discrete “resting-state” networks (RSNs), such

as the “default-mode network” and “fronto-parietal

network.”7–10 These networks have been detected by means

of independent component analysis of blood oxygen level

dependent (BOLD) time-series recorded using functional

MRI during awake idleness (resting-state), whose fluctua-

tions primarily represent spontaneous neural activity.11,12

Graph-based analyses of BOLD signal synchronization have

also confirmed high node degree of functional connectivity

(representing a measure of “synchronization density”) in the

aforementioned cortical hub regions, in broad agreement

with the underlying structural connectivity.13–16

The temporal resolution of BOLD recordings is

constrained to the order of seconds by the underlying neuro-

vascular response and measurements are contaminated by

non-neural physiological noise, which is often subject to

aliasing due to limited sampling rate.17,18 Despite these

severe limitations, the temporal variance of BOLD time-

series is sufficiently representative for reliable identification

of the RSNs, possibly as a consequence of scale-free activity

with 1/fb-like power spectrum, and as such plausibly con-

tains information also about non-linear dynamics of the

underlying neural activity.17,19

A current question is whether there are observable

non-linear dynamical and spectral properties of BOLD fluc-

tuations which reflect the local influence of connectivity

on temporal dynamics. Understanding the topographical

relationship between brain connectivity and regional

non-linear dynamics is relevant both theoretically and for the

development of neuropsychiatric disease biomarkers, and,

despite the above limitations, functional MRI may be well-

suited for addressing this issue in virtue of its high spatial

resolution.20

Point-process modelling of BOLD time-series has been

remarkably successful in providing a compact representation

of RSN emergence and enabling explicit demonstration of

collectively critical oscillation.21,22 Evidence that the brain

operates close to phase transition to chaos confers relevance

to well-established univariate measures of dynamical non-

linearity, such as the correlation dimension (D2) and the

largest Lyapunov exponent, which to date have been infre-

quently applied to functional MRI time-series.23,24

Characterization of spectral features is also important given

that phase transitions are generally associated with profound

changes in the spectral moments of oscillatory variables.25–27

Recent increases in the sampling rate of functional MRI

have made it possible to study inter-regional spectral differ-

ences, often represented with power-law frequency scaling

coefficients or relative Fourier amplitudes of low frequencies

(typically <0.1 Hz).19,28,29

At the same time, the fact that realistic RSNs emerge

even in highly simplified simulation scenarios, for example,

from networked phase (Kuramoto) oscillators or discrete

excitable units, raises the intriguing possibility of recapitulat-

ing some dynamical phenomena underlying brain function

in other physical systems, where direct manipulation of con-

nectivity is possible and causal relationships between

connectivity and non-linear dynamics can be explored

experimentally.8–10,30

In particular, it has recently been shown that single-

transistor oscillators can exhibit strikingly complex activity

depending on an easily tunable control parameter (DC volt-

age source series resistance), oscillating periodically, chaoti-

cally, or close to criticality.31 An experimental investigation

of a ring of 30 diffusively coupled such oscillators, each

consisting of a bipolar junction transistor, three reactive

components and a resistor, has furthermore demonstrated the

spontaneous formation of multi-scale community structure

as a function of coupling strength, with elements of

similarity to the modular organization observed in brain net-

works.32 While that study was conducted for an elementary

structural connectivity scenario (a ring), it is possible to

construct arbitrarily complex networks. Coupled single-

transistor oscillators therefore represent an undemanding

experimental platform with which one may attempt to recap-

ture associations between brain connectivity and non-linear

dynamics observed through BOLD time-series either empiri-

cally or in numerical simulation.

In this study, the topographical correspondence between

functional connectivity (node degree), spectral and non-linear

dynamical features (relative amplitude of low-frequency fluc-

tuations, correlation dimension D2 and its saturation dD2

across embedding dimensions) across cortical regions of the

healthy human brain was empirically assessed. A highly sim-

plified model of brain connectivity was also implemented in

the form of single-transistor oscillators arranged as a ring with

superimposed long-distance links creating four extended

hubs. The relationship between connectivity and non-linear

dynamics in this network was evaluated for different dynami-

cal regimes (close to criticality, chaotic) and compared to

results from brain data.

II. FUNCTIONAL MRI METHODS

A. Data acquisition

Brain data from 10 young unrelated healthy participants

were downloaded from the repository of the Human

Connectome Project.33 The participants were scanned at

Washington University on a 32-channel 3.0 T unit (Skyra

Connectome, Siemens AG, Erlangen, Germany), following

provision of written informed consent and in accordance to

study procedures approved by the institutional review board

(Ref. 201204036).

For each participant, 1200 resting-state functional

volumes sensitized to the BOLD contrast were acquired

twice, with RL and LR phase encoding direction, using a

gradient-echo echo-planar sequence having multiband factor

¼ 8, TR¼ 720 ms (corresponding to sample rate� 1.4 Hz),

TE of ¼ 33.1 ms, flip angle¼ 52�, 104� 90 matrix size, 72

slices, 2 mm isotropic voxel size, bandwidth¼ 2290 Hz/pixel,

echo spacing¼ 0.58 ms, and duration �14 min.34
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As prescribed by the “minimal preprocessing” protocols

for BOLD data, the following spatial operations were

performed: gradient distortion correction, rigid-body realign-

ment, field-map processing and brain masking; it was

decided to avoid using ICA-FIX denoised images due to the

potentially complex effect of this filtering method on non-

linear signal features.35

For the purpose of spatial normalization and segmenta-

tion of tissue compartments, a volume T1-weighted 3D series

was also acquired, having TR¼ 2400 ms, TI¼ 1000 ms,

TE¼ 2.1 ms, flip angle¼ 8�, 224� 224 mm field-of-view,

and 0.7 mm isotopic voxel size. This volume was segmented

using the SPM8 software.36

To avoid biasing subsequent analyses, very slow and

potentially large fluctuations of implausible neural origin

(coil heating, electronics drifts, head movement, etc.) were

removed from all BOLD time-series by fitting an order-4

polynomial. Subsequent temporal filtering steps reflect the

different requirements of linear (graph-based connectivity

modelling, Fourier amplitude measurement) and non-linear

analyses (correlation dimension).

