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The effects of structural and vibrational disorder on the EXAFS signals are

parameterized in terms of the Debye Waller (DW) factor. Here the vibrational

contribution is addressed, which for most systems can be singled out by studying

the temperature dependence of the EXAFS DW factor, which corresponds to

a good accuracy to the parallel mean square relative displacement (MSRD)

around the inter-atomic equilibrium distance. By comparing the first-shell

EXAFS thermal expansion with the crystallographic thermal expansion one can

evaluate the perpendicular MSRD. The results of recent measurements on

copper and on several tetrahedral semiconductors are here critically compared

and some properties of the MSRDs are discussed, such as the dependence of

correlation, force constants and vibrational anisotropy on crystal structure and

bond ionicity as well as the relative merits of the correlated Debye and Einstein

models. The anharmonic contribution to the parallel MSRD of CdTe has been

evaluated and a quasi-harmonic analysis has been attempted, leading to an

estimation of the bond Grüneisen parameter.

1. Introduction

EXAFS spectra are damped by the effect of disorder, of both

vibrational and structural origin (Lee et al., 1981; Rehr &

Albers, 2000; Fornasini, 2015a). For each scattering path, an

EXAFS experiment samples a unidimensional distribution of

inter-atomic distances that, for weak disorder, can be para-

meterized in terms of its leading cumulants (Bunker, 1983).

The second cumulant, or Debye–Waller (DW) exponent, is the

variance of the distance distribution; for most systems, in the

absence of phase transitions, its temperature dependence is

simply connected to the vibrational properties. To a good

approximation, the second cumulant corresponds to the

parallel mean square relative displacement (MSRD).

An a priori knowledge of the vibrational contribution to the

DW exponents can facilitate the analysis of experimental data;

by converse, the results of data analyses can provide original

information on local vibrational dynamics and contribute to

the validation of theoretical models.

An introductory treatment of the effects of vibrational

disorder on EXAFS, including the cumulant approach and a

discussion of strengths and limitations on the correlated

Debye and Einstein models, has been given by Dalba &

Fornasini (1997). Non-negligible advances, both theoretical

and experimental, have been performed since then.

Different theoretical approaches have been attempted to

evaluate the vibrational contribution to the EXAFS cumu-

lants, and specifically to the DW factor. The method for

calculating the cumulants from the force constants of the

crystal potential, based on first-principles many-body pertur-

bation theory proposed by Fujikawa & Miyanaga (1993), has

ISSN 1600-5775

# 2015 International Union of Crystallography

electronic reprint



been thoroughly applied mainly to unidimensional systems

(Miyanaga & Fujikawa, 1994), but some attempts have been

made also for face-centred cubic (f.c.c.) crystals (Katsumata et

al., 2001). The connection of the EXAFS cumulants to the

force constants of the effective pair potential, obtained within

the framework of a quantum perturbative approach (Frenkel

& Rehr, 1993; Yokoyama, 1999), makes now possible an

accurate interpretation of the low-temperature behaviour

of bond expansion and the third cumulant. By a simple

phenomenological approach, Van Hung & Rehr (1997)

derived an anharmonic correlated model for the effective

potential taking into account the interaction of absorber and

backscatterer atoms with their nearest neighbours via a Morse

potential; the method was applied to calculations for Cu and

Ni (Van Hung & Fornasini, 2007) and for Zn and Cd (Van

Hung et al., 2014a) and extended to Si and Ge using Stillinger–

Weber potentials ((Van Hung et al., 2014b). Following the

pioneering work of Benfatto and co-workers (Benfatto et al.,

1989), the cumulants have been evaluated by sampling a

configurational space obtained by molecular dynamics, both

classical (Edwards et al., 1997; Sanson, 2010) and ab initio

(Vila et al., 2012),), as well as by path-integral techniques,

based on the use of effective potentials (Yokoyama, 1998;

Miyanaga & Fujikawa, 1998) or on Monte Carlo sampling

(a Beccara et al., 2003; a Beccara & Fornasini, 2008). Poiar-

kova & Rehr (1999) used the equation of motion method,

which involves the Fourier transform of the time dependence

of the molecular dynamics, to calculate the DW factor of

multiple-scattering paths in Cu, Ge and Zn tetraimidazole.

Ab initio calculations based on the density functional theory

(DFT) formalism were performed for several molecules by

Dimakis & Bunker (1998); a critical evaluation of the different

approximations to DFT was made by Vila et al. (2007), who

further exploited the Lanczos algorithm to diagonalize the

dynamical matrix.

From the experimental point of view, accurate evaluations

of the bond thermal expansion, of the third cumulant and

sometimes also of the fourth cumulant, have been reported

(Yokoyama et al., 1997; Dalba et al., 1999; Fornasini et al., 2004;

Schnohr et al., 2009; Abd el All et al., 2013). The comparison of

bond and crystallographic expansions allows the evaluation of

the perpendicular MSRD (Dalba et al., 1995a; Kamishima et

al., 1997). From parallel and perpendicular MSRD one can

reconstruct the ellipsoid of relative vibrations of nearest-

neighbour atoms (Ahmed et al., 2013; Fornasini, 2015b). The

high accuracy of measurements has allowed the detection of

the tiny isotopic effects on the low-temperature values of the

parallel MSRD in germanium (Purans et al., 2008).

The EXAFS DW factor is nowadays a significant parameter

of EXAFS analyses, which can be exploited to gain original

information in a number of different cases, such as local

mechanisms of negative thermal expansion (Bridges et al.,

2014),), pressure-induced phase transitions (Principi et al.,

2004; Popescu et al., 2011), structure and dynamics of nano-

particles (Ikemoto & Miyanaga, 2007; Comaschi et al., 2008;

Araujo et al., 2008) and thermally induced atomic strains

(Ruffoni et al., 2007).

This paper is intended to be an updated version of the

previous paper (Dalba & Fornasini, 1997). The main advances

in the theoretical description of the vibrational contribution

to the DW factor are summarized in x2. Some experimental

considerations are made in x3, concerning a comparison

between the ratio method and non-linear fitting procedures,

the evaluation of uncertainties and the separation of the static

and vibrational contributions to the DW factor. In x4–x6,

recent experimental results on Cu and on some crystals with

the diamond–zincblende structure are critically discussed: x4
is dedicated to the harmonic analysis of the first shell, with

emphasis on correlation and anisotropy as well as on strengths

and limitations of the correlated Debye and Einstein models;

in x5 the anharmonic contributions to the first-shell parallel

MSRD of CdTe are evaluated and an estimation of the bond

Grüneisen parameter is attempted; in x6 the correlation, the

force constants and the Debye temperatures of the outer

coordination shells are analysed. x7 is dedicated to conclu-

sions.

The phenomenological approach of the previous paper is

maintained here, focusing the attention only on the vibrational

contribution and on the information directly obtainable from

experiment. With the exception of a few seminal papers, only

the literature posterior to 1997 is cited.

2. Theoretical background

2.1. Unidimensional model and cumulants

An EXAFS experiment samples a unidimensional distri-

bution of distances for each scattering path. Owing to vibra-

tional disorder (zero-point energy plus thermal motion) and

possibly to structural disorder, the EXAFS signal is a config-

urational average (Tranquada & Ingalls, 1983; Benfatto et al.,

1989):

�ðkÞ / exp½�2r=�ðkÞ�
r 2

expð2ikrÞ
� �

; ð1Þ

where r is the inter-atomic instantaneous distance and �ðkÞ is

the electron mean free path. Equivalently, the EXAFS signal

for one scattering path is expressed, within the plane-wave

approximation, as the integral (Crozier et al., 1988; Vaccari &

Fornasini, 2005)

�ðkÞ ¼ S 2
0

k
N Im f ðk; �Þ expð2i�Þ

Z1
0

Pðr; �Þ expð2ikrÞ dr

2
4

3
5;
ð2Þ

where Pðr; �Þ = �ðrÞ expð�2r=�Þ=r 2 is an effective distribution

and �ðrÞ is the real distribution of distances.

Curved wave effects can be non-negligible for broad

distributions �ðrÞ; in such cases, the scattering amplitude is

weakly dependent on the distance, and f ðk; �; rÞ should be

taken under the integral of equation (2). The contributions of

multiple scattering (MS) paths can be taken into account

by equation (2), provided an effective amplitude of back-

scattering feffðk; �; rÞ is considered (Rehr & Albers, 2000).
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For moderate degrees of disorder, the effective distribution

can be expanded as (Bunker, 1983; Crozier et al., 1988)

ln

Z1
0

Pðr; �Þ expð2ikrÞ dr ¼
X1
n¼ 0

ð2ikÞn
n!

Cn; ð3Þ

and the EXAFS signal can be parametrized as

k�ðkÞ ¼ S 2
0 jf ðk; �ÞjN

� exp C0 � 2C2k
2 þ 2

3
C4k

4 � 4

45
C6k

6 þ . . .

� �

� sin 2C1k�
4

3
C3k

3 þ 4

15
C5k

5 þ . . .þ ’ðkÞ
� �

: ð4Þ

Cn are the cumulants of the effective distribution. The first and

second cumulants, C1 = hri and C2 = �2 = hðr� hriÞ2i, are the

average value and the variance of the effective distribution,

respectively. Higher-order cumulants quantify the deviation of

the distribution from the Gaussian shape; the third cumulant

C3 = hðr� hriÞ3i is a measure of the distribution asymmetry.

2.2. Real and effective distributions

Different procedures for connecting the cumulants of the

real and of the effective distributions (C �
n and Cn, respec-

tively) have been proposed, limited to the first cumulant

(Bunker, 1983; Freund et al., 1989) or extended to higher-

order cumulants (Fornasini et al., 2001). A relatively good

approximation is obtained by the recursion formula (Vaccari,

2006; Vaccari et al., 2007)

C �
n ’ Cn þ 2Cnþ1 1=C1 þ 1=�ð Þ for n ¼ 1; 2; 3; . . . : ð5Þ

The difference between the first cumulants (n = 1) of the real

and effective distributions is significant and equation (5) is

included in most data analysis packages. For higher-order

cumulants (n � 2), the difference is smaller and is frequently

neglected.

Let us give quantitative evaluations for two crystals

considered in the next sections, CdTe and Cu. The difference

of first cumulants is 7:2 � 10�3 Å for CdTe at 300 K and

1:2 � 10�3 Å for Cu at 500 K. The relative difference of

second cumulants, evaluated through equation (5) and

checked by reconstructing the distributions and evaluating

their cumulants, is 1.6% for CdTe at 300 K and 3.5% for Cu

at 500 K.

2.3. Pair potential energy

In the unidimensional model, the vibrational properties of

the absorber-backscatterer atomic pair are connected to a

unidimensional pair potential energy

VðuÞ ¼ 1

2
k0u

2 þ k3u
3 þ k4u

4 þ . . . ; ð6Þ

where u = r � r0 is the deviation of the inter-atomic distance

from the position of the potential minimum.

For weak thermal disorder, the temperature dependence of

the lowest-order cumulants can be expressed in terms of the

force constants of the pair potential (6). In Dalba & Fornasini

(1997), the classical approximation of Tranquada & Ingalls

(1983) and Stern et al. (1991) has been reported.

A quantum relation, based on a perturbative approach

(Feynman, 1972), has been proposed by Frenkel & Rehr

(1993) and extended to second order by Yokoyama (1999).

Considering the harmonic approximation as the unperturbed

Hamiltonian, and defining ! = ðk0=�Þ1=2, �2
0 = h- =2�! and

z = expð�	h- !Þ, where � is the reduced mass, one finds

(Yokoyama, 1999)

�C �
1 ðTÞ ¼ � 3k3�

2
0

k0

1 þ z

1 � z
þ � � � ; ð7Þ

C �
2 ðTÞ ¼ �2

0

1 þ z

1 � z
ð8Þ

� 12k4�
6
0

h- !

ð1 þ zÞ2

ð1 � zÞ2 �
24k4�

6
0

kBT

zð1 þ zÞ
ð1 � zÞ3 ð9Þ

þ 4k2
3�

8
0

ðh- !Þ2

13z2 þ 58zþ 13

ð1 � zÞ2 ð10Þ

þ 120k2
3�

8
0

h- !kBT

zð1 þ zÞ
ð1 � zÞ3

þ � � � ; ð11Þ

C �
3 ðTÞ ¼ � 2k3�

4
0

k0

z2 þ 10zþ 1

ð1 � zÞ2 � � � � ; ð12Þ

C�
4 ðTÞ ¼ � 12k4�

8
0

h- !

z3 þ 9z2 þ 9zþ 1

ð1 � zÞ3 ð13Þ

� 144k4�
8
0

kBT

z2

ð1 � zÞ4 ð14Þ

þ 12k2
3�

10
0

ðh- !Þ2

5z3 þ 109z2 þ 109zþ 5

ð1 � zÞ3 ð15Þ

þ 720k2
3�

10
0

h- !kBT

z2

ð1 � zÞ4 þ . . . : ð16Þ

Note that in (11) and (13) two misprints of Yokoyama (1999)

have been corrected (Yokoyama, 2004).

The quantum perturbative calculations have been extended

to the third order for the first, second and fourth cumulants

and to the fourth order for the third cumulant by Haug et al.

(2008) in order to account for the high-temperature anhar-

monicity effects.

If ki = 0 for i � 3 in (6) (harmonic approximation), the first

term (8) of the second cumulant corresponds to the Einstein

model, and the remaining terms, i.e. bond expansion (7),

anharmonic corrections to the second cumulant (9)–(11) and

higher-order cumulants (12)–(16), are zero.

Actually, the anharmonic contributions to the pair potential

are not negligible (Eisenberger & Brown, 1979), at least for

the first coordination shell; bond expansion and third and

fourth cumulants can be measured with good accuracy and are

far from negligible (Dalba et al., 1999; Fornasini et al., 2004;

Abd el All et al., 2013; Ahmed et al., 2013).

By comparing (7) with (8) and (12), one finds (Frenkel &

Rehr, 1993) that, to first order, the ratio
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a ¼ �ð3k3=k0ÞC2 ð17Þ

should correspond to the thermal expansion �C �
1 .

The quantum expressions for cumulants (7)–(16) are

equivalent to the classical expressions only at high tempera-

ture; while however the quantum approximation (8) to the

second cumulant is standard practice, only quite recently has

the low-temperature quantum behaviour of bond expansion

and the third cumulant been measured with reasonable

accuracy (Dalba et al., 1999; Abd el All et al., 2013).

2.4. Unidimensional model and many-atomic systems

The unidimensional model underpins the standard proce-

dures of EXAFS data analysis. The connection of EXAFS

cumulants with the physical properties of real systems is far

from trivial.

Actually, only for two-atomic molecular gases have the

connections between EXAFS cumulants and force constants

(7)–(16) an immediate interpretation. In this case, (6) is the

true pair potential energy and the thermal expansion is only

due to its asymmetry: with reference to equation (17), a = �C �
1 .

An experimental study of the bromine molecule Br2 has been

performed by Yokoyama et al. (1996).

For many-atomic molecules and for condensed systems, the

interpretation of EXAFS cumulants is by far less immediate.

The main point is the relation between the three-dimensional

structure of the N-atomic system and the unidimensional

model used to parametrize the distribution �ðrÞ sampled by

EXAFS.

While for two-atomic molecules the distribution �ðrÞ is only

enlarged by vibrational disorder, in many-atomic systems the

distribution and its cumulants can be affected not only by

vibrational disorder but even by structural (static) disorder.

Static contributions to the distribution �ðrÞ can be due to

topological disorder in non-crystalline systems (Dalba et al.,

1995b), different environment for bulk and surface atoms in

crystalline nanostructures (Comaschi et al., 2008; Agostini et

al., 2014), and so on. For many-atomic systems, the cumulants

for n � 2 are the sum of a static and a vibrational (dynamic)

contribution. If phase transitions are absent, one often

assumes that the temperature dependence of cumulants is

only due to dynamic disorder. This assumption, which is

reasonable for the simple crystals considered in this paper, can

be incorrect for more complex systems. A dramatic example is

given by AgI-doped silver borate glasses (Sanson et al., 2013),

where the short-range distribution of I—Ag distances sampled

by EXAFS is progressively depleted when temperature

increases, so that the increase of the vibrational contribution

to the second and third cumulants is nearly compensated by

the reduction of the static contribution.

Even when only vibrational disorder is present, the poten-

tial energy VðrÞ associated with the distribution �ðrÞ has a

different meaning with respect to the case of a two-atomic

molecule. VðrÞ is now an effective potential energy, which

depends on the statistically averaged behaviour of all the

atoms in the crystal (Munstre de Leon et al., 1992) and has to

be distinguished both from the single-pair interaction poten-

tial energy VðuÞ of (6) and from the total potential energy,

defined in a 3N-dimensional configurational space (Van Hung

& Rehr, 1997; Van Hung & Fornasini, 2007). For that reason,

even for purely vibrational disorder the interpretation of the

results of EXAFS analysis, based on the unidimensional

model, is far from trivial.