B. Data analysis: Linear analyses

For linear analyses, low-pass filtering was applied

through a Butterworth bank of order 4 and f�3 dB¼ 0.35 Hz

(i.e., half the Nyquist frequency). The 6 head movement vec-

tors (3 translation and 3 rotation), their first temporal deriva-

tive and the average signal in white matter (segmentation

threshold 0.9) and in ventricles were then removed by linear

regression; prior to entering the regression, these nuisance

time-series were temporally filtered as above. Spatial

smoothing with a Gaussian kernel having half-maximum

width of 6 mm was performed, then the time-series were

rescaled to relative change with respect to mean voxel inten-

sity and the temporal standard deviation r was measured to

quantify overall BOLD fluctuation amplitude.

Node degree, thereafter referred to with k and rescaled

to unity integral, was calculated by linear correlation across

all pairs of brain voxels (approx. 2� 105), adaptively deter-

mining the correlation threshold to yield a fixed network

completeness of 2.5%; an optimized parallel implementation

of linear correlation in C code provided in Ref. 37 was

utilized.

The relative amplitude of low-frequency fluctuations,

representing a commonly used index of BOLD spectral con-

tent, was calculated in relative terms dividing the average of

magnitude Fourier amplitudes in the 0.005–0.1 Hz range by

that for the 0.1–0.3 Hz range, i.e., as hYj0:005–0:1Hzji=
hYj0:1–0:3Hzji; this approach was preferred to determination

of the spectral scaling exponent b as it is more parsimonious

with respect to assumptions on the underlying

distribution.19,28

C. Data analysis: Correlation dimension and
non-stationarity

Non-linear analysis was performed, independently for

each voxel time-series, using the TISEAN software version

3.0.1 (Max-Planck-Institut f€ur Physik komplexer Systeme,

Dresden, Germany), maintaining default settings unless oth-

erwise specified.38–40 This particularly computationally

demanding analysis was run partially on a Linux computing

cluster at the University of Trento and partially on an in-

house Cray XD1 system (Cray, Inc., Seattle, WA, USA). For

this analysis, following Ref. 41, we refrained from applying

temporal low-pass filtering (which would enhance autocorre-

lation) or removing linear covariance with movement vectors

and tissue-average signals; spatial smoothing as indicated

above had to be retained to attain sufficient signal-to-noise

ratio.

Instead, non-linear noise reduction was performed by

means of orthogonal projection onto a 2-dimensional mani-

fold using a special metric, setting embedding dimension

m¼ s/2, where s corresponds to the first minimum of the

time-lag mutual information, determined as indicated

below.42,43 Prior to this operation, to avoid bias in subse-

quent surrogate generation, time-series were windowed min-

imizing zeroth- and first-order end-to-end mismatch power

(resulting median length 1080 points).38–40 After filtering,

surrogate time-series were generated using an iterative

method which largely preserves temporal autocorrelation

and value distribution, by iteratively filtering towards the

desired Fourier amplitudes and rank-ordering the value

distribution.44 All subsequent operations were performed

identically and independently on the measured and surrogate

time-series.

Time-delay embedding in y(t)¼ [y(t), y(tþ s)…

y(tþ (m� 1)s)] was performed.45 Embedding delay s was

determined as the first minimum of the time-lag mutual in-

formation, searching within 620 frames to reject shallow

local minima.46 Embedding dimension m was then chosen

applying the false nearest neighbours method, empirically

setting escape factor of 6 and iteratively increasing dimen-

sion until there were <5% false nearest neighbours or higher

dimensions could not be calculated due to lack of neigh-

bours.47 The effect of temporal autocorrelation was reduced

by assuming a Theiler window w corresponding to the first

maximum of the average space-time separation plot.48,49

The correlation dimension curves D2(m,e), representing

the local slopes of the correlation sum C(m,e), were there-

after calculated by means of an efficient box-assisted search

implementation of the Grassberger-Procaccia algorithm, for

embedding dimensions 1 to 2m (overembedding).38–40,50 As

the large number of time-series rendered visual inspection of

the D2(m,e) curves impractical, the scaling range [e0,e00] was

determined automatically using sequential quadratic pro-

gramming according to the following two procedures. These

additional processing steps were completed using scripts

developed in-house in the MatLab language (MathWorks,

Inc., Natick, MA, USA) and freely available upon request.

Procedure #1 had two degrees of freedom and consisted

of maximising the F-value for a horizontal segment between

length scales [e0,e00], subject to the constraints log(e00)
� log(e0)� 1, log(e00)� log(e0)� 3, e00 �max[e], e0 �min[e]
(representing the intersection of the e ranges of all D2

curves). To improve convergence, 20 restarts were per-

formed from log-equispaced segments between min[e],
max[e], and D2(m,e) curves were smoothed with a n¼ 10
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median filter. To investigate saturation of D2(m,e) with

embedding dimension m, this procedure was applied to the

overembedding range [m,2 m], yielding D2 and dD2 , repre-

senting, respectively, the median D2 value in the chosen scal-

ing range and the corresponding 5%–95% confidence

interval of D2 points from all curves; homologous measures

for the surrogates are referred to with D̂2 and dD̂2 .

Procedure #2 had only one degree of freedom and

implied a fixed scaling range length assumption, log(e00)
� log(e0)¼ 1.4, predicated on the median segment length

obtained with procedure #1. This procedure minimized the

median span of D2 values observed across the (over)embed-

ding dimensions [m,2m] within the selected scaling range.

The same curve smoothing and restarts as above were

applied, and resulting median and confidence intervals are

referred to as D02 and dD02 for the measured time-series, D̂
0
2

and dD̂
0
2 for the surrogates; the constraints were

log(e00)��1, reflecting the fact that above this length

scale D2 curves decayed rapidly, and log(e00)� 1.4

�med{min[log(e)]}, representing the shortest length scale

for which at least half of curves were defined.

For stationary and purely stochastic BOLD activity, no

systematic difference is expected between measured time-

series and Gaussian linear surrogates. On the other hand, in

the presence of an underlying self-similar attractor, one

expects only for the measured time-series some evidence of

saturation of D2(m,e) in the overembedding range [m,2m],

from which D2 < D̂2 and dD2 < dD̂2 .

Fourier surrogates do not represent non-stationarity

effects and systematic difference with respect to measured

time-series may therefore be driven by non-stationarity

rather than non-linearity.38 To informally test for inhomoge-

neous non-stationarity across cortical regions, the unfiltered

time-series were subdivided in segments and the normalized

median cross-forecast error (CFE) based on a locally zeroth-

order model was calculated.51 The embedding dimension

was fixed to 4 and two settings were considered: #¼ 12 seg-

ments with s¼ 10 frames, and #¼ 6 segments with s¼ 20

frames. The former yielded a segment length of �70 s, com-

parable with sliding window lengths previously found to be

associated with strong dynamical fluctuations of connectiv-

ity;22 the latter preserved embedding delay closer to the

median for gray matter voxels.

D. Data analysis: Topographical correlation

For correlation with node degree, the differences,

D̂2�D2 and dD̂2�dD2 (procedure #1), D̂
0
2 � D02 and

dD̂
0
2 � dD02 (procedure #2), were therefore considered, rep-

resenting two empirical measures of non-linear structure,

expected to be positive in the presence of an underlying

attractor leading to saturation of D2(m,e) with increasing

embedding dimension m. Varying levels of temporal auto-

correlation are present in BOLD time-series and determinism

is weak; hence, we strictly refrained from considering D2 ,

dD2 , D02, and dD02 values directly. We also correlated the

CFEs, relative amplitude of low-frequency fluctuations, and

BOLD% fluctuation amplitude r with node degree.

To improve anatomical contrast, parametric maps from

non-linear analysis were filtered with a n¼ 3 median filter.

All individual parametric maps were then warped to 2 mm

Montreal Neurological Institute (MNI) space using SPM8

and applying the normalization transformation determined

from a reference volume acquired at the beginning of each

series.36 Median maps over 10 participants and 2 phase

encoding directions were generated and Spearman rank-

order correlations were calculated over 349 automatically

generated cortical regions intersected with the group average

gray matter segmentation map (segmentation threshold of

0.3) and having approximately homogeneous volume

(2.5 6 0.4 ml, median 6 inter-quartile range, indexing an

intermediate level of anatomical detail).16 Given the clinical

and demographic homogeneity of the sample, inter-

individual correlations were not evaluated. For anatomical

interpretation of the results, reference was made to the Mai,

Paxinos, and Voss atlas.52 Only for generating 3D cortical

renderings (Figure 1), a further n¼ 3 median filtering step

was applied to the group maps, and the white matter was

masked out.

III. FUNCTIONAL MRI RESULTS

A. Linear analyses: Functional connectivity and
low-frequency fluctuations amplitude

Node degree of functional connectivity (k, Figure 1(a))

was consistently high in (i) precuneus, with extension to the

posterior cingulate cortex and cuneus, (ii) lateral parietal

cortex, involving the angular gyri and inferior parietal

lobules with extension to the supramarginal gyrus, and (iii)

medial prefrontal cortex, involving its ventral and dorsal

parts. Diffusely high node degree was also observed in the

middle and inferior frontal gyri. Node degree was lowest in

the paracentral lobule, extending along the precentral and

postcentral gyri and occipital poles. The distribution of node

degree was overall symmetric between the hemispheres.

The topographical heterogeneity of node degree was

reflected in the relative amplitude of low-frequency fluctua-

tions (hYj0:005–0:1Hzji=hYj0:1–0:3Hzji, Figure 1(b)):

intense synchronization was strongly associated to a shift

from white noise-like spectrum towards predominance of

low-frequency fluctuations (q¼ 0.92, p< 0.001, Figures 2(a)

and 2(b)), corresponding to stronger temporal autocorrelation.

Across regions, there was a marked negative correlation

between node degree and temporal standard deviation of the

BOLD time series (q¼�0.42, p< 0.001), which allowed

excluding the trivial hypothesis that the observed effects

were simply consequential to larger fluctuations in the high-

degree regions, leading to higher relative contribution of

noise in the others.

B. Non-linear analysis: Correlation dimension and
non-stationarity

Across regions, intense synchronization was also associ-

ated with clearer evidence of non-linear structure, obtained

comparing correlation dimension estimates for measured and

surrogate time-series. In higher-node degree areas, the
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median correlation dimension from measured time-series

was more markedly lower compared to surrogates, irrespec-

tive of the estimator used (Procedure #1, D̂2�D2: q¼ 0.52,

p< 0.001; Procedure #2, D̂
0
2 � D02: q¼ 0.55, p< 0.001,

Figures 1(c) and 2(c)). Similarly, in higher-node degree

areas, the correlation dimension curves D2(m,e) saturated to

a tighter plateau in the over-embedding range [m,2m] com-

pared to surrogates, irrespective of the estimator used

(Procedure #1, dD̂2�dD2: q¼ 0.35, p< 0.001; Procedure
#2, dD̂

0
2 � dD02: q¼ 0.52, p< 0.001, Figures 1(d) and 2(d)).

While correlation dimension differences between measured

and surrogate time-series were quantitatively small, warning

of weak determinism, they were clearly consistent across

voxels in given regions and across participants, as confirmed

by the robust topographical correlations observed on the

group median maps, on which lateral parietal and medial

frontal regions were particularly well-delineated.

The CFE calculated over 12 segments was not correlated

with node degree (p¼ 0.3); however, there was a very strong

negative correlation between the CFE calculated over 6

FIG. 2. (a) Normalized average amplitude spectra from voxels in the 20% least (red) and most (blue) connected regions, showing increased relative low-

frequency content for the latter. (b) Scatter plot of relative low frequency activity amplitude hYj0:005� 0:1Hzji=hYj0:1� 0:3Hzji vs. node degree k, normal-

ized to unity integral. (c) Scatter plot of correlation dimension difference with respect to temporal autocorrelation- and value distribution-matched surrogate

data D̂
0
2 �D

0
2 vs. node degree k; (d) corresponding scatter plot for correlation dimension saturation dD̂

0
2 � dD

0
2. Across cortical regions, high node degree

was significantly associated to larger relative amplitude of low-frequency activity (q¼ 0.92) and clearer saturation of the D2(m,e) curves with embedding

dimension, visible as lower median correlation dimension (q¼ 0.55) and a tighter plateau (q¼ 0.52) with respect to the surrogates. See Sec. II C for further

details.