For many-atomic systems, the bond expansion �C �
1 is

different from the quantity a defined in (17); otherwise stated,

the bond expansion cannot be accounted for solely by the

anharmonicity of the effective pair potential measured by the

third cumulant, and an additional temperature dependence of

the minimum position of the effective pair potential energy

has to be considered (Dalba et al., 1995a, 1998; Kamishima et

al., 1997; Fornasini et al., 2004; Abd el All et al., 2012;

Yokoyama & Eguchi, 2011).

Such a shift of the potential energy, corresponding to a

shift of the mode of the distribution, has been confirmed by

theoretical simulations: path-integral Monte Carlo for Cu

(a Beccara & Fornasini, 2008) and molecular dynamics for Ge

(Sanson, 2010). In both cases, the simulations show that for the

first shell the asymmetry contribution (17) to thermal expan-

sion slightly prevails, due to the relatively high values of the

third cumulant, with respect to the contribution of the shift

of the maximum of the distribution; for the outer shells the

asymmetry contribution is much weaker, and the thermal

expansion is mainly accounted for by the shift of the maximum

of the distribution. This behaviour can be qualitatively

understood by considering that the influence of the asymmetry

of the single pair interaction potential is partially preserved

in the first-shell effective potential (Van Hung & Fornasini,

2007), and is rapidly washed out for the outer shells.

One can conclude that, while in diatomic molecules the

bond expansion �hri is completely determined by the distri-

bution asymmetry, in many-atomic systems the contributions

of asymmetry and potential shift are comparable for nearest-

neighbours distances and the potential shift neatly prevails for

outer-shell distances (Fornasini et al., 2004; Abd el All et al.,

2012; Ahmed et al., 2013).

On more general grounds, the relation between the anhar-

monicity of the total potential energy of the system and the

anharmonicity of the effective pair potential energy has not

yet been definitively clarified. An effort to take into account

the anharmonicity effects on the vibrational density of states

of many-atomic systems and its connection to EXAFS

cumulants has been recently made by Vila et al. (2007).

A consequence of the collapse of the information from a

three-dimensional structure into a unidimensional distribution

is the difference between the average distance measured by

EXAFS and the crystallographic distance, which is considered

in the following sections.

Various authors have highlighted strengths and limitations

of the cumulant method (Crozier et al., 1988; Dalba et al., 1993;

Yang et al., 1997); Filipponi has stressed its inadequacy for

systems affected by relatively strong structural disorder

(Filipponi, 2001). It is thus sensible to carefully evaluate the

results of the cumulant analyses. A limited number of poly-

nomial coefficients ~CCn is determined (frequently n 	 3) in
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typical EXAFS analyses (Dalba & Fornasini, 1997). The

agreement of the temperature dependence of the polynomial

coefficients ~CCn with theoretical expectations (7)–(16) can be a

self-consistent check of the convergence properties of the

cumulants series, in order that polynomial coefficients could

be considered as good estimates of the cumulants Cn (Dalba et

al., 1999; Fornasini et al., 2004). The soundness of the proce-

dure is supported by the reproduction of experimental

EXAFS cumulants by theoretical simulations (a Beccara et al.,

2003; Vila et al., 2007; Sanson, 2010).

2.5. The parallel and perpendicular MSRDs

Let R0 be the distance between absorber and backscatterer

atoms (a and b, respectively), ideally frozen at their rest

positions, and let ua and ub be their instantaneous vibrational

displacements with respect to the rest positions. The instan-

taneous inter-atomic distance r can be expressed as

r ¼ R0 þ�u; ð18Þ
where �u = ub � ua is the relative thermal displacement. It is

convenient (Fornasini, 2001) to consider the projections of the

relative displacement �u along the bond direction �uk and in

the perpendicular plane �u?, defined by

�uk ¼ R̂R0 ��u; �u2
? ¼ �u2 ��u2

k; ð19Þ
where the short-hand notations �u2 and �u2

k correspond to

ð�uÞ2 and ½R̂R0 � ðub � uaÞ�2, respectively.

An EXAFS spectrum corresponds to sampling a large

number of instantaneous configurations, so that the quantities

measured by EXAFS are expressed as canonical averages.

In crystals, the average inter-atomic distance, directly

measured by the first EXAFS cumulant C �
1 , is (Lagarde, 1985;

Dalba et al., 1995a; Stern, 1997; Fornasini et al., 2004)

C �
1 ¼ hri ’ Rc þ h�u2

?i=2Rc; ð20Þ
where Rc is the crystallographic distance, measured by Bragg

scattering experiments. The average distance hri is always

larger than the crystallographic distance Rc, owing to the

effect of perpendicular vibrations (Busing & Levy, 1964; Willis

& Pryor, 1975). Accurate measurements of the bond expan-

sion �hri can now be routinely performed, and can give

interesting information on the local behaviour of negative

thermal expansion materials (Fornasini et al., 2009; Yokoyama

& Eguchi, 2011; Abd el All et al., 2012; Ahmed et al., 2013).

For a given scattering path, the second cumulant, or

EXAFS DW exponent, is the variance of the distribution of

path lengths; in particular, for single scattering (SS) paths,

C �
2 ¼ �2 ¼ hðr� hriÞ2i ¼ 1

N

X
b

hðrb � hrbiÞ2i; ð21Þ

where the index b labels the N backscattering atoms of the

coordination shell. The second cumulant (21) gives thus

information averaged over the N atomic pairs corresponding

to the different backscattering atoms of the shell. In general,

the DW exponent measured by the second cumulants contains

both static and dynamic contributions, �2 = �2
stat þ �2

dyn. We

consider here only the dynamic contribution.

Within the harmonic approximation, one can show

(Fornasini et al., 2001) that, for a given atomic pair,

C �
2 ’ h�u2

ki þ
1

4R2
h�u4

?i � h�u2
?i

� �2
n o

; ð22Þ

where the leading contribution is the parallel MSRD h�u2
ki;

the second contribution, generally negligible, is the variance of

the distribution of the �u2
? values, divided by 4R2.

For a pair of absorber and backscatterer atoms, the parallel

MSRD can be decomposed as (Beni & Platzman, 1976)

h�u2
ki ¼ hðR̂R � ubÞ2i þ hðR̂R � uaÞ2i � 2 hðR̂R � ubÞðR̂R � uaÞi; ð23Þ

where, for short, R̂R = R̂Rab. The first two terms are the inde-

pendent mean square displacements (MSDs) of absorber and

backscatterer atoms; they can be calculated from the aniso-

tropic displacement parameters (ADPs) obtained by the

refinement of X-rays or neutron diffraction patterns (Artioli,

2002; Kennedy, 1995). The third term, the displacement

correlation function (DCF), depends on the correlation of the

motion of absorber and backscatterer atoms.

A convenient measure of the degree of correlation is given

by the dimensionless correlation function (Booth et al., 1995)

’kðTÞ ¼
hðR̂R � ubÞ2i þ hðR̂R � uaÞ2i � h�u2

k i
2 hðR̂R � ubÞ2ihðR̂R � uaÞ2i� �1=2

: ð24Þ

A value ’k = 0 corresponds to a completely uncorrelated

motion of the two atoms. Values ’k = 1 and ’k = �1 corre-

spond to atomic motions perfectly in phase and in opposition

of phase, respectively.

The perpendicular MSRD h�u2
?i cannot be directly

obtained from EXAFS spectra. It can, however, be calculated

by inverting (20), provided Rc is known from Bragg scattering

measurements (Dalba et al., 1999; Fornasini et al., 2004; Abd el

All et al., 2012) and assuming that the vibrations are isotropic

within the plane perpendicular to the bond. A perpendicular

correlation function can be defined as

’?ðTÞ ¼
hu2

b?i þ hu2
a?i � h�u2

? i=2

2½hu2
b?ihu2

a?i�1=2
; ð25Þ

where u2
? are the ADPs perpendicular to the bond direction;

for isotropic atomic vibrations, u2
? ¼ ðR̂R � uÞ2. The division of

h�u2
?i by 2, here and in the following, projects the perpen-

dicular MSRD along one direction.