FIG. 1. Three-dimensional renderings on canonical brain surface depicting the group median distribution of (a) node degree of resting-state functional connec-

tivity, representing pair-wise synchronization of BOLD time-series (k, normalized to unity integral); (b) mean Fourier amplitude of low- relative to high-

frequency fluctuations hYj0:005� 0:1Hzji=hYj0:1� 0:3Hzji; (c) correlation dimension difference with respect to temporal autocorrelation- and value

distribution-matched surrogate data D̂
0
2 � D

0
2; (d) correlation dimension saturation difference, similarly reported as dD̂

0
2 � dD

0
2. Only positive values are

shown. Areas of intense functional connectivity (a) are characterized by larger low-amplitude fluctuations (b) and clearer evidence of saturation of D2(m,e)
curves with embedding dimension, pointing to presence of non-linear structure ((c) and (d)). See Sec. II C for further details.
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segments and node degree (q¼�0.90, p< 0.001). This find-

ing suggested stronger action of deterministic dynamics in

high-node degree areas and allowed arguing against greater

non-stationarity which could have selectively biased compar-

ison with surrogates. Example time-series for representative

high- and low-node degree regions are shown in Figure 3.

IV. SINGLE-TRANSISTOR OSCILLATOR NETWORK
METHODS

A. Network topology

In an attempt to recreate experimentally the relationship

between connectivity and non-linear dynamics observed for

the brain in a different physical system of much smaller

topological scale, a network of diffusively coupled single-

transistors oscillators was realized. This consisted of a ring

of 90 nodes, to which long-distance links were added to

create four approximately equi-spaced “hub” regions: three

smaller hubs, consisting of 3 nodes each (red, green, and

blue in Figure 4(a)), were wired to a larger hub consisting of

9 nodes (yellow). The order of incidence of the long-range

connections in the larger hub was intermixed, in an analogy

to the fact that in densely connected brain regions like the

precuneus synapses with distant cortical areas (such as the

lateral parietal and medial prefrontal cortices) are formed in

a deeply intertwined manner.53

B. Oscillator circuit

The chaotic circuit (Figure 4(b)) consisted of an NPN

bipolar-junction transistor connected to two inductors and a

capacitor in a Hartley-similar configuration, i.e., with an LC

series network (C1-L1) between collector and emitter, and

an inductor (L2) between collector and base. This autono-

mous oscillator, described in detail in Ref. 31, is powered

from a 5 V DC voltage source through a variable resistor

(R1) and was realized using off-the-shelf transistors

(2N2222A), inductors of nominal values 8.2 lH (L1) and

10 lH (L2), and capacitors of nominal value 30 pF (C1). It

generates chaotic signals having approximately stable perio-

dicity but highly variable cycle amplitude and is easily

synchronized via resistive coupling at the collector node.32

Due to the presence of multiple LC networks instanced not

only by the discrete components but also by stray capacitan-

ces, junction capacitances, and other effects, diverse reso-

nance frequencies are available; while R1 is varied different

oscillation modes are visited, and chaos can ensue through

quasiperiodicity.26,27,31 By tuning R1, it is possible to obtain

oscillation that is chaotic irrespective of coupling with other

oscillators or periodic but close to phase transition to chaos.

This enables exploring the hypothesis that certain collective

phenomena appear preferentially close to the point of

criticality, as found for the emergence of functional from

structural connectivity in some simulations of brain

dynamics.5–7,9,10

C. Network implementation

The ring was materially constructed by cascading three

STRANGE-1 boards (Figure 4(c)), each harbouring 30 oscil-

lators, which were used in a recent study where formation of

complex community structure was demonstrated and where

the addressing and readout circuitry is described in greater

detail.32 Here, to allow cascading the three boards, the initial

chain consisting of an OPA633KP video buffer (Texas

Instruments, Inc., Dallas, TX, USA) and DG506B multi-

plexer (Vishay Electronic GmbH, Selb, Germany) was

extended with LT1227 addressable buffers (Linear

Technology, Inc., Milipitas, CA, USA); with respect to Ref.

32, the present setup also included attenuation by a factor of

2 to reduce slew rate and limit parasitic low-pass filtering

effects.

Following preliminary experiments, the coupling resist-

ance between neighbours (R2 and R3 in Figure 4(b)) was set

FIG. 3. Example average BOLD time-series (yðtÞ, expressed as percent change) from an arbitrarily chosen resting-state fMRI session for three representative

high-node degree ((a) angular gyrus, (b) medial prefrontal cortex, and (c) precuneus) and low-node degree ((d) pre/post central gyri, (e) paracentral lobule, and

(f) occipital pole) regions. Time-series were extracted from 4 ml spheres intersected with the parenchyma and filtered as described in Sec. II C. Increased regu-

larity of BOLD fluctuations in the high-node degree regions is clearly noticeable.
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to RC¼ 750 X, which allows diffusion of synchronization

over intermediate distances (see Figure 5) and represents an

intermediate value in the range considered in Ref. 32.

Measurements were conducted with R1 (DC voltage source

series resistor) set for chaotic oscillation or periodic oscilla-

tion close to the point of criticality; to obtain the desired

oscillation mode irrespectively of component tolerances, R1

could not be set uniformly but was iteratively tuned in ran-

dom node order with RC¼RL¼1. Resulting values were

median 1180 X (range 410 X, 1960 X) for chaotic oscillation

and 790 X (390 X, 1620 X) for periodic oscillation close to

the point of criticality. These intervals do not closely align to

FIG. 4. (a) Network topology for oscil-

lator coupling, including long-distance

links establishing nodes 8–10 (red),

48–50 (green), and 70–72 (blue) and

nodes 25–33 (yellow) as “extended

hubs,” representing an analogy to the

highly connected cortical regions. (b)

Circuit diagram of the chaotic oscilla-

tor, where R1 is the DC voltage source

series resistor, R2 and R3 implement

coupling with neighbouring nodes

(value set to RC), and the dashed resis-

tor (value set to RL) represents the

long-distance link instanced only for

nodes in the hub regions. (c)

Experimental setup, based on three

STRANGE-1 boards32 with additional

wiring for node addressing during

readout and long-distance connections.

FIG. 5. Weighted adjacency matrices

and corresponding average synchroni-

zation k for oscillators tuned (a) close

to criticality and (b) chaotically. The

long-distance structural links (RL¼ 40

X) created “islands” of synchroniza-

tion among the hub regions and

increased their average synchroniza-

tion. Red, yellow, green, and blue

shading corresponds to nodes 8–10,

25–33, 48–50, and 70–72, respectively

(see Figure 4(a) for network diagram).
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Ref. 31 principally due to inter-oscillator coupling, parasitics

in the variable resistor, and loading by the buffer amplifier.

The coupling resistance for long-distance links was

empirically set to RL¼ 40 X; this low value accounted for

the fact that observed synchronization strength for a given

resistance was significantly weaker for distant nodes than

neighbours, plausibly due to radiation by the 60 cm-long

coupling cable, which consisted of ten 0.9 mm isolated wires

connected in series to 2.2 nF capacitors at each end, provid-

ing a self-resonance frequency� 8.5 MHz. Additional meas-

urements were performed with RL¼ 80 X and 160 X.

D. Data acquisition

To eliminate the possibility of bias due to inherent dif-

ferences between nodes unrelated to connectivity, 6 acquisi-

tions were performed for each condition, rotating the

network graph along the physical ring to change the physical

nodes corresponding to each hub, while maintaining the rela-

tive locations of the nodes on the “logical” graph unvaried.

Six rotations were performed, assigning the larger (yellow)

hub to physical nodes 5–13, 25–33, 35–43, 55–63, 65–73,

and 85–3.

Waveforms were recorded in 100 ls (50 000 points)

windows at 500 MSample/s 8-bit precision using an

LC534AM oscilloscope (LeCroy, Inc., Chestnut Ridge, NY,

USA) equipped with �10 field-effect transistor active probes

minimizing distortion (AP020, LeCroy Inc.). There were

approximately 60–70 time-points per cycle. Gain and offset

were set to 200 mV/div and� 300 mV, with AC coupling

and 25 MHz bandwidth limiting. The complete datasets are

available upon request.

The experiment was controlled through a script running

under MatLab 2012a (MathWorks, Inc., Natick, MA, USA),

which ran on a Linux host and was interfaced to the oscillo-

scope via IEEE488 and to the readout multiplexers via RS232.

Each acquisition consisted of 1980 runs in random order, each

one simultaneously sampling four addressed nodes.

E. Data analysis

To determine synchronization of cycle amplitude fluctu-

ations as in Ref. 32, waveforms were smoothed through a

running average window over 6 ns (3 samples) and local

maxima were extracted over a 60 ns (30 samples) window.

Corresponding values were interpolated via cubic spline and

synchronization was quantified by means of normalized

mutual information, defined according to

NMIij ¼ Iij=
ffiffiffiffiffiffiffiffiffiffi
HiHj

p
;

where Hi and Hj represent the entropies of time-series from

nodes i and j, and Iij their mutual information.54,55 The

average synchronization of each node was calculated with

ki ¼
P90

j¼1 NMIij=90; this approach, common in literature on

weighted networks, was preferred to canonical node degree

as it does not involve assumptions for graph binarization.56

The relative amplitude of low-frequency oscillations

was measured similarly to BOLD data, but in this case as the

average absolute Fourier amplitude in the 0.3–1.9 MHz range

with respect to the 1.9–3.5 MHz range; these ranges were

empirically chosen as cycle amplitude fluctuations for nodes

outside the hub regions peaked at �1.9 MHz (see Sec. V A).

To avoid autocorrelation effects introduced by interpola-

tion, the correlation dimension was calculated directly on the

recorded time-series using the same methods as for the

BOLD signal rather than on interpolated cycle amplitude

(see Sec. II C), but setting for Procedure #2 log(e00)� log(e0)
¼ 1.5, e00 �max[e], and e0 �min[e] and minimizing directly

the overall 5%–95% confidence interval. To limit computa-

tional load, time-series were truncated at 25 000 points;

further, while during each acquisition 88 time-series were

recorded for each node, non-linear analysis was performed

only for 10 per node, and the median was taken over the 10

time-series and 6 graph rotations.

V. SINGLE-TRANSISTOR OSCILLATOR NETWORK
RESULTS

A. Synchronization and low-frequency content of
cycle amplitude fluctuations

Long-distance structural links increased synchronization

(functional connectivity) among the hub regions and obliter-

ated smaller clusters which formed spontaneously. Close to

criticality as well as with chaotic oscillation, these links cre-

ated “islands” of synchronization among the hub nodes and

pervasively increased synchronization between them and the

entire network (Figure 5); this bears an immediate analogy

to the effect of structural connectivity on functional connec-

tivity in the brain. The consequence was a marked increase

in average synchronization k for the hub regions, which was

statistically significant with both oscillator settings (supple-

mentary Table I;57 p< 0.001).

For oscillation close to criticality and in the absence of

long-distance structural links, cycle amplitude fluctuations

were small and plausibly related primarily to frequency mis-

match between the nodes; by contrast, large low-frequency

fluctuations arose in the hub regions, suggesting that the

long-distance links locally caused transition to chaos (Figure

6). When the DC voltage series resistance (R1) was set for

chaotic oscillation, as expected global chaoticity was

observed over the entire ring irrespective of connectivity

(traces not shown).

In both conditions, the spectral content of cycle ampli-

tude fluctuations depended on connectivity. Close to critical-

ity, for nodes outside the hubs, most power was concentrated

around �1.9 MHz, with a 1/fb-like tail observed at much

lower frequencies; by contrast, analogously to observations

for the brain, inside the hub regions activity shifted towards

�1 MHz (Figure 7(a)). Albeit at slightly different frequen-

cies, a similar effect was observed for globally chaotic

oscillation (Figure 7(b)). The graded relationship between re-

gional synchronization and relative low-frequency amplitude

observed for the brain was found also here, in that increasing

the long-distance link coupling resistance brought about a

correspondingly weaker frequency shift (the amplitude ratio

inside the hub regions was 4.2, 2.4, and 1.6 for RL¼ 40, 80,

and 160 X, respectively, see supplementary Table I57).
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B. Correlation dimension

As observed for the brain, intense functional connectiv-

ity (average synchronization) was associated with greater

evidence of non-linear structure. When the oscillators were

tuned close to criticality, for nodes within the hub regions

compared to the others, the correlation dimension was more

markedly lower than the surrogates and the corresponding

curves converged to a tighter plateau in the over-embedding

range [m,2m] (Figure 7(a)); both effects were statistically

TABLE I. Conceptual comparison of the in-vivo and in-silico experiments: despite profound physical and scale differences (points #1-#7), the systems share

two key structural and dynamical aspects (points #8 and #9) leading to a consonant observation (point #12).