In general, the degree of correlation is different for parallel

and perpendicular MSRDs; as a consequence, the ellipsoid or

relative absorber-backscatterer motion can be anisotropic

even when the thermal ellipsoids of single atoms, measured by

Bragg scattering, are isotropic (Fornasini et al., 2004; Forna-

sini, 2015b). The anisotropy ratio 
 = h�u2
?i=2h�u2

ki is

temperature dependent (Vaccari et al., 2007); a temperature-

independent measure of anisotropy, based on the Einstein

models, is introduced below.
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2.6. Vibrational dynamics

A general expression for the parallel MSRD of a pair of

atoms a–b embedded in a system of N atoms has been given by

Crozier et al. (1988):

h�u2
ki ¼

h-

2�ab

X
�

�ab

mb

� 	1=2

"""bð�Þ �
�ab

ma

� 	1=2

"""að�Þ
" #

� R̂R













2

� 1

!ð�Þ coth
h- !ð�Þ
2kBT

; ð26Þ

where the sum is over all normal modes � of the real-space

mass-adjusted dynamical matrix

Dab ¼ 1

mambð Þ1=2

@2V

@ua@ub

: ð27Þ

V is here the total potential energy of the system, !ð�Þ and

"""ð�Þ are eigenfrequencies and normalized eigenvectors of the

real-space dynamical matrix, �ab is the reduced mass of the

pair a–b, and the temperature dependence of the normal

coordinate of each mode is

hjQð�Þj2i ¼ h-

2!ð�Þ coth
h- !ð�Þ
2kT

¼ h-

2!ð�Þ
1 þ z

1 � z
¼ hEð�Þi

!2ð�Þ ; ð28Þ

where z has the same meaning as in (8).

Following again Crozier et al. (1988), it is convenient to

separate the geometrical from the thermal factors, defining the

contribution of mode � to the parallel MSRD of the pair a–b

as

pabð�Þ ¼
�ab

mb

� 	1=2

"""bð�Þ �
�ab

ma

� 	1=2

"""að�Þ
" #

� R̂R













2

ð29Þ

and the projected density of vibrational modes as

�abð!Þ ¼
X
�

pabð�Þ �½!� !ð�Þ�; ð30Þ

so that the parallel MSRD of a given atomic pair can be

expressed in terms of the projected density of states �abð!Þ
(Crozier et al., 1988):

h�u2
ki ¼

h-

2�

Z!max

0

1

!
�abð!Þ cothðh- !=2kTÞ d!: ð31Þ

The diagonalization of the dynamical matrix, to find eigen-

values and eigenvectors, can be a prohibitive task for large

non-crystalline systems. Various approximate methods have

been attempted (Rehr & Alben, 1977; Poiarkova & Rehr,

1999; Vila et al., 2007).

In crystals, the translational symmetry allows one to

substitute the diagonalization of the real space dynamical

matrix (27) with the diagonalization of a convenient sample of

N Fourier-transformed 3n� 3n dynamical matrices, where N
is the number of primitive cells and n is the number of atoms

per primitive cell. Accordingly, (26) transforms into

h�u2
ki ¼

1

N
h-

2�ab

�
X
q;s




h �ab

mb

� 	1=2

wbðq; sÞ expðiq � RÞ

� �ab

ma

� 	1=2

waðq; sÞ
i
� R̂R




2

� 1

!ðq; sÞ coth
h- !ðq; sÞ

2kBT
; ð32Þ

where the normal modes are now labelled by the wavevector q

and the branch index s and wðq; sÞ are the corresponding

eigenvectors. In practice, it is sufficient to evaluate eigen-

frequencies and eigenvectors for a representative sample of

normal modes within the first Brillouin zone.

In the harmonic approximation, the perpendicular MSRD

of a crystal can be connected to the eigenvalues !ðq; sÞ and

eigenvectors wðq; sÞ of the dynamical matrix by an expression

similar to (32) (Vaccari & Fornasini, 2006).

Equations (26) and (32) show that, in addition to the trivial

temperature dependence, the contribution of a given pair of

atoms a–b to the total parallel MSRD depends: (a) on the

phase relations between the two eigenvectors """a and """b (or wa

and wb) of each normal mode, (b) on the projections of the

difference of the eigenvectors on the bond direction R̂Rab, and

(c) in the case of crystals, it is convenient to distinguish, from

the phase difference between eigenvectors, the inter-cell phase

relation expðiq � RÞ [as in (32)].

Finally, it is worth remembering that different dynamical

matrices can exist, sharing the same eigenfrequencies but with

different eigenvectors (Cochran, 1971). The reproduction of

parallel and perpendicular MSRDs, experimentally obtained

from EXAFS, represents a peculiar test for the phase rela-

tionships between eigenvectors obtained from model calcu-

lations or ab initio (Vila et al., 2007).

2.7. Correlated Debye model

Equations (26) and (32) are still of little practical use in

EXAFS analyses. The vibrational contribution to the DW

exponent �2ðTÞ is generally fitted to simple phenomenological

models.

In the correlated Debye model (Beni & Platzman, 1976;

Bohmer & Rabe, 1979; Sevillano et al., 1979),

�2
DðTÞ ¼

3h-

!3
Dm

Z!D

0

d!! coth
h- !

2kT
1 � !D sinð!RqD=!DÞ

!RqD

� �
:

ð33Þ
m is the average atomic mass of the a–b pair and the Debye

frequency !D is the only free parameter, corresponding to a

Debye temperature �D = h- !D=kB. The quantity qD is the

radius of a Debye sphere,

qD ¼ ð6�2=VaÞ1=3; ð34Þ
where Va is the real-space volume per atom.
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Equation (33) is an extension of the Debye model for

atomic vibrations in crystallography (Willis & Pryor, 1975):

the second term in square parentheses takes into account the

effect of correlation due to the inter-cell phase relation

expðiq � RÞ in (32); no account is given of the phase relations

between different eigenvectors nor of their possible different

projections along the bond directions.

The correlated Debye model was originally developed for

close-packed crystals with one atom per primitive cell

(primitive crystals), where Va is the volume of the primitive

cell, all atoms share the same eigenvectors and close-packing

ensures a high degree of isotropy of the eigenvector projec-

tions. For primitive crystals, one can reasonably expect that

the EXAFS Debye temperatures are similar for different

coordination shells and comparable with the Debye

temperatures from other experimental techniques.

For crystals with more than one atom per primitive cell

(non-primitive crystals), the usual choice (34) for the Debye

wavevector corresponds to considering an extended Brillouin

zone scheme, where all vibrational properties are described by

three acoustic modes. The actual presence of optical modes,

the intra-cell eigenvector phaseshifts and the local anisotropy

connected with the open structure make, however, question-

able the physical significance of the Debye model for non-

primitive crystals.

The influence of optical modes should not be over-

emphasized, since the amplitude of atomic vibrations is

proportional to the inverse of the squared frequency. An

interesting counter-example is 	-AgI (Dalba et al., 1990;

Dalba & Fornasini, 1997), where a low-frequency (0.5 THz)

optical branch is present and the DW experimental behaviour

was satisfactorily reproduced by a mixed model: correlated

Debye (reduced Brillouin zone scheme) + Einstein. AgI is also

a good example of the effect of the projection of eigenvectors

along the bond directions: the contribution of the 0.5 THz

mode at the Brillouin zone centre to the first coordinations

shell DW is zero, since three of the four atoms move in phase

with the central atom, the fourth atom moves out of phase but

the atomic displacements are normal to the inter-atomic

distance.

A correlated Debye model can be fitted to the perpendi-

cular MSRD h�u2
?i too (Vaccari & Fornasini, 2006), the only

difference with respect to (33) being that the prefactor is

now 6h- =!2
D, to account for the different dimensionality; the

parallel and perpendicular Debye frequencies are generally

different.

2.8. Einstein model

The Einstein model (Sevillano et al., 1979)

�2
EðTÞ ¼

h-

2�!E

coth
h- !E

2kT

� 	
; ð35Þ

where � is the reduced mass of the a–b pair, is intrinsically

correlated. The best-fitting Einstein frequencies !E = 2��E of

different coordination shells are generally different even for

primitive crystals.

To the Einstein frequency !E = !k an effective parallel force

constant is associated, kk = �ð!kÞ2, which corresponds to k0 in

(6). The effective unidimensional potential energy (6) depends

on the statistically averaged influence of all the atoms, so that

k0 cannot be identified with the force constant of a single-bond

potential (Van Hung & Fornasini, 2007).

The effective force constant kk is a measure of the inter-

action strength. The frequency !E = ðkk=�Þ1=2 represents the

response to the interaction force, and depends on the inertia,

measured by the reduced mass. At high temperatures, the

Einstein model approaches the classical value �2
1 = kBT=kk,

independent of mass. For T ! 0, however, �2
E ! h- =2ð�kkÞ1=2

and depends on the reduced mass. The tiny mass effect on the

low-temperature DW exponent has been recently detected by

EXAFS measurements on the isotopes 70 and 76 of germa-

nium below 150 K (Purans et al., 2008).

In the Einstein model, the atomic pair is treated as a single

quantum oscillator. Actually, the sum (26) of the contributions

of all normal modes is Einstein-like only in the high-

temperature classical limit. The discrepancy between the

MSRDs calculated from lattice dynamics and the best-fitting

Einstein model has been recently estimated for different

crystalline structures (Sanson, 2008). The discrepancy, which

increases with the width of the density of vibrational states,

has been found no larger than 5% for the parallel MSRD.

An Einstein model can be fitted to the temperature

dependence of the perpendicular MSRD h�u2
?i too (Vaccari

& Fornasini, 2006),

h�u2
?i ¼

h-

�!?
coth

h- !?
2kT

� 	
; ð36Þ

the only difference with respect to (35) being again a factor of

two that accounts for the different dimensionality. Parallel and

perpendicular Einstein frequencies are in general different.

The perpendicular Einstein frequency can be connected to an

effective perpendicular force constant k? = �ð!?Þ2.

The effective force constants kk and k? should not be

confused with the force constants of lattice dynamical models.

A comparison of the EXAFS effective force constants with the

force constants kr and k� of a valence force field (VFF) model

(Keating, 1966) that Martin had extended to ionic systems

with the zincblende structure (Martin, 1971) has been

performed for Ge, CdTe and CuCl by Abd el All et al. (2012).

For Ge, kk is 12% larger than kr and k? is about six times

larger than k�. When the ionicity increases, the decrease of kk
is stronger than the decrease of kr, and k? is always about six

times larger than k�.

The ratio of parallel to perpendicular effective force

constants, 
 = kk=k?, represents a temperature-independent

measure of the anisotropy of the relative vibrations, since it

corresponds to the asymptotic behaviour of 
 = h�u2
?i=2h�u2

ki
for T ! 1 (Ahmed et al., 2009). For perfectly isotropic

relative vibrations, 
 = 1.

research papers

1248 Fornasini and Grisenti � EXAFS DW factor J. Synchrotron Rad. (2015). 22, 1242–1257

electronic reprint



3. Experimental details

After some general methodological considerations presented

in this section, in the following sections x4, x5 and x6 we

illustrate the connection between dynamical parameters

extracted from EXAFS (correlation functions, force constants,

Einstein and Debye temperatures) and physical properties

(such as crystal structure and bond ionicity) by comparing the

results obtained for copper (Fornasini et al., 2004) and for a

series of crystals with the diamond–zincblende structure with

different degrees of ionicity: germanium (Dalba et al., 1999),

GaAs (Ahmed et al., 2013), InP (Schnohr et al., 2009), CdTe

(Abd el All et al., 2012) and CuCl (Vaccari et al., 2007).

3.1. Ratio method and non-linear fit

Only a few comments can be added to the previous

discussions of the relative merits of the two methods (Forna-

sini et al., 2004; Vaccari et al., 2007).

The ratio method (Bunker, 1983; Dalba et al., 1993) consists

of the separate analysis of phase and amplitude of the EXAFS

signal at each temperature, taking a low-temperature spec-

trum as reference. The method is particularly suited to

studying temperature-dependent variations of the first-shell

parameters, since it is largely independent of theoretical inputs

and highly insensitive to the correlation between even and odd

cumulants; besides, it allows a direct, although sometimes

quite conservative, estimation of the quality of experimental

data (Abd el All et al., 2013). Care must be taken to check that

the first-shell contribution can be well singled out at all

temperatures by Fourier filtering and is not perturbed by

leakages from outer shells (Schnohr et al., 2014).

In the second method, backscattering amplitudes, phase

shifts and inelastic terms are calculated by a suitable theore-

tical code and a non-linear best-fit of calculated to experi-

mental spectra is performed; in the examples presented here,

the FEFF6 (Rehr et al., 1992; Ankudinov et al., 1998) and

IFEFFIT (Newville, 2001) codes were used through the

graphical interface Artemis (Ravel & Newville, 2005). This

procedure is the only one possible when single-shell SS

contributions cannot be disentangled and/or are mixed with

MS contributions, which typically happens for the second and

outer shells and for mixed first shells. The procedure gives

absolute values of parameters, whose reliability, however,

depends on the accuracy of theoretical calculations.

The separate analysis of the outer shells contributions by

the ratio method is in principle unsuitable; in some cases,

however, the temperature dependence of the DW factors has

been found in reasonable agreement with that obtained from

the procedure based on MS calculations and non-linear fit

(Dalba & Fornasini, 1997).

3.2. Evaluation of uncertainties

The relevance of a sound evaluation of the accuracy of

EXAFS results can hardly be overestimated. Developing

effective standardization criteria for the uncertainty assess-

ment (Ascone et al., 2012) is, however, far from trivial, in view

of the large number of variable physical conditions and

parameters that can affect both experiment and data analysis.

Assessing the uncertainty of EXAFS results requires a

careful evaluation of random fluctuations and systematic

errors in both experimental and data analysis procedures. The

analysis of the different causes of uncertainty in temperature-

dependent EXAFS measurements on CdTe has been made

recently (Abd el All et al., 2013). Let us here only review the

main points.

Temperature fluctuations of the sample and/or the optical

apparatus, monochromator calibration and resolution, elec-

tron beam fluctuations, not to speak of systematic errors

(related to sample temperature calibration, photon beam

energy calibration, sample deterioration, and so on), cannot

always be under complete control of the synchrotron radiation

users. Suitable experimental strategies and data analysis

procedures, joined to a critical discussion of results, can in any

case lead to a sound a posteriori evaluation of uncertainties

and of their most relevant causes.

EXAFS measurements at a given temperature should be

repeated at least three times and each spectrum should be

separately analysed. The resulting cumulants can be consid-

ered a restricted sample of a Gaussian parent population and

it is reasonable to evaluate their uncertainty as the standard

deviation of the distribution of mean values; this contribution

to uncertainty decreases when the number of spectra

increases.

As far as the data analysis is concerned, different windows

and k weights in Fourier transform and back-transform, as

well as different fitting intervals, lead to different values of

cumulants, which cannot be considered as independent

samples of a parent distribution: increasing the number of

fitting intervals cannot decrease the final uncertainty. The

different values can be considered as sampling a uniform

distribution, whose standard deviation is �n = �ð�CnÞ=
ffiffiffiffiffi
12

p
.

The point here is a sound choice of the width of the uniform

distribution, which to a good extent depends on skill and

physical insight of the experimenter. The ratio method can be

of help, when applicable, since it allows a direct visual

inspection of the phase differences and of the logarithms of

amplitudes ratios.

A further contribution to the evaluation of uncertainty is

the comparison of measurements performed on the same

system in different laboratories or on samples of different

thicknesses or at two different absorption edges.

It is a common experience that, of the different parameters

measured by EXAFS, the second cumulant is affected by the

smallest relative uncertainties.

3.3. Static and vibrational contributions to DW exponent

In general, both static and vibrational disorder can contri-

bute to the damping of the EXAFS signal, so that �2 = �2
stat +

�2
dyn. Disentangling the two contributions can be far from

trivial. For most simple systems, it seems reasonable to assume

that the temperature dependence of �2 only depends on

the vibrational contribution. However, in some systems the
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static contribution may exhibit temperature dependence too;

an interesting example is the case of AgT-doped fast ion

conduction glasses (Sanson et al., 2013), already cited in x2.

In the following sections, we assume that the static contri-

bution to the DW exponent of the considered crystals is

temperature independent, and attribute the temperature

dependence only to the vibrational contribution.

If the analysis is performed by the ratio-method, only

relative values ��2 with respect to a reference temperature can

be obtained; no evaluation of the static contribution is

possible. The absolute values of �dynðTÞ are evaluated by

fitting an Einstein or a Debye model to the temperature

dependence ��2ðTÞ of the relative values.

If the analysis is performed by non-linear fit of theoretical

simulations to experimental spectra, absolute values of �2 =

�2
stat + �2

dynðTÞ are obtained, whose accuracy, however, depends

on the accuracy of calculated backscattering amplitudes,

phase-shifts and inelastic terms. In order to reduce the effects

of statistical correlations, it is good practice to leave free the

energy origin e0 and the inelastic factor S 2
0 only in a first trial

analysis and to consider their average values as fixed in the

final analysis. The average values S 2
0 = 0.86 and S 2

0 = 1 were

found for Cu and for CdTe, respectively (Fornasini et al., 2004;

Abd el All et al., 2012).

Separating the static and the vibrational contributions to �2

is in any case not immediate. In general one assumes that the

Einstein or Debye models are reasonably good estimates of

�2
dynðTÞ: both models tend to the classical harmonic behaviour

at high temperature and anharmonicity contributions can in

principle be taken into account by suitable corrections to the

Einstein model. For the crystals considered in the following

sections, the absolute values of �2 = �2
stat + �2

dynðTÞ determined

from the FEFF + FEFFIT analysis have been found in good

agreement or slightly lower that the Einstein or Debye models

best fitting their temperature dependence, suggesting the

negligibility of �2
stat.