Nos. In-vivo experiment In-silico experiment

1 System type Biological (electrochemical), natural Analog electronic, artificial

2 Network size �200 000 nodes (voxels), each representing �105–107

neurons

90 nodes (discrete oscillators)

3 Oscillators Non-identical (after neuron phenotype, local

biochemical environment, etc.)

Non-identical (after manufacturing tolerances in

inductors, capacitor, and transistor)

4 Measured variable Ensemble average neural activity, convolved with

hemodynamic response (via fMRI scanning)

Voltage (via active oscilloscope probe)

5 Spatiotemporal scale lm, ms (observed scale: mm, s) cm, ls

6 Time-series length 1200 points (864 s, 1.4 Sa/s) 50 000 points (100 ls, 500 MSample/s)

7 Coupling mechanism Unidirectional, non-linear, delayed, and refractory

(synapses)

Linear diffusive, instantaneous (resistors)

8 Operating point Widely hypothesized to be close to criticality following

evolutionary adaptation

Manually tuned close to criticality via DC

voltage source series resistors

9 Connectivity topology Adaptive, abundant short-range connections (i.e.,

“U-fibres” among nearby cortical regions) supple-

mented with fewer long-range connections (i.e., associ-

ation and projection fibres) hinged around preferentially

interconnected “hub” cortical regions

Hardwired, abundant short-range connections

(i.e., links between neighbours according to ring

topology) supplemented with fewer long-range

links, forming four preferentially interconnected

“extended hub” regions

10 Activity in weaker-connected regions Seemingly stochastic Periodic

11 Activity in “hub” regions Possibly chaotic Chaotic

12 Observed correlation dimension (D2) Lower and saturating to a tighter plateau with respect to

surrogates in the known “hub” cortical regions com-

pared to the others

Lower and saturating to a tighter plateau with

respect to surrogates in the hardwired “extended

hub” regions compared to the other nodes

FIG. 6. Continuous signal (gray) and interpolated cycle amplitude (red) for representative nodes, having DC voltage series resistance set for periodic oscilla-

tion close to criticality, with (#9, 29, 49, 71) and without (#17, 40, 60, 85) long-distance links (RL¼ 40 X). In the hub regions, chaoticity was manifest as large,

low-frequency cycle amplitude fluctuations, whereas outside cycle amplitude was approximately constant (periodic oscillation).
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significant irrespective of the estimator used (supplementary

Table I;57 p< 0.001) and represented the fact that phase ran-

domization had a greater impact on the chaotic time-series

than on the periodic ones, as the latter had much more

concentrated spectral content. The correlation dimension for

the measured time-series (considered also directly here in

virtue of the stronger determinism with respect to the brain

time-series) was markedly higher for nodes inside (median

1.8; range 1.8, 1.9) than outside (1.3; 1.1, 1.5) the hub

regions (supplementary Table I;57 p< 0.001), providing

further evidence of transition to chaos.

When the oscillators were chaotically tuned, the corre-

spondence between connectivity and non-linear structure

became much weaker (Figure 7(b)): for nodes inside com-

pared to outside the hubs, the correlation dimension curves

still converged more tightly with respect to surrogates, but

there was no significant difference in the correlation dimen-

sion (supplementary Table I57). This implies that the effect

of connectivity on non-linear dynamics was stronger when

the system was tuned close to criticality.

VI. DISCUSSION

A. Correspondence between synchronization,
spectral content, and non-linear dynamics in
resting-state brain activity

While spatiotemporal coherencies underlying RSNs are

knowingly driven by low-frequency activity <0.1 Hz, in

itself, this does not imply that the intensity of these fluctua-

tions is topographically related to “overall strength” of func-

tional connectivity (activity synchronization), particularly

given that using approaches like independent component or

seed-based analysis discrete anti-correlated or even asyn-

chronous RSNs are found.7,11,12,22,58 Using a graph-based

model of inter-regional synchronization, we were able to

show strong coupling between node degree and relative am-

plitude of low-frequency activity, more explicitly than previ-

ous studies which considered individual RSNs rather than a

holistic representation of the functional connectome.59,60

Spontaneous brain activity during awake idleness generates

BOLD signals that have approximately white noise-like

spectrum for weakly connected (synchronized) regions and

display a gradual shift towards low-frequency fluctuations

(e.g., pink, red or brown noise), corresponding to increased

temporal autocorrelation, in stronger-connected areas such

as precuneus, lateral parietal, and medial frontal cortex. The

observed distributions of node degree and relative Fourier

amplitude of low-frequency activity are in close agreement

with existing reports considering the two parameters

separately and are unlikely to be driven primarily by

noise.13–16,18,28,29,37,61

This spectral heterogeneity points to different dynamics

of underlying neural activity. Even though BOLD signals are

not well-suited for non-linear dynamical analysis due to

short time-series length, undersampling, physiological noise,

and confounds from neurovascular coupling, we attempted

FIG. 7. Spectral and non-linear dynamical measures for oscillators tuned (a) close to criticality and (b) chaotically. From left to right: (i) Normalized average

amplitude spectra from nodes with (blue) and without (red) long-distance links, demonstrating shift to lower frequency activity in the hub regions; (ii) corre-

sponding plot of relative average Fourier amplitude of low-frequency fluctuations; (iii) correlation dimension difference with respect to temporal autocorrela-

tion- and value distribution-matched surrogate data D̂
0
2 � D

0
2, (iv) correlation dimension saturation difference, similarly reported as dD̂

0
2 � dD

0
2. Red, yellow,

green, and blue shading corresponds to nodes 8–10, 25–33, 48–50, and 70–72, respectively (see Figure 4(a) for network diagram). In the hub regions, increased

relative intensity of low-frequency activity is observed, alongside lower median correlation dimension saturating to tighter plateau with respect to the surro-

gates (p< 0.001 for all comparisons in (a), see supplementary Table I57 for details); the effect is stronger close to criticality.
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to generate voxel-based maps of the correlation dimension

(D2) which, with reference to surrogate data, yielded greater

evidence of saturation with increasing embedding dimension

in the highly synchronized regions. We conjecture that this

result could present evidence of non-linear structure repre-

senting low-dimensional chaos emerging as a function of

high connectivity, over a “baseline” of stochastic activity

which is preponderant in low-connectivity regions.