4. First-shell MRSD results, harmonic analysis

More accurate values of cumulants can generally be obtained

for the first shell than for the outer shells, thanks to the

absence of MS contamination and to the possibility of

comparing the results of both the ratio method and the non-

linear fitting procedure. Besides, the possibility of directly

measuring the bond expansion �C �
1 with good accuracy leads

to the evaluation of the perpendicular MSRD.

Absolute values of the vibrational contributions to both

parallel and perpendicular MSRDs are generally obtained by

fitting an Einstein model to the temperature dependence of

the experimental values. For the parallel MSRD, this corre-

sponds to using only the first term (8) of the quantum

perturbative expansion.

As an example of the degree of accuracy presently attain-

able, Fig. 1 shows the case of CdTe, for which independent

measurements were performed at both the Cd and Te K-edges

(Abd el All et al., 2012, 2013).

4.1. Parallel and perpendicular correlation

The values of the parallel and perpendicular correlation

functions (24) and (25) evaluated at 300 K for the first coor-

dination shell of Cu, Ge, GaAs, InP, CdTe and CuCl are shown

in Fig. 2 as a function of the bond ionicity.

The accuracy of the correlation functions depends on the

accuracy of the EXAFS MSRDs and of the atomic MSDs. The

EXAFS results here presented for Cu, Ge, GaAs and CdTe

can be considered more accurate than for InP and CuCl. The

perpendicular MSRD is obtained, according to equation (20),

by comparing the thermal expansions measured by EXAFS

and Bragg scattering; when possible, EXAFS and scattering

measurements should be made on the same sample (Sanson et

al., 2006). Different Bragg scattering results can be found in

the literature for the same system, the discrepancy being due

to sample variations or perhaps to experimental errors; a non-

negligible discrepancy has been found for GaAs, leading to

a non-negigible difference in perpendicular MSRD values

(Ahmed et al., 2013). Experimental MSD data, obtained from

the refinement of scattering patterns, are available in the

literature for Cu, CdTe, InP and CuCl (Martin & O’Connor,

1977; Day et al., 1995; Horning & Staudenmann, 1986; Sara-
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Figure 1
Parallel (left panel) and half-perpendicular (right panel) MSRDs for the
first shell of CdTe (notice the different vertical scales). Solid and open
symbols are the results from Cd and Te K-edges, respectively; the dashed
lines are best-fitting Einstein models. Data from Abd el All et al. (2012).

Figure 2
Values of the parallel (circles) and perpendicular (squares) correlation
function evaluated at 300 K for the first shell of different systems: open
symbols refer to Cu, solid symbols to Ge, GaAs, InP, CdTe and CuCl. The
dashed lines are guides to the eye. The references for this and for the
following figures are given at the beginning of x3.
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vanan et al., 1992; Altorfer et al., 1994). For GaAs and Ge, no

temperature-dependent MSD experimental values are avail-

able, and we referred to calculated values (Reid, 1983; Soma &

Matsuo, 1982), which, however, significantly depend on the

lattice-dynamical model.

In spite of the difficulty of assessing the degree of accuracy

for the correlation parameters of Fig. 2, some general trends

can in any case be observed.

The value 0.46 of the parallel correlation for Cu (open

circle) can be compared with the value 0.32 found for Ni from

the analysis of total scattering patterns (Jeong et al., 1999). The

parallel correlation values calculated for several f.c.c. metals

(Al, Ca, Ni, Au and Ce) using the BvK force model (Jeong et

al., 2003), with parameters derived from phonon dispersion

curves, vary from 0.37 to 0.45.

The parallel correlation is significantly larger for the tetra-

hedral semiconductors (solid circles) than for copper and

seems nearly independent of the bond ionicity; the values

found by EXAFS vary from 0.76 to 0.82 and are consistent

with the value 0.82 found for InAs from the analysis of total

scattering (Jeong et al., 1999).

For both Cu2O and Ag2O, where the metal atom is linearly

coordinated to two oxygen atoms, the value of the correlation

parameter was found to be about 0.97 (Sanson et al., 2006).

It is reasonable to conclude that the first-shell parallel

correlation significantly depends on the structure: it is smaller

for close-packed structures and increases with the decreasing

of the coordination number. Actually, a strong correlation of

the absorber atom with all its nearest-neighbours is incom-

patible with a large coordination number. The dependence of

the parallel correlation on the interaction for a given structure,

for example on the degree of ionicity for the diamond–zinc-

blende structure, is comparably negligible.

The perpendicular correlation is only slightly smaller than

the parallel correlation for copper (open square). For tetra-

hedral semiconductors, the perpendicular correlation (solid

squares) is instead much smaller than the parallel correlation;

besides, it decreases when the bond ionicity increases, indi-

cating that it is significantly dependent on the interaction.

4.2. Effective force constants

The parallel and perpendicular effective force constants,

calculated from the Einstein frequencies, are shown in Fig. 3.

The parallel force constant kk, which measures the effective

bond strength, is more than twice as large in Ge (covalent

bond) than in Cu (metallic bond); it, however, significantly

decreases when the ionicity increases in tetrahedral semi-

conductors, and for CuCl it is smaller than that for Cu.

Contrary to the parallel correlation, the parallel force constant

is strongly dependent on the interaction even for systems

sharing the same structure.

The perpendicular force constant k? of copper is only

slightly smaller than the parallel force constant. For tetra-

hedral semiconductors, k? is instead much smaller than kk, the

relatively open structure favouring the perpendicular relative

vibrations. Like kk, the perpendicular force constant also

decreases when ionicity increases, although with a slightly

different trend. In any case, the values of both parallel and

perpendicular force constants for CuCl are less than 20% of

the corresponding values for Ge.

4.3. Anisotropy

A simple measure of the perpendicular to parallel aniso-

tropy of relative vibrations of neighbouring atoms,

h�u2
?i=2h�u2

ki, is given by the ratio of the effective force

constants, 
 = kk=k? (Ahmed et al., 2009).

A direct physical insight on the extent of relative vibrations

is given by the standard deviations �k = ½h�u2
ki�1=2 and �? =

½h�u2
?i=2�1=2, which directly measure the size of the relative

thermal ellipsoids. The anisotropy is thus more effectively

measured by 
1=2 = ðkk=k?Þ1=2 than by 
. The values of the

anisotropy parameter 
1=2 are shown in Fig. 4.

For copper, 
1=2’ 1.1, relative thermal vibrations are nearly

isotropic. For the more open structure of tetrahedral semi-

conductors, the parameter 
1=2 is significantly larger; the

average trend is to increase when ionicity increases, from

about 1.8 for Ge to about 2.3 for CuCl: the scattering of data
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Figure 3
Parallel (circles) and perpendicular (squares) effective force constants for
the first shell of different systems: open symbols refer to Cu, solid symbols
to Ge, GaAs, InP, CdTe and CuCl. The dashed lines are guides to the eye.

Figure 4
Anisotropy parameter 
1=2 = ðkk=k?Þ1=2: the open circle is for Cu, the solid
circles are for Ge, GaAs, InP, CdTe and CuCl. The dashed line is a guide
to the eye.
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with respect to a smooth behaviour can be correlated to the

different mass ratios of absorber and back scatterer atoms for

the different compounds (Fornasini, 2015b).

The extent of anisotropy of relative vibrations has been

recently correlated to the strength of the negative lattice

thermal expansion (Sanson et al., 2006; Ahmed et al., 2013).

4.4. Einstein and Debye models

In general, both correlated Debye and Einstein models

satisfactorily fit the temperature dependence of parallel

MSRD. The two models differ in the low-temperature region,

and tend to the same classical behaviour hEi=k0 = kBT=k0 at

high temperature, where, however, experimental data can be

affected by anharmonicity. The similarity of the two models

can be understood by considering that the DW exponent is less

sensitive than specific heat to the details of the vibrational

densities of states: the DW is proportional to the stored

energy, the specific heat is proportional to its derivative.

The residual discrepancy between the absolute values of

the correlated Debye and Einstein models best fitting the

temperature dependence of the parallel MSRD of Ge was

pointed out by Dalba & Fornasini (1997). The availability of

more refined data allows us now to gain a deeper insight. Let

us focus on Cu (Fornasini et al., 2004) and CdTe (Abd el All et

al., 2012). In Fig. 5, the corresponding Einstein and correlated

Debye models best fitting the temperature dependence of the

parallel MSRD are shown (left and right panels, respectively),

for different intervals of fit.

For copper, the experimental data extend from liquid-

helium temperature up to 500 K. When the fit is performed

over the entire temperature range 0–500 K, the Einstein

frequency is �E = 4.96 THz (Einstein temperature �E = 238 K)

and the Debye temperature is �D = 328 K. The absolute

MSRD values determined by Debye are slightly lower than

those determined by Einstein, the relative discrepancy

decreasing from about 7% at low temperatures to about 3% at

high temperatures (Fig. 5, top left panel).

When the fit is limited to the higher-temperature region

200–500 K, the Einstein frequency decreases by 1.8% and the

Debye temperature decreases by 3.5%. The two models are

now in quite fair agreement at high temperature; the relative

discrepancy is still about 5% at low temperatures, but

decreases to less than 0.2% at high temperatures (Fig. 5,

bottom left panel).

For CdTe, the experimental data extend from liquid-helium

temperature up to 300 K. When the fit is performed over the

entire temperature range 0–300 K, the Einstein frequency is

�E = 3.87 THz (�E = 186 K) and the Debye temperature is �D =

224 K. The absolute MSRD values determined by Debye are

significantly lower than those determined by Einstein, the

relative discrepancy being about 23% at low temperatures and

about 8% at high temperatures (Fig. 5, top right panel). The

non-negligible difference at high temperature can be attrib-

uted to the influence of the low-temperature region on the fit.

When the fit is limited to the higher-temperature region

200–300 K, where both models approach the classical beha-

viour, the Einstein frequency decreases by 0.7% and the

Debye temperature decreases by 3.5%. The relative discre-

pancy actually decreases to about 2% at high temperatures but

is still about 20% at low temperatures. The temperature

dependence of the experimental data is well reproduced by

both models in the high-temperature region but is better

reproduced by the Einstein model in the low-temperature

region.

The better agreement between the two models when the

fitting interval is limited to higher temperatures (classical

limit) is expected. Less obvious is the fact that when the

temperature interval is reduced the absolute values of the

Debye model undergo a larger modification than the absolute

values of the Einstein model; this effect is much more signif-

icant for CdTe than for Cu. These results suggest that the

Einstein model could be preferable to the Debye model for

non-primitive crystals, such as CdTe or Ge.

For non-primitive crystals, one could fit the experimental

data to a mixed model, Debye (with reduced Brillouin zone)

to account for acoustic modes and Einstein to account for

optic modes. Actually, such a fit is highly unstable, in view of

the strong similarity between the two models, which leads to

a strong correlation between Einstein frequency and Debye

temperature. In any case, it is interesting that the DW of CdTe

is well reproduced by summing a Debye model with the

diffraction Debye temperature 143 K (Zubı́k & Valvoda, 1975;

Stewart, 1983) and an Einstein model with a frequency centred

on the peak of optic modes in the vibrational density of states

(Talwar & Holliday, 1999).
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Figure 5
Einstein models (continuous lines) and correlated Debye models (dashed
lines) best fitting the experimental temperature dependence of the first-
shell parallel MSRD of Cu (left) and CdTe (right). Upper and lower
panels refer to fits performed over the entire temperature range or over a
limited higher temperature range, respectively. Open circles and open
squares are absolute values of experimental data obtained by fitting an
Einstein or a Debye model, respectively.
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5. First-shell results, anharmonicity effects

In principle, the anharmonic contributions to the second

cumulant can be non-negligible. A procedure for their

evaluation, based on the classical approximation, was

proposed by Dalba & Fornasini (1997) for the first three

coordination shells of Ge.

In the quantum perturbative approach, the anharmonic

contributions are given by equations (9)–(11). A direct fit of

the sum of the terms from (8) to (11), considering !, k3 and k4

as free parameters, is highly unstable, in view of the very

similar temperature dependence of the different terms. An

alternative recursive procedure is here proposed, based on the

use of all quantum relations (8)–(16); as a model system, we

consider again the first shell of CdTe (Abd el All et al., 2012).

5.1. Anharmonic contributions to the DW factor

Once the Einstein frequency �E has been determined by

fitting the harmonic expression (8) to the experimental values

of the second cumulant, the first step of the recursive proce-

dure is the analysis of the third and fourth cumulants. At first,

equation (12) is fitted to the experimental values of the third

cumulant, the only free parameters being the third-order force

constant k3 and a vertical normalization constant. The case of

the Te K-edge of CdTe is shown in the left panel of Fig. 6,

where k3 ’ �2.07 eV Å�3 and the non-zero low-temperature

value is about 4:2 � 10�6 Å3. The fourth cumulant is then

considered: the two terms (15) and (16) depend on k3, and are

thus fully determined; as one can see in the right panel of

Fig. 6, for CdTe they represent a large fraction of the fourth

cumulant; only the tiny remaining part depends on the free

parameter k4 of the two terms (13) and (14).

Once the force constants k3 and k4 have been determined,

one fits the sum of all the terms (8)–(11) to the experimental

temperature dependence of the second cumulant, obtaining a

new Einstein frequency �ð1Þh . The analysis of third and fourth

cumulants is repeated with the new frequency �ð1Þh , obtaining

new values of force constants k
ð1Þ
3 and k

ð1Þ
4 . The loop of fits

is repeated obtaining a sequence of frequencies �ðnÞh which

converge to a final value �harm. For the Te edge of CdTe we

obtained the sequence of frequencies �E = 3.87 THz, �ð1Þh =

4.0 THz, . . . , �harm = 4.05 THz.

The final result is shown in Fig. 7 for both the Te and Cd

edges. The harmonic contribution corresponds to 91% of the

total MSRD at 300 K for both edges. The anharmonic

contribution is mainly due to the terms (10) and (11) that

depend on the k3 force constant; the terms (9) that depend on

k4 are quite unimportant. The inset in the left panel of Fig. 7,

which shows an enlarged view of the low-temperature region,

allows one to evaluate the residual discrepancy between

experiment and model as well as the difference between

anharmonic and harmonic models, which is due to the small

but not negligible quantum effects on the third cumulant.

5.2. The bond Grüneisen parameter

The circles and continuous lines in Fig. 7 represent the total

parallel MSRD, sum of the harmonic and anharmonic

contributions. According to the quasi-harmonic approxima-

tion, a harmonic Einstein model can be fit to the total MSRD

value at each temperature. The frequencies �qhðTÞ so obtained

decrease when the temperature increases, owing to the effect

of anharmonicity.

The temperature dependence �qhðTÞ for the Te K-edge is

shown in the left panel of Fig. 8 for two different values of
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Figure 6
From EXAFS at the Te K-edge of CdTe (Abd el All et al., 2013). Left
panel: third cumulant, the continuous line is the best fitting function (12).
Right panel: fourth cumulant, the continuous line is the total fitting
function, the dashed line is the contribution of the two terms (15) and (16)
that depend on k3.

Figure 7
Anharmonic fit to the parallel MSRD of the first shell of CdTe
(continuous line) measured at the K-edge of Te (left) and Cd (right);
the dotted lines represent the harmonic contribution, the solid circles are
experimental data.

Figure 8
Temperature dependence of the quasi-harmonic Einstein frequency �qh

best fitting the total parallel MSRD (left) and of the bond Grüneisen
parameters 
bond (right) for the harmonic frequencies �ð1Þh = 4.00 THz
(open circles) and �harm = 4.05 THz (solid circles).
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harmonic contribution, �ð1Þh = 4.00 THz and �harm = 4.05 THz,

obtained at the first trial and at the end, respectively, of the

recursive procedure depicted above. The sensitivity of the

quasi-harmonic fit to tiny differences of the harmonic

frequency is evident, and suggests that very high quality

experimental data are necessary in order to obtain a mean-

ingful quasi-harmonic analysis.

Within the framework of the quasi-harmonic approxima-

tion, it is reasonable to correlate the temperature dependence

�qhðTÞ of the frequency with the temperature dependence of

the bond distance, measured by the first cumulant. To this

purpose, we define a bond Grüneisen parameter


bond ¼ �C �
1

�qh

d�qh

dC �
1

; ð37Þ

and calculate its values using the bond expansion from Abd el

All et al. (2012). The results are shown in the right panel of

Fig. 8. As expected, the bond Grüneisen parameter is positive,

since the bond expansion is positive; one can notice how its

value is strongly sensitive to tiny variations of the harmonic

frequency. To the best of our knowledge, this is the first time a

bond Grüneisen parameter is evaluated directly from experi-

mental EXAFS data.

According to the unidimensional anharmonic Einstein

model of Frenkel & Rehr (1993), the value of the bond

Grüneisen parameter of CdTe can be estimated as


bond ¼ � 3k3C
�
1

k
’ 4:9; ð38Þ

where k3 = �2.1 eV Å�2 is the third-order force constant

determined from the third cumulant (Abd el All et al., 2012)

and k = kk þ 6k3�C
�
1 = 3.62 eV Å�2 at 300 K, with kk and �C �

1

from experiment. The factor of three takes into account that

we are here considering a linear Grüneisen parameter instead

of the volume parameter considered by Frenkel & Rehr

(1993).