Non-linear analyses were only interpreted in respect to

identically and independently analyzed surrogate data, which

allow making relatively unconfounded inferences of non-

linearity even for noisy physiological time-series as in Ref.

62, irrespective of the specific non-linear measure chosen;38

furthermore, two different D2 determination procedures

(having one or two degrees of freedom) were found to yield

convergent findings, consistent across participants and vox-

els. Nevertheless, this inference of non-linear structure

should be interpreted cautiously due to weak determinism

compared to other studies conducted on other, non-

biological physical systems yielding longer, more densely

sampled and less noisy time-series representing a

more favourable scenario for non-linear analysis, such as in

Ref. 63.

Our findings are well in line with the previous studies

which had already established that the temporal fluctuations

in BOLD time-series cannot be fully attributed to linear

stochastic processes and suggested the action of low-

dimensional chaotic attractors. However, to the authors’

knowledge, existing studies considered either a small set of

voxels from predetermined regions of the visual cortex or

spatiotemporal decomposition and did not establish a topo-

graphical relationship with connectivity.64,65

B. Source(s) of low-frequency BOLD activity

Neural events unfold on the scale of milliseconds and

the mechanisms underlying generation of spatiotemporally

correlated scale-free-like activity including significant power

at <0.1 Hz remain incompletely understood.19 It is generally

agreed that they represent the lowest-frequency end of broad

spectra (equivalently, amplitude envelope of much higher

frequency oscillations) generated by collective non-linear

neural dynamics, which emerge either spontaneously or

tracking external sensory stimulation, and are filtered

through the hemodynamic response.7,17,58 Low-frequency

BOLD fluctuations are predicted to arise in a remarkably

diverse set of simulation scenarios, comprehensively

reviewed in Ref. 7, irrespective of whether regional activity

is represented through realistic spiking models, mean-field

models, or simplified systems such as Kuramoto and

Wilson-Cowan oscillators. These models yield synthetic

low-frequency BOLD time-series which, to varying accuracy

levels, predict functional connectivity from structural con-

nectivity through diverse dynamical phenomena including

synchronization of chaotic activity, reverberation, meta-

stability, and noise-induced exploration of “ghost”

attractors.7,8,30,66

Our experimental observations of stronger low-

frequency activity and non-linear structure in highly

synchronized (high node degree) cortical areas, if confirmed

with higher-temporal resolution techniques such as magneto-

encephalography, may help set further constraints to the

validity of these models beyond the prevalent Pearson

coefficient-based comparison of functional connectivity mat-

rices.6–10,58 To our knowledge, across existing simulation

studies elements of this correspondence have been reported

heterogeneously. For example, in Ref. 66, it was demon-

strated that, for an optimal parameter set, in a network of

Wilson-Cowan oscillators slow fluctuations emerge in the

level of synchronization between communities even when

the activity of each neural population does not individually

show this modulation, thus establishing an explicit mecha-

nism coupling connectivity and low-frequency activity. In

Ref. 8, Kuramoto oscillators with weak and delayed cou-

pling, having a working point such that synchronization is

limited to clusters but not global, were found to generate

large fluctuations in the frequency range that the BOLD sig-

nal can track through hemodynamic coupling; by contrast,

regular activity with spectral power concentrated at higher

frequencies leads to small and irregular BOLD fluctuations.

In Ref. 67, meso-scale modelling of two neural populations

reproduced substantial changes of spectral scale invariance

as a function of excitatory/inhibitory input and density of

long-range connections.

C. Analogy between brain and single-transistor cha-
otic oscillator networks

In this study, recourse to an experimental network of

single-transistor chaotic oscillators enabled demonstrating an

instance of causal relationship between connectivity and cha-

oticity, wherein insertion of long-distance links incident on

extended hub regions locally resulted in emergence of chaos

and generation of stronger low-frequency activity selectively

for oscillators within the hubs. Supported by the evidence

discussed above, we conjecture that a similar relationship

could also hold true for the brain.

At least at face value, homology between the brain and

chaotic oscillator findings is noteworthy. As summarized in

Table I, there are profound differences between the two sys-

tems, particularly in terms of network size (�1011 neurons

vs. �102 nodes), complexity of connectivity (human connec-

tome vs. ring with short-cuts), coupling mechanism (synap-

ses vs. resistors), and temporal sampling; however, the two

systems share the fact that some network regions are hard-

wired as densely connected “hubs,” and that nodes are tuned

to operate close to criticality. It should also be noted that the

chaotic oscillators generated signals at frequencies much

higher than those recorded for the brain; while operation on

the same temporal scale could have been desirable for ease

of comparison, for the chosen circuit this would have

implied impractically large values for the reactive

components.

The relationship between connectivity and non-linearity

was strongest when the single-transistor oscillators were

tuned close to transition to chaos, recalling simulations of

collective brain dynamics at criticality.5,6,9 Though the spec-

tral content was unavoidably different with respect to the
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BOLD time-series and the frequency windows were, in both

cases, determined arbitrarily rather than based on theoretical

assumptions, the observed shift in spectral content toward

lower frequencies depended on long-distance connection

strength, clearly recalling the graded relationship found with

respect to node degree in the brain.