The volume Grüneisen parameter of CdTe evaluated at

300 K from the experimental coefficient of lattice thermal

expansion, specific heat and compressibility is 0.6 (Novikova,

1961; Smith & White, 1975); the same value has been recently

obtained by ab initio lattice dynamics calculations (Wang et al.,

2014). To compare this value with the bond Grüneisen para-

meter of Fig. 8, one needs to take into account that: (a) we are

here considering a linear parameter instead of a volume

parameter, so the value 0.6 has to be multiplied by 3; (b) the

coefficient of bond expansion of CdTe at 300 K is 17 �
10�6 K�1 (Fornasini & Grisenti, 2014), about 4.2 times larger

than the lattice expansion coefficient. From this procedure, a

rough estimation of the bond Grüneisen parameter 
bond ’ 7.6

is obtained.

6. Outer-shells results

Some relevant parameters (correlation functions, force

constants, Debye temperatures) of the parallel MSRD of

outer shells in copper and several tetrahedral semiconductors

are shown in Figs. 9 and 10. In all figures, the horizontal and

vertical scales are normalized to the first-shell values.

6.1. Correlation and force constants

The value of the correlation function (24) at a given

temperature (here 300 K) is expected to progressively

decrease in going from the first to the outer shells. In copper,

where for the first shell ’k ’ 0.4 at 300 K, the reduction of

correlation is larger for the second than for the third and

fourth shells (upper left panel of Fig. 9), in agreement with the

calculations for a number of other f.c.c. crystals performed by

Jeong et al. (2003). In tetrahedral semiconductors, where for

the first shell ’k ’ 0.8 at 300 K, the reduction when distance

increases is more regular (upper right panel of Fig. 9), but

different for different systems as well as for different second-

shell pairs in the same system.
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Figure 9
Correlation functions ’k at 300 K (top panels) and second-order force
constants (bottom panels) for the outer shells of copper (left panels) and
tetrahedral semiconductors (right panels), relative to the first-shell
values.

Figure 10
Debye temperatures for the outer shells of copper (left panel) and
tetrahedral semiconductors (right panel), relative to the first-shell values.
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The relative trend of the correlation functions is reproduced

by the relative trend of the Einstein force constants kk (lower

panels of Fig. 9). For the tetrahedral semiconductors, however,

the relative values of the force constants are much more

similar for different systems than the correlation functions. It

is worth remembering that, while force constants are directly

obtained from EXAFS results, correlation functions are

obtained by comparing the EXAFS parallel MSRDs with the

MSDs from Bragg scattering or from theoretical calculations,

whose accuracy can significantly differ for different systems.

6.2. Debye temperatures

The Debye temperatures are listed in Table 1 and their

values relative to the first shell are shown in Fig. 10.

For Cu, the Debye temperatures are very similar for the

first, third and fourth shells, and in agreement with the thermal

and diffraction Debye temperatures. The Debye temperature

of the second shell is, however, significantly smaller: here the

Debye model cannot fully account for the reduction of

correlation observed in Fig. 9, probably because of the rela-

tively low coordination number (6) and of the consequent lack

of isotropy.

For tetrahedral semiconductors, the Debye temperatures

significantly decrease in going from the first to the outer shells

and no connection can be found with the Debye temperatures

from other techniques. Two of the assumptions of the Debye

model (isotropy and correlation only attributed to inter-cell

phase shifts) are clearly unsuitable for the low coordination of

the first shell and for the intra-cell phase shifts of different

eigenvectors.

6.3. Anharmonicity effects

The anharmonic analysis of the DW factor was attempted

also for the second and third shells of Ge by Dalba &

Fornasini (1997). Such a procedure appears today highly

unreliable, in view of the difficulty of obtaining sufficiently

accurate values of third and fourth cumulants of outer shells

not only by the ratio method but also by the non-linear fit

approach. Moreover, as has been observed in x2, recent

simulations suggest that the outer shells are significantly less

asymmetric than the first one, so that the higher-order

cumulants and the anharmonic corrections to the second-

order cumulant are expected to be negligible.

7. Conclusions

Not only are accurate experimental evaluations of the parallel

and perpendicular MSRDs in simple model systems necessary

for the validation of theoretical results, their phenomen-

ological interpretation can lead to a better intuitive under-

standing and to new insights on trends and regularities as a

function of structural and chemical parameters.

The first-shell correlation parameters, force constants and

vibrational anisotropy have different values for different

structures (f.c.c. and diamond–zincblende); for the same

structure, they exhibit a clear trend as a function of the bond

ionicity.

Anharmonicity effects on the first-shell parallel MSRD can

be evaluated, provided experimental data of very high quality

are available. A quasi-harmonic analysis can then lead to

evaluating a bond Grüneisen parameter. Further work, both

theoretical and experimental, is necessary to assess the relia-

bility of this procedure as well as to explore the possibility of

a connection between the bond Grüneisen parameter, the

coefficient of bond thermal expansion, the specific heat and

the bond compressibility, in analogy with the well established

relation of bulk thermodynamics.

The Debye and Einstein models can be considered

equivalent, within the present-day experimental accuracy, for

a simple parametrization of the temperature dependence of

parallel and perpendicular MSRDs. The example of CdTe

suggests that the Einstein model can give a slightly better

estimate of the absolute values for non-primitive crystals. The

EXAFS Debye temperatures cannot generally be compared

with the Debye temperatures from other techniques; their

values can in any case give the qualitative separation of clas-

sical from quantum regimes for the different coordination

shells. The Einstein model is recommended for its simplicity,

for the possibility of evaluation of the effective force constants

and for the easyness of extension to include anharmonicity

effects.
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Table 1
EXAFS Debye temperatures (in K) for different shells of Cu, Ge, GaAs,
InP and CdTe.

For the second shells of binary compounds, the first and second lines refer to
the lightest pair (Ga–Ga, Cd–Cd) and to the heaviest pair (As–As, Te–Te, In–
In), respectively. The bottom lines show the Debye temperatures from
diffraction and specific heats.

Cu Ge GaAs InP CdTe

EXAFS 1 328 460 402 416 228
2 283 299 230 114

240 171 126
3 322 299 195 203 105
4 321

Diffraction �M 320a 290b 143c,d

Specific heat At 0 K 347e 373e 345f 321h 158h

At 300 K 310g 403g 370f 410h 60h

350h

aFlinn et al. (1961). bBatterman & Chipman (1962). cZubı́k & Valvoda (1975). dHorning &
Staudenmann (1986). eStewart (1983). fAdachi (1999). gHo et al. (1974). hAdachi
(2005).
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Haug, J., Chassé, A., Schneider, R., Kruth, H. & Dubiel, M. (2008).
Phys. Rev. B, 77, 184115.

Ho, C. Y., Powell, R. W. & Liley, P. E. (1974). J. Phys. Chem. Ref.
Data, 3(Suppl. 1), 1–796.

Horning, R. D. & Staudenmann, J. L. (1986). Phys. Rev. B, 34, 3970–
3979.

Ikemoto, H. & Miyanaga, T. (2007). Phys. Rev. Lett. 99, 165503.
Jeong, I. K., Heffner, R. H., Graf, M. J. & Billinge, S. J. L. (2003).
Phys. Rev. B, 67, 104301.

Jeong, I. K., Proffen, T., Mohiuddin-Jacobs, F. & Billinge, S. J. L.
(1999). J. Phys. Chem. A, 103, 921–924.

Kamishima, O., Ishii, T., Maeda, H. & Hashino, S. (1997a). Solid State
Commun. 103, 141–144.

Katsumata, H., Miyanaga, T., Yokoyama, T., Fujikawa, T. & Ohta, T.
(2001). J. Synchrotron Rad. 8, 226–228.

Keating, P. N. (1966). Phys. Rev. 145, 637–645.
Kennedy, B. J. (1995). Acta Cryst. C51, 790–792.
Lagarde, P. (1985). Amorphous Solids and the Liquid State, edited by

N. H. March, R. A. Street and M. Tosi, ch. 11, pp. 365–394. New
York: Plenum Press.

Lee, P. A., Citrin, P. H., Eisenberger, P. & Kincaid, B. M. (1981). Rev.
Mod. Phys. 53, 769–806.

Martin, C. J. & O’Connor, D. A. (1977). J. Phys. C, 10, 3521–3526.
Martin, R. M. (1971). Phys. Rev. B, 1, 4005–4011.
Miyanaga, T. & Fujikawa, T. (1994). J. Phys. Soc. Jpn, 63, 1036–1052.
Miyanaga, T. & Fujikawa, T. (1998). J. Phys. Soc. Jpn, 67, 2930–2937.
Mustre de Leon, J., Conradson, S. D., Batistić, I., Bishop, A. R.,
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