On the basis of previous experimental investigations of

this chaotic circuit, it appears plausible that quasiperiodicity

effects are involved in the transition to chaos: as the experi-

mental oscillators under consideration were non-identical

due to large manufacturing tolerances, dynamical and spec-

tral differences could induce activity at non-trivial frequency

ratios. Owing to diffusive coupling and transistor non-

linearity, coupled oscillators could mutually influence each

other in a complex manner reflecting the absence of an invar-

iant manifold.68 Close to criticality, this can lead to chaos as

also observed for other physical systems.26,27 While the two

variables were not independently manipulated in this experi-

ment, the effect is plausibly related to node degree as well as

topological distance. Coupling to a larger number of oscilla-

tors (3 instead of 2) generating non-identical spectra inher-

ently promotes transition to chaos. At the same time,

because in the absence of long-distance connections neigh-

bouring oscillators tend to form extended synchronized com-

munities, direct coupling with a distant node generating a

highly uncorrelated signal is likely to have greater impact on

dynamics than coupling with a closer node with respect to

which activity is already partially synchronized.32

D. Relevance of experimental physical models and
connectivity—Non-linear dynamics correspondence
in other networks

Experimental physical modelling in analog electronic

circuits has potential to play a complementary role with

respect to numerical simulations of brain dynamics. Through

the presence of complex non-idealities, device tolerances

and dynamical noise experimental systems such as transistor

oscillators readily capture the reality that networks of identi-

cal oscillators are never encountered in living organisms,

while being inherently free from temporal and magnitude

discretization.68 Further, while in the present proof-of-con-

cept study the network was realized with discrete compo-

nents, much higher-density implementation in CMOS

technology is possible and currently under development. As

the number of nodes is elevated	102, the level of computa-

tional complexity represented per area and power in analog

circuits can vastly exceed the capability of realistic sequen-

tially run numerical simulations.69

While more limited literature is available regarding the

impact of network topology on chaoticity rather than on syn-

chronization, indirect support for the view that chaos can

ensue as a consequence of certain connectivity features is

found throughout disparate reports.68,70,71 Simulations of

elementary systems and artificial neural networks under

diverse scenarios highlight that the probability of phase

transition to chaos tends to increase with network size, topo-

logical complexity and heterogeneity.72–77 In particular,

insertion of long-distance shortcuts according to small-world

topology leads to chaos even in networks that cannot other-

wise be chaotic.78–81

At the same time, in-vitro recordings of neuronal cul-

tures on substrate-integrated multi-electrode arrays, indexing

mesoscale activity in networks of �104–105 neurons,

demonstrate the emergence of self-organized small-world

functional connectivity during culture maturation. It has sep-

arately been shown that the prevalence of chaotic activity in

these cultures gradually increases as the number of active

sites grows, in turn suggesting that the gradual formation of

a dense and complex network promotes the emergence of

chaos.82,83

E. Potential clinical relevance and study limitations

Elucidating the relationship between connectivity, spec-

tral and non-linear dynamical features in the brain is poten-

tially relevant to early diagnosis of Alzheimer’s disease. It is

an increasingly common neurodegenerative dementia,

preferentially targeting the cortical hubs through heightened

accumulation of toxic protein isoforms following intense

synaptic metabolism.84 While functional connectivity is sig-

nificantly reduced in the precuneus and lateral parietal

regions already in pre-symptomatic phases, the detectable

alterations are inadequate for individual-case diagnosis;

however, loss of synchronization may be accompanied or

even preceded by changes in spectral and dynamical fea-

tures, deeper understanding of which could be of substantial

diagnostic benefit.23,24,85 A recent finding of reduced ampli-

tude of low-frequency fluctuations in the precuneus gradu-

ally tracking disease progression (connectivity loss) from

cognitive normality to dementia is remarkably in agreement

with the relationship between long-distance link strength and

spectral shift observed here across regions of the healthy

brain and for the networked chaotic oscillators.86

The present study has limitations that need considera-

tion. First, while an empirical topographical correlation

between functional connectivity and non-linearity was estab-

lished, structural connectivity of the brain was not explicitly

considered. Future work will need to address the question of

whether functional connectivity, or structural connectivity as

measurable using techniques diffusion-spectrum imaging, is

more closely associated to heterogeneity of spectral content

and non-linearity. The impact of node degree versus topolog-

ical centrality also deserves further investigation. While in

this work geodesic mapping was not performed, node degree

of short- and long-range connectivity is significantly coupled

across cortical regions; this incidentally also allays concerns

over the impact of short-range correlation introduced by spa-

tial Gaussian smoothing of the time-series.87

Second, only one spatiotemporal window (the one

accessible to functional MRI) was considered, and it is nec-

essary to determine whether the observed relationship also

holds at finer temporal resolution (1 ms vs. 1 s scale) and on

the microscopic and mesoscopic levels. This will help clarify

if the observed relationships are generalizable rather than

“epiphenomena” of specific experimental settings.

Third, the combined effects of non-stationarity, noise,

geometric filtering, undersampling, and limited BOLD
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time-series length require deeper investigation, e.g., by

means of synthetic data. While the temporal resolution

(0.7 s) was higher than the majority of current resting-state

functional MRI studies, it remains orders of magnitude away

from the temporal scale of the underlying processes, and the

results should be confirmed using emerging functional MRI

datasets that have even higher temporal resolution (0.1 s) and

correspondingly longer time-series length (>4000 points).88

VII. CONCLUSIONS

This paper has reported a topographical relationship

across cortical areas of the healthy human brain between the

node degree of functional connectivity, relative intensity of

low-frequency activity, and evidence of non-linearity. High

node degree was strongly associated with shift towards low-

frequency activity (<0.1 Hz) and, although less markedly,

also with evidence of non-linear structure, in the form of

clearer saturation to a lower correlation dimension compared

to Fourier amplitude and value distribution-adjusted surro-

gate data. Despite profound differences in scale, connectivity

complexity, dynamics, and coupling mechanism, analogous

effects were observed in a network of diffusively coupled

single-transistor oscillators: at criticality, increased connec-

tivity for nodes wired as extended hubs locally lead to chaos

and associated large low-frequency cycle amplitude fluctua-

tions. In accord with recent numerical results, we conjecture

that a similar phenomenon could take place also in the brain.

The observed homology between brain and single-transistor

oscillator findings in our view motivates further investigation

to better delineate the validity of networked chaotic oscilla-

tors as potential physical models of brain dynamics in health

and disease.
